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Abstract
Large pretrained protein language models (PLMs)
have improved protein property and structure pre-
diction from sequences via transfer learning, in
which weights and representations from PLMs
are repurposed for downstream tasks. Although
PLMs have shown great promise, currently there
is little understanding of how the features learned
by pretraining relate to and are useful for down-
stream tasks. We perform a systematic analysis of
transfer learning using PLMs, conducting 370 ex-
periments across a comprehensive suite of factors
including different downstream tasks, architec-
tures, model sizes, model depths, and pretraining
time. We observe that while almost all down-
stream tasks do benefit from pretrained models
compared to naive sequence representations, for
the majority of tasks performance does not scale
with pretraining, and instead relies on low-level
features learned early in pretraining. Our results
point to a mismatch between current PLM pre-
training paradigms and most applications of these
models, indicating a need for better pretraining
methods.

1. Introduction
Proteins perform a myriad of critical biological functions,
and thus the ability to design proteins has vast impacts
on healthcare, environment, and industry (Lutz & Iamurri,
2018). Since a protein’s function is largely determined by
its amino acid sequence, specifying a sequence that will
yield a desired function is feasible in principle. However,
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the relationship between amino acid sequence and function
remains poorly understood, and most experimental methods
for measuring function are costly and low-throughput (May-
nard Smith, 1970; Romero & Arnold, 2009). To overcome
the challenge presented by limited labelled data, researchers
have sought to use transfer learning, in which models are pre-
trained in a self-supervised fashion on large public datasets
in the hope that the pretrained features or model weights
will improve performance on downstream tasks where su-
pervised data is limited (Fig. 1a-b).

Protein language models (PLMs) have emerged as the most
popular framework for transfer learning for proteins (Rives
et al., 2021; Yang et al., 2022; Elnaggar et al., 2022; Brandes
et al., 2022; Alley et al., 2019; Elnaggar et al., 2023; Lin
et al., 2023). Most PLMs pretrain using the masked lan-
guage modeling (MLM) task, in which the model is trained
to predict the original identity of masked or corrupted amino
acids. PLMs have been effective at improving performance
on many protein function prediction tasks, and some are
now integrated into bioinformatics and structure prediction
tools (Teufel et al., 2022; Thumuluri et al., 2022; Wu et al.,
2022; Flamholz et al., 2024). Despite their widespread
adoption, it is not understood how or why PLMs improve
performance on downstream tasks.

Drawing from other domains like computer vision where
investigations of transfer learning are more established, we
synthesize a set of possible hypotheses to explain improve-
ment in downstream tasks, and design and conduct a com-
prehensive series of experiments to test them. We structure
our study around the following hypotheses:

Feature reuse (Fig. 1c-i). One popular hypothesis is that
MLM pretraining learns general features of protein biology,
and that these features can be re-used across tasks. Previous
work has shown that transfer learning improves performance
across diverse downstream tasks (Rao et al., 2019; Dallago
et al., 2021). However, the degree of feature reuse is also
important: ideally, the pretrain and downstream tasks should
be aligned, such that transferring PLM representations im-
proves downstream function prediction accuracy and that
this improvement increases with larger model sizes, deeper
layers, and better pretraining performance.
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Figure 1: Summary of the transfer learning procedure and our analyses. a) PLMs are pretrained using masked language
modeling. b) Typically, transfer learning uses respresentations from the last layer of the PLM for downstream tasks. We
evaluate downstream task performance at every layer in the model. c) We compare to baselines and ablations and evaluate
the effects of PLM size, model depth, and pretraining time. These experiments characterize behavior consistent with either
feature reuse (i), or an alternative hypothesis (inductive biases/overparameterization - ii, weight statistics - iii, or reuse of
low-level features only - iv).

If this does not occur, it suggests that pretraining primarily
learns features that cannot be reused on downstream tasks.
To determine whether or not this is the case for PLMs, we
explore three alternative hypotheses.

Inductive biases and overparameterization (Fig. 1c-
ii). The large number of parameters in pretrained mod-
els may lead to some alignment with useful signals by
chance (Raghu et al., 2019). If inductive biases are suf-
ficient, then transferring from randomly-initialized version
of the same model architecture should perform similarly.

Statistics of pretrained weights (Fig. 1c-iii). The primary
benefit of pretraining may be initializing weights to a sen-
sible scale (Raghu et al., 2019; Matsoukas et al., 2022). If
pretraining primarily provides better weight initialization,
resampling weights from the empirical distribution after
pretraining should provide similar performance.

Reuse of low-level features (Fig. 1c-iv). It is possible for
only less complex features learned early in pretraining to
contribute to transfer learning (Neyshabur et al., 2021). If
low-level features are sufficient, then features extracted from
earlier layers of the pretrained model may provide better or
similar performance to those extracted from the last layer.
Similarly, earlier pretraining checkpoints or smaller, less
performant models should provide similar performance to
the full-size, fully-pretrained model.

Critically, while all three alternative hypotheses can still
lead to improvements in downstream task performance, they
do not predict that downstream task performance can be
improved by transferring representations from larger, better-
trained models (Raghu et al., 2019; Abnar et al., 2022).

Contributions

Our work evaluates the scalability of transfer learning for
PLMs and makes the following contributions:

1. The most comprehensive evaluation, to date and to
the best of our knowledge, of transfer learning with
PLMs, spanning 370 experiments over a diverse suite
of downstream tasks.

2. The discovery that current MLM pretraining paradigms
underserve many aspects of protein biology, as sup-
ported empirically by evidence from both structure and
function prediction tasks.

3. Systematic evidence that performance on many protein
property prediction tasks does not scale with PLM size
or pretraining. Our results uncouple improvements in
downstream performance from scaling properties.

Together, our results predict that scaling PLMs with current
MLM pretraining paradigms may not scale performance
on many protein function prediction tasks, but provides an
evaluation framework for identifying if future pretraining
efforts are scalable across more aspects of protein biology.
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2. Related Work
2.1. Pretrained Protein Language Models

While numerous pretrained PLMs have been proposed in
the past few years (Rives et al., 2021; Yang et al., 2022; El-
naggar et al., 2022; Brandes et al., 2022; Alley et al., 2019;
Rao et al., 2019; Elnaggar et al., 2023; Lin et al., 2023),
these works primarily focus on validating that pretraining
improves performance on downstream tasks. In contrast, our
work primarily seeks to understand the factors impacting
transfer learning, which have not been rigorously studied
to date for PLMs. Most PLM studies include comparisons
to models with randomly initialized weights (Rives et al.,
2021; Yang et al., 2022) to confirm that pretrained models
do not improve downstream task performance due to overpa-
rameterization or inductive biases alone. Other studies show
that under some circumstances, PLMs yield no detectable
improvement over a simple one-hot representation of se-
quences (Wittmann et al., 2021; Hsu et al., 2022; Dallago
et al., 2021). Compared to these individual baselines and
benchmarks, our paper conducts a systematic analysis over
many different factors impacting transfer learning.

The most similar work to ours is Detlefsen et al. (2022),
which analyzes the effects of model architecture, fine-tuning,
and different pooling schemes on transfer learning perfor-
mance. However, we use MLMs trained on complete se-
quences instead of autoregressive models trained on Pfam
domains. While they train proprietary, unreleased models
for analysis, we use established models in the public domain.
This makes our analysis more relevant to applications cur-
rently using these models and also improves documentation
around these models. For example, neither their paper nor
their released code describes the pretrained models in detail,
so it is uncertain what the size of their model is, whereas we
systematically vary the model size. More importantly, we
evaluate a larger and more diverse set of downstream tasks
with experiments designed to differentiate possible mech-
anisms by which transfer learning improves performance
on downstream tasks. Critically, our systematic analysis
identifies cases where transfer from PLMs is empirically
effective in improving downstream task performance but
the improvement is due to factors that are not expected to
scale with further pretraining or larger models. However, to
the extent that our analyses reach similar conclusions (e.g.
both our studies observe that performance on the pretraining
task does not always correlate with downstream task perfor-
mance), we view our work as complementary: Detlefsen
et al. (2022) use different architectures, pretraining tasks,
and pretraining datasets than us, suggesting that our observa-
tions are general across more factors than what either paper
analyzes independently.

2.2. Understanding Transfer Learning

While our analysis is differentiated as we focus on protein
sequences, we take inspiration from computer vision studies
that have sought to understand factors underlying successful
transfer learning. Many are motivated by the observation
that ImageNet-trained models are effective when transferred
to medical images, raising the question of whether trans-
fer performance is really due to reuse of features (given
the extreme mismatch in domain), or due to more trivial
factors. Raghu et al. (2019) compare pretrained models
against random initialization to demonstrate that in some
situations transfer performance is due to overparameteriza-
tion. By randomly initializing models to match the weight
statistics of pretrained models, the authors further demon-
strate that improvements from pretraining may arise from
good weight scalings rather than learning reusable features.
Similarly, He et al. (2019) show that hyperparameter tuning
can often explain improvements from transfer learning. By
scrambling input images, Neyshabur et al. (2021) show that
improvements from transfer learning can at least partially be
attributed to the pretrained models learning low-level statis-
tics of data rather than more sophisticated feature use. Mat-
soukas et al. (2022) further demonstrate that these factors
vary depending upon downstream task dataset and model
architecture.

Beyond models pretrained on ImageNet, some papers have
looked at factors more specific to self-supervised pretrain-
ing. Abnar et al. (2022) show that improvements on the
self-supervised pretraining task do not necessarily translate
to improved performance on downstream tasks, and in some
cases, are even anti-correlated. Pioneering work in gener-
ative self-supervised models also demonstrates that these
models often saturate in downstream task performance in an
intermediate layer of the model and degrade after (Jing &
Tian, 2020). This is reinforced by empirical studies showing
that the representations learned by self-supervised models
versus supervised models rapidly diverge in the last few
layers (Grigg et al., 2021), consistent with previous obser-
vations that later layers may be more specialized for the
original task (Yosinski et al., 2014), underscoring the impor-
tance of a layer-by-layer evaluation.

Beyond computer vision, transfer learning has been exten-
sively studied in natural language processing, and particu-
larly in “BERTology” (Rogers et al., 2021), which seeks to
understand what self-supervised Transformer models learn
and their transferability. Among other factors, studies have
similarly analyzed the effects of pretraining (Kovaleva et al.,
2019), overparameterization (Gordon et al., 2020), and layer-
by-layer content (Lin et al., 2019).
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3. Datasets and Pretrained Models
To understand why and when transfer learning with PLMs
improves downstream performance and how the improve-
ments scale with increasingly large PLMs, we conducted
370 experiments on a diverse suite of downstream tasks with
PLMs of different sizes, architectures, and at different check-
points in training. The downstream tasks are summarized in
Tables 1 and A1.

3.1. Downstream Tasks

We test a diverse set of tasks covering both property and
structure prediction, different types of distribution shift rele-
vant to protein engineering, and global versus local variation
over the sequence (Supplementary section B.2).

Structure prediction. We use the three-class secondary
structure (SS3) task from TAPE with three independent
test sets, SS3 – CB513 (Cuff & Barton, 1999), SS3 –
TS115 (Yang et al., 2016), and SS3 – CASP12 (Moult et al.,
2018), where the objective is to predict whether each residue
belongs to an α-helix, β-strand, or coil (Rao et al., 2019).

Property prediction. We use the thermostability, subcellu-
lar localization, GB1, and AAV datasets from FLIP (Dallago
et al., 2021).

Thermostability and subcellular localization are global pro-
tein properties measured for sequences spanning different
functional families and domains of life. The thermostability
dataset measures the melting temperature of 48,000 proteins
across 13 species (Jarzab et al., 2020). Subcellular localiza-
tion is a classification task predicting the cell compartment
to which a eukaryotic protein localizes (Armenteros et al.,
2017; Stärk et al., 2021).

In contrast, the GB1 and AAV datasets measure the effects
of local sequence variation. GB1 is the 56 amino-acid B1
domain of protein G, an immunoglobulin-binding protein.
The GB1 dataset covers binding measurements for simulta-
neous mutations of up to 4 interactive sites (Wu et al., 2016).
VP1 is an adeno-associated virus (AAV) capsid protein, over
700 amino acids long (Bryant et al., 2021). The AAV dataset
measures the effects of sparsely sampled mutations across a
contiguous 28 amino-acid region over the binding interface
on viral viability.

For GB1 and AAV, FLIP provides different train-test splits
with different distribution shifts, including sampled (in-
distribution) and out-of-distribution splits, as described
in Table A1. Out-of-distribution splits more closely re-
semble protein engineering applications where a few low-
functioning variants with a limited number of mutations are
initially generated, but high-functioning variants across the
larger sequence space are the engineering end goal. For
GB1, we test three splits, in order of increasing difficulty:

• Sampled: Sequences randomly partitioned between
80% training and 20% testing.

• Low vs high: Models are trained on mutants with
function worse than the parent and tested on those with
better function.

• Two vs rest: Models are trained on single and double
mutants and tested on triple and quadruple mutants.

For AAV, we test two splits, in order of increasing difficulty:

• Two vs many: Models are trained on single and dou-
ble mutants and tested on variants with three or more
mutations.

• One vs many: Models are trained on single mutants
and tested on variants with more mutations.

3.2. Transfer Learning with Protein Language Models

While a number of pretraining tasks have been proposed
for protein sequences, we focused on models trained using
the popular BERT (Devlin et al., 2019) masked language
modeling (MLM) task. During pretraining, 15% of tokens
are randomly selected. Of the 15%, 10% are replaced with
a special masking token, 2.5% are randomly changed to
another token, and the remaining 2.5% are unperturbed to
encourage the model to preserve the input sequence. The
corrupted sequence is passed to the model, which is trained
to maximize the probability of the original tokens at the
selected locations.

To evaluate the effect of model architecture, we chose
two families of protein MLMs with comparable model
sizes trained on UniRef50 (Suzek et al., 2015): the
ESM (Rives et al., 2021) family of transformer models and
the Convolutional Autoencoding Representations of Pro-
teins (CARP) (Yang et al., 2022) family of convolutional
models (Supplementary section B.1). Due to the sequence
length limit of the ESM-1b transformer model, the first and
last 511 amino acids were taken for all sequences exceeding
1022 amino acids. This length restriction chiefly impacts
the subcellular localization dataset: targeting signals often
occur at the N- or C-terminal, and we reason that taking
both terminals preserves biologically-relevant signals.

Following standard protein transfer learning practice when
resources for full finetuning are not available (Dallago et al.,
2021), we pass representations from each PLM layer to
a linear model and compare the performance to a linear
model on the one-hot encoding of the sequence for each
task (Fig. 1b). In addition to linear models, we also tested a
learned attention pooling followed by a shallow multi-layer
perceptron. However, we found last layer performance to be
inferior to the linear models across almost all downstream
tasks (Supplementary Figure A1), so we focus on the linear
models in our analyses. For the SS3 and subcellular local-
ization tasks, we train linear classifiers with mini-batches
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Table 1: Summary of downstream prediction tasks

Dataset Description Tasks Task type

SS3 Secondary structure CB513, TS115, CASP12 Residue-level classification
Thermostability Melting temperature Thermostability Regression
Subcellular localization Cellular location Subcellular localization Classification
GB1 Immunoglobulin binding Sampled, low vs. high, two vs. rest Regression
AAV Viral viability Two vs. many, one vs. many Regression

in PyTorch and perform early stopping based on the valida-
tion set. For the regression tasks, we train ridge regression
models with Scikit-learn (Buitinck et al., 2013), using a
grid search on the validation set to tune the regularization
strength. For all tasks except secondary structure prediction,
we mean pool the representations over the length dimension
from each layer. Secondary structure prediction requires a
representation for every residue, so no pooling is performed
(Supplementary section B.3).

As protein engineers often seek to identify top-ranked mu-
tants as opposed to predicting the absolute function of muta-
tions, we use ranking metrics, Spearman’s rank correlation
and Normalized Discounted Cumulative Gain (NDCG), as
the primary metrics for the regression tasks. We report
Spearman’s rank correlation for regression tasks and accu-
racy for classification tasks in the main text. Additional
metrics, including mean square error, cross-entropy loss,
and ROC-AUC are in the Supplemental Materials.

4. Experimental Setup
Baseline and ablations. We conduct baselines and model
ablations to determine when transfer learning improves
downstream task performance and whether improvements
in downstream task performance can be attributed to mecha-
nisms other than feature reuse (Fig. 1b-ii and 1b-iii).

• One-hot baseline ( ). To determine whether transfer
learning with PLMs improves performance, we test if
representations from pretrained models perform better
than a one-hot representation.

• Random init ( ). To evaluate whether the effect of
transfer learning is due to overparameterization and/or
the inductive biases of the PLM architecture, we test
the impact of randomly initialized weights.

• Stat transfer ( ). To evaluate whether the effect of
transfer learning is due to weight statistics and/or ini-
tializing the weights to a sensible scale, we test the
impact of randomly initialized weights matching the
weight distribution of the pretrained PLM by randomly
permuting the pretrained weights.

For random init and stat transfer, we initialize models with
3 random seeds. We consider transfer learning from a PLM

to improve performance over baselines if it has a one-tailed
p-value < 0.05 in a one-sample t-test.

Scaling experiments. To further understand if the MLM
pretraining task is aligned with downstream tasks, we sought
to understand if improving PLM performance by scaling
across three factors also improves transfer learning perfor-
mance on downstream tasks (Fig. 1b-iv):

• Model size. For both CARP ( ) and ESM ( ),
we test models with different numbers of layers and
parameters (Table A2). For concision, we refer to
CARP-38M and ESM-43M as the “small” models ( ),
CARP-76M and ESM-85M as the “medium” models
( ), and CARP-640M and ESM-650M (ESM-1b) as
the “large” models ( ).

• Model depth. For each architecture (CARP: , ESM:
) and model size ( ), we test whether down-

stream task performance improves as we transfer
deeper layers by determining whether the Spearman
rank correlation between layer number and perfor-
mance is greater than 0.9 (Table A6). This experi-
ment allows us to understand if tasks primarily reuse
low-level features early in the pretrained models, or
if more complex features deeper in the models also
contribute to downstream task performance. Convo-
lutional neural networks (CNNs) induce a stronger
correlation between the depth of the layer and the com-
plexity of the features than transformers, leading to
different patterns of feature reuse in previous transfer
learning studies (Matsoukas et al., 2022). However, we
find little empirical difference between CNNs (CARP)
and transformers (ESM) in our analyses.

• Model checkpoint. For each model size ( ),
we test the effect of using checkpoints from earlier in
pretraining. We order these checkpoints based upon
their pretraining performance (perplexity, calculated
on a held-out test set of 210k sequences from Uniref50
not used to train CARP), as earlier checkpoints have
higher losses on the MLM pretraining task (Table A7).
We evaluate whether features from later in pretrain-
ing improve transfer learning by determining whether
the Spearman rank correlation between the negative
pretrain loss and downstream performance is greater
than 0.9 (Table A8). Unfortunately, checkpoints are
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only publicly available for CARP, so we cannot run
this analysis with ESM.

Estimating error for our scaling experiments is infeasible
as it would require re-training multiple PLMs from scratch.
Thus, we chose arbitrary thresholds, which may impact the
way we have categorized downstream tasks in our interpreta-
tion. For transparency, we plotted performance for all PLMs
in each of our scaling experiments in Figures 3, 4, and 5.

We define the MLM pretraining task to be aligned with a
downstream task if transferring PLM representations im-
proves downstream task performance over the baseline and
ablations and this improvement scales with improvements to
pretraining. Code for all experiments is available at https:
//github.com/microsoft/protein-transfer

Figure 2: Downstream task result summary. ✓ indicates
true, ∼ indicates true for only one architecture, and ✗ indi-
cates false.

5. Results
Overall, our analyses reveal three clusters of transfer learn-
ing behavior across downstream tasks (Figure 2). First, we
find that within our set of benchmarks, secondary struc-
ture prediction tasks are the only tasks where pretraining
improves downstream performance and the pretrain and
downstream tasks are aligned. Second, we observe that
transfer learning improves performance for many down-
stream tasks despite the pretrain and downstream tasks not
being well-aligned, indicating that performance on these
tasks may not improve as PLMs scale on the axes we tested.
Third, we observe that although transfer learning improves
performance on almost all downstream tasks, for some tasks
this improvement can be attributed to overparameterization,
inductive biases, or sensible weight initialization. In sub-
sequent sections, we expand on each of these clusters of
observations in detail.

5.1. Structure Prediction Benefits from Transfer
Learning Because It Is Well-Aligned with MLM
pretraining

For all three residue-level secondary structure prediction
tasks, Fig. 3a and Table A3 show that PLM embeddings out-

perform the one-hot baseline as well as the random init and
stat transfer ablations, demonstrating that transfer learning
improves secondary structure prediction performance and
that the improvement is not due to the inductive biases or
weight statistics of the models. Secondary structure predic-
tion performance improves when transferring deeper PLM
features (Fig. 3b), indicating that more complex features
from later layers continue to improve performance. Further-
more, transfer learning with features from larger models
and from later in pretraining improve secondary structure
prediction (Fig. 3a and 3c), as previously observed by Rives
et al. (2021), Elnaggar et al. (2022), and Yang et al. (2022).
We therefore conclude that MLM pretraining is well-aligned
to structure prediction, allowing PLM features to be reused
when predicting secondary structure from sequence.

Figure 3: Results for secondary structure prediction. a) Per-
formance on downstream tasks when transferring the final
layer representation from various sizes of ESM and CARP
compared to baselines and ablations. b) Downstream task
performance by depth of layer transferred. c) Downstream
task performance by pretraining loss. Each dot is a model
checkpoint. For all subplots, downstream task test perfor-
mance is quantified using accuracy.

5.2. Many Tasks Benefit from Transfer Learning
Despite Lack of Alignment with MLM Pretraining

Next, we observe a cluster of five downstream tasks (subcel-
lular localization, thermostability, AAV – two vs many, GB1
– low vs high, and GB1 – sampled) where transfer learning
improves performance over baselines even though the tasks
do not align well with the pretraining task (Fig. 4). For
these tasks, transfer learning improves performance over
both the random init and stat transfer ablations, indicating
that transfer learning confers at least some benefit over the
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inductive biases, parameterization, or weight statistics of
the models alone (Fig. 4a and Table A4). However, for all
of these tasks, downstream task performance does not im-
prove as features from deeper layers are transferred (Fig. 4b)
or as the PLMs improve their pretraining loss over check-
points (Fig. 4c), suggesting that these tasks may rely upon
low-level features learned early in pretraining. Notably, the
performance on these tasks typically saturates below fully
fine-tuned models of the same architecture (and always be-
low the the best-performing model for each task) trained
by Yang et al. (2022) (Table A4), indicating that the satura-
tion is not because downstream task performance has hit an
upper bound.

Figure 4: Results for tasks where transfer learning improves
downstream task performance, but the pretrain and down-
stream tasks are not aligned. a) Performance on downstream
tasks when transferring the final layer representation from
various sizes of ESM and CARP compared to baselines
and ablations. b) Downstream task performance by depth
of layer transferred. c) Downstream task performance by
pretraining loss. Each dot is a model checkpoint. For all
subplots, downstream task test performance is quantified
using Spearman’s rank correlation.

To supplement our quantitative cut-offs for alignment, we
qualitatively assess trends in layer-by-layer performance
across tasks. We observe that for all tasks where transfer
learning improves performance over the baselines (including
the secondary structure prediction tasks), the largest gains
in performance occur in the first 3-5 layers of both the ESM
and CARP models, across model sizes (Fig. 3b and 4b).
However, unlike the secondary structure prediction tasks,
which continue to improve in performance past this initial
peak, improvement on the downstream tasks in this cluster
generally plateaus (e.g. for the GB1 – low vs high task),
supporting our interpretation that features contributing to
these tasks are already present within the first few layers of
pretrained PLMs.

Interestingly, although none of these tasks scale with model
depth or pretraining loss, three downstream tasks (subcellu-
lar localization, thermostability, and AAV – two vs many)
scale with PLM size (Fig. 4a). We reasoned that while
our random init ablation rules out that improvements in
downstream task performance is entirely due to parameter-
ization, parameterization may still partially contribute to
performance independently of feature reuse. To test this, we
additionally evaluated the performance of small and medium
randomly initialized models. Indeed, we observe that both
types of randomly initialized models scale in performance
with ESM-1 model sizes for two of the tasks, and in similar
proportions to the improvements for the pretrained models
(Table A4). Together, this suggests observing downstream
task performance scales with model size alone is not suffi-
cient to conclude that pretraining and downstream tasks are
aligned, and that demonstrating scaling across other axes
(such as model depth and checkpoints in training, as we
propose here) is necessary.

Figure 5: Results for task where pretraining does not im-
prove downstream task performance. a) Performance on
downstream tasks when transferring the final layer represen-
tation from various sizes of ESM and CARP compared to
baselines and ablations. b) Downstream task performance
by depth of layer transferred. c) Downstream task perfor-
mance by pretraining loss. Each dot is a model checkpoint.
For subcellular localization, the downstream classification
task performance is quantified using accuracy. For other
tasks, the downstream regression task performance is quan-
tified using Spearman’s rank correlation.

5.3. Some Tasks Do Not Benefit from MLM Pretraining

Finally, we observe two downstream tasks (AAV – one
vs many, and GB1 – two vs rest) where pretraining does
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not improve transfer learning performance (Fig. 5). For,
the AAV – one vs many task, although transfer learning
improves over a one-hot representation, pretrained models
do not significantly outperform randomly initialized models,
suggesting that the improvement can be entirely attributed to
inductive biases and parameterization. In contrast, transfer
learning fails to outperform a one-hot representation on
the GB1 – two vs rest task (Fig. 5a and Table A5). We
hypothesize that GB1 – two vs rest is too challenging for
any pretrained model, given it is an out-of-distribution split
with only about 400 training samples.

Intriguingly, our stats transfer ablation decreases perfor-
mance for all GB1 tasks, including the GB1 – low vs high
task in the previous section, compared to the one-hot and
random initialization baselines (Fig. 4b and 5b; Tables A4
and A5). We hypothesize that this is because the GB1
dataset is a highly local task, depending on finding interac-
tions between just four mutated positions in a sequence.

6. Discussion
In this work, we systematically evaluate the mechanisms
via which transfer learning from large pretrained protein
language models improve performance on downstream pro-
tein function and structure prediction tasks. While most
downstream tasks benefit from transfer learning, of the tasks
we evaluated, structure prediction is the only task where
we observe pretrain-downstream alignment. Our results are
consistent with previous studies that show MLM pretraining
imparts information about protein structure. Previous work
has shown that the attention matrices in pretrained PLMs
recapitulate contact maps (Vig et al., 2020; Rao et al., 2021),
that it is possible to extract contact maps by perturbing the
inputs to PLMs (Zhang et al., 2024), and that PLM represen-
tations contain similar co-evolution information as multiple
sequence alignments (Chowdhury et al., 2022; Lin et al.,
2023; Wu et al., 2022).

Other works have argued that larger models will not benefit
fitness prediction when using zero-shot likelihoods from
generative models (Nijkamp et al., 2022; Weinstein et al.,
2023), as some degree of misspecification is important for
generalizing from natural protein distributions to mutant
variants. Our results, which show that fitness prediction
tasks do not scale with pretraining, are consistent with these
prior works, but we show this holds true even when transfer-
ring embeddings and even with some degree of fine-tuning.
At the same time, by showing that structural prediction tasks
do scale with pretraining, our results suggest that these prior
results may not be general past fitness prediction.

Our primary contribution is showing that scaling pretrain-
ing does not improve performance on prediction tasks that
are less reliant on coevolutionary patterns, and that out-

performing the one-hot and randomly initialized baselines
does not imply that downstream task performance will scale
with pretraining performance. By providing the observation
that current PLMs trained on MLM fail to scale on many
downstream tasks, we provide a means for future models
to improve on these limitations: we believe that assessing
different pretraining tasks, architectures, datasets, and fine-
tuning methods with our evaluation framework may produce
insights on how to build more general models.

Limitations. There are factors known to impact transfer
that we could not test for PLMs due to a lack of public mod-
els or computational expense. First, pretraining dataset is
important, both in terms of distance between the pretraining
and downstream task data domains (Cherti & Jitsev, 2022)
and data size (Abnar et al., 2022). PLMs pretrain on large
databases of natural sequences. In principle, this means
that some downstream tasks may be out-of-distribution (e.g.
those involving artificial variation or non-natural function),
or subject to biases in data collection (e.g. taxonomies
less-represented in UniProt (Consortium, 2019)). Previous
studies have shown differences in pretraining performance
by taxonomy (Almagro Armenteros et al., 2020), and that
model likelihoods are biased towards more frequent species
in UniProt (Ding & Steinhardt, 2024). Meier et al. (2021)
trained versions of ESM on UniRef100 instead of UniRef50,
and Dallago et al. (2021) show that they perform very simi-
larly on function prediction tasks. However, subsampling
pretraining sequence datasets has not been explored beyond
downsampling redundant sequences, making the impact of
data difficult to evaluate for pretrained PLMs.

Second, a variety of other pretraining tasks have been pro-
posed for protein transfer learning, such as autoregressive
next-token prediction (Madani et al., 2023; Ferruz et al.,
2022; Hesslow et al., 2022). Different pretraining tasks
could potentially learn different aspects of protein biology,
and thus have different patterns of scaling. While we only
evaluated the MLM pretraining objective, future work that
tests other pretraining tasks under our evaluation frame-
work will be critical. However, from principle, we remain
uncertain if existing tasks in literature will result in sig-
nificant differences from MLMs. Many pretraining tasks
still aim to reconstruct natural sequences (He et al., 2021;
Notin et al., 2022; Tan et al., 2023; Ma et al., 2023) and
so are also likely to primarily learn coevolutionary patterns.
Other tasks use structure as an additional input or target, but
they generally make only modest improvements on func-
tion prediction tasks (Mansoor et al., 2021; Wang et al.,
2022; Yang et al., 2023; Su et al., 2023). Supporting the
idea that predicting structure may not improve function pre-
diction, Hu et al. (2022) show that transfer learning using
the AlphaFold2 (Jumper et al., 2021) structure module is
less effective for function prediction than transferring PLMs.
Finally, Brandes et al. (2022) and Xu et al. (2023) predict
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both sequence and function but also find that downstream
performance does not always scale with pretraining time.

Finally, we only test linear probes or small neural networks
built on top of frozen models to limit computational cost,
but previous work shows that for many tasks finetuning the
PLM end-to-end perform better (Dallago et al., 2021; Yang
et al., 2022), and that mean-pooling is rarely optimal (Detlef-
sen et al., 2022; Goldman et al., 2022). In computer vision,
models trained on different datasets (Cherti & Jitsev, 2022)
and pretraining tasks (Grigg et al., 2021) exhibit different
finetuning dynamics, and there is some evidence for this
in proteins as well (Detlefsen et al., 2022). More sophis-
ticated approaches to finetuning (such as using automated
ML to select architecture of probe) could further improve
performance, and introduce different patterns of alignment.

Besides studying further factors that may impact transfer
learning, improvements to our evaluation could better un-
derstand mechanisms underlying transfer learning. Trans-
former PLMs often learn sparse attention matrices (Vig
et al., 2020; Rao et al., 2021), so one question is if it is the
sparsity that drives performance, or if pairwise attention
must be placed on the correct pairs of residues (as opposed
to any pairs). However, our current baselines do not permit
this understanding: both random init and stat transfer do not
guarantee that sparsity in attention matrices is preserved.

Finally, although we require that downstream task perfor-
mance scale with improvements on the pretraining task and
specifically analyze three axes of scaling (model size, depth
of model, and checkpoint in pretraining), it is unclear if
all three axes are necessary. For example, self-supervised
computer vision representations often diverge in their final
layers relative to supervised models (Grigg et al., 2021),
suggesting that downstream task performance may not al-
ways improve monotonically with layer depth, even when
pretraining is effective. However, in our context, we chose
to include scaling with layer depth because we thought it to
be an explanation of potential mechanism for why scaling
other axes does not translate into downstream task perfor-
mance. We observed that even though larger models and
models pretrained for longer generally achieve better perfor-
mance on the pretraining task, this often does not translate
into downstream task performance. Our layer depth experi-
ments show that downstream task performance often satu-
rates very early: for the tasks where pretraining improves
downstream task performance, but this improvement does
not scale, downstream task performance usually saturates
within the first 3-5 layers of models (Fig. 4), even in models
with 30+ layers. This observation suggests that PLMs are
currently burning the majority of their parameters on model-
ing the pretraining task, with very few of the learned features
contributing to both the pretraining and downstream tasks
jointly. Ultimately, this means while we offer an oversim-

plified definition of “alignment”, future work should further
analyze the interaction between different axes of scaling.

Implications for future work. Together, the number of
factors that can potentially impact transfer learning means
that there are many opportunities for future work to address
the limitations in scaling that we identified in our work. To-
wards this goal, our work provides an improved evaluation
standard for PLMs. We show that checking for improved
performance over baselines may overestimate the generality
of PLMs across applications in protein biology, as it does
not rule out that improvement may be due to alternate hy-
potheses that do not scale. However, most current works
rely on comparisons to baselines to argue that PLMs are
widely applicable, and to the extent scaling has been studied,
most only use scaling on structure prediction accuracy alone
to justify training larger models (Rives et al., 2021; Elnag-
gar et al., 2022; Lin et al., 2023; Chen et al., 2024). Future
PLM evaluation should therefore assess scaling on diverse
downstream function prediction and engineering tasks, and
not just structure alone, to validate the generality of models.

Second, synthesizing our empirical results with how the
current landscape of protein sequence pretraining tasks pri-
marily align with structure prediction, our work points to a
need for new pretraining tasks. For many downstream tasks,
the lack of alignment prevents transfer learning from taking
full advantage of the pretrained model, as features from
deep in the PLM perform no better than features from early
layers in the PLM. Likewise, for these tasks, simply scaling
to larger PLMs trained for more steps on more data may
not improve performance. Our study suggests that the field
needs to explore diversified pretraining strategies instead of
further scaling existing strategies in order to reach aspects of
protein biology that are not currently well-served by PLMs.

Impact Statement
This paper exposes current limitations in protein language
models, which are routinely used in protein engineering and
bioinformatics. Protein language models scale from year
to year, with current models reaching hundreds of billions
of parameters (Chen et al., 2024). By showing that current
model pretraining paradigms fail to confer benefits on many
aspects of protein biology, we caution against uncritically in-
vesting compute resources into scaling these models, which
we hope will translate to impact through reduced carbon
emissions. Additionally, by showing what kinds of tasks pro-
tein language models currently fail to scale on, we hope our
work leads to the development of pretrained models that im-
prove bioinformatics and protein design predictions beyond
those currently well-served by protein language models. If
so, we anticipate both positive and negative impacts from
an expanded capability to design new proteins.
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A. Additional Tables and Figures

Table A1: Downstream functional and structural tasks
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Table A2: Pretrained models

Name Size Name in code Layers Parameters Embedding dimension

ESM-43M Small esm1 t6 43M UR50S 6 43M 768
ESM-85M Medium esm1 t12 85M UR50S 12 85M 768
ESM-670M - esm1 t34 670M UR50S 34 670M 1280
ESM-650M Large esm1b t33 650M UR50S 33 650M 1280
CARP-600k Tiny carp 600k 16 600k 128
CARP-38M Small carp 38M 16 38M 1024
CARP-76M Medium carp 76M 32 76M 1024
CARP-640M Large carp 640M 56 640M 1280

Table A3: Last layer transfer learning performance for tasks that are aligned with MLM pretraining. Values are accuracy.

Task Model Ablation

pretrain rand stat

SS3 - CB513 onehot 0.49 - -
carp 600k 0.71 0.49±0.01 0.45±0.00
carp 38M 0.76 0.57±0.00 0.48±0.00
carp 76M 0.79 0.55±0.00 0.43±0.02
carp 640M 0.82 0.53±0.00 0.45±0.00
esm1 t6 43M UR50S 0.74 0.52±0.00 0.51±0.00
esm1 t12 85M UR50S 0.77 0.52±0.00 0.50±0.01
esm1 t34 670M UR50S 0.80 0.52±0.00 0.51±0.00
esm1b t33 650M UR50S 0.82 0.45±0.00 0.48±0.01

SS3 - TS115 onehot 0.51 - -
carp 600k 0.74 0.50±0.00 0.46±0.00
carp 38M 0.78 0.59±0.00 0.49±0.01
carp 76M 0.80 0.57±0.00 0.46±0.01
carp 640M 0.82 0.56±0.00 0.47±0.01
esm1 t6 43M UR50S 0.77 0.57±0.00 0.54±0.00
esm1 t12 85M UR50S 0.79 0.57±0.00 0.54±0.01
esm1 t34 670M UR50S 0.81 0.57±0.00 0.55±0.00
esm1b t33 650M UR50S 0.82 0.47±0.00 0.50±0.01

SS3 - CASP12 onehot 0.48 - -
carp 600k 0.66 0.49±0.01 0.45±0.00
carp 38M 0.69 0.56±0.01 0.50±0.00
carp 76M 0.70 0.54±0.01 0.45±0.03
carp 640M 0.73 0.53±0.01 0.48±0.01
esm1 t6 43M UR50S 0.68 0.55±0.01 0.53±0.01
esm1 t12 85M UR50S 0.68 0.55±0.01 0.53±0.01
esm1 t34 670M UR50S 0.71 0.55±0.00 0.53±0.00
esm1b t33 650M UR50S 0.72 0.50±0.00 0.51±0.01
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Table A4: Last layer transfer learning performance for tasks where transfer learning improves performance but the pretrain
and downstream tasks are not aligned. Values are Spearman rank correlation. We include linear and attention probes for
the pretrained models. The “Yang” column indicates results for the best-performing baseline for the PLM from Yang et al.
2024 (Yang et al., 2024).

Task Model Ablation Yang
linear attention rand stat

Subcellular localization onehot 0.37 - - - -
carp 600k 0.45 0.52 ± 0.01 0.30±0.01 0.29±0.00 -
carp 38M 0.49 0.52 ± 0.02 0.33±0.01 0.33±0.02 -
carp 76M 0.54 0.48 ± 0.02 0.34±0.01 0.32±0.02 -
carp 640M 0.57 0.54 ± 0.04 0.34±0.03 0.32±0.00 -
esm1 t6 43M UR50S 0.56 - 0.34±0.01 0.33±0.01 -
esm1 t12 85M UR50S 0.57 - 0.35±0.02 0.36±0.01 -
esm1 t34 670M UR50S 0.62 - 0.35±0.02 0.37±0.02 -
esm1b t33 650M UR50S 0.61 - 0.30±0.00 0.32±0.02 -

Thermostability onehot 0.12 - - - -
carp 600k 0.45 0.51 ± 0.01 0.32±0.00 0.29±0.03 -
carp 38M 0.51 0.51 ± 0.01 0.37±0.01 0.30±0.01 -
carp 76M 0.51 0.42 ± 0.03 0.36±0.02 0.29±0.01 -
carp 640M 0.58 0.49 ± 0.03 0.35±0.01 0.30±0.01 0.54
esm1 t6 43M UR50S 0.48 - 0.36±0.00 0.35±0.01 -
esm1 t12 85M UR50S 0.49 - 0.36±0.01 0.36±0.01 -
esm1 t34 670M UR50S 0.58 - 0.38±0.00 0.37±0.01 -
esm1b t33 650M UR50S 0.58 - 0.32±0.01 0.27±0.01 0.67 ± 0.01

AAV - two vs many onehot -0.00 - - - -
carp 600k 0.36 0.37 ± 0.15 0.34±0.07 0.33±0.06 -
carp 38M 0.49 0.56 ± 0.07 0.40±0.04 0.49±0.05 -
carp 76M 0.62 0.55 ± 0.10 0.34±0.08 0.55±0.02 -
carp 640M 0.68 0.56 ± 0.17 0.42±0.06 0.54±0.02 0.81 ± 0.03
esm1 t6 43M UR50S 0.54 - -0.17±0.01 0.22±0.05 -
esm1 t12 85M UR50S 0.64 - -0.15±0.02 -0.00±0.19 -
esm1 t34 670M UR50S 0.46 - -0.11±0.09 0.08±0.21 -
esm1b t33 650M UR50S 0.65 - 0.04±0.26 0.38±0.03 0.61 ± 0.04

GB1 - low vs high onehot 0.32 - - - -
carp 600k 0.24 0.08 ± 0.08 0.24±0.02 0.14±0.01 -
carp 38M 0.48 0.25 ± 0.04 0.38±0.02 0.25±0.03 -
carp 76M 0.48 0.15 ± 0.04 0.38±0.02 0.18±0.03 -
carp 640M 0.48 0.15 ± 0.06 0.38±0.03 0.18±0.02 0.43 ± 0.04
esm1 t6 43M UR50S 0.46 - 0.34±0.01 0.35±0.01 -
esm1 t12 85M UR50S 0.43 - 0.34±0.01 0.35±0.00 -
esm1 t34 670M UR50S 0.51 - 0.34±0.01 0.36±0.01 -
esm1b t33 650M UR50S 0.52 - 0.35±0.00 0.27±0.04 0.53 ± 0.03

GB1 - sampled onehot 0.79 - - - -
carp 600k 0.79 0.43 ± 0.08 0.75±0.01 0.67±0.02 -
carp 38M 0.86 0.78 ± 0.03 0.83±0.00 0.77±0.01 -
carp 76M 0.85 0.69 ± 0.05 0.83±0.00 0.72±0.01 -
carp 640M 0.87 0.74 ± 0.03 0.83±0.01 0.69±0.01 -
esm1 t6 43M UR50S 0.85 - 0.80±0.00 0.81±0.00 -
esm1 t12 85M UR50S 0.86 - 0.79±0.00 0.81±0.00 -
esm1 t34 670M UR50S 0.87 - 0.80±0.00 0.82±0.00 -
esm1b t33 650M UR50S 0.88 - 0.79±0.00 0.78±0.02 -
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Table A5: Last layer transfer learning performance for tasks where transfer learning does not improve performance. Values
are Spearman rank correlation for the GB1 tasks and accuracy for subcellular localization. We include linear and attention
probes for the pretrained models. The “Yang” column indicates results for the best-performing baseline for the PLM from
Yang et al. 2024 (Yang et al., 2024).

Task Model Ablation Yang
linear attention rand stat

AAV - one vs many onehot 0.19 - - - -
carp 600k 0.52 0.18 ± 0.12 0.44±0.06 0.41±0.07 -
carp 38M 0.39 0.52 ± 0.11 0.24±0.13 0.32±0.06 -
carp 76M 0.45 0.40 ± 0.08 0.24±0.07 0.24±0.10 -
carp 640M 0.43 0.51 ± 0.21 0.21±0.12 0.26±0.09 0.73 ± 0.05
esm1 t6 43M UR50S 0.36 - 0.41±0.05 0.40±0.05 -
esm1 t12 85M UR50S 0.45 - 0.45±0.04 0.38±0.05 -
esm1 t34 670M UR50S 0.36 - 0.39±0.06 0.36±0.10 -
esm1b t33 650M UR50S 0.38 - 0.30±0.09 0.30±0.10 0.18 ± 0.01

GB1 - two vs rest onehot 0.54 - - - -
carp 600k 0.56 -0.16 ± 0.18 0.42±0.10 0.23±0.09 -
carp 38M 0.54 0.24 ± 0.20 0.38±0.05 0.35±0.07 -
carp 76M 0.53 0.07 ± 0.29 0.41±0.04 0.32±0.02 -
carp 640M 0.58 0.33 ± 0.07 0.44±0.07 0.22±0.03 0.73 ± 0.03
esm1 t6 43M UR50S 0.48 - 0.58±0.04 0.61±0.06 -
esm1 t12 85M UR50S 0.40 - 0.57±0.04 0.59±0.03 -
esm1 t34 670M UR50S 0.51 - 0.57±0.02 0.55±0.02 -
esm1b t33 650M UR50S 0.54 - 0.55±0.01 0.39±0.02 0.67 ± 0.07

Table A6: Spearman’s rank correlation (ρ) between downstream task performance and layer depth

Task CARP-640M ESM-650M

ρ p ρ p

SS3 - CB513 0.989 5.850× 10−47 0.954 2.511× 10−18

SS3 - TS115 0.985 6.109× 10−44 0.953 4.197× 10−18

SS3 - CASP12 0.991 2.136× 10−49 0.957 1.063× 10−18

Subcellular localization 0.694 2.085× 10−9 0.621 8.896× 10−5

Thermostability −0.090 5.042× 10−1 −0.432 1.068× 10−2

AAV - two vs many 0.809 2.583× 10−14 0.014 9.378× 10−1

GB1 - low vs high 0.289 2.922× 10−2 0.814 4.817× 10−9

GB1 - sampled 0.325 1.362× 10−2 0.850 1.961× 10−10

AAV - one vs many 0.853 3.966× 10−17 0.757 2.160× 10−7

GB1 - two vs rest 0.436 7.023× 10−4 −0.267 1.266× 10−1
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Table A7: Pretrained CARP checkpoints

Name Fraction Loss Accuracy Step

carp 600k 1 2.505 0.240 4.889× 105

carp 600k 0.5 2.512 0.239 2.393× 105

carp 600k 0.25 2.518 0.237 1.143× 105

carp 600k 0.125 2.527 0.234 5.204× 104

carp 38M 1 2.303 0.300 1.027× 106

carp 38M 0.5 2.319 0.295 5.176× 105

carp 38M 0.25 2.339 0.289 2.569× 105

carp 38M 0.125 2.363 0.282 1.296× 105

carp 76M 1 2.206 0.328 6.545× 105

carp 76M 0.5 2.225 0.322 3.280× 105

carp 76M 0.25 2.248 0.315 1.630× 105

carp 76M 0.125 2.278 0.307 8.318× 104

carp 640M 1 2.019 0.382 6.220× 105

carp 640M 0.5 2.054 0.372 3.118× 105

carp 640M 0.25 2.094 0.360 1.547× 105

carp 640M 0.125 2.146 0.345 7.881× 104

Table A8: Spearman’s rank correlation (ρ) between downstream task performance and CARP pretrain loss

Task ρ p

SS3 - CB513 1.000 0.000
SS3 - TS115 1.000 0.000
SS3 - CASP12 0.949 2.000× 10−6

Subcellular localization 0.832 7.980× 10−4

Thermostability 0.552 6.251× 10−2

AAV - two vs many 0.483 1.121× 10−1

GB1 - low vs high −0.392 2.081× 10−1

GB1 - sampled 0.441 1.517× 10−1

AAV - one vs many 0.727 7.355× 10−3

GB1 - two vs rest −0.084 7.954× 10−1
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Table A9: Last layer random init or stat transfer replicates transfer learning performance for tasks that are aligned with MLM
pretraining. We initialize models with N random seeds. We consider transfer learning from a PLM to improve performance
over these baselines if it has a one-tailed p-value < 0.05 in a one-sample t-test using the sample mean and standard deviation
across random init or stat transfer models. Values are accuracy. See A3 for pretrained results with linear or non-linear
(attention-based) probes.

Task Ablation Model Mean Std N T-Statistic P-Value

SS3 – CB513 rand carp 600k 0.489 0.007 3 -58.874 0.000
carp 38M 0.571 0.003 3 -102.875 0.000
carp 76M 0.546 0.003 3 -151.050 0.000
carp 640M 0.535 0.004 3 -125.517 0.000
esm1 t6 43M UR50S 0.519 0.001 3 -484.965 0.000
esm1 t12 85M UR50S 0.519 0.001 3 -347.688 0.000
esm1 t34 670M UR50S 0.517 0.001 3 -434.876 0.000
esm1b t33 650M UR50S 0.448 0.001 3 -517.805 0.000

stat carp 600k 0.450 0.001 3 -398.907 0.000
carp 38M 0.476 0.003 3 -152.133 0.000
carp 76M 0.430 0.017 3 -37.539 0.000
carp 640M 0.451 0.001 3 -433.787 0.000
esm1 t6 43M UR50S 0.506 0.002 3 -194.808 0.000
esm1 t12 85M UR50S 0.504 0.007 3 -62.703 0.000
esm1 t34 670M UR50S 0.507 0.003 3 -173.613 0.000
esm1b t33 650M UR50S 0.481 0.005 3 -107.336 0.000

SS3 – TS115 rand carp 600k 0.504 0.003 3 -149.041 0.000
carp 38M 0.592 0.004 3 -76.825 0.000
carp 76M 0.567 0.003 3 -121.379 0.000
carp 640M 0.557 0.003 3 -158.932 0.000
esm1 t6 43M UR50S 0.567 0.001 3 -312.525 0.000
esm1 t12 85M UR50S 0.566 0.001 3 -449.186 0.000
esm1 t34 670M UR50S 0.566 0.000 3 -1933.284 0.000
esm1b t33 650M UR50S 0.469 0.004 3 -148.865 0.000

stat carp 600k 0.464 0.002 3 -209.013 0.000
carp 38M 0.494 0.010 3 -50.674 0.000
carp 76M 0.461 0.012 3 -50.636 0.000
carp 640M 0.471 0.010 3 -60.832 0.000
esm1 t6 43M UR50S 0.544 0.004 3 -106.369 0.000
esm1 t12 85M UR50S 0.540 0.011 3 -38.783 0.000
esm1 t34 670M UR50S 0.549 0.004 3 -108.114 0.000
esm1b t33 650M UR50S 0.504 0.005 3 -106.479 0.000

SS3 – CASP12 rand carp 600k 0.486 0.006 3 -47.378 0.000
carp 38M 0.558 0.005 3 -45.221 0.000
carp 76M 0.543 0.005 3 -51.011 0.000
carp 640M 0.526 0.007 3 -47.105 0.000
esm1 t6 43M UR50S 0.548 0.005 3 -42.335 0.000
esm1 t12 85M UR50S 0.550 0.006 3 -35.166 0.000
esm1 t34 670M UR50S 0.548 0.002 3 -175.136 0.000
esm1b t33 650M UR50S 0.498 0.003 3 -151.384 0.000

stat carp 600k 0.450 0.003 3 -132.755 0.000
carp 38M 0.501 0.004 3 -79.816 0.000
carp 76M 0.449 0.035 3 -12.464 0.003
carp 640M 0.478 0.009 3 -47.290 0.000
esm1 t6 43M UR50S 0.528 0.008 3 -31.438 0.001
esm1 t12 85M UR50S 0.531 0.008 3 -30.937 0.001
esm1 t34 670M UR50S 0.528 0.001 3 -218.247 0.000
esm1b t33 650M UR50S 0.506 0.005 3 -69.137 0.000
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Table A10: Last layer random init or stat transfer replicates transfer learning performance for tasks where transfer learning
improves performance but the pretrain and downstream tasks are not aligned. We initialize models with N random seeds.
We consider transfer learning from a PLM to improve performance over these baselines if it has a one-tailed p-value < 0.05
in a one-sample t-test using the sample mean and standard deviation across random init or stat transfer models. Values are
accuracy. See A4 for pretrained results.

Task Ablation Model Mean Std N T-Statistic P-Value

Subcellular localization rand carp 600k 0.300 0.008 3 -32.694 0.000
carp 38M 0.332 0.011 3 -25.100 0.001
carp 76M 0.338 0.004 3 -79.000 0.000
carp 640M 0.336 0.026 3 -15.851 0.002
esm1 t6 43M UR50S 0.344 0.007 3 -56.895 0.000
esm1 t12 85M UR50S 0.350 0.017 3 -22.720 0.001
esm1 t34 670M UR50S 0.350 0.022 3 -20.558 0.001
esm1b t33 650M UR50S 0.295 0.004 3 -135.311 0.000

stat carp 600k 0.288 0.003 3 -107.387 0.000
carp 38M 0.326 0.019 3 -14.647 0.002
carp 76M 0.318 0.022 3 -18.028 0.002
carp 640M 0.321 0.001 3 -292.000 0.000
esm1 t6 43M UR50S 0.329 0.012 3 -32.375 0.000
esm1 t12 85M UR50S 0.358 0.009 3 -40.113 0.000
esm1 t34 670M UR50S 0.365 0.016 3 -27.308 0.001
esm1b t33 650M UR50S 0.318 0.021 3 -23.714 0.001

Thermostability rand carp 600k 0.322 0.003 3 -80.860 0.000
carp 38M 0.373 0.008 3 -29.264 0.001
carp 76M 0.358 0.018 3 -15.127 0.002
carp 640M 0.349 0.012 3 -34.318 0.000
esm1 t6 43M UR50S 0.361 0.001 3 -198.656 0.000
esm1 t12 85M UR50S 0.361 0.007 3 -32.457 0.000
esm1 t34 670M UR50S 0.377 0.004 3 -84.831 0.000
esm1b t33 650M UR50S 0.321 0.006 3 -78.881 0.000

stat carp 600k 0.286 0.027 3 -10.387 0.005
carp 38M 0.302 0.013 3 -28.463 0.001
carp 76M 0.286 0.011 3 -36.804 0.000
carp 640M 0.296 0.007 3 -65.367 0.000
esm1 t6 43M UR50S 0.355 0.008 3 -29.599 0.001
esm1 t12 85M UR50S 0.355 0.007 3 -32.119 0.000
esm1 t34 670M UR50S 0.374 0.007 3 -50.864 0.000
esm1b t33 650M UR50S 0.267 0.009 3 -61.739 0.000

Continued on next page
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Table A10: (continued)

Task Ablation Model Mean Std N T-Statistic P-Value

AAV – two vs many rand carp 600k 0.341 0.073 3 -0.465 0.344
carp 38M 0.403 0.036 3 -4.411 0.024
carp 76M 0.345 0.080 3 -5.910 0.014
carp 640M 0.421 0.058 3 -7.670 0.008
esm1 t6 43M UR50S -0.175 0.007 3 -176.614 0.000
esm1 t12 85M UR50S -0.151 0.015 3 -91.025 0.000
esm1 t34 670M UR50S -0.111 0.092 3 -10.659 0.004
esm1b t33 650M UR50S 0.038 0.261 3 -4.077 0.028

stat carp 600k 0.330 0.058 3 -0.912 0.229
carp 38M 0.489 0.055 3 -0.188 0.434
carp 76M 0.546 0.018 3 -7.002 0.010
carp 640M 0.542 0.017 3 -13.588 0.003
esm1 t6 43M UR50S 0.220 0.048 3 -11.714 0.004
esm1 t12 85M UR50S -0.004 0.193 3 -5.795 0.014
esm1 t34 670M UR50S 0.080 0.207 3 -3.162 0.044
esm1b t33 650M UR50S 0.384 0.033 3 -14.290 0.002

GB1 – low vs high rand carp 600k 0.244 0.016 3 0.287 0.600
carp 38M 0.384 0.024 3 -6.699 0.011
carp 76M 0.384 0.017 3 -10.299 0.005
carp 640M 0.382 0.029 3 -5.672 0.015
esm1 t6 43M UR50S 0.337 0.006 3 -39.774 0.000
esm1 t12 85M UR50S 0.336 0.009 3 -17.681 0.002
esm1 t34 670M UR50S 0.341 0.012 3 -25.026 0.001
esm1b t33 650M UR50S 0.345 0.000 3 -1445.546 0.000

stat carp 600k 0.135 0.013 3 -14.517 0.002
carp 38M 0.251 0.034 3 -11.504 0.004
carp 76M 0.181 0.034 3 -15.653 0.002
carp 640M 0.179 0.019 3 -27.147 0.001
esm1 t6 43M UR50S 0.351 0.005 3 -38.536 0.000
esm1 t12 85M UR50S 0.350 0.001 3 -102.890 0.000
esm1 t34 670M UR50S 0.359 0.014 3 -18.492 0.001
esm1b t33 650M UR50S 0.274 0.036 3 -12.122 0.003

GB1 – sampled rand carp 600k 0.747 0.011 3 -5.859 0.014
carp 38M 0.829 0.004 3 -14.596 0.002
carp 76M 0.832 0.004 3 -8.754 0.006
carp 640M 0.826 0.008 3 -8.807 0.006
esm1 t6 43M UR50S 0.796 0.002 3 -47.192 0.000
esm1 t12 85M UR50S 0.795 0.002 3 -54.522 0.000
esm1 t34 670M UR50S 0.799 0.002 3 -65.882 0.000
esm1b t33 650M UR50S 0.790 0.000 3 -661.876 0.000

stat carp 600k 0.673 0.015 3 -12.667 0.003
carp 38M 0.768 0.013 3 -12.457 0.003
carp 76M 0.725 0.008 3 -26.511 0.001
carp 640M 0.686 0.011 3 -29.883 0.001
esm1 t6 43M UR50S 0.813 0.004 3 -15.683 0.002
esm1 t12 85M UR50S 0.813 0.001 3 -61.208 0.000
esm1 t34 670M UR50S 0.820 0.003 3 -25.833 0.001
esm1b t33 650M UR50S 0.779 0.025 3 -7.387 0.009

21



Understanding Transfer Learning with Protein Language Models

Table A11: Last layer random init or stat transfer replicates transfer learning performance for tasks where transfer learning
does not improve performance. We initialize models with N random seeds. We consider transfer learning from a PLM to
improve performance over these baselines if it has a one-tailed p-value < 0.05 in a one-sample t-test using the sample mean
and standard deviation across random init or stat transfer models. Values are accuracy. See A5 for pretrained results. Values
are Spearman rank correlation for the GB1 tasks and accuracy for subcellular localization.

Task Ablation Model Mean Std N T-Statistic P-Value

AAV – one vs many rand carp 600k 0.437 0.058 3 -2.329 0.073
carp 38M 0.237 0.127 3 -2.045 0.089
carp 76M 0.244 0.069 3 -5.098 0.018
carp 640M 0.208 0.118 3 -3.304 0.040
esm1 t6 43M UR50S 0.410 0.049 3 1.675 0.882
esm1 t12 85M UR50S 0.449 0.039 3 -0.044 0.484
esm1 t34 670M UR50S 0.390 0.062 3 0.777 0.741
esm1b t33 650M UR50S 0.302 0.086 3 -1.510 0.135

stat carp 600k 0.405 0.070 3 -2.738 0.056
carp 38M 0.318 0.063 3 -1.918 0.098
carp 76M 0.236 0.104 3 -3.507 0.036
carp 640M 0.262 0.092 3 -3.236 0.042
esm1 t6 43M UR50S 0.402 0.047 3 1.461 0.859
esm1 t12 85M UR50S 0.378 0.054 3 -2.295 0.074
esm1 t34 670M UR50S 0.360 0.100 3 -0.041 0.486
esm1b t33 650M UR50S 0.300 0.101 3 -1.325 0.158

GB1 – two vs rest rand carp 600k 0.423 0.100 3 -2.418 0.068
carp 38M 0.379 0.046 3 -6.020 0.013
carp 76M 0.415 0.043 3 -4.795 0.020
carp 640M 0.442 0.069 3 -3.481 0.037
esm1 t6 43M UR50S 0.580 0.040 3 4.354 0.976
esm1 t12 85M UR50S 0.575 0.036 3 8.660 0.993
esm1 t34 670M UR50S 0.568 0.018 3 6.072 0.987
esm1b t33 650M UR50S 0.549 0.012 3 0.840 0.755

stat carp 600k 0.235 0.094 3 -6.040 0.013
carp 38M 0.355 0.074 3 -4.354 0.024
carp 76M 0.317 0.024 3 -15.801 0.002
carp 640M 0.225 0.029 3 -21.448 0.001
esm1 t6 43M UR50S 0.609 0.058 3 3.827 0.969
esm1 t12 85M UR50S 0.589 0.030 3 11.153 0.996
esm1 t34 670M UR50S 0.545 0.019 3 3.547 0.964
esm1b t33 650M UR50S 0.392 0.022 3 -12.015 0.003
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Figure A1: Comparison of linear global average probe versus a learned attention pooling followed by a shallow multi-layer
perceptron performance across downstream tasks. Non-linear probe last layer performances are inferior to the linear models
across almost all downstream tasks.
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B. Supplementary Details
B.1. Architectures

ESM. The ESM family are BERT-style Transformer models (Vaswani et al., 2023; Devlin et al., 2019). Rives et al. (2021)
process input protein sequences as strings of amino acids. The ESM model takes a sequence of tokens passing through a
series of Transformer encoder blocks. For each block, there is a scaled dot-product multi-head self-attention layer computing
position-position interactions across the sequence followed by a feed-forward network independent of position, with residual
connections and final layer normalization.

CARP. The CARP family integrates ByteNet, a dilated CNN architecture (Kalchbrenner et al., 2017), with input embedding
and output decoding layers (Yang et al., 2024). The CARP embedding process begins with a down-embedding layer, followed
by an up-embedding linear mapping. This prepared input then passes through a series of n ByteNet blocks, with residual
connections and final layer normalization.

B.2. Datasets

Information about the number of samples in training/validation/test datasets, and strategies used to split test data can be
found in Supplementary Table A1.

Secondary Structure. The secondary structure datasets (originally proposed by Rao et al. (2019)) predict if individual
residues in proteins belong to secondary structural elements (n α-helix, β-strand, or coil). These secondary structure
elements are local aspects of structure, that serve as the building blocks for the overall structure of a protein.

Thermostability. The thermostability dataset measures the melting temperature of 48,000 proteins across 13 species, and
was originally published by Jarzab et al. (2020). Thermostable proteins (e.g. proteins that have a higher melting temperature)
are capable of maintaining their activity even at high temperatures) can be important to engineer for applications that must
occur at high temperatures (e.g. industrial processes, PCR, etc.)

Subcellular Localization. The subcellular localization dataset (originally introduced by Almagro Armenteros et al.
(2017)) presents a classification task, predicting what cell compartment an eukaryotic protein localizes. This dataset is a
multi-way classification problem between the nucleus, cytoplasm, extracellular, mitochondria, cell membrane, endoplasmic
reticulum, plastid, Golgi apparatus, lysosome/vacuole, and peroxisome. Predicting where a protein localizes in a cell can be
important for understanding its biological function: for example, proteins in the nucleus will often have a role in DNA or
RNA regulation.

GB1. The GB1 dataset, originally introduced in the FLIP benchmark dataset (Dallago et al., 2021), measures the effects of
combinatorial mutations at four different sites in the GB1 domain of Protein G, an immunoglobulin-binding protein. Here,
the goal is to optimize a sequence that is stable (produces a high fraction of folded proteins) and improves the binding affinity
to immunoglobulin. One of the aims of the dataset is to understand epistasis, or non-additive interactions between mutations
at different amino acid positions, and this phenomena also makes building machine learning predictors difficult, because
models must learn combinatorial interactions between mutations (instead of treating mutation effects as independent).

AAV. The AAV dataset measures the effects of mutations on the adeno-associated virus (AAV) capsid protein. AAV capsid
proteins are responsible for helping the virus integrate a DNA payload into a target cell (Vandenberghe et al., 2009), so
engineering variants of these proteins can lead to useful products for gene therapy (Büning et al., 2015). The AAV dataset
was originally introduced in the FLIP benchmark dataset (Dallago et al., 2021), and measures the fitness (or ability to
perform its function) of mutant variants.

B.3. Methods

Additional experimental details. For the regression linear probes implemented in scikit-learn, we performed a grid search
over alpha values (controlling regulation strength) of [1.e− 03, 1.e− 02, 1.e− 01, 1.e+ 00, 1.e+ 01]. Output predicted
fitness values are scaled with StandardScaler().

For the classification linear probes implemented in PyTorch, we use Adam optimizer and set learning rate to 1.e− 4 with
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a decay rate of 0.1. Batch size of 256 over 120 epoches was used for annotation tasks and a batch size of 120 over 100
epoches for the secondary structure tasks. We implement early stopping on validation loss with a tolerance of 10 (after a
minimum of 5 epochs).

Non-linear probe. For the non-linear probe, a shallow neural net with learned aggregation is applied with 5 random seeds
on 3-5 checkpoints.

B.4. Definitions

• Alignment: We define the MLM pretraining task to be aligned with a downstream task if transferring PLM repre-
sentations improves downstream task performance over the baseline and ablations and this improvement scales with
improvements to pretraining.
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