ROS: A GNN-BASED RELAX-OPTIMIZE-AND-SAMPLE FRAMEWORK FOR MAX-k-CUT PROBLEMS

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

025

026

031

033

034

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

The Max-k-Cut problem is a fundamental combinatorial optimization challenge that generalizes the classic \mathcal{NP} -complete Max-Cut problem. While relaxation techniques are commonly employed to tackle Max-k-Cut, they often lack guarantees of equivalence between the solutions of the original problem and its relaxation. To address this issue, we introduce the Relax-Optimize-and-Sample (ROS) framework. In particular, we begin by relaxing the discrete constraints to the continuous probability simplex form. Next, we pre-train and fine-tune a graph neural network model to efficiently optimize the relaxed problem. Subsequently, we propose a sampling-based construction algorithm to map the continuous solution back to a high-quality Max-k-Cut solution. By integrating geometric landscape analysis with statistical theory, we establish the consistency of function values between the continuous solution and its mapped counterpart. Extensive experimental results on random regular graphs and the Gset benchmark demonstrate that the proposed ROS framework effectively scales to large instances with up to 20,000 nodes in just a few seconds, outperforming state-of-the-art algorithms. Furthermore, ROS exhibits strong generalization capabilities across both in-distribution and out-ofdistribution instances, underscoring its effectiveness for large-scale optimization tasks.

1 Introduction

The Max-k-Cut problem involves partitioning the vertices of a graph into k disjoint subsets in such a way that the total weight of edges between vertices in different subsets is maximized. This problem represents a significant challenge in combinatorial optimization and finds applications across various fields, including telecommunication networks (Eisenblätter, 2002; Gui et al., 2018), data clustering (Poland & Zeugmann, 2006; Ly et al., 2023), and theoretical physics (Cook et al., 2019; Coja-Oghlan et al., 2022). The Max-k-Cut problem is known to be \mathcal{NP} -complete, as it generalizes the well-known Max-Cut problem, which is one of the 21 classic \mathcal{NP} -complete problems identified by Karp (2010).

Significant efforts have been made to develop methods for solving Max-k-Cut problems (Nath & Kuhnle, 2024). Ghaddar et al. (2011) introduced an exact branch-and-cut algorithm based on semidefinite programming, capable of handling graphs with up to 100 vertices. For larger instances, various polynomial-time approximation algorithms have been proposed. Goemans & Williamson (1995) addressed the Max-Cut problem by first solving a semi-definite relaxation to obtain a fractional solution, then applying a randomization technique to convert it into a feasible solution, resulting in a 0.878-approximation algorithm. Building on this, Frieze & Jerrum (1997) extended the approach to Max-k-Cut, offering feasible solutions with approximation guarantees. de Klerk et al. (2004) further improved these guarantees, while Shinde et al. (2021) optimized memory usage. Despite their strong theoretical performance, these approximation algorithms involve solving computationally intensive semi-definite programs, rendering them impractical for large-scale Max-k-Cut problems. A variety of heuristic methods have been developed to tackle the scalability challenge. For the Max-Cut problem, Burer et al. (2002) proposed rank-two relaxation-based heuristics, and Goudet et al. (2024) introduced a meta-heuristic approach using evolutionary algorithms. For Max-k-Cut, heuristics such as genetic algorithms (Li & Wang, 2016), greedy search (Gui et al., 2018), multiple operator heuristics (Ma & Hao, 2017), and local search (Garvardt et al., 2023) have been proposed. While these

Figure 1: The Relax-Optimize-and-Sample framework.

heuristics can handle much larger Max-k-Cut instances, they often struggle to balance efficiency and solution quality.

Recently, machine learning techniques have gained attention for enhancing optimization algorithms (Bengio et al., 2021; Gasse et al., 2022; Chen et al., 2024). Several studies, including Khalil et al. (2017); Barrett et al. (2020); Chen et al. (2020); Barrett et al. (2022); Tönshoff et al. (2022), framed the Max-Cut problem as a sequential decision-making process, using reinforcement learning to train policy networks for generating feasible solutions. However, RL-based methods often suffer from extensive sampling efforts and increased complexity in action space when extended to Max-k-Cut, and hence entails significantly longer training and testing time. Karalias & Loukas (2020) focuses on subset selection, including Max-Cut as a special case. It trains a graph neural network (GNN) to produce a distribution over subsets of nodes of an input graph by minimizing a probabilistic penalty loss function. After the network has been trained, a randomized algorithm is employed to sequentially decode a valid Max-Cut solution from the learned distribution. A notable advancement by Schuetz et al. (2022) reformulated Max-Cut as a quadratic unconstrained binary optimization (QUBO), removing binarity constraints to create a differentiable loss function. This loss function was used to train a GNN, followed by a simple projection onto integer variables after unsupervised training. The key feature of this approach is solving the Max-Cut problem during the training phase, eliminating the need for a separate testing stage. Although this method can produce high-quality solutions for Max-Cut instances with millions of nodes, the computational time remains significant due to the need to optimize a parameterized GNN from scratch.

In this work, we propose a GNN-based *Relax-Optimize-and-Sample* (ROS) framework for efficiently solving the Max-k-Cut problem. The framework is depicted in Figure 1. Initially, the Max-k-Cut problem is formulated as a discrete optimization task. To handle this, we introduce *probability simplex relaxations*, transforming the discrete problem into a continuous one. We then optimize the relaxed formulation by training parameterized GNNs in an unsupervised manner. To further improve efficiency, we apply *transfer learning*, utilizing pre-trained GNNs to warm-start the training process. Finally, we refine the continuous solution using a *random sampling algorithm*, resulting in high-quality Max-k-Cut solutions.

The key contributions of our work are summarized as follows:

- **Novel Framework.** We propose a scalable ROS framework tailored to the Max-k-Cut problem, built on solving continuous relaxations using efficient learning-based techniques.
- Theoretical Foundations. We conduct a rigorous theoretical analysis of both the relaxation and sampling steps. By integrating geometric landscape analysis with statistical theory, we demonstrate the consistency of function values between the continuous solution and its sampled discrete counterpart.

• **Superior Performance.** Comprehensive experiments on public benchmark datasets show that our framework produces high-quality solutions for Max-k-Cut instances with up to 20,000 nodes in just a few seconds. Our approach significantly outperforms state-of-the-art algorithms, while also demonstrating strong generalization across various instance types.

2 PRELIMINARIES

2.1 MAX-k-CUT PROBLEMS

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ represent an undirected graph with vertex set \mathcal{V} and edge set \mathcal{E} . Each edge $(i, j) \in \mathcal{E}$ is assigned a non-negative weight W_{ij} . A *cut* in \mathcal{G} refers to a partition of its vertex set. The Max-k-Cut problem involves finding a k-partition $(\mathcal{V}_1, \ldots, \mathcal{V}_k)$ of the vertex set \mathcal{V} such that the sum of the weights of the edges between different partitions is maximized.

To represent this partitioning, we employ a k-dimensional one-hot encoding scheme. Specifically, we define a $k \times N$ matrix $\boldsymbol{X} \in \mathbb{R}^{k \times N}$ where each column represents a one-hot vector. The Max-k-Cut problem can be formulated as:

$$\max_{\boldsymbol{X} \in \mathbb{R}^{k \times N}} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \left(1 - \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot j} \right)$$
s. t.
$$\boldsymbol{X}_{\cdot j} \in \{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \dots, \boldsymbol{e}_{k}\} \qquad \forall j \in \mathcal{V},$$
(1)

where $X_{\cdot j}$ denotes the j^{th} column of X, W is a symmetric matrix with zero diagonal entries, and $e_{\ell} \in \mathbb{R}^k$ is a one-hot vector with the ℓ^{th} entry set to 1. This formulation aims to maximize the total weight of edges between different partitions, ensuring that each node is assigned to exactly one partition, represented by the one-hot encoded vectors.

2.2 Graph Neural Networks

GNNs are powerful tools for learning representations from graph-structured data. GNNs operate by iteratively aggregating information from a node's neighbors, enabling each node to capture increasingly larger sub-graph structures as more layers are stacked. This process allows GNNs to learn complex patterns and relationships between nodes, based on their local connectivity.

At the initial layer (l=0), each node $i \in \mathcal{V}$ is assigned a feature vector $\boldsymbol{h}_i^{(0)}$, which typically originates from node features or labels. The representation of node i is then recursively updated at each subsequent layer through a parametric aggregation function $f_{\boldsymbol{\Phi}^{(l)}}$, defined as:

$$\mathbf{h}_{i}^{(l)} = f_{\mathbf{\Phi}^{(l)}} \left(\mathbf{h}_{i}^{(l-1)}, \{ \mathbf{h}_{j}^{(l-1)} : j \in \mathcal{N}(i) \} \right),$$
 (2)

where $\Phi^{(l)}$ represents the trainable parameters at layer l, $\mathcal{N}(i)$ denotes the set of neighbors of node i, and $h_i^{(l)}$ is the node's embedding at layer l for $l \in \{1, 2, \cdots, L\}$. This iterative process enables the GNN to propagate information throughout the graph, capturing both local and global structural properties.

3 A RELAX-OPTIMIZE-AND-SAMPLE FRAMEWORK

In this work, we leverage continuous optimization techniques to tackle Max-k-Cut problems, introducing a novel ROS framework. Acknowledging the inherent challenges of discrete optimization, we begin by relaxing the problem to probability simplices and concentrate on optimizing this relaxed version. To achieve this, we propose a machine learning-based approach. Specifically, we model the relaxed problem using GNNs, pre-training the GNN on a curated graph dataset before fine-tuning it on the specific target instance. After obtaining high-quality solutions to the relaxed continuous problem, we employ a random sampling procedure to derive a discrete solution that preserves the same objective value.

3.1 PROBABILITY SIMPLEX RELAXATIONS

To simplify the formulation of the problem (1), we remove constant terms and negate the objective function, yielding an equivalent formulation expressed as follows:

$$\min_{\mathbf{X} \in \mathcal{X}} \quad f(\mathbf{X}; \mathbf{W}) \coloneqq \text{Tr}(\mathbf{X} \mathbf{W} \mathbf{X}^{\top}), \tag{P}$$

where $\mathcal{X} := \{ \boldsymbol{X} \in \mathbb{R}^{k \times N} : \boldsymbol{X}_{.j} \in \{\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_k\}, \forall j \in \mathcal{V} \}$. It is important to note that the matrix \boldsymbol{W} is indefinite due to its diagonal entries being set to zero.

Given the challenges associated with solving the discrete problem \mathbf{P} , we adopt a naive relaxation approach, obtaining the convex hull of \mathcal{X} as the Cartesian product of N k-dimensional probability simplices, denoted by Δ_k^N . Consequently, the discrete problem \mathbf{P} is relaxed into the following continuous optimization form:

$$\min_{\boldsymbol{X} \in \Delta_k^N} \quad f(\boldsymbol{X}; \boldsymbol{W}). \tag{\overline{\mathbf{P}}}$$

Before optimizing problem $\overline{\mathbf{P}}$, we will characterize its *geometric landscape*. To facilitate this, we introduce the following definition.

Definition 1. Let \overline{X} denote a point in Δ_k^N . We define the neighborhood induced by \overline{X} as follows:

$$\mathcal{N}(\overline{\boldsymbol{X}}) \coloneqq \left\{ \boldsymbol{X} \in \Delta_k^N \, \middle| \, \sum_{i \in \mathcal{K}(\overline{\boldsymbol{X}}_{\cdot,j})} \boldsymbol{X}_{ij} = 1, \quad \forall j \in \mathcal{V} \quad \right\},$$

where
$$\mathcal{K}(\overline{\boldsymbol{X}}_{\cdot j}) := \{i \in \{1, \dots, k\} \mid \overline{\boldsymbol{X}}_{ij} > 0\}.$$

The set $\mathcal{N}(\overline{X})$ represents a neighborhood around \overline{X} , where each point in $\mathcal{N}(\overline{X})$ can be derived by allowing each non-zero entry of the matrix \overline{X} to vary freely, while the other entries are set to zero. Utilizing this definition, we can establish the following theorem.

Theorem 1. Let \overline{X} denote a globally optimal solution to \overline{P} , and let $\mathcal{N}(\overline{X})$ be its induced neighborhood. Then

$$f(\boldsymbol{X};\boldsymbol{W}) = f(\overline{\boldsymbol{X}};\boldsymbol{W}), \quad \forall \boldsymbol{X} \in \mathcal{N}(\overline{\boldsymbol{X}}).$$

Theorem 1 states that for a globally optimal solution \overline{X} , every point within its neighborhood $\mathcal{N}(\overline{X})$ shares the same objective value as \overline{X} , thus forming a *basin* in the geometric landscape of f(X; W). If $\overline{X} \in \mathcal{X}$ (i.e., an integer solution), then $\mathcal{N}(\overline{X})$ reduces to the singleton set $\{\overline{X}\}$. Conversely, if $\overline{X} \notin \mathcal{X}$, there exist $\prod_{j \in \mathcal{V}} |\mathcal{K}(\overline{X}_{\cdot j})|$ unique integer solutions within $\mathcal{N}(\overline{X})$ that maintain the same objective value as \overline{X} . This indicates that once a globally optimal solution to the relaxed problem \overline{P} is identified, it becomes straightforward to construct an optimal solution for the original problem \overline{P} that preserves the same objective value.

According to Carlson & Nemhauser (1966), among all globally optimal solutions to the relaxed problem $\overline{\mathbf{P}}$, there is always at least one integer solution. Theorem 1 extends this result, indicating that if the globally optimal solution is fractional, we can provide a straightforward and efficient method to derive its integer counterpart. We remark that it is highly non-trivial to guarantee that the feasible Max-k-Cut solution obtained from the relaxation one has the same quality.

Example. Consider a Max-Cut problem (k = 2) associated with the weight matrix W. We optimize its relaxation and obtain the optimal solution X^* .

$$\boldsymbol{W} \coloneqq \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \boldsymbol{X}^{\star} \coloneqq \begin{pmatrix} p & 1 & 0 \\ 1 - p & 0 & 1 \end{pmatrix},$$

where $p \in [0,1]$. From the neighborhood $\mathcal{N}(\overline{X})$, We can identify the following integer solutions that maintain the same objective value.

$$m{X}_1^\star = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, m{X}_2^\star = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Given that $\overline{\mathbf{P}}$ is a non-convex program, identifying its global minimum is challenging. Consequently, the following two critical questions arise.

- Q1. Since solving $\overline{\mathbf{P}}$ to global optimality is \mathcal{NP} -hard, how to efficiently optimize $\overline{\mathbf{P}}$ for high-quality solutions?
- **Q2.** Given $\overline{X} \in \Delta_k^N \setminus \mathcal{X}$ as a high-quality solution to \overline{P} , can we construct a feasible solution $\hat{X} \in \mathcal{X}$ to P such that $f(\hat{X}; W) = f(\overline{X}; W)$?

We provide a positive answer to **Q2** in Section 3.2, while our approach to addressing **Q1** is deferred to Section 3.3.

3.2 RANDOM SAMPLING

Let $\overline{X} \in \Delta_k^N \setminus \mathcal{X}$ be a feasible solution to the relaxation \overline{P} . Our goal is to construct a feasible solution $X \in \mathcal{X}$ for the original problem P, ensuring that the corresponding objective values are equal. Inspired by Theorem 1, we propose a *random sampling* procedure, outlined in Algorithm 1. In this approach, we sample each column $X_{\cdot i}$ of the matrix X from a categorical distribution characterized by the event probabilities $\overline{X}_{\cdot i}$ (denoted as $\operatorname{Cat}(x; p = \overline{X}_{\cdot i})$ in Step 3 of Algorithm 1). This randomized approach yields a feasible solution \hat{X} for P. However, since Algorithm 1 incorporates randomness in generating \hat{X} from \overline{X} , the value of $f(\hat{X}; W)$ becomes random as well. This raises the critical question: is this value greater or lesser than $f(\overline{X}; W)$? We address this question in Theorem 2.

Algorithm 1 Random Sampling

Theorem 2. Let \overline{X} and \hat{X} denote the input and output of Algorithm 1, respectively. Then, we have $\mathbb{E}_{\hat{X}}[f(\hat{X}; W)] = f(\overline{X}; W)$.

Theorem 2 states that $f(\hat{X}; W)$ is equal to $f(\overline{X}; W)$ in expectation. This implies that the random sampling procedure operates on a fractional solution, yielding Max-k-Cut feasible solutions with the same objective values in the probabilistic sense. In practice, we execute Algorithm 1 T times and select the solution with the lowest objective value as our best result. We remark that the theoretical interpretation in Theorem 2 distinguishes our sampling algorithm from the existing ones in the literature (Toenshoff et al., 2021; Karalias & Loukas, 2020).

3.3 GNN PARAMETRIZATION-BASED OPTIMIZATION

To solve the problem $\overline{\mathbf{P}}$, we propose an efficient learning-to-optimize (L2O) method based on GNN parametrization. This approach reduces the laborious iterations typically required by classical optimization methods (e.g., mirror descent). Additionally, we introduce a "pre-train + fine-tune" strategy, where the model is endowed with prior graph knowledge during the pre-training phase, significantly decreasing the computational time required to optimize $\overline{\mathbf{P}}$.

GNN Parametrization. The Max-k-Cut problem can be framed as a node classification task, allowing us to leverage GNNs to aggregate node features, and obtain high-quality solutions. Initially, we assign a random embedding $\boldsymbol{h}_i^{(0)}$ to each node i in the graph \mathcal{G} , as defined in Section 2. We adopt the GNN architecture proposed by Morris et al. (2019), utilizing an L-layer GNN with updates at layer l defined as follows:

$$m{h}_i^{(l)} \coloneqq \sigma \left(m{\Phi}_1^{(l)}m{h}_i^{(l-1)} + m{\Phi}_2^{(l)} \sum_{j \in \mathcal{N}(i)} w_{ji}m{h}_j^{(l-1)}
ight),$$

where $\sigma(\cdot)$ is an activation function, and $\Phi_1^{(l)}$ and $\Phi_2^{(l)}$ are the trainable parameters at layer l for $l \in \{1, \dots, L\}$. This formulation facilitates efficient learning of node representations by leveraging

both node features and the underlying graph structure. After processing through L layers of GNN, we obtain the final output $\boldsymbol{H}_{\Phi}^{(L)} \coloneqq [\boldsymbol{h}_1^{(L)}, \dots, \boldsymbol{h}_N^{(L)}] \in \mathbb{R}^{k \times N}$. A softmax activation function is then applied in the last layer to ensure $\boldsymbol{H}_{\Phi}^{(L)} \in \Delta_k^N$, making the final output feasible for $\overline{\boldsymbol{P}}$.

"Pre-train + Fine-tune" Optimization. We propose a "pre-train + fine-tune" framework for learning the trainable weights of GNNs. Initially, the model is trained on a collection of pre-collected datasets to produce a pre-trained model. Subsequently, we fine-tune this pre-trained model for each specific problem instance. This approach equips the model with prior knowledge of graph structures during the pre-training phase, significantly reducing the overall solving time. Furthermore, it allows for out-of-distribution generalization due to the fine-tuning step.

The trainable parameters $\Phi \coloneqq (\Phi_1^{(1)}, \Phi_2^{(1)}, \dots, \Phi_1^{(L)}, \Phi_2^{(L)})$ in the pre-training phase are optimized using the Adam optimizer with *random initialization*, targeting the objective

$$\min_{oldsymbol{\Phi}} \quad \mathcal{L}_{ ext{pre-training}}(oldsymbol{\Phi}) \coloneqq rac{1}{M} \sum_{m=1}^{M} f(oldsymbol{H}_{oldsymbol{\Phi}}^{(L)}; oldsymbol{W}_{ ext{train}}^{(m)}),$$

where $\mathcal{D} \coloneqq \{ \boldsymbol{W}_{\text{train}}^{(1)}, \dots, \boldsymbol{W}_{\text{train}}^{(M)} \}$ represents the pre-training dataset. In the fine-tuning phase, for a problem instance represented by $\boldsymbol{W}_{\text{test}}$, the Adam optimizer seeks to solve

$$\min_{oldsymbol{\Phi}} \quad \mathcal{L}_{ ext{fine-tuning}}(oldsymbol{\Phi}) \coloneqq f(oldsymbol{H}_{\Phi}^{(L)}; oldsymbol{W}_{ ext{test}}),$$

initialized with the pre-trained parameters.

Moreover, to enable the GNN model to fully adapt to specific problem instances, the pre-training phase can be omitted, enabling the model to be directly trained and tested on the same instance. While this direct approach may necessitate more computational time, it often results in improved performance regarding the objective function. Consequently, users can choose to include a pre-training phase based on the specific requirements of their application scenarios.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We compare the performance of ROS against traditional methods and L2O algorithms for solving the Max-k-Cut problem. Additionally, we assess the impact of the "Pre-train" stage in the GNN parametrization-based optimization. The source code is available at https://anonymous.4open.science/r/ROS_anonymous-1C88/.

Baseline Algorithms. We denote our proposed algorithms by ROS and compare them against both traditional algorithms and learning-based methods. When the pre-training step is skipped, we refer to our algorithm as ROS-vanilla. The following traditional Max-k-Cut algorithms are considered as baselines: (i) GW (Goemans & Williamson, 1995): an method with a 0.878-approximation guarantee based on semi-definite relaxation; (ii) BQP (Gui et al., 2018): a local search method designed for binary quadratic programs; (iii) Genetic (Li & Wang, 2016): a genetic algorithm specifically for Max-k-Cut problems; (iv) MD: a mirror descent algorithm that addresses the relaxed problem \overline{P} and adopts the same random sampling procedure; (v) LPI (Goudet et al., 2024): an evolutionary algorithm featuring a large population organized across different islands; (vi) MOH (Ma & Hao, 2017): a heuristic algorithm based on multiple operator heuristics, employing various distinct search operators within the search phase. (vii) Rank2 (Burer et al., 2002): a heuristic based on rank-2 relaxation. For the L2O method, we primarily examine the state-of-the-art baseline: (viii) PI-GNN (Schuetz et al., 2022): A cutting-edge L2O method capable of solving QUBO problems in dozens of seconds, delivering commendable performance. It is the first method to eliminate the dependence on large, labeled training datasets typically required by supervised learning approaches.

Datasets. The datasets utilized in this paper comprise random regular graphs from Schuetz et al. (2022) and the Gset benchmark from Ye (2003). For the random regular graphs, we employ the random_regular_graph from the NetworkX library (Hagberg et al., 2008) to generate *r*-regular graphs, which are undirected graphs in which all nodes have a degree of *r*, with all edge

Figure 2: The computational time comparison of Max-k-Cut problems.

weights equal to 1. The Gset benchmark is constructed using a machine-independent graph generator, encompassing toroidal, planar, and randomly weighted graphs with vertex counts ranging from 800 to 20,000 and edge densities between 2% and 6%. The edge weights in these graphs are constrained to values of 1, 0, or -1. Specifically, the training dataset includes 500 3-regular graphs and 500 5-regular graphs, each containing 100 nodes, tailored for the cases where k=2 and k=3, respectively. The testing set for random regular graphs consists 20 3-regular graphs and 20 5-regular graphs for both k=2 and k=3 tasks, with node counts of 100, 1,000, and 10,000, respectively. Moreover, the testing set of Gset encompasses all instances included in the Gset benchmark.

Model Settings. ROS is designed as a two-layer GNN, with both the input and hidden dimensions set to . To address the issue of gradient vanishing, we apply a graph normalization technique as proposed by Cai et al. (2021). The ROS model undergoes pre-training using the Adam optimizer with a learning rate of 10^{-2} for one epoch. During the fine-tuning stage, the model is further optimized using the same Adam optimizer and learning rate of 10^{-2} . An early stopping strategy is employed, with a tolerance of 10^{-2} and a patience of 100 iterations, terminating training if no improvement is observed over this duration. Finally, in the random sampling stage, we execute Algorithm 1 for T=100 independent trials and return the best solution obtained.

Evaluation Configuration. All our experiments were conducted on an NVIDIA RTX 3090 GPU, using Python 3.8.19 and PyTorch 2.2.0.

4.2 Performance Comparison against Baselines

4.2.1 Computational Time

We evaluated the performance of ROS against baseline algorithms GW, BQP, Genetic, MD, and PI-GNN on random regular graphs, focusing on computational time for both the Max-Cut and Max-3-Cut tasks. The experiments were conducted across three problem sizes: N=100, N=1,000, and N=10,000, as illustrated in Figure 2a. Additionally, Figure 2b compares the scalable methods MD, Rank2, and PI-GNN on problem instances from the Gset benchmark with $N \geq 10,000$. "N/A" denotes a failure to return a solution within 30 minutes. A comprehensive summary of the results for all Gset instances on Max-Cut and Max-3-Cut, including comparisons with state-of-the-art methods LPI and MOH, is presented in Table 3 and Table 4 in the Appendix.

The results depicted in Figure 2a indicate that ROS efficiently solves all problem instances within seconds, even for large problem sizes of N=10,000. In terms of baseline performance, the approximation algorithm GW performs efficiently on instances with N=100, but it struggles with larger sizes such as N=1,000 and N=10,000 due to the substantial computational burden associated with solving the underlying semi-definite programming problem. Heuristic methods such as BQP and Genetic can manage cases up to N=1,000 in a few hundred seconds, yet they fail to solve larger instances with N=10,000 because of the high computational cost of each iteration. Notably, MD is the only method capable of solving large instances within a reasonable time frame; however, when N reaches 10,000, the computational time for MD approaches 15 times that of ROS. Regarding learning-based methods, PI-GNN necessitates retraining and prediction for each test instance, with test times exceeding dozens of seconds even for N=100. In contrast, ROS

Table 1: Objective value comparison of Max-k-Cut problems on random regular graphs.

Methods	N=	100	N=1,	000	N=10	,000
1.10111043	k=2	k = 3	k=2	k = 3	k=2	k = 3
GW	$130.20_{\pm 2.79}$	_	N/A	_	N/A	_
BQP	$131.55_{\pm 2.42}^{-}$	$239.70_{\pm 1.82}$	$1324.45_{\pm 6.34}$	$2419.15_{\pm 6.78}$	N/A	N/A
Genetic	$127.55_{\pm 2.82}$	$235.50_{\pm 3.15}$	$1136.65_{\pm 10.37}$	$2130.30_{\pm 8.49}$	N/A	N/A
MD	$127.20_{\pm 2.16}$	$235.50_{\pm 3.29}$	$1250.35_{\pm 11.21}$	$2344.85_{\pm 9.86}$	12428.85 ± 26.13	$23341.20_{\pm 32.87}$
PI-GNN	$122.75_{\pm 4.36}$	_	$1263.95_{\pm 21.59}$	_	$12655.05_{\pm 94.25}$	_
ROS	$128.20_{\pm 2.82}$	$240.30_{\pm 2.59}$	$1283.75_{\pm 6.89}$	$2405.75_{\pm 5.72}$	$12856.85_{\pm 26.50}$	24085.95 ± 21.88

Table 2: Objective value comparison of Max-k-Cut problems on Gset instances.

Methods	G70 (N=	10,000)	G72 (N=	10,000)	G77 (N=	14,000)	G81 (N=	20,000)
111041040	k=2	k = 3						
MD	8551	9728	5638	6612	7934	9294	11226	13098
Rank2	9529	-	6820	-	9670	-	13662	_
PI-GNN	8956	-	4544	-	6406	-	8970	_
ROS	8916	9971	6102	7297	8740	10329	12332	14464

solves these large instances in merely a few seconds. Throughout the experiments, ROS consistently completes its tasks in under 10 seconds, requiring only 10% of the computational time utilized by PI-GNN. Figure 2b illustrates the results for the Gset benchmark, where ROS efficiently solves the largest instances in just a few seconds, while other methods, such as Rank2, take tens to hundreds of seconds for equivalent tasks. Remarkably, ROS utilizes only about 1% of the computational time required by PI-GNN.

4.2.2 OBJECTIVE VALUE

We also evaluate the performance of ROS on random regular graphs and the Gset benchmark concerning the objective values of Problem (1). The results for the random regular graphs and Gset are presented in Tables 1 and 2, respectively. Note that "-" indicates that the method is unable to handle Max-k-Cut problems.

The results for random regular graphs, presented in Table 1, indicate that ROS effectively addresses both k=2 and k=3 cases, producing high-quality solutions even for large-scale problem instances. In contrast, traditional methods such as GW and the L2O method PI-GNN are restricted to k=2 and fail to generalize to the general k, i.e., k=3. While GW achieves high-quality solutions for the Max-Cut problem with an instance size of N=100, it cannot generalize to arbitrary k without integrating additional randomized algorithms to yield discrete solutions. Similarly, the L2O method PI-GNN cannot manage k=3 because the Max-k-Cut problem cannot be modeled as a QUBO problem. Furthermore, its heuristic rounding lacks theoretical guarantees, which results in sub-optimal performance regarding objective function values. Traditional methods such as BQP and Genetic can accommodate k=3, but they often become trapped in sub-optimal solutions. Among all the baselines, only MD can handle general k while producing solutions of comparable quality to ROS. However, MD consistently exhibits inferior performance compared to ROS across all experiments. The results for the Gset benchmark, shown in Table 2, offer similar insights: ROS demonstrates better generalizability compared to the traditional Rank2 method and the L2O method PI-GNN. Moreover, ROS yields higher-quality solutions than MD in terms of objective function values.

4.3 EFFECT OF THE "PRE-TRAIN" STAGE IN ROS

To evaluate the impact of the pre-training stage in ROS, we compared it with ROS-vanilla, a variant that omits the pre-training phase (see Section 3.3). We assessed both methods based on objective function values and computational time. Figure 3 illustrates the ratios of these metrics be-

Figure 3: The ratio of computational time and objective value comparison of Max-k-Cut problems between ROS-vanilla and ROS.

tween ROS-vanilla and ROS. In this figure, the horizontal axis represents the problem instances, while the left vertical axis (green bars) displays the ratio of objective function values, and the right vertical axis (red curve) indicates the ratio of computational times.

As shown in Figure 3a, during experiments on regular graphs, ROS-vanilla achieves higher objective function values in most settings; however, its computational time is approximately 1.5 times greater than that of ROS. Thus, ROS demonstrates a faster solving speed compared to ROS-vanilla. Similarly, in experiments conducted on the Gset benchmark (Figure 3b), ROS reduces computational time by around 40% while maintaining performance comparable to that of ROS-vanilla. Notably, in the Max-3-Cut problem for the largest instance, G81, ROS effectively halves the solving time, showcasing the significant acceleration effect of pre-training. It is worth mentioning that the ROS model was pre-trained on random regular graphs with N=100 and generalized well to regular graphs with N=1,000 and N=10,000, as well as to Gset problem instances of varying sizes and types. This illustrates ROS's capability to generalize and accelerate the solving of large-scale problems across diverse graph types and sizes, emphasizing the strong out-of-distribution generalization afforded by pre-training.

In summary, while ROS-vanilla achieves slightly higher objective function values on individual instances, it requires longer solving times and struggles to generalize to other problem instances. This observation highlights the trade-off between a model's ability to generalize and its capacity to fit specific instances. Specifically, a model that fits individual instances exceptionally well may fail to generalize to new data, resulting in longer solving times. Conversely, a model that generalizes effectively may exhibit slightly weaker performance on specific instances, leading to a marginal decrease in objective function values. Therefore, the choice between these two training modes should be guided by the specific requirements of the application.

5 Conclusions

In this paper, we propose ROS, an efficient method for addressing the Max-k-Cut problem. Our approach begins by relaxing the constraints of the original discrete problem to probabilistic simplices. To effectively solve this relaxed problem, we propose an optimization algorithm based on GNN parametrization and incorporate transfer learning by leveraging pre-trained GNNs to warmstart the training process. After resolving the relaxed problem, we present a novel random sampling algorithm that maps the continuous solution back to a discrete form. By integrating geometric landscape analysis with statistical theory, we establish the consistency of function values between the continuous and discrete solutions. Experiments conducted on random regular graphs and the Gset benchmark demonstrate that our method is highly efficient for solving large-scale Max-k-Cut problems, requiring only a few seconds, even for instances with tens of thousands of variables. Furthermore, it exhibits robust generalization capabilities across both in-distribution and out-of-distribution instances, highlighting its effectiveness for large-scale optimization tasks. Exploring other sampling algorithms to further boost ROS performance is a future research direction. Moreover, the ROS framework with theoretical insights could be potentially extended to other graph-related combinatorial problems, and this direction is also worth investigating as future work.

REFERENCES

- Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky. Exploratory combinatorial optimization with reinforcement learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 3243–3250, 2020.
- Thomas D Barrett, Christopher WF Parsonson, and Alexandre Laterre. Learning to solve combinatorial graph partitioning problems via efficient exploration. *arXiv* preprint arXiv:2205.14105, 2022.
- Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a methodological tour d'horizon. *European Journal of Operational Research*, 290(2): 405–421, 2021.
- Samuel Burer, Renato DC Monteiro, and Yin Zhang. Rank-two relaxation heuristics for max-cut and other binary quadratic programs. *SIAM Journal on Optimization*, 12(2):503–521, 2002.
- Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu, and Liwei Wang. Graphnorm: A principled approach to accelerating graph neural network training. In *International Conference on Machine Learning*, pp. 1204–1215. PMLR, 2021.
- RC Carlson and George L Nemhauser. Scheduling to minimize interaction cost. *Operations Research*, 14(1):52–58, 1966.
- Ming Chen, Yuning Chen, Yonghao Du, Luona Wei, and Yingwu Chen. Heuristic algorithms based on deep reinforcement learning for quadratic unconstrained binary optimization. *Knowledge-Based Systems*, 207:106366, 2020.
- Xiaohan Chen, Jialin Liu, and Wotao Yin. Learning to optimize: A tutorial for continuous and mixed-integer optimization. *Science China Mathematics*, pp. 1–72, 2024.
- Amin Coja-Oghlan, Philipp Loick, Balázs F Mezei, and Gregory B Sorkin. The ising antiferromagnet and max cut on random regular graphs. *SIAM Journal on Discrete Mathematics*, 36(2): 1306–1342, 2022.
- Chase Cook, Hengyang Zhao, Takashi Sato, Masayuki Hiromoto, and Sheldon X-D Tan. Gpubased ising computing for solving max-cut combinatorial optimization problems. *Integration*, 69: 335–344, 2019.
- Etienne de Klerk, Dmitrii V Pasechnik, and Joost P Warners. On approximate graph colouring and max-k-cut algorithms based on the θ -function. *Journal of Combinatorial Optimization*, 8: 267–294, 2004.
- Andreas Eisenblätter. The semidefinite relaxation of the k-partition polytope is strong. In *International Conference on Integer Programming and Combinatorial Optimization*, pp. 273–290. Springer, 2002.
- Alan Frieze and Mark Jerrum. Improved approximation algorithms for max k-cut and max bisection. *Algorithmica*, 18(1):67–81, 1997.
- Jaroslav Garvardt, Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. Parameterized local search for max c-cut. In *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence*, pp. 5586–5594, 2023.
- Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat, Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The machine learning for combinatorial optimization competition (ml4co): Results and insights. In *NeurIPS 2021 competitions and demonstrations track*, pp. 220–231. PMLR, 2022.
 - Bissan Ghaddar, Miguel F Anjos, and Frauke Liers. A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem. *Annals of Operations Research*, 188(1): 155–174, 2011.

- Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut
 and satisfiability problems using semidefinite programming. *Journal of the ACM (JACM)*, 42(6):
 1115–1145, 1995.
 - Olivier Goudet, Adrien Goëffon, and Jin-Kao Hao. A large population island framework for the unconstrained binary quadratic problem. *Computers & Operations Research*, 168:106684, 2024.
 - Jihong Gui, Zhipeng Jiang, and Suixiang Gao. Pci planning based on binary quadratic programming in lte/lte-a networks. *IEEE Access*, 7:203–214, 2018.
 - Aric Hagberg, Pieter J Swart, and Daniel A Schult. Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Laboratory (LANL), Los Alamos, NM (United States), 2008.
 - Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs. *Advances in Neural Information Processing Systems*, 33: 6659–6672, 2020.
 - Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.
 - Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization algorithms over graphs. *Advances in neural information processing systems*, 30, 2017.
 - Panxing Li and Jing Wang. Pci planning method based on genetic algorithm in lte network. *Telecommunications Science*, 32(3):2016082, 2016.
 - An Ly, Raj Sawhney, and Marina Chugunova. Data clustering and visualization with recursive goemans-williamson maxcut algorithm. In 2023 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 496–500. IEEE, 2023.
 - Fuda Ma and Jin-Kao Hao. A multiple search operator heuristic for the max-k-cut problem. *Annals of Operations Research*, 248:365–403, 2017.
 - Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 4602–4609, 2019.
 - Ankur Nath and Alan Kuhnle. A benchmark for maximum cut: Towards standardization of the evaluation of learned heuristics for combinatorial optimization. *arXiv preprint arXiv:2406.11897*, 2024.
 - Jan Poland and Thomas Zeugmann. Clustering pairwise distances with missing data: Maximum cuts versus normalized cuts. In *International Conference on Discovery Science*, pp. 197–208. Springer, 2006.
 - Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with physics-inspired graph neural networks. *Nature Machine Intelligence*, 4(4):367–377, 2022.
 - Nimita Shinde, Vishnu Narayanan, and James Saunderson. Memory-efficient approximation algorithms for max-k-cut and correlation clustering. *Advances in Neural Information Processing Systems*, 34:8269–8281, 2021.
 - Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks for maximum constraint satisfaction. *Frontiers in artificial intelligence*, 3:580607, 2021.
 - Jan Tönshoff, Berke Kisin, Jakob Lindner, and Martin Grohe. One model, any csp: Graph neural networks as fast global search heuristics for constraint satisfaction. *arXiv preprint arXiv:2208.10227*, 2022.
 - Yinyu Ye. The gset dataset. https://web.stanford.edu/~yyye/gset/, 2003.

A PROOF OF THEOREM 1

 Proof. Before proceeding with the proof of Theorem 1, we first define the neighborhood of a vector $\bar{x} \in \Delta_k$, and establish results of Lemma 1 and Lemma 2.

Definition 2. Let $\bar{x} = (\bar{x}_1, \dots, \bar{x}_k)$ denote a point in Δ_k . We define the neighborhood induced by \bar{x} as follows:

$$\widetilde{\mathcal{N}}(ar{m{x}}) \coloneqq \left\{ (m{x}_1, \cdots, m{x}_k) \in \Delta_k \left| \sum_{j \in \mathcal{K}(ar{m{x}})} m{x}_j = 1
ight.
ight\},$$

where $K(\bar{x}) = \{j \in \{1, \dots, k\} \mid \bar{x}_j > 0\}.$

Lemma 1. Given $X_{\cdot i} \in \widetilde{\mathcal{N}}(\overline{X}_{\cdot i})$, it follows that

$$\mathcal{K}(X_{\cdot i}) \subseteq \mathcal{K}(\overline{X}_{\cdot i}).$$

Proof. Suppose there exists $j \in \mathcal{K}(X_{\cdot i})$ such that $j \notin \mathcal{K}(\overline{X}_{\cdot i})$, implying $X_{ji} > 0$ and $\overline{X}_{ji} = 0$.

We then have

$$\sum_{l \in \mathcal{K}(\overline{X}_{\cdot i})} X_{li} + X_{ji} \le \sum_{l=1}^{k} X_{li} = 1,$$

which leads to

$$\sum_{l \in \mathcal{K}(\overline{\boldsymbol{X}}_{\cdot,i})} \boldsymbol{X}_{li} \le 1 - \boldsymbol{X}_{ji} < 1,$$

contradicting with the fact that $X_{\cdot i} \in \widetilde{\mathcal{N}}(\overline{X}_{\cdot i})$.

Lemma 2. Let \overline{X} be a globally optimal solution to \overline{P} , then

$$f(X; W) = f(\overline{X}; W),$$

where X has only the i^{th} column $X_{\cdot i} \in \widetilde{\mathcal{N}}(\overline{X}_{\cdot i})$, and other columns are identical to those of \overline{X} . Moreover, X is also a globally optimal solution to \overline{P} .

Proof. The fact that X is a globally optimal solution to \bar{P} follows directly from the equality $f(X; W) = f(\overline{X}; W)$. Thus, it suffices to prove this equality. Consider that \overline{X} and X differ only in the i^{th} column, and $X_{\cdot i} \in \widetilde{\mathcal{N}}(\overline{X}_{\cdot i})$. We can rewrite the objective value function as

$$f(X; W) = g(X_{\cdot i}; X_{\cdot -i}) + h(X_{\cdot -i}),$$

where $X_{\cdot -i}$ represents all column vectors of X except the i^{th} column. The functions g and h are defined as follows:

$$g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot - i}) = \sum_{j=1}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot j} + \sum_{j=1}^{N} \boldsymbol{W}_{ji} \boldsymbol{X}_{\cdot j}^{\top} \boldsymbol{X}_{\cdot i} - \boldsymbol{W}_{ii} \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot i},$$

$$h(\boldsymbol{X}_{\cdot - i}) = \sum_{l=1, l \neq i}^{N} \sum_{j=1, j \neq i}^{N} \boldsymbol{W}_{lj} \boldsymbol{X}_{\cdot l}^{\top} \boldsymbol{X}_{\cdot j}$$

To establish that $f(X; W) = f(\overline{X}; W)$, it suffices to show that

$$g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot -i}) = g(\overline{\boldsymbol{X}}_{\cdot i}; \boldsymbol{X}_{\cdot -i})$$

as
$$X_{\cdot -i} = \overline{X}_{\cdot -i}$$
.

Rewriting $g(X_{\cdot i}; X_{\cdot -i})$, we obtain

$$g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot - i}) = \sum_{j=1}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot j} + \sum_{j=1}^{N} \boldsymbol{W}_{ji} \boldsymbol{X}_{\cdot j}^{\top} \boldsymbol{X}_{\cdot i}$$

$$= 2 \sum_{j=1}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot j}$$

$$= 2 \boldsymbol{X}_{\cdot i}^{\top} \sum_{j=1, j \neq i}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{\cdot j}$$

$$= 2 \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{Y}_{i},$$

where $\boldsymbol{Y}_{\cdot i} := \sum_{j=1, j \neq i}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{\cdot j}$.

If $|\mathcal{K}(\overline{X}_{\cdot i})| = 1$, then there is only one non-zero element in $\overline{X}_{\cdot i}$ equal to one. Therefore, $g(\overline{X}_{\cdot i}; X_{\cdot -i}) = g(X_{\cdot i}; X_{\cdot -i})$ since $X_{\cdot i} = \overline{X}_{\cdot i}$.

For the case where $|\mathcal{K}(\overline{X}_{\cdot i})| > 1$, we consider any indices $j, l \in \mathcal{K}(\overline{X}_{\cdot i})$ such that $\overline{X}_{ji}, \overline{X}_{li} > 0$. Then, there exists $\epsilon > 0$ such that we can construct a point $\widetilde{x} \in \Delta_k$ where the j^{th} element is set to $\overline{X}_{ji} - \epsilon$, the l^{th} element is set to $\overline{X}_{li} + \epsilon$, and all other elements remain the same as in $\overline{X}_{\cdot i}$. Since \overline{X} is a globally optimum of the function f(X; W), it follows that $\overline{X}_{\cdot i}$ is also a global optimum for the function $g(\overline{X}_{\cdot i}; X_{\cdot -i})$. Thus, we have

$$g(\overline{X}_{\cdot i}; X_{\cdot - i}) \leq g(\widetilde{x}; X_{\cdot - i})$$

$$\overline{X}_{\cdot i}^{\top} Y_{\cdot i} \leq \widetilde{x}^{\top} Y_{\cdot i}$$

$$= \overline{X}_{\cdot i}^{\top} Y_{\cdot i} - \epsilon Y_{ji} + \epsilon Y_{li},$$

which leads to the inequality

$$Y_{ii} \le Y_{li}. \tag{3}$$

Next, we can similarly construct another point $\hat{x} \in \Delta_k$ with its j^{th} element equal to $\overline{X}_{ji} + \epsilon$, the k^{th} element equal to $\overline{X}_{ki} - \epsilon$, and all other elements remain the same as in $\overline{X}_{\cdot i}$. Subsequently, we can also derive that

$$g(\overline{\boldsymbol{X}}_{\cdot i}; \boldsymbol{X}_{\cdot - i}) \leq g(\hat{\boldsymbol{x}}; \boldsymbol{X}_{\cdot - i})$$
$$= \overline{\boldsymbol{X}}_{\cdot i}^{\top} \boldsymbol{Y}_{\cdot i} + \epsilon \boldsymbol{Y}_{ii} - \epsilon \boldsymbol{Y}_{li},$$

which leads to another inequality

$$Y_{li} \le Y_{ji}. \tag{4}$$

Consequently, combined inequalities (3) and (4), we have

$$Y_{ji} = Y_{li}$$
,

for $j, l \in \mathcal{K}(\overline{\boldsymbol{X}}_{\cdot i})$.

From this, we can deduce that

$$Y_{j_1i} = Y_{j_2i} = \cdots = Y_{j_{|\mathcal{K}(\overline{X}_{\cdot,i})|}i} = t,$$

where $j_1, \cdots, j_{|\mathcal{K}(\overline{\boldsymbol{X}}_{\cdot i})|} \in \mathcal{K}(\overline{\boldsymbol{X}}_{\cdot i})$.

Next, we find that

$$g(\overline{X}_{\cdot i}; X_{\cdot -i}) = 2\overline{X}_{\cdot i}^{\top} Y_{\cdot i}$$

$$= 2 \sum_{j=1}^{k} \overline{X}_{ji} Y_{ji}$$

$$= 2 \sum_{j=1, j \in \mathcal{K}(\overline{X}_{\cdot i})}^{N} \overline{X}_{ji} Y_{ji}$$

$$= 2t \sum_{j=1, j \in \mathcal{K}(\overline{X}_{\cdot i})}^{N} \overline{X}_{ji}$$

$$= 2t.$$

Similarly, we have

$$\begin{split} g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot - i}) &= 2\boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{Y}_{\cdot i} \\ &= 2\sum_{j=1}^{k} \boldsymbol{X}_{ji} \boldsymbol{Y}_{ji} \\ &= 2\sum_{j=1, j \in \mathcal{K}(\boldsymbol{X}_{\cdot i})} \boldsymbol{X}_{ji} \boldsymbol{Y}_{ji} \\ &\stackrel{\text{Lemma 1}}{=} 2t \sum_{j=1, j \in \mathcal{K}(\boldsymbol{X}_{\cdot i})} \boldsymbol{X}_{ji} \\ &= 2t \\ &= g(\overline{\boldsymbol{X}}_{\cdot i}) \end{split}$$

Accordingly, we conclude that

$$g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot -i}) = g(\overline{\boldsymbol{X}}_{\cdot i}; \boldsymbol{X}_{\cdot -i}),$$

which leads us to the result

$$f(X; W) = f(\overline{X}; W),$$

where
$$X_{\cdot i} \in \widetilde{\mathcal{N}}(\overline{X}_{\cdot i}), X_{\cdot -i} = \overline{X}_{\cdot -i}$$
.

Accordingly, for any $X \in \mathcal{N}(\overline{X})$, we iteratively apply Lemma 2 to each column of \overline{X} while holding the other columns fixed, thereby proving Theorem 1.

B PROOF OF THEOREM 2

Proof. Based on \overline{X} , we can construct the random variable \widetilde{X} , where $\widetilde{X}_{i} \sim \text{Cat}(x; p = \overline{X}_{i})$. The probability mass function is given by

$$\mathbf{P}(\widetilde{X}_{\cdot i} = e_{\ell}) = \overline{X}_{\ell i},\tag{5}$$

where $\ell = 1, \dots, k$.

Next, we have

$$\mathbb{E}_{\widetilde{\boldsymbol{X}}}[f(\widetilde{\boldsymbol{X}}; \boldsymbol{W})] = \mathbb{E}_{\widetilde{\boldsymbol{X}}}[\widetilde{\boldsymbol{X}}\boldsymbol{W}\widetilde{\boldsymbol{X}}^{\top}] = \mathbb{E}_{\widetilde{\boldsymbol{X}}}[\sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \widetilde{\boldsymbol{X}}_{\cdot i}^{\top} \widetilde{\boldsymbol{X}}_{\cdot j}]$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \mathbb{E}_{\widetilde{\boldsymbol{X}}_{\cdot i} \widetilde{\boldsymbol{X}}_{\cdot j}} [\widetilde{\boldsymbol{X}}_{\cdot i}^{\top} \widetilde{\boldsymbol{X}}_{\cdot j}]$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \mathbb{E}_{\widetilde{\boldsymbol{X}}_{\cdot i} \widetilde{\boldsymbol{X}}_{\cdot j}} [\mathbb{1}(\widetilde{\boldsymbol{X}}_{\cdot i} = \widetilde{\boldsymbol{X}}_{\cdot j})]$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \mathbb{P}(\widetilde{\boldsymbol{X}}_{\cdot i} = \widetilde{\boldsymbol{X}}_{\cdot j})$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \mathbb{P}(\widetilde{\boldsymbol{X}}_{\cdot i} = \widetilde{\boldsymbol{X}}_{\cdot j}). \tag{6}$$

Since $\widetilde{\boldsymbol{X}}_{\cdot i}$ and $\widetilde{\boldsymbol{X}}_{\cdot j}$ are independent for $i \neq j$, we have

$$\mathbb{P}(\widetilde{X}_{\cdot i} = \widetilde{X}_{\cdot j}) = \sum_{\ell=1}^{k} \mathbb{P}(\widetilde{X}_{\cdot i} = \widetilde{X}_{\cdot j} = e_{\ell})$$

$$= \sum_{\ell=1}^{k} \mathbb{P}(\widetilde{X}_{\cdot i} = e_{\ell}, \widetilde{X}_{\cdot j} = e_{\ell})$$

$$= \sum_{\ell=1}^{k} \mathbb{P}(\widetilde{X}_{\cdot i} = e_{\ell}) \mathbb{P}(\widetilde{X}_{\cdot j} = e_{\ell})$$

$$= \sum_{\ell=1}^{k} \overline{X}_{\ell i} \overline{X}_{\ell j}$$

$$= \overline{X}_{\cdot i}^{\top} \overline{X}_{\cdot j}.$$
(7)

Substitute (7) into (6), we obtain

$$\mathbb{E}_{\widetilde{\boldsymbol{X}}}[f(\widetilde{\boldsymbol{X}};\boldsymbol{W})] = \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \overline{\boldsymbol{X}}_{\cdot i}^{\top} \overline{\boldsymbol{X}}_{\cdot j} = f(\overline{\boldsymbol{X}};\boldsymbol{W}).$$
(8)

C THE COMPLETE RESULTS ON GSET INSTANCES

Table 3: Complete results on Gset instances for Max-Cut. "*" indicates missing results from the literature.

	\rightarrow																																			
ROS	Time (s)	1.7	1.8	1.9	2.1	1.7	1.7	1.8	1.8	1.9	1.8	1.5	1.4	1.5	1.8	1.4	1.3	1.5	1.7	1.5	1.8	1.6	2.7	1.9	2.4	1.9	3.5	2.1	1.9	1.9	2.9	1.9	1.7	1.7	1.6	1.9
	Obj. ↑	11395	11467	11370	11459	11408	1907	1804	1775	1876	1755	494	494	524	2953	2871	2916	2914	905	772	788	848	13007	12936	12933	12947	12954	2971	2923	3089	3025	2943	1226	1208	1220	7260
anilla	Time (s) ↓	5.6	5.6	2.7	5.6	5.6	2.5	5.6	2.8	5.6	5.6	1.8	1.9	1.9	1.5	1.8	1.7	1.9	2.1	7	2.1	2.1	5.6	5.9	1.9	7	2.5	2.8	5.6	5.9	2.8	2.1	2.2	2.3	2.3	1.9
ROS-va	Obj. ↑	11423	11462	11510	11416	11505	1994	1802	1876	1839	1811	496	498	518	2932	2920	2917	2932	903	808	843	828	13028	13048	13035	13040	13054	2993	2985	3056	3004	3015	1240	1224	1238	7245
I	ime (s) \downarrow	7	∞	10	7	7	14	7	10	13	10	Ξ	16	23	119	80	69	104	40	49	31	32	413	150	234	258	291	152	197	293	410	412	330	349	302	1070
LPI	Obj. ↑ T	11624	11620	11622	11646	11631	2178	2006	2005	2054	2000	564	556	582	3064	3050	3052	3047	366	906	941	931	13359	13342	13337	13340	13328	3341	3298	3405	3413	3310	1410	1382	1384	9892
	Time (s) ↓	1.5	4.6	1.3	5.2	1.0	3.0	3.0	5.7	3.2	68.1	0.2	3.5	6.0	251.3	52.2	93.7	129.5	112.7	6.992	43.7	155.3	352.4	133.8	6.777	142.5	535.1	42.3	707.2	555.2	330.5	592.6	65.8	504.1	84.2	7.967
MOH	bj. ↑ Tir	1624	_																				_	_	_	_										9892
	O → (s	_																																		
BQP	Time (s)	11.3	11.7	11.0	11.2	11.0	11.4	1.1	1.1	14.6	10.9	11.0	11.0	10.8	11.1	1.1	14.3	12.1	11.2	11.4	11.9	14.1	92.6	95.6	95.0	102.0	96.9	98.9	8.96	96.4	99.3	96.3	92.7	89.3	92.6	95.2
	Obj. ↑	11406	11426	11397	11430	11406	1991	1780	1758	1845	1816	540	534	260	2985	2966	2987	2967	922	816	860	837	13004	12958	13002	12968	12966	3062	2963	3044	3074	2998	1338	1302	1314	7495
etic	Time (s) ↓	587.4	588.3	596.8	580.5	598.2	581.2	587.5	591.8	582.3	589.5	509.4	514.8	520.0	564.2	547.7	541.3	558.9	567.0	571.2	565.8	572.2	N/A	N/A	N/A	NΑ	N/A	ΝA	N/A	N/A	N/A	ΝΆ	ΝA	N/A	N/A	N/A
Gen	Obj. ↑	10929	10926	10933	10945	10869	1435	1273	1241	1345	1313	406	388	426	2855	2836	2848	2829	643	571	633	620	N/A	N/A	N/A	N/A	N/A	NΑ	N/A	N/A	N/A	NΑ	NΑ	N/A	N/A	N/A
SNN	Time (s) ↓	44.7	45.6	45.3	6.4	46.2	201.4	191.7	201.0	201.5	201.4	22.4	21.8	50.6	41.9	8.04	50.8	41.3	34.9	31.1	33.8	32.4	37.5	38.0	37.5	37.9	37.2	56.8	58.1	71.2	52.6	81.4	30.7	33.7	32.6	39.5
PI-	Obj. ↑	11258	11258	11262	11216	11185	1418	1280	1285	1332	1299	368	386	362	2248	2199	2359	2061	969	528	592	617	12757	12718	12565	12617	12725	2234	5069	2158	2234	2208	926	880	912	5574
c2	Fime (s) \downarrow	*	*	*	*	*	*	*	*	*	*	3.9	3.8	3.5	5.5	5.9	*	*	*	*	5.6	5.6	22.3	18.9	27.3	*	*	*	*	*	23.8	19.6	13.1	12.6	8.6	*
Ran]	Obj. ↑ Ti	*	*	*	*	*	*	*	*	*	*	554	552	572	3053	3039	*	*	*	*	939	921	3331	3269	3287	*	*	*	*	*	3377	3255	1380	1352	1358	*
	Time (s) ↓ C	5.1	5.3	5.3	8.4	3.7	5.9	5.9	5.1	8.0	7.3	3.0	2.4	3.0									_	10.2	_										2.8	9.4
MD	,	370	55	222	7 083	. 26	55 (35	51	20	8	96	96	99									_	~											18	28
) ↓ Obj. 1		_							_																										7358
ВМ	Time (s)	1228.	1225.	1243.	1217.	1261.	1261.	1336.	1235.	1215.	1227.	NA	N/A	NA	1716.	N/A	N/A	1738.	871.3	1245.	1015.	1350.	N/A	ΝA	N/A	N/A	ΝA	NA	ΝA	N/A	NA	NA	NA	NA	NA	N/A
	Obj. ↑	11299	11299	11289	11207	11256	1776	1694	1693	1676	1675	N/A	N/A	N/A	2942	N/A	N/A	2916	838	763	781	821	N/A	N/A	N/A	N/A	N/A									
3	_	19176	19176	19176	19176	19176	19176	19176	19176	19176	19176	1600	1600	1600	4694	4661	4672	4667	4694	4661	4672	4667	19990	19990	19990	19990	19990	19990	19990	19990	19990	19990	4000	4000	4000	11778
2	-	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Instance		GI GI	G2	G3	7 5	G5	95 G	G7	85 C8	69	G10	G11	G12	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	G23	G24	G25	G26	G27	G28	G29	G30	G31	G32	G33	G34	G35

Table 3: Continued.

MD Rank2 PI-GNN	Rank2 PI-GNN	Rank2 PI-GNN	MD Rank2 PI-GNN Genetic	PI-GNN	PI-GNN			Genetic	etic		-	BQP		МОН		LPI	ROS-1	ROS-vanilla	×	ROS
Obj. \uparrow Time $(s)\downarrow$ Obj. \uparrow Time $(s)\downarrow$ Obj. \uparrow Time $(s)\downarrow$ Obj. \uparrow Time $(s)\downarrow$ Obj. \uparrow '	Time (s) \downarrow Obj. \uparrow T	Time $(s) \downarrow Obj. \uparrow Time (s) \downarrow Obj. \uparrow Time (s) \downarrow Obj. \uparrow$	\downarrow Obj. \uparrow Time (s) \downarrow Obj. \uparrow Time (s) \downarrow Obj. \uparrow	\uparrow Time (s) \downarrow Obj. \uparrow Time (s) \downarrow Obj. \uparrow	↓ Obj.↑ Time (s)↓ Obj.↑	\uparrow Time (s) \downarrow Obj. \uparrow	, Obj.↑	←	Tim	Time (s) ↓	Obj. ↑	Time (s) ↓	Obj. ↑	Time (s) \(\psi \)	Obj. ↑	Time (s) \downarrow	Obj. ↑	Time (s) \(\frac{1}{2}\)	Obj. ↑	Time (s) ↓
N/A N/A 7336 10.1 * * 5596 36.5 N/A	N/A 7336 10.1 \star \star 5596 36.5 N/A	10.1 * * 5596 36.5 N/A	36.5 N/A	36.5 N/A	36.5 N/A	36.5 N/A	N/A		Г	NA	7490	95.3	7680	664.5	7680	5790	7235	2.4	7107	1.5
N/A N/A 7400 9.3 \star \star 6092 37.1 N/A	N/A 7400 9.3 \star \star 6092 37.1 N/A	$9.3 \star \star 6092 37.1 N/A$	37.1 N/A	37.1 N/A	37.1 N/A	37.1 N/A	N/A			N/A	7498	95.4	7691	652.8	1691	4082	7164	1.7	7141	1.5
N/A N/A 7343 8.6 \star \star 5982 38.1	N/A 7343 8.6 \star \star 5982 38.1	8.6 × × 5982 38.1	38.1	38.1	38.1	38.1		N/A		N/A	7507	100.6	288	7.677	7688	614	7114	1.6	7173	1.8
N/A N/A 1998 9.2 \star \star 1461 201.5	N/A 1998 9.2 * * 1461 201.5	9.2 \star \star 1461 201.5	201.5	201.5	201.5	201.5		N/A		N/A	2196	94.4	2408	7.87.7	2408	347	2107	2.5	2165	1.7
N/A N/A 1971 9.0 \star \star 1435 201.0	N/A 1971 9.0 \star \star 1435 201.0	9.0 \star \star 1435 201.0	201.0	201.0	201.0	201.0		N/A		N/A	2169	97.3	2400	472.5	2400	314	2207	2.7	2128	2.5
N/A N/A 1969 9.1 \star \star 1478 105.5	N/A 1969 9.1 \star \star 1478 105.5	9.1 \star \star 1478 105.5	105.5	105.5	105.5	105.5		N/A		N/A	2183	105.8	2405	377.4	2405	286	2120	1.6	2139	2.2
N/A N/A 2075 9.5 \star \star 1508 201.6	N/A 2075 9.5 \star \star 1508 201.6	9.5 × × 1508 201.6	201.6	201.6	201.6	201.6		N/A		N/A	2255	95.5	2481	777.4	2481	328	2200	2.2	2235	2.4
6340 1784.5 6380 5.0 * * 6434 40.9	1784.5 6380 5.0 × × 6434 40.9	$5.0 \times \times \times 6434 40.9$	40.9	40.9	40.9	40.9		9265		914.4	6206	18.0	0999	1.2	0999	19	6239	2.7	6471	1.7
6351 1486.7 6327 5.0 \star \star 6367 40.8	1486.7 6327 5.0 × × 6367 40.8	$5.0 \times \times \times 6367 + 40.8$	× × 6367 40.8	40.8	40.8	40.8		6009		914.3	6463	18.5	0599	5.3	0599	20	6498	2.5	6472	1.7
6355 1582.0 6329 4.9 \star \star 6341 41.6	1582.0 6329 4.9 \star \star 6341 41.6	4.9 × × 6341 41.6	× × 6341 41.6	41.6	41.6	41.6		9009		921.5	6489	22.4	6654	6.9	6654	19	6528	2.4	6489	1.7
6357 1612.8 6300 4.8 \star \star 6312 41.1	1612.8 6300 4.8 \star \star 6312 41.1	$4.8 \times \times \times 6312 41.1$	* * 6312 41.1	41.1	41.1	41.1		8265		916.2	6485	18.4	6649	67.3	6649	21	6498	2.5	6499	2.5
N/A N/A 6369 4.7 \star \star 6391 40.4	N/A 6369 4.7 * * 6391 40.4	4.7 × × 6391 40.4	× × 6391 40.4	× 6391 40.4	40.4	40.4		5948		912.4	6491	18.4	299	43.3	299	25	6497	2.5	6489	1.8
N/A N/A 5006 10.6 6000 13.1 5402 30.7	N/A 5006 10.6 6000 13.1 5402 30.7	10.6 6000 13.1 5402 30.7	6000 13.1 5402 30.7	13.1 5402 30.7	30.7	30.7		N/A		N/A	0009	300.4	0009	0.0	0009	8	5640	3.2	5498	2.1
N/A N/A 5086 10.1 6000 11.4 5434 30.5	N/A 5086 10.1 6000 11.4 5434 30.5	10.1 6000 11.4 5434 30.5	6000 11.4 5434 30.5	11.4 5434 30.5	30.5	30.5		N/A		N/A	0009	303.0	0009	0.0	0009	93	5580	3.1	5452	2.2
N/A N/A 5156 11.3 5856 15.7 5458 30.0	N/A 5156 11.3 5856 15.7 5458 30.0	11.3 5856 15.7 5458 30.0	5856 15.7 5458 30.0	15.7 5458 30.0	30.0	30.0		N/A		N/A	5880	299.8	5880	532.1	5880	8	9696	3.2	5582	1.9
N/A N/A 3693 4.1 \star \star 2841 40.6	N/A 3693 4.1 \star \star 2841 40.6	$4.1 \times \times 2841 40.6$	× × 2841 40.6	× 2841 40.6	40.6	40.6		3568		887.9	3759	17.7	3848	189.2	3848	145	3629	1.5	3677	1.7
N/A N/A 3695 4.7 \star \star 2615 41.2	N/A 3695 4.7 \star \star 2615 41.2	$4.7 \star \star 2615 41.2$	× × 2615 41.2	× 2615 41.2	41.2	41.2		3575		897.7	3771	18.5	3851	209.7	3851	119	3526	1.3	3641	1.6
N/A N/A 3670 4.5 \star \star 2813 41.1	N/A 3670 4.5 \star \star 2813 41.1	4.5 \star \star 2813 41.1	× × 2813 41.1	× 2813 41.1	41.1	41.1		3545		872.8	3752	18.0	3850	299.3	3850	182	3633	1.5	3658	1.6
N/A N/A 3682 4.4 \star \star 2790 41.3	N/A 3682 4.4 \star \star 2790 41.3	$4.4 \times \times \times 2790 41.3$	× × 2790 41.3	× 2790 41.3	41.3	41.3		3548		880.1	3753	18.0	3852	190.4	3852	140	3653	1.6	3642	1.3
N/A N/A 9462 24.4 10240 39.7 9678 31.9	N/A 9462 24.4 10240 39.7 9678 31.9	24.4 10240 39.7 9678 31.9	10240 39.7 9678 31.9	39.7 9678 31.9	9678 31.9	31.9		N/A		N/A	862	1142.1	10299	1230.4	10299	6594	9819	2.1	6116	2.9
N/A N/A 3203 23.8 3943 33.5 2754 217.2	N/A 3203 23.8 3943 33.5 2754 217.2	23.8 3943 33.5 2754 217.2	3943 33.5 2754 217.2	33.5 2754 217.2	2754 217.2	217.2		N/A		ΝA	3710	1147.6	4016	990.4	4017	49445	3444	2	3475	2.5
N/A N/A 2770 17.3 3412 32.2 2266 218.4	N/A 2770 17.3 3412 32.2 2266 218.4	17.3 3412 32.2 2266 218.4	3412 32.2 2266 218.4	32.2 2266 218.4	2266 218.4	218.4		N/A		N/A	3310	1120.8	3494	1528.3	3494	3494	3040	1.7	3078	2.5
N/A 18452 29.2 ×	N/A 18452 29.2 \star \star 14607 39.7	29.2 × × 14607 39.7	× × 14607 39.7	× 14607 39.7	14607 39.7	39.7		N/A		N/A	18813	1176.6	19288	1522.3	19294	65737	17632	2.3	17574	1.8
N/A N/A 5099 31.6 \star \star 3753 216.8	N/A 5099 31.6 \star \star 3753 216.8	$31.6 \times \times \times 3753 216.8$	× × 3753 216.8	× 3753 216.8	3753 216.8	216.8		N/A		ΝA	5490	1183.4	2809	2498.8	8809	65112	5343	1.9	5407	4.7
N/A N/A 13004 34.8 14081 57 13257 34.0	N/A 13004 34.8 14081 57 13257 34.0	34.8 14081 57 13257 34.0	14081 57 13257 34.0	57 13257 34.0	13257 34.0	34.0		N/A		N/A	N/A	N/A	14190	2945.4	14190	44802	13433	2	13402	2
N/A N/A 4592 36.0 5690 64 3963 233.0	N/A 4592 36.0 5690 64 3963 233.0	36.0 5690 64 3963 233.0	5690 64 3963 233.0	64 3963 233.0	3963 233.0	233.0		N/A		ΝA	N/A	N/A	5798	6603.3	5798	74373	5037	3.8	5011	2
N/A N/A 3922 26.1 4740 47 3150 229.4	N/A 3922 26.1 4740 47 3150 229.4	26.1 4740 47 3150 229.4	4740 47 3150 229.4	47 3150 229.4	3150 229.4	229.4		ΝA		N/A	N/A	N/A	4868	5568.6	4872	26537	4252	3.8	4294	2.8
N/A N/A 25938 45.1 \star \star 19616 38.0	N/A 25938 45.1 \star \star 19616 38.0	$45.1 \times \times 19616 38.0$	× × 19616 38.0	× 19616 38.0	19616 38.0	38.0		N/A		N/A	N/A	N/A	27033	6492.1	27033	52726	24185	1.7	24270	1.5
N/A N/A 7283 43.7 8575 67.6 5491 205.6	N/A 7283 43.7 8575 67.6 5491 205.6	43.7 8575 67.6 5491 205.6	8575 67.6 5491 205.6	67.6 5491 205.6	5491 205.6	205.6		NΑ		N/A	ΝA	N/A	8747	4011.1	8752	49158	7508	2.3	7657	3
N/A N/A 4520 32.5 \star \star 3680 232.8	N/A 4520 32.5 \star \star 3680 232.8	32.5 \star \star 3680 232.8	× × 3680 232.8	× 3680 232.8	3680 232.8	232.8		ΝA		N/A	ΝA	N/A	2560	4709.5	5562	21737	4878	4.4	4826	2.5
N/A N/A 5100 37.3 \star \star 4112 241.3	N/A 5100 37.3 \star \star 4112 241.3	37.3 \star \star 4112 241.3	× × 4112 241.3	× 4112 241.3	4112 241.3	241.3		N/A		N/A	ΝA	N/A	6360	6061.9	6364	34062	5570	5.5	5580	3.3
N/A N/A 5592 43.4 \star \star 4494 252.3	N/A 5592 43.4 × × 4494 252.3	43.4 × × 44.94 252.3	× × 4494 252.3	× 4494 252.3	4494 252.3	252.3		N/A		N/A	ΝA	N/A	6942	4214.3	6948	61556	0609	6.2	6010	1.9
N/A N/A 8551 54.3 9529 94.4 8956 34.5	N/A 8551 54.3 9529 94.4 8956 34.5	54.3 9529 94.4 8956 34.5	9529 94.4 8956 34.5	94.4 8956 34.5	8956 34.5	34.5		N/A		N/A	ΝA	N/A	9544	8732.4	9594	28820	9004	4.9	8916	3.4
N/A N/A 5638 44.2 6820 86.6 4544 253.0	N/A 5638 44.2 6820 86.6 4544 253.0	44.2 6820 86.6 4544 253.0	6820 86.6 4544 253.0	86.6 4544 253.0	4544 253.0	253.0		N/A		N/A	ΝA	N/A	8669	9.9859	7004	42542	9909	6.2	6102	3.9
N/A N/A 7934 66.0 9670 109.4 6406 349.4	N/A 7934 66.0 9670 109.4 6406 349.4	66.0 9670 109.4 6406 349.4	9670 109.4 6406 349.4	109.4 6406 349.4	6406 349,4	349.4		N/A		A/X	N/A	N/A	9928	9863.6	9356	66662	8678	6	8740	8.1
N/A N/A 11226 130.8 13662 140.5 8970 557.7	N/A 11226 130.8 13662 140.5 8970 557.7	130.8 13662 140.5 8970 557.7	13662 140.5 8970 557.7	140.5 8970 557.7	7.755 0768	557.7		N/A		N'A	N/A	N/A	14036	20422.0	14030	66691	12260	13.7	12332	9.3

Table 4: Complete results on Gset instances for Max-3-Cut.

Instance	$\overline{\lambda}$	3		MD	Gen	Genetic	Ш	ВОР	1	МОН	ROS-1	ROS-vanilla		ROS
			Obj. ↑	Time (s) \downarrow										
G1	800	19176	14735	9.6	14075	595.3	14880	16.5	15165	557.3	14949	2.8	14961	1.9
G2	800	19176	14787	8.4	14035	595.3	14845	17.0	15172	333.3	15033	2.8	14932	2.3
G3	800	19176	14663	6.5	14105	588.6	14872	17.0	15173	269.6	15016	2.9	14914	1.9
G4	800	19176	14716	6.9	14055	588.7	14886	17.1	15184	300.6	14984	3.3	14961	1.9
G5	800	19176	14681	8.1	14104	591.9	14847	17.3	15193	98.2	15006	3.2	14962	2.9
95	800	19176	2161	7.8	1504	604.4	2302	25.0	2632	307.3	2436	2.8	2361	1.8
C2	800	19176	2017	8.9	1260	589.9	2081	16.6	2409	381.0	2188	2.1	2188	2.4
85	800	19176	1938	7.7	1252	589.7	2096	19.3	2428	456.5	2237	2.8	2171	2.1
69	800	19176	2031	8.2	1326	604.4	2099	16.5	2478	282.0	2246	2.8	2185	2.2
G10	800	19176	1961	7.5	1266	593.3	2055	18.2	2407	569.3	2201	2.9	2181	2.3
G11	800	1600	553	4.0	414	554.5	624	16.4	699	143.8	919	2	591	1.4
G12	800	1600	530	4.4	388	543.6	809	17.4	099	100.7	604	2	582	1.5
G13	800	1600	558	4.0	425	550.8	638	18.9	989	459.4	617	2	629	1.4
G14	800	4694	3844	5.0	3679	571.1	3900	16.9	4012	88.2	3914	2.8	3892	2.1
G15	800	4661	3815	4.8	3625	567.6	3885	17.3	3984	80.3	3817	1.9	3838	2
G16	800	4672	3825	5.3	3642	561.5	3896	18.2	3991	1.3	3843	2.3	3845	1.6
G17	800	4667	3815	5.3	3640	558.7	3886	20.2	3983	7.8	3841	2.4	3852	1.6
G18	800	4694	992	4.5	704	584.0	1083	18.7	1207	0.3	1094	2.2	1067	1.7
G19	800	4661	698	4.4	565	584.2	962	17.0	1081	0.2	972	2.1	296	1.7
G20	800	4672	876	4.5	589	576.8	211	17.0	1122	13.3	1006	2.2	993	1.8
G21	800	4667	936	4.9	612	576.3	984	17.5	1109	55.8	1011	2.2	975	1.5
G22	2000	19990	16402	15.2	N/A	N/A	16599	135.5	17167	28.5	16790	3.3	16601	2.2
G23	2000	19990	16422	15.0	N/A	N/A	16626	135.6	17168	45.1	16819	3.9	16702	2.1
G24	2000	19990	16452	16.1	N/A	N/A	16591	137.7	17162	16.3	16801	3.6	16754	3
G25	2000	19990	16407	16.2	N/A	N/A	16661	141.8	17163	64.8	16795	2.1	16673	1.8
G26	2000	19990	16422	15.3	N/A	N/A	16608	136.3	17154	44.8	16758	3.1	16665	2
G27	2000	19990	3250	16.4	N/A	N/A	3475	134.3	4020	53.2	3517	1.7	3532	2
G28	2000	19990	3198	16.1	N/A	N/A	3433	136.4	3973	38.9	3507	3	3414	2.1
G29	2000	19990	3324	16.0	N/A	N/A	3582	136.2	4106	68.2	3634	3.4	3596	2
G30	2000	19990	3320	16.2	N/A	N/A	3578	133.6	4119	150.4	3656	3.1	3654	3.4
G31	2000	19990	3243	17.0	N/A	N/A	3439	131.0	4003	124.7	3596	3	3525	2.5
G32	2000	4000	1342	11.1	N/A	N/A	1545	129.3	1653	160.1	1488	2.5	1482	1.7
G33	2000	4000	1284	10.7	N/A	N/A	1517	126.2	1625	62.6	1449	2.5	1454	2
G34	2000	4000	1292	10.9	N/A	N/A	1499	126.0	1607	6.88	1418	2.4	1435	1.7
G35	2000	11778	9644	14.2	N/A	N/A	9816	138.1	10046	66.2	9225	2	9536	1.7

Table 4: Continued.

1176 960 136 NA NA 978 1886 1063 74.3 977 11 1176 960 13.6 NA NA 978 1386 10.93 74.3 977 21 11779 960 13.6 NA NA 978 138.6 10.93 74.3 977 21 11779 9629 14.49 NA NA 978 132.9 10.93 14.4 978 14.2 10.04 1166 9489 15.1 17.2 14.9 NA NA 260 13.2 10.04 1166 9489 11.0 17.0	Instance	<u> </u>	3		MD	Ger	Genetic	H	BQP		МОН	ROS-1	ROS-vanilla		ROS
2000 1176 9660 13.6 NA NA 9786 13.8 14.9 SA 9782 13.8 14.9 SA NA 9786 13.8 14.9 SA NA 9781 13.9 1002 3.4 8833 1.4 2000 11778 9629 14.0 NA NA 9775 1402 1160 3.4 8833 1.4 2000 11778 2346 13.3 NA NA 266 112.9 2877 2474 257 2000 11776 2346 12.7 NA NA 266 13.2 277 2870 147 2474 257 1000 9990 8214 8.1 76.1 919.0 8229 25.7 25.8 25.4 25.8 25.4 25.8 25.9 26.8 21.5 25.8 25.8 25.9 25.8 25.8 25.9 25.8 25.8 25.8 25.8 25.8 25.8 <td< th=""><th></th><th></th><th></th><th>Obj. ↑</th><th>Time (s) \downarrow</th><th>Obj. ↑</th><th>Time (s) ↓</th></td<>				Obj. ↑	Time (s) \downarrow	Obj. ↑	Time (s) ↓								
2000 11758 9652 14.9 NAA NAS 9821 14.9 SAA NAS 14.9 14.9 NAA NAA 9821 14.9 14.9 NAA NAA 9821 14.9 8833 1.4 2000 11778 2368 13.4 NAA NAA 2660 132.8 293 25.2 2681 25.2 2000 11778 2360 13.1 NAA NAA 2660 129.2 2887 87.3 247.4 2.5 2000 11778 2360 13.1 NAA NAA 2660 129.2 2887 87.3 247.4 2.5 1000 9990 8187 7.0 7617 919.0 823.2 27.7 8569 2.8 18.4 8.8 2.6 18.8 2.6 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2.8 2.7 2.8	G36	2000	11766	0096	13.6	N/A	N/A	9826	138.6	10039	74.3	9372	2.1	9581	2.3
2000 11778 9629 140 N/A NA 9775 1423 10040 1166 9482 25 2000 11778 268 134 N/A N/A 2668 1312 2870 6218 2474 25 2000 11776 2368 127 N/A N/A 2668 1312 2870 6218 2474 2 2000 11776 2366 127 N/A N/A 2668 1329 2887 2474 2 2000 11770 2360 1817 2669 1329 2887 2474 2 1000 9990 8214 8.1 7624 926.7 8296 37.2 8876 186.2 889 24 889 26 186.2 187 368 187 368 187 368 187 368 247 25 368 369 389 34 889 34 368 369 368	G37	2000	11785	9632	14.9	N/A	N/A	9821	139.2	10052	3.4	8893	1.4	9422	1.5
2000 11768 268 134 N/A NA 260 132 290 90 261 25 2000 11786 236 133 NA NA 266 1312 2870 82.8 2474 2 2000 11778 2366 123 NA NA 266 1292 2870 82.8 2474 2 2000 11779 2490 181 70 40 266 1292 2870 8271 871 273 871 871 273 871 871 273 871 871 273 871 871 273 871 871 871 871 371 871 871 871 871 871 871 871 871 871 871 871 872 284 872 286 215 372 286 215 372 384 27 871 871 372 374 484 486 26	G38	2000	11779	6796	14.0	N/A	N/A	9775	142.3	10040	116.6	9489	2.5	9370	1.5
2000 11766 2315 13.3 NA NA 2668 1312 2870 87.8 2474 2 2000 11766 2386 12.7 NA NA 2666 1299 2887 87.8 2474 2 2000 11779 2490 13.1 NA NA 2662 1299 2887 87.8 2638 2.7 2638 2.9 1000 9990 8224 7.7 7662 926.7 8292 29.9 8871 616.8 8397 2.9 1000 9990 8229 7.7 7662 926.7 8298 34.2 8566 18.2 8397 2.9 1000 9990 8219 7.5 7619 928.0 8294 94.8 18.8 2.7 889 2.7 889 2.7 889 2.7 889 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 <td>G39</td> <td>2000</td> <td>11778</td> <td>2368</td> <td>13.4</td> <td>N/A</td> <td>N/A</td> <td>2600</td> <td>132.8</td> <td>2903</td> <td>0.6</td> <td>2621</td> <td>2.5</td> <td>2557</td> <td>2.2</td>	G39	2000	11778	2368	13.4	N/A	N/A	2600	132.8	2903	0.6	2621	2.5	2557	2.2
2000 11785 2286 12.7 NA NA 2606 129.9 2887 87.7 2521 33.2 2000 11778 2496 13.1 NA NA 2606 1829 2887 25.2 25.2 36.3 34.4 2.7 1000 9990 8214 8.1 76.2 96.7 8329 29.9 8573 3603 8444 2.6 1000 9990 8226 7.7 7612 96.7 8326 21.2 8689 2.6 1000 9990 8229 7.5 7639 9820 27.8 8568 215.3 8499 2.6 1000 5900 8229 7.5 7619 98.8 34.8 6000 0.9 36.8 2.6 3000 6000 5824 45.8 48.8 49.8 40.4 6000 0.9 36.8 2.6 1000 5904 48.6 48.8 48.8 44.6	G40	2000	11766	2315	13.3	N/A	N/A	2568	131.2	2870	82.8	2474	2	2524	2.4
2000 11179 2490 13.1 NA NA 2662 129.2 2880 2.5 2658 27 1000 9990 8214 8.1 764 9057 8326 27.7 8571 616.8 8369 2.6 1000 9990 8226 7.7 7662 926.7 8296 14.2 8566 18.2 8399 2.6 1000 9990 8221 7.2 7619 928.0 8322 27.3 8566 18.2 8399 2.6 1000 9990 8211 7.2 7619 928.0 8322 27.3 8568 215.3 8499 2.6 1000 5904 481 14.4 NA NA 898 394.8 600 0.9 538 2.9 1000 5904 4826 6.4 4571 908.1 4910 27.3 8572 239.4 889 2.6 18.8 19.8 394.8 4900	G41	2000	11785	2386	12.7	N/A	N/A	2606	129.9	2887	87.7	2521	3.2	2584	2.5
1000 9990 81214 8.1 7624 9267 8329 29.9 8571 380.3 8444 2.6 1000 9990 81244 8.1 767 919.0 8326 27.7 8571 616.2 8397 2.6 1000 9990 8226 7.7 7602 927. 8266 31.5 8409 2.6 1000 9990 8211 7.2 7619 928. 324.8 8508 215.3 8499 2.6 3000 6000 5804 14.7 N/A N/A 898 304.8 6000 0.9 593 2.6 3000 6000 5804 14.5 N/A N/A 898 404.0 6000 0.9 593 2.8 3000 6000 5824 44.4 N/A N/A 898 404.0 6000 0.9 593 2.8 1000 5916 4849 6.4 4582 889.5	G42	2000	11779	2490	13.1	N/A	N/A	2682	129.2	2980	2.5	2638	2.7	2613	2.2
1000 9990 8187 7.0 7617 919.0 8336 27.7 8571 616.8 8369 2.6 1000 9990 8187 7.0 761.2 926.7 8326 27.3 8566 116.3 8499 2.6 1000 9990 8226 7.7 7619 938.0 832.2 27.3 8568 215.3 8499 2.6 3000 6000 5794 14.7 N/A N/A 598 49.4 600 0.4 598 2.6 3000 6000 5794 14.4 N/A N/A 598 40.4 600 0.4 598 2.6 1000 5914 4849 6.4 4582 88.5 4920 27.6 503 2.2 88 2.6 10.0 10.0 477.1 600 0.4 598 2.6 2.8 2.8 2.6 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2	G43	1000	0666	8214	8.1	7624	926.7	8329	29.9	8573	380.3	8414	2.6	8349	2.3
1000 9990 8226 7.7 7662 956.7 8296 34.2 8566 1862 8397 2.9 1000 9990 8229 7.5 7635 918.7 8296 24.2 8566 215.3 8499 2.6 3000 6000 8329 7.5 7619 938.0 8312 27.8 8596 215.3 8499 2.6 3000 6000 5824 14.4 N/A N/A 8998 3044 6000 0.4 5938 2.8 3000 6000 5824 14.4 N/A N/A 6000 4271 600 0.4 5938 2.8 1000 5914 4849 6.4 4571 908.1 4910 27.8 600 0.4 4896 2.6 1000 5914 4849 6.4 4571 908.1 4921 27.8 8937 23.9 4846 2.8 1000 5914 4849	G44	1000	0666	8187	7.0	7617	919.0	8326	27.7	8571	616.8	8369	2.6	8311	1.7
1000 9990 8229 7.5 7635 918.7 8312 27.8 8568 215.3 8409 2.6 1000 6990 8211 7.2 7619 928.0 8322 27.3 8568 2.8 2.8 3000 6000 5894 14.4 N/A N/A 5988 404.0 6000 0.9 5338 2.8 3000 6000 5894 14.4 N/A N/A 5988 404.0 6000 0.9 5938 2.8 1000 5916 4805 6.4 4571 98.1 401.0 578 5938 2.8 1000 5916 4849 6.4 4571 98.1 4910 27.8 5040 0.7 4794 1.8 1000 5916 4845 6.4 4562 91.7 4910 27.8 5040 0.7 4794 2.8 1000 5916 4836 6.4 4562 91.7	G45	1000	0666	8226	7.7	7602	926.7	8296	34.2	8566	186.2	8397	2.9	8342	1.8
1000 9990 8311 7.2 7619 938.0 8322 27.3 8572 239.4 8386 2.6 3000 6000 586 14.7 N/A N/A 5998 394.8 6000 0.4 5954 2.8 3000 6000 5823 14.5 N/A N/A 5998 494.0 6000 0.9 5938 2.8 3000 6000 5823 14.5 N/A N/A 6000 4271 6000 0.9 5938 2.8 1000 5916 4849 6.4 4572 983.5 28.6 509 4271 6000 119.2 5938 2.8 1000 5916 4849 6.4 4572 986.1 27.8 5040 0.7 4796 1.9 1000 5916 4849 6.4 4562 911.7 4921 30.1 4772 883 2.8 2.8 2.8 500 10.1 4848	G46	1000	0666	8229	7.5	7635	918.7	8312	27.8	8958	215.3	8409	2.6	8339	1.7
3000 6000 5896 147 N/A N/A 5998 394.8 6000 0.4 5954 2.8 3000 6000 5794 14.4 N/A N/A 5998 404.0 6000 0.9 5938 2.8 3000 6000 5823 14.5 N/A N/A 6000 27.8 600 0.9 5938 2.8 1000 5916 4849 6.4 4571 908.1 4910 27.8 5040 0.7 4796 1.9 1000 5916 4836 6.4 4571 908.1 4921 23.8 600 0.9 5938 2.8 1000 5916 4836 6.4 4571 908.1 4921 27.8 6039 1.9 4836 2.8 1000 5916 4836 6.4 4562 911.7 4921 30.4 0.7 4796 1.9 5000 12488 8.6 4920 <	G47	1000	0666	8211	7.2	7619	928.0	8322	27.3	8572	239.4	8386	2.6	8357	2.2
3000 6000 5794 144 N/A NA 5998 404.0 6000 0.9 5938 2.8 3000 6000 4823 14.5 N/A N/A 6000 477.1 6000 119.2 5938 2.9 3000 6000 4823 6.4 4582 889.5 4920 27.8 5040 0.7 4794 194 1000 5916 4849 6.4 4562 911.7 4921 27.6 5036 123.9 4846 26 1000 5916 4845 6.8 4562 911.7 4921 27.6 5036 1249 484 26 5000 12498 1371 38.5 N/A N/A 4205 134.15 4833 2.3 484 26 5000 12498 3716 38.5 N/A N/A 4705 134.15 4752 569.2 4752 569.2 483 3.3 484 26	G48	3000	0009	2806	14.7	N/A	N/A	2998	394.8	0009	0.4	5954	2.8	5912	2
3000 6000 5823 14.5 N/A N/A 6000 427.1 6000 119.2 5938 2.9 1000 5909 4885 6.6 4882 889.5 4922 2.6 5037 47.9 4814 2.4 1000 5914 4845 6.6 4.582 889.5 4920 27.6 5039 22.3 4846 2.4 1000 5914 4845 6.8 4.562 911.7 4921 30.1 5039 22.3 4846 2.6 1000 5916 4836 6.4 4562 911.7 4921 30.1 5039 22.3 4846 2.6 5000 12498 11612 37.9 N/A N/A 1742 5039 22.3 4846 2.6 5000 12498 11612 37.9 N/A N/A 1460 1742 5039 22.3 484 2.6 5000 12498 33.6 47.0	G49	3000	0009	5794	14.4	N/A	NA	8665	404.0	0009	6.0	5938	2.8	5914	1.8
1000 5909 4805 6.6 4582 889.5 4922 28.6 5037 479 4814 2.4 1000 5916 4849 6.4 4571 908.1 4910 27.8 5040 0.7 4796 1.9 1000 5916 4849 6.4 4562 91.7 4921 30.1 5040 0.7 4796 1.9 1000 5916 4836 6.4 4562 91.7 4921 30.1 5030 120 70 4846 2.6 5000 12498 3716 38.5 NA NA 12042 1506.0 12429 38.31 12010 2.1 5000 12498 3716 NA NA 12042 1506.0 12429 38.31 12010 2.1 5000 12498 3716 MA NA NA NA 148.3 576.0 22748 2.1 5000 12498 374 374	G50	3000	0009	5823	14.5	N/A	ΝA	0009	427.1	0009	119.2	5938	2.9	5918	1.8
1000 5916 4849 6.4 4571 908.1 4910 27.8 5040 0.7 4796 1.9 1000 5914 4845 6.8 4562 91.7 4920 27.6 5039 22.3 4846 2.6 1000 5914 4835 6.8 4562 91.7 4921 5036 12429 4846 2.6 5000 12498 11612 37.9 N/A N/A 17042 1506.0 12429 38.31 12010 2.1 5000 12498 3716 38.5 N/A N/A 4205 1341.5 4752 569.2 4085 3.3 5000 12498 3716 38.5 N/A N/A 4203 1468.3 553.6 4085 3.3 5000 10000 3246 47.1 N/A N/A N/A 148.3 53.5 3.3 1.7 5000 10000 324 46.3 N/A	G51	1000	5909	4805	9.9	4582	889.5	4922	28.6	5037	47.9	4814	2.4	4820	1.7
1000 5914 4845 6.8 4568 898.6 4920 27.6 5039 223.9 4846 2.6 1000 5916 4836 6.4 4562 911.7 4921 5036 134.0 4833 2.2 1000 5916 4836 6.4 4562 911.7 4921 5036 134.0 4833 2.2 5000 12498 3716 38.5 N/A N/A 4020 15429 583.1 12010 2.1 5000 12498 3716 38.5 N/A N/A 4083 535.6 3897 3.3 5000 29570 24099 47.1 N/A N/A 1468.3 25195 576.0 22748 2.1 5000 29570 24099 47.1 N/A N/A N/A 1776 683.3 1.7 7000 14020 33.4 N/A N/A N/A N/A 878.2 27.2 6.2 <t< td=""><td>G52</td><td>1000</td><td>5916</td><td>4849</td><td>6.4</td><td>4571</td><td>908.1</td><td>4910</td><td>27.8</td><td>5040</td><td>0.7</td><td>4796</td><td>1.9</td><td>4866</td><td>1.9</td></t<>	G52	1000	5916	4849	6.4	4571	908.1	4910	27.8	5040	0.7	4796	1.9	4866	1.9
1000 5916 4836 6.4 4562 911.7 4921 30.1 5036 134.0 4833 2.2 5000 12498 11612 37.9 N/A N/A 12042 1506.0 12429 38.31 12010 2.1 5000 12498 31616 33.6 N/A N/A N/A 4205 15429 38.31 12010 2.1 5000 12498 3166 33.6 N/A N/A N/A 4205 15429 38.31 12010 2.1 5000 1000 3246 34.1 N/A N/A 24603 16429 38.3 1.0 5000 29570 6057 46.3 N/A N/A N/A N/A 1705 68.30 16467 2.6 7000 17148 15993 58.5 N/A N/A N/A N/A 1707 68.30 16467 2.6 7000 17148 15993 53.4	G53	1000	5914	4845	8.9	4568	9.868	4920	27.6	5039	223.9	4846	2.6	4808	1.6
5000 12498 11612 37.9 N/A N/A 12042 1506.0 12429 38.31 12010 2.1 5000 12498 3716 38.5 N/A N/A 405 1341.5 4752 569.2 4085 3.3 5000 12498 3716 38.5 N/A N/A 4205 1468.3 559.5 4085 3.3 5000 10000 3246 37.1 N/A N/A 1468.3 571.5 6133 1.7 5000 29570 24099 47.1 N/A N/A N/A 1468.3 574.6 22748 2.1 7000 1748 15993 58.5 N/A N/A N/A N/A 683.0 16467 2.6 7000 1748 5374 57.7 N/A N/A N/A N/A 16853 503.1 5881 2.5 7000 14400 4497 49.7 N/A N/A N/A	G54	1000	5916	4836	6.4	4562	911.7	4921	30.1	5036	134.0	4833	2.2	4785	1.4
5000 12498 3716 38.5 N/A N/A 4205 1341.5 4752 569.2 4085 3.3 5000 12498 3716 38.5 N/A N/A 4205 1341.5 4755 569.2 4085 3.3 5000 10000 2346 33.0 N/A N/A N/A 1468.3 25195 576.0 22748 2.1 5000 29570 6057 46.3 N/A N/A N/A 1468.3 576.0 22748 2.1 5000 17148 5374 58.5 N/A N/A N/A N/A 1766 683.0 16467 2.6 7000 17148 5374 57.7 N/A N/A N/A 5685 242.4 4983 3.4 7000 14400 4497 49.7 N/A N/A N/A N/A 5685 242.4 4983 3.4 7000 14459 8773 73.4 <td< td=""><td>G55</td><td>2000</td><td>12498</td><td>11612</td><td>37.9</td><td>N/A</td><td>N/A</td><td>12042</td><td>1506.0</td><td>12429</td><td>383.1</td><td>12010</td><td>2.1</td><td>11965</td><td>2.6</td></td<>	G55	2000	12498	11612	37.9	N/A	N/A	12042	1506.0	12429	383.1	12010	2.1	11965	2.6
5000 10000 3246 33.0 N/A N/A 3817 1317.2 4083 535.6 3597 3.3 5000 29570 24099 47.1 N/A N/A 24603 1468.3 25195 576.0 22748 2.1 5000 29570 6057 46.3 N/A N/A N/A N/A 17076 683.0 16467 2.6 7000 17148 15993 58.5 N/A N/A N/A N/A 17076 683.0 16467 2.6 7000 17148 15993 58.5 N/A N/A N/A N/A 17076 683.0 16467 2.6 7000 141459 5374 57.7 N/A N/A N/A N/A 1683 503.1 5388 4 2.6 7000 41459 33861 73.4 N/A N/A N/A N/A 10443 186.9 8911 2.8 8000 <td< td=""><td>G56</td><td>2000</td><td>12498</td><td>3716</td><td>38.5</td><td>N/A</td><td>N/A</td><td>4205</td><td>1341.5</td><td>4752</td><td>569.2</td><td>4085</td><td>3.3</td><td>4037</td><td>2.1</td></td<>	G56	2000	12498	3716	38.5	N/A	N/A	4205	1341.5	4752	569.2	4085	3.3	4037	2.1
5000 29570 24099 47.1 N/A N/A 24603 1468.3 25195 576.0 22748 2.1 5000 29570 6657 46.3 N/A N/A N/A 177.1 7262 27.5 6133 1.7 7000 17148 15993 58.5 N/A N/A N/A 17076 683.0 16467 2.6 7000 17148 5374 57.7 N/A N/A N/A 6853 503.1 5881 2.5 7000 14100 4497 49.7 N/A N/A N/A 17076 683.0 16467 2.6 7000 141459 33841 73.4 N/A N/A N/A 186.9 8911 2.8 7000 41459 33841 73.4 N/A N/A N/A N/A N/A 186.9 8911 2.8 8000 141459 3342 73.4 1448 1448 144 <t< td=""><td>G57</td><td>2000</td><td>10000</td><td>3246</td><td>33.0</td><td>N/A</td><td>N/A</td><td>3817</td><td>1317.2</td><td>4083</td><td>535.6</td><td>3597</td><td>3.3</td><td>3595</td><td>2.8</td></t<>	G57	2000	10000	3246	33.0	N/A	N/A	3817	1317.2	4083	535.6	3597	3.3	3595	2.8
5000 29570 6057 46.3 N/A N/A 6631 1377.1 7262 27.5 6133 1.7 7000 17148 15993 58.5 N/A N/A N/A N/A 17076 683.0 16467 2.6 7000 17148 5374 57.7 N/A N/A N/A 6853 503.1 5881 2.5 7000 14100 4497 49.7 N/A N/A N/A 5885 242.4 4983 3.4 7000 41459 33861 73.4 N/A N/A N/A N/A 186.9 8911 2.5 7000 41459 33861 73.4 N/A N/A N/A N/A 186.9 8911 2.8 8000 14000 5212 59.6 N/A N/A N/A N/A N/A 186.9 8911 2.8 10000 20000 5448 69.0 N/A N/A N/A	G58	2000	29570	24099	47.1	N/A	N/A	24603	1468.3	25195	576.0	22748	2.1	23274	1.9
7000 17148 15993 58.5 N/A N/A N/A N/A I/A I	G59	2000	29570	6057	46.3	N/A	N/A	6631	1377.1	7262	27.5	6133	1.7	6448	3.5
7000 17148 5374 57.7 N/A N/A N/A N/A 6853 503.1 5881 2.5 7000 14000 4497 497 N/A N/A N/A N/A 5685 242.4 4983 3.4 7000 41459 33861 73.4 N/A N/A N/A N/A 4903 35.2 4 2.5 7000 41459 8773 73.4 N/A N/A N/A 10443 186.9 8911 2.8 8000 16000 5212 59.6 N/A N/A N/A 10443 186.9 8911 2.8 9000 18000 5212 59.6 N/A N/A N/A 1416 542.5 6501 5.4 10000 2000 1800 534 70 N/A N/A N/A N/A 1416 542.5 6501 5.4 10000 20000 6545 79.0 N/A <t< td=""><td>095</td><td>2000</td><td>17148</td><td>15993</td><td>58.5</td><td>N/A</td><td>N/A</td><td>NA</td><td>N/A</td><td>17076</td><td>683.0</td><td>16467</td><td>2.6</td><td>16398</td><td>2.3</td></t<>	095	2000	17148	15993	58.5	N/A	N/A	NA	N/A	17076	683.0	16467	2.6	16398	2.3
7000 14000 4497 497 N/A N/A N/A N/A N/A 5685 242.4 4983 3.4 7000 41459 33861 73.4 N/A N/A N/A N/A 35322 658.5 32868 4 2.8 7000 41459 8773 73.4 N/A N/A N/A 10443 186.9 8911 2.8 8000 16000 5212 59.6 N/A N/A N/A 146.9 324.7 5735 3.5 9000 18000 5948 69.0 N/A N/A N/A N/A 7416 542.5 6501 5.4 10000 2000 6545 79.0 N/A N/A N/A N/A 786 7.8 998 4.2 10000 2000 6612 79.2 N/A N/A N/A N/A 11578 154.9 10191 8.6 14000 28000 9294	G61	2000	17148	5374	57.7	N/A	ΝΑ	N/A	N/A	6853	503.1	5881	2.5	5861	3.6
7000 41459 33861 73.4 N/A N/A N/A N/A N/A N/A 1843 35322 658.5 32868 4 3.2 7000 41459 8773 73.4 N/A N/A N/A N/A 186.9 8911 2.8 8000 16000 5212 59.6 N/A N/A N/A 6490 324.7 5735 3.5 9000 18000 5948 69.0 N/A N/A N/A 7416 542.5 6501 5.4 10000 20000 6545 79.0 N/A N/A N/A N/A 7806 75.7 7001 3.5 10000 2000 6512 79.2 N/A N/A N/A 8192 771.2 7210 5.1 14000 2800 9294 142.3 N/A N/A N/A N/A 11578 154.9 10191 8.6 20000 40000 13098	G62	2000	14000	4497	49.7	N/A	ΝA	N/A	N/A	5885	242.4	4983	3.4	2086	2.7
7000 41459 8773 73.4 N/A N/A N/A N/A N/A N/A N/A 186.9 8911 2.8 8000 16000 5212 59.6 N/A N/A N/A 6490 324.7 5735 3.5 9000 18000 5948 69.0 N/A N/A N/A 1416 542.5 6501 5.4 10000 20000 6545 79.0 N/A N/A N/A 142 76.7 7001 3.5 10000 20000 6612 74.8 N/A N/A N/A 8192 771.2 7210 5.1 14000 28000 9294 142.3 N/A N/A N/A 11578 154.9 10191 8.6 20000 40000 13098 241.1 N/A N/A N/A 14418 20.2	G63	2000	41459	33861	73.4	N/A	N/A	N/A	N/A	35322	658.5	32868	4	31926	1.9
8000 16000 5212 59.6 N/A N/A N/A N/A N/A N/A 100 324.7 5735 3.5 9000 18000 5948 69.0 N/A N/A N/A 1416 542.5 6501 5.4 10000 20000 6545 79.0 N/A N/A N/A 100 756.7 7001 3.5 10000 2000 6512 74.8 N/A N/A N/A 8192 771.2 7210 5.1 14000 28000 9294 142.3 N/A N/A N/A 11578 154.9 10191 8.6 20000 40000 13098 241.1 N/A N/A N/A N/A 14418 20.2	G64	2000	41459	8773	73.4	N/A	ΝA	N/A	N/A	10443	186.9	8911	2.8	9171	2.5
9000 18000 5948 69.0 N/A N/A N/A N/A 1416 542.5 6501 5.4 10000 20000 6545 79.0 N/A N/A N/A N/A 8086 756.7 7001 3.5 10000 20000 6612 74.8 N/A N/A N/A N/A 9999 7.8 9982 4.2 10000 20000 6612 79.2 N/A N/A N/A 8192 271.2 7210 5.1 14000 28000 9294 142.3 N/A N/A N/A N/A 11578 154.9 10191 8.6 20000 40000 13098 241.1 N/A N/A N/A N/A 16321 331.2 14418 20.2	G65	8000	16000	5212	59.6	N/A	N/A	N/A	N/A	6490	324.7	5735	3.5	5775	2.6
10000 20000 6545 79.0 N/A N/A N	995	0006	18000	5948	0.69	N/A	N/A	N/A	N/A	7416	542.5	6501	5.4	6610	3.9
10000 9999 9718 74.8 N/A N/A N/A N/A N/A 9999 7.8 9982 4.2 10000 20000 6612 79.2 N/A N/A N/A N/A N/A 11578 154.9 10191 8.6 20000 40000 13098 241.1 N/A N/A N/A N/A N/A 16321 331.2 14418 20.2	C95	10000	20000	6545	79.0	N/A	N/A	N/A	N/A	9808	756.7	7001	3.5	7259	4.1
10000 20000 6612 79.2 N/A N/A N/A N/A 8192 271.2 7210 5.1 14000 28000 9294 142.3 N/A N/A N/A N/A N/A 11578 154.9 10191 8.6 20000 40000 13098 241.1 N/A N/A N/A N/A N/A 16321 331.2 14418 20.2	G70	10000	6666	9718	74.8	N/A	N/A	N/A	N/A	6666	7.8	866	4.2	9971	2.5
14000 28000 9294 142.3 N/A N/A N/A N/A 11578 154.9 10191 8.6 20000 40000 13098 241.1 N/A N/A N/A N/A 16321 331.2 14418 20.2	G72	10000	20000	6612	79.2	N/A	N/A	N/A	N/A	8192	271.2	7210	5.1	7297	3.5
20000 40000 13098 241.1 N/A N/A N/A N/A 16321 331.2 14418 20.2	G77	14000	28000	9294	142.3	N/A	N/A	N/A	N/A	11578	154.9	10191	8.6	10329	8.5
	G81	20000	40000	13098	241.1	N/A	N/A	N/A	N/A	16321	331.2	14418	20.2	14464	6.7

D EVALUATION ON GRAPH COLORING DATASET

To further verify the performance of ROS, we conduct numerical experiments on the publicly available COLOR dataset (three benchmark instances: anna, david, and huck). The COLOR dataset provides dense problem instances with relatively large known chromatic numbers ($\chi \sim 10$), which is suitable for testing the performance on Max-k-Cut tasks. As reported in Tables 5 and 6, ROS achieves superior performances across nearly all settings with the least computational time (in seconds).

Table 5: Objective values returned by each method on the COLOR dataset.

Methods	an	na	da	vid	hu	ck
11101110110	k=2	k = 3	k=2	k = 3	k=2	k = 3
MD	339	421	259	329	184	242
PI-GNN	322	-	218	-	170	-
ecord	351	-	267	-	191	-
ANYCSP	351	-	267	-	191	-
ROS	351	421	266	338	191	244

Table 6: Computational time for each method on the COLOR dataset.

Methods	anı	na	dav	/id	hu	ck
1/10/11/0/45	k=2	k = 3	k=2	k = 3	k=2	k = 3
MD	2.75	2.08	2.78	2.79	2.62	2.82
PI-GNN	93.40	-	86.84	-	102.57	-
ecord	4.87	-	4.74	-	4.88	-
ANYCSP	159.35	-	138.14	-	127.36	-
ROS	1.21	1.23	1.18	1.15	1.11	1.10

E ABLATION STUDY

E.1 MODEL ABLATION

We conducted additional ablation studies to clarify the contributions of different modules.

Effect of Neural Networks: We consider two cases: (i) replace GNNs by multi-layer perceptrons (denoted by ROS-MLP) in our ROS framework and (ii) solve the relaxation via mirror descent (denoted by MD). Experiments on the Gset dataset show that ROS consistently outperforms ROS-MLP and MD, highlighting the benefits of using GNNs for the relaxation step.

Effect of Random Sampling: We compared ROS with PI-GNN, which employs heuristic rounding instead of our random sampling algorithm. Results indicate that ROS generally outperforms PI-GNN, demonstrating the importance of the sampling procedure.

These comparisons, detailed in Tables 7 and 8, confirm that both the GNN-based optimization and the random sampling algorithm contribute significantly to the overall performance.

E.2 SAMPLE EFFECT ABLATION

We investigated the effect of the number of sampling iterations and report the results in Tables 9, 10, 11, and 12.

Objective Value (Table 9, Table 11): The objective values stabilize after approximately 5 sampling iterations, demonstrating strong performance without requiring extensive sampling.

Sampling Time (Table 10, Table 12): The time spent on sampling remains negligible compared to the total computational time, even with an increased number of samples.

Table 7: Objective values returned by each method on Gset.

Methods	G	70	G 7	72	G ^r	77	G8	31
1110tillous	k=2	k = 3	k=2	k = 3	k=2	k = 3	k=2	k = 3
ROS-MLP PI-GNN MD ROS	8867 8956 8551 8916	9943 - 9728 9971	6052 4544 5638 6102	6854 - 6612 7297	8287 6406 7934 8740	9302 - 9294 10329	12238 8970 11226 12332	12298 - 13098 14464

Table 8: Computational time for each method on Gset.

Methods	G7	70	G7	'2	G G	77	G8	31
1.10111000	k=2	k = 3	k=2	k = 3	k=2	k = 3	k=2	k=3
ROS-MLP	3.49	3.71	3.93	4.06	8.39	9.29	11.98	16.97
PI-GNN	34.50	_	253.00	_	349.40	_	557.70	_
MD	54.30	74.80	44.20	79.20	66.00	142.30	130.80	241.10
ROS	3.40	2.50	3.90	3.50	8.10	8.50	9.30	9.70

These results highlight the efficiency of our sampling method, achieving stable and robust performance with little computational cost.

Table 9: Objective value results corresponding to the times of sample T on Gset.

T	G	70	G G	72	G'	77	G8	31
-	k=2	k = 3	k=2	k = 3	k=2	k = 3	k=2	k = 3
1	8911	9968	6100	7305	8736	10321	12328	14460
5	8915	9969	6102	7304	8740	10326	12332	14462
10	8915	9971	6102	7305	8740	10324	12332	14459
25	8915	9971	6102	7307	8740	10326	12332	14460
50	8915	9971	6102	7307	8740	10327	12332	14461
100	8916	9971	6102	7308	8740	10327	12332	14462

Table 10: Sampling time results corresponding to the times of sample T on Gset.

T	G G	70	G ⁻	72	G ^r	77	G8	31
_	k = 2	k = 3	k=2	k = 3	k=2	k = 3	k=2	k = 3
1	0.0011	0.0006	0.0011	0.0006	0.0020	0.0010	0.0039	0.0020
5	0.0030	0.0029	0.0029	0.0030	0.0053	0.0053	0.0099	0.0098
10	0.0058	0.0059	0.0058	0.0058	0.0104	0.0104	0.0196	0.0196
25	0.0144	0.0145	0.0145	0.0145	0.0259	0.0260	0.0489	0.0489
50	0.0289	0.0289	0.0288	0.0289	0.0517	0.0518	0.0975	0.0977
100	0.0577	0.0577	0.0576	0.0578	0.1033	0.1037	0.1949	0.1953

Table 11: Objective value results corresponding to the times of sample T on random regular graphs.

T	n = 100		n = 1000		n = 10000	
	k=2	k = 3	k=2	k = 3	k=2	k = 3
1	127	245	1293	2408	12856	24103
5	127	245	1293	2410	12863	24103
10	127	245	1293	2410	12862	24103
25	127	245	1293	2410	12864	24103
50	127	245	1293	2410	12864	24103
100	127	245	1293	2410	12864	24103

Table 12: Sampling time results corresponding to the times of sample T on random regular graphs.

T	n = 100		n = 1000		n = 10000	
	k = 2	k = 3	k = 2	k = 3	k = 2	k = 3
1	0.0001	0.0001	0.0001	0.0001	0.0006	0.0006
5	0.0006	0.0006	0.0007	0.0007	0.0030	0.0030
10	0.0011	0.0011	0.0014	0.0013	0.0059	0.0059
25	0.0026	0.0026	0.0033	0.0031	0.0145	0.0145
50	0.0052	0.0052	0.0065	0.0060	0.0289	0.0289
100	0.0103	0.0103	0.0128	0.0122	0.0577	0.0578