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In autonomous driving, deep models have shown remarkable performance across various visual perception
tasks with the demand of high-quality and huge-diversity training datasets. Such datasets are expected to cover
various driving scenarios with adverse weather, lighting conditions, and diverse moving objects. However,
manually collecting these data presents huge challenges and is expensive. With the rapid development of
large generative models, we propose DriveDiTFit, a novel method for efficiently generating autonomous
Driving data by Fine-tuning pre-trained Diffusion T ransformers (DiTs). Specifically, DriveDiTFit utilizes
a gap-driven modulation technique to carefully select and efficiently fine-tune a few parameters in DiTs
according to the discrepancy between the pre-trained source data and the target driving data. Additionally,
DriveDiTFit develops an effective weather and lighting condition embedding module to ensure diversity in
the generated data, which is initialized by a nearest-semantic-similarity initialization approach. Through
progressive tuning scheme to refine the process of detail generation in early diffusion process and enlarging
the weights corresponding to small objects in training loss, DriveDiTFit ensures high-quality generation of
small moving objects in the generated data. Extensive experiments conducted on driving datasets confirm
that our method could efficiently produce diverse real driving data.
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1 Introduction
Recent years have witnessed a rapid development of deep learning models on the autonomous
driving application [5, 41]. The performance of data-driven deep models often corresponds to
the quality and diversity of the driving data, which necessitates the construction of high-quality
and huge-diversity training datasets [1, 8, 52]. Specifically, such datasets are expected to cover
various driving scenarios with adverse weather, lighting conditions, and diverse moving objects. As
demonstrated in Figure 1, in addition to sunny and day scenarios, driving datasets should contain
snowy, rainy, and night scenarios with vehicles in the field of view. However, manually collecting
these data is challenging and expensive, especially for data containing extreme weather scenarios
and small moving objects. Due to the outstanding capabilities of Large-Scale Generative Models
(LGM) [10, 33], this article focuses on generating data efficiently with LGM to further promote the
development of deep models on autonomous driving.

Directly training an LGM from scratch for driving scenarios is time-consuming and resource-
expensive, some of recent works try to fine-tune a pre-trained LGM on specific downstream tasks.
For example, Xie et al. [51] propose to fine-tune biases in Diffusion Transformers (DiTs) and
validate the efficiency on commonly used fine-grained natural classification datasets. Hence, we
focus on fine-tuning a pre-trained LGM efficiently to adapt to the complex autonomous driving
scenarios. The LGM is always pre-trained on a natural classification dataset (e.g., ImageNet [6])
and encodes the class-specific knowledge with a class embedding module. As depicted in Figure 1,
such dataset mainly includes a prominent natural-category object located in the central position of
the image, but driving data usually contain vehicles with diverse weather and lighting conditions.
Motivated by these observations, we consider the discrepancy and aim to design a parameter-
efficient LGM fine-tuning method tailored for autonomous driving scenarios.

In this article, we propose DriveDiTFit to efficiently generate high-quality and huge-diversity
autonomous Driving data by Fine-tuning pre-trained Diffusion T ransformers. Specifically, DriveD-
iTFit utilizes a gap-driven modulation scheme to fine-tune only a few parameters of the pre-trained
DiTs. To generate adverse weather and lighting conditions, DriveDiTFit effectively embeds the
weather- and lighting condition-specific knowledge by an expandable condition embedding module,
which is initialized by a nearest-semantic-similarity initialization approach. Besides, we observed
that the noise schedule in the diffusion process [19, 29] can greatly affect the quality of objects
in the generated data, as depicted in Figure 2. Our DriveDiTFit designs a Spoon-Cosine (Scos)
noise schedule and progressively adjusts the noise intensity to mitigate the impact on original
parameters. To further ensure the generated quality of small objects, we explicitly introduce the
extra position knowledge of small objects and develop an Object-Sensitive Loss (OSL) function by
enlarging the weights corresponding to the regions of the small objects. Overall, the contribution
of our work is threefold:

—We propose a gap-driven modulation technique for parameter-efficient fine-tuning DiT models
to address the large gap between source datasets and target datasets.

—We present a semantically relevant embedding initialization method, leveraging the prior
knowledge to embed the weather and lighting conditions. This approach enhances tuning
convergence and improves the generation quality.

—To enhance the detail fidelity of generated small objects in driving scenarios, we implement
a progressive tuning scheme with an innovative Scos noise schedule and introduce a loss
function sensitive to small objects.
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Fig. 1. There is an apparent discrepancy between pre-trained datasets and driving scenario datasets. Pre-
trained datasets usually feature certain categories of objects prominently displayed within the images, which
is similar to the fine-grained classification datasets, such as CUB-200-2011 and Oxford Flowers. However,
driving scenario datasets are more complex and contain multiple objects, including roads, vehicles, and
buildings, with diverse weather and lighting conditions.

Fig. 2. The object information can be generated sufficiently in the denoising process [19], when it loses slowly
in the diffusion process. The conventional noise schedule [31] makes big objects in classification dataset lose
slowly (top row, clock, t from 0 to 400), whereas it causes smaller objects in driving data to fade more rapidly
(bottom row, vehicles, t from 0 to 200). An appropriate noise schedule is necessary for driving data generation.

2 Related Work
2.1 Autonomous Driving Datasets
The KITTI dataset [13], widely utilized in research on driving algorithms, serves as a benchmark
for tasks like 2D object detection and optical flow. It features a rich collection of RGB, LiDAR,
and GPS/IMU data, albeit predominantly under daytime and clear weather conditions. To broaden
the scope of environmental conditions, the Waymo [40] and Zenseact [1] datasets cover night
scenarios and introduce dawn and dusk scenarios, respectively, and the nuScenes [4] dataset
expands coverage to rainy weather but lacks snow scenes. Notably, BDD100K [52] dataset collects
five types of weather conditions, including clear, cloudy, rainy, snowy, and foggy settings. As
shown in Table 1, given the unbalanced diversity in conditions, the predominance of clear weather
and daylight scenarios in these datasets often leads to decreased performance of visual models
under nighttime or adverse weather conditions. Ithaca365 [8] collects repeated trajectories under
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Table 1. Statistical Comparisons of Weather and Lighting Conditions in Driving Datasets

Driving datasets Weather Conditions (%) Time of Day (%)
Clear/Cloudy Rainy Snowy Foggy Day Night Dawn/Dusk

KITTI [13] 100 - - - 100 -
nuScenes [4] 78.1 21.9 - - 88.4 11.6 -
Waymo [40] 99.4 0.6 - - 81.0 9.9 9.1
Zenseact [1] 80.2 15.7 2.0 2.1 77.3 19.0 3.6
BDD100K [52] 66.0 6.9 7.8 0.1 52.6 40.4 7.2

diverse scene, weather, time, and traffic conditions over 1.5-year period, but its data scale is smaller
compared to the previously mentioned datasets. The manual acquisition of driving datasets from
real-world scenarios is both time-consuming and labor-intensive.

2.2 Diffusion Models
Diffusion Probabilistic Models (DPMs) [18, 38] have emerged as a powerful class of generative
models, surpassing generative adversarial networks [14] and variational autoencoders [23, 47] in a
variety of tasks, including text-to-image generation [35, 42, 50, 54], image editing [26, 46], and video
synthesis [3, 17, 45]. The essence of DPMs lies in incrementally mapping Gaussian noise to intricate
distributions related to datasets. Given a certain noise schedule, the diffusion phase converts a data
distribution to a standard Gaussian distribution by adding noise. The denoising phase primarily
adopts a UNet [36] architecture to iteratively reverse the noise addition, thereby reconstructing the
original data distribution. Inspired by breakthroughs in natural language processing [7] and vision
transformer
[9, 11], architectures based on transformers [44] have been proposed and replaced the UNet
backbone, achieving state-of-the-art results [2, 31] on benchmark datasets, such as CIFAR10 [24]
and ImageNet.

2.3 Fine-tuning for Diffusion Models
The emergence of numerous high-quality diffusion models has drawn the attention of researchers,
prompting them to explore fine-tuning approaches tailored to their specific requirements. Tech-
niques like Textual Inversion[12] and Dreambooth [37] introduce novel token identifiers for
personalized text embedding adjustments, although their application remains largely within text-
to-image paradigms and customized datasets are similar to source datasets. DiffFit [51] proposed a
parameter-efficient method by fine-tuning biases and scale factors in DiTs. Moon et al. [27] explore
the integration of time-fusion adapters within attention mechanisms on limited datasets. Visual
Prompt Tuning (VPT) [22] freezes transformer blocks and inserts a few learnable prompt embed-
dings in different layers for downstream tasks tuning. Nevertheless, these works predominantly
focus on classification datasets, with limited exploration in the efficiency on scenario datasets.
Moreover, the interaction between the original noise schedule and the target dataset characteristics
remains an underexplored area.

3 Methods
Our goal is to fine-tune the pre-trained DiTs from classification datasets to driving datasets. To
achieve this, we propose the DriveDiTFit framework that utilizes gap-driven modulation techniques
to fine-tune the condition Multilayer Perceptron (MLP) and attention blocks and employs
Semantic-Selective Embedding Initialization (SSEI) to accelerate fine-tuning convergence.
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Fig. 3. Our framework for diverse driving scenario generation consists of three key components—(i) gap-driven
modulation techniques on the condition MLP and attention blocks (Section 3.2); (ii) accelerating convergence
and enhancing quality by initiating with high semantic similarity embeddings via a CLIP encoder (Section
3.3); (iii) adopting progressive tuning scheme with novel Scos noise schedule (Section 3.4.1) and applying
vehicle bounding box masks on training loss (Section 3.4.2) for precise object representation.

Additionally, DriveDiTFit adopts a progressive tuning scheme with the novel Scos noise schedule
and applies vehicle bounding box masks to the training loss for precise object representation. Figure
3 illustrates our complete process.

3.1 Preliminaries
Before introducing our novel fine-tuning method for DPMs, we briefly revisit the foundational
principles of DPMs. Given a data distribution G0 ∼ @30C0 (G), the diffusion phase iteratively adds
noise nC to the sample GC until G) , following a certain noise schedule and time t. This process can
be described as follows:

@(G1, . . . , G) |G0) =
)∏
C=1

@(GC |GC−1), (1)

 
@(GC |GC−1) =N(GC ;

√
1 − VCGC−1, VC I), (2)

 
@(GC |G0) =N(GC ;

√
ŪCG0, (1 − ŪC )I), (3)

where UC = 1− VC and ŪC =
∏C

B=1 UB . Here, VC represents the noise intensity at each step, and a large
number of steps (T ) enables G) to approximate a Gaussian distribution closely.

The essence of DPMs lies in their ability to reverse this noise addition process, effectively
generating samples from the original data distribution by learning a sequence of reverse mappings.
They aim to learn the inverse process ?\ (GC−1 |GC ) and approximate the posterior @(GC−1 |GC , G0),
which are defined as follows:

?\ (GC−1 |GC ) =N(GC−1; `\ (GC , C), Σ\ (GC , C)), (4)
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@(GC−1 |GC , G0) =N(GC−1; ˜̀C (GC , G0), ṼC I), (5)

where ˜̀C (GC , G0) =
√
ŪC−1VC
1−ŪC G0 +

√
UC (1−ŪC−1 )

1−ŪC GC and ṼC =
1−ŪC−1
1−ŪC VC . The hypothesis by Ho et al. [18] Σ\

is not learnable and reparameterize the `\ (GC , C) through Equations (3) and (5):

`\ (GC , C) =
1

√
UC

(
GC −

VC√
1 − ŪC

n\ (GC , C)
)
. (6)

The simple loss function can be written as follows:

Lsimple = �C,G0,nC
[
| |nC − n\ (GC , C) | |2

]
. (7)

During inference, DPMs generate new samples by first initializing G) from the Gaussian distri-
bution. The model then sequentially calculates GC−1 through Equation (4) until reaching G0, thus
reconstructing or generating new data points that mimic the original data distribution.

3.2 Architecture Fine-tuning
As previously discussed, driving scenarios present a distinct challenge from traditional classification
generation. Specifically, DiTs in driving scenarios must generate images across varied weather and
lighting conditions while creating fine details of small objects. This requirement underscores a
significant gap: mastering single-category object is insufficient. Instead, models must grasp the
global weather and lighting style and positional relationships with multiple objects. This complexity
suggests that methods solely fine-tuning biases and scale factors, as proposed in DiffFit [51], may fall
short for driving datasets. Our hypothesis is that the gaps between original datasets and fine-tuned
datasets influence the number of parameters that need to be adjusted. Inspired by AdaLN [21],
which leverages style statistics information to modulate input images and overcomes the gaps
between various art styles, we utilize the modulation approach to bridge the gaps between the
pre-trained dataset and driving datasets. Specifically, we select different modules in DiTs according
to the significant gap. As the changes in conditions and different layout demands of driving datasets,
we modulate the weights within the condition MLP and the Multi-Head Self-Attention (MHSA)
block, employing Low-Rank Adaptation (LoRA) to enhance training efficiency. We obtain the
modulated weight ,̃ ∈ R3>DC×38= like:

,̃ =, � Γ + �, (8)

where Γ ∈ R3>DC×38= and � ∈ R3>DC×38= present the fine-tuning parameters. These can be effectively
represented by two low-rank matrices:

Γ = Γ>DC ⊗ Γ8=, � = �>DC ⊗ �8=, (9)

with Γ>DC , �>DC ∈ R3>DC×A and Γ8=, �8= ∈ RA×38= . Detailed experiments demonstrate the validity of
our fine-tuning scheme on the structure. Furthermore, the generation of local objects in driving
scenarios should have a narrower focus compared to category objects in classification datasets.
We adopt an approach similar to Peebles and Xie [31] and introduce 2D Rotary Positional
Embeddings (RoPE) [39], a technique prevalent in natural language processing, to emphasize
the generation of local objects. For an input I ∈ R2×ℎ×F in the latent space, we can obtain �

?
× ,

?

D ∈ R2×?×? tokens. Applying RoPE along each spatial axis and concatenating, we obtain the
position embedding %8, 9 ∈ R3×3 :

%8, 9 =

[
'>%� (8) 0

0 '>%� ( 9)

]
, (10)
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where RoPE(·) ∈ R
3
2 ×

3
2 and d represents hidden channel number. The local attention mechanism

can be written as:

(%8, 9@8, 9 )) (%8′ , 9 ′:8′ , 9 ′ ) = @)8,9%8−8′ , 9− 9
′:8′ , 9 ′ . (11)

As %8−8′ , 9− 9
′ is an orthogonal constant matrix, it preserves the magnitude of vectors without

adding new learnable parameters to the model, thus ensuring efficiency and model simplicity.

3.3 SSEI
The DiT model incorporates learnable embeddings that encapsulate categorical information from
classification datasets. Hence, we develop a weather and lighting condition embedding to control
diverse scenario generation. Directly initializing the embeddings from scratch is deemed impractical
due to the significant impact on parameters. Traditional methods of initializing embeddings through
random selection of pre-trained embeddings introduce a certain degree of variability. To address
this challenge, we propose an SSEI approach. We employ a pre-trained CLIP encoder [32] to extract
semantic features {IB8 }#8=1 and {I039 }"9=1 from both pre-trained datasets and driving datasets. We then
measure the semantic similarity between IB8 and I039 with cosine similarity to find an appropriate
class embedding 2B

8∗ for certain scenario condition 2039 . The nearest-semantic-similarity embedding
initialization can be written as follows:

8∗ = argmax
8

IB8 · I039
‖IB

8
‖2 · ‖I039 ‖2

. (12)

Our hypothesis is that image features closely aligned in semantic space are likely to have similar
information in DiT embeddings and also exhibit similar distribution characteristics. Through
ablation studies, we have demonstrated that our SSEI approach significantly accelerates model
convergence and yields superior performance outcomes. This method effectively leverages semantic
correlations to enhance the initialization process, setting a robust foundation for better learning
and adaptation in driving scenario modeling.

3.4 Progressive Tuning Scheme
3.4.1 Scos Noise Schedule. The conventional linear noise schedule approach, typically employed

for classification datasets, proves inadequate for driving datasets. This insight draws inspiration
from the work of Hoogeboom et al. [19] on high-resolution images synthesis, which revealed that
traditional noise schedules only afford a small time window to decide the global structure of the
image at the late diffusion process, retaining good visual quality of high-resolution generation.
In contrast, as we demonstrate in Figure 2, small objects within scenarios tend to be submerged in
the early diffusion process, which lead to a shorter time window for the reverse process of small
objects generation. The underlying cause for this phenomenon is that at a resolution of 256 ×
256 pixels, small objects in driving datasets are described by fewer pixels compared to those in
classification datasets. Consequently, at equivalent noise intensity, small objects become harder
to identify.

A naive idea is to alter the original schedule during the fine-tuning, such as employing cosine
schedule, which is notably beneficial for driving datasets as it reduces the noise intensity in the early
stages of diffusion. However, the practical application of this seemingly straightforward adjustment
during fine-tuning presents challenges as it causes great damage to the learned mapping from
the Gaussian distribution to the dataset distribution. Inspired by squared cosine noise schedule
of Nichol and Dhariwal [29], we discover that adjusting the power term s effectively captures the
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Fig. 4. In the diffusion process, VC varies between the cosine noise schedule proposed by Nichol and Dhariwal
and Scos noise schedule.

gradual transition from a linear to a cosine schedule:

5B (C) = cosB
(
C/) + 1

1 + 1
· c
2

)
, (13)

 
ŪC =

5B (C)
5B (0)

. (14)

Nevertheless, as demonstrated in Figure 4, we observe a significant change in the VC value,
which represents noise intensity, at the endpoint of the diffusion process. This change obviously
differs from the diffusion patterns learned by pre-trained models. This discovery suggests that the
traditional fine-tuning methods on model architecture may not adequately adapt to such changes.
Consequently, we comprehensively consider the advantages and disadvantages of the squared
cosine noise schedule and propose a novel noise schedule to optimize the adjustment of noise
intensity throughout the diffusion process, which provides a novel perspective for fine-tuning
pre-trained diffusion models. We have termed this strategy the “spoon-cosine” (Scos) noise schedule
due to its unique VC value change curve, which resembles the shape of a spoon. Specifically, during
the early stages of the diffusion process, we employ a cosine noise schedule with lower noise
intensity to delay the complete loss of fine details and extend the time window for detail generation
in the denoising process. At the intersection of the cosine and linear noise intensity curves, we
transition to the linear noise schedule with a lower noise intensity to avoid abrupt changes in noise
levels, which could potentially disrupt the model parameters. Thus, the Scos noise schedule can be
formulated as follows:

(2>BB (C) =min

(
1 − 5B (C)

5B (C − 1) ,
V) − V0

)
C + V0

)
. (15)

The Scos noise schedule can gradually adjust the exponent term s, allowing for a progressive
reduction in noise intensity during the early stages of the diffusion process.

In the progressive fine-tuning strategy, we first adjust the model from the pre-trained dataset
to the driving dataset using the original linear noise schedule on the driving dataset. In Figure 5,
we replace the linear noise schedule with a Scos6 schedule, and at specified training intervals g ,
gradually transition from Scos6 to Scos2 noise schedule, facilitating the model’s ability to generate
more intricate and detailed representations.

3.4.2 OSL. For the generation of high-quality objects, particularly of vehicles, our work pro-
poses an OSL designed to enhance the precision and quality of generated objects. Specifically, we
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Fig. 5. Left: The linear noise schedule (top row) and Scos2 noise schedule (bottom row) are adopted on an
driving scenario sample. Right: ŪC in diffusion process for the linear noise schedule and Scos noise schedule
with different powers.

introduce additional supervision signals into the original loss function, leveraging the bounding
box information available within driving datasets. More precisely, we select bounding boxes asso-
ciated with vehicles and incorporate these prior masks<>1 9 into the loss function by enlarging the
weights corresponding to certain regions, which encourages the model to allocate more focus in
the generation of vehicles. This OSL is defined as:

L>1 9 = �C,G0,nC
[
| |<>1 9 (nC − n\ (GC , C)) | |2

]
. (16)

The final loss of DriveDiTFit is the combination of the simple denoising loss and OSL:

L = Lsimple + _>Lobj, (17)

where _> is the coefficient of the OSL.

4 Experiments
In this section, we present experiments to validate the effectiveness and motivation of our proposed
method. Quantitative and qualitative analyses present that DriveDiTFit can generate high-quality
and huge-diversity driving data.

4.1 Implementation
Datasets. Ithaca365 [8] is an autonomous driving dataset recorded along a 15-km route under
diverse weather (clear, cloudy, rainy, snowy) and lighting (day, night) conditions. It provides
scenario image data with balanced labels across varying scenarios, including urban, highway, and
rural environments. BDD100K [52] is another substantial driving dataset renowned for its size
and diversity. It comprises 70,000 images within the training dataset and covers a small amount of
foggy scenario data, alongside the aforementioned weather and lighting conditions. nuScenes [4] is
a large-scale multimodal dataset for autonomous driving, designed to provide a comprehensive
view of the entire sensor suite. The dataset consists of 1,000 scenes, each 20 seconds long, which
comprises 1.4 million driving images.

Metrics. We assess the effectiveness of DriveDiTFit in terms of sample quality and the coverage
of the data manifold. Fréchet Inception Distance (FID) [16] leverages pooling features from
Inception-V3 to calculate the Kullback-Leibler divergence between real and generated samples.
Spatial Fréchet Inception Distance (sFID) [28] is a new version of FID that replaces traditional
pooling features with spatial features. sFID is better at capturing the spatial relationships between
images, making it particularly suitable for images with complex structures. This feature allows
sFID to more accurately reflect the high-level structure of images, especially when handling
vehicle and environmental details in driving data. Besides, we utilize improved precision and recall
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metrics [25] to evaluate the fidelity and diversity of samples, respectively. Precision measures the
proportion of generated samples that are close to the real-data distribution, focusing on whether
the generated samples accurately represent the vehicles, environment, and other details in driving
scenes. Recall measures the proportion of real data covered by the generated samples, emphasizing
whether the generative model can capture the diversity of driving datasets, i.e., various weather
and lighting environments. Additionally, we select the object detection downstream task to validate
the performance improvement of perception models using the generated dataset. We employ the
Mean Average Precision (mAP) [34] as the evaluation metric, which represents the average area
under the precision–recall curve for all classes in the images.

Details. We choose DiT-XL/2 as our base model, which are pre-trained on ImageNet at 256 × 256
resolution over 7 million steps. To maintain consistency with the pre-trained models, the driving
dataset is resized to 256 × 256 resolution. For the Ithaca365 dataset, we randomly select samples
from sunny, cloudy, rainy, snowy, and night conditions, totaling 6,000 evaluation samples. For
the BDD100K dataset, we select samples from sunny, cloudy, overcast, rainy, snowy, and night
conditions, totaling 30,000 samples. We employ a similar approach to BDD100K to evaluate the
nuScenes dataset. We use the denoising diffusion implicit models sampler with 250 sampling steps,
generating images with a resolution of 256 × 256.

We select DiffFit as our primary comparison method since it has been tested with DiT-XL/2 on
a broad range of downstream classification datasets. Following the setup of DiffFit, we fine-tune
the DiT model by adjusting the QKV-Linear and output layer parameters in layers 1–14 with a
learning rate of 14−3. Additionally, we also re-implement several fine-tuning methods, including
BitFit [53], Time-Adapter [27], VPT [22], and LoRA [20]. For BitFit, we use the same configuration
as DiffFit. For Time-Adapter, we adapt the Time-Adapter method to the DiT blocks by inserting
the adapter module after the self-attention layer and set the learning rate to 24−4, following the
original paper’s settings. For VPT, we find that VPT is sensitive to both depth and token count,
and training is highly unstable. Therefore, we choose a stable configuration suitable for the driving
dataset: we insert a prompt consisting of three tokens in layers 1–14, using the same 14−3 learning
rate to fine-tune the DiT model. For LoRA, we use the default configuration and select rank = 4
to fine-tune the attention module of DiT. We use four A800 GPUs with a global batch size of 256
for 500 iterations, with a fixed random seed of 0. We select ViT-L-14 as the semantic encoder and
randomly choose 100 samples from each class and compute the average as the cosine similarity
measure between two classes. g is set to the number of training steps.

For DriveDiTFit, we fine-tune the conditional MLP layers and the QKV-Linear in the self-attention
layers within the DiT blocks from layers 1 to 28, setting the fine-tuning learning rate to 14−3 and
the rank to 4. The two low-rank matrices are initialized using the Kaiming initialization and zero
initialization, respectively. For the noise schedule hyperparameters, we use the default settings:
V0 = 14−4, V) = 24−2, and B = 2.

4.2 Quantitative Evaluation
Comparison with the State-of-the-Arts. In this section, we show the quantitative comparison of our
proposed DriveDiTFit with other fine-tuning methods. As shown in Table 2, under the condition
of an acceptable amount of fine-tuning parameters and comparable other metrics, our proposed
DriveDiTFit outperforms DiffFit and BitFit in terms of the FID and precision metric. This cor-
roborates our initial motivation, suggesting that for fine-tuning tasks with the significant gap
in datasets, merely adjusting biases and scaling factors are insufficient. Due to the small size of
Ithaca365, tuning more parameters can lead to overfitting, resulting in decreased performance on
the Full Fine-tuning and Time-Adapter method. The generation samples of different methods are
included in Appendix A.
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Table 2. The Performance Comparison of DriveDiTFit and Other Fine-Tuning Methods on the
Ithaca365 Dataset

Method FID↓ sFID↓ Precision↑ Recall ↑ Params (M)

Full Fine-tune 37.98 31.95 0.571 0.648 675.1 (100%)
Time-Adapter [27] 30.82 27.41 0.558 0.711 260.3 (38.5%)

LoRA-R4 [20] 37.38 34.05 0.425 0.649 3.000 (0.44%)
VPT-Deep [22] 35.32 31.24 0.358 0.677 1.380 (0.20%)
BitFiT [53] 29.23 31.40 0.379 0.751 0.490 (0.07%)
DiffFit [51] 27.98 31.11 0.386 0.773 0.590 (0.09%)

DriveDiTFit 18.64 26.13 0.626 0.795 2.372 (0.35%)

Our proposed approach achieves the best generative performance while only requiring fine-tuning 0.35% of the
parameters. The underline indicates the best result.

Table 3. The Performance Comparison of DriveDiTFit and Other Fine-Tuning Methods on the
BDD100K Dataset

Method FID↓ sFID↓ Precision↑ Recall ↑ Params (M)

Full Fine-tune 38.96 12.70 0.531 0.610 675.1 (100%)
Time-Adapter 45.65 15.25 0.495 0.576 260.3 (38.5%)

LoRA-R4 44.35 15.18 0.651 0.578 3.000 (0.44%)
VPT-Deep 35.32 12.32 0.547 0.573 1.380 (0.20%)
BitFiT 42.18 12.96 0.631 0.603 0.490 (0.07%)
DiffFit 46.57 15.06 0.651 0.585 0.590 (0.09%)

DriveDiTFit 33.38 11.93 0.659 0.611 2.372 (0.35%)

The underline indicates the best result.

We conduct additional experiments on the BDD100K and nuScenes datasets to validate the
effectiveness of our proposed DriveDiTFit on large-scale driving datasets. In Tables 3 and 4, our
method outperforms BitFit and DiffFit by a margin on FID and sFID and achieves slightly better
performance on precision and recall. These results suggest that fine-tuning only a small number
of bias parameters is insufficient to bridge the gap between the original dataset and the driving
dataset. We observe that the evaluation results of Time-Adapter and VPT-Deep on the BDD100K
and nuScenes datasets lack consistency. For instance, VPT-Deep achieves a strong FID on the
BDD100K dataset compared to other traditional fine-tuning methods; however, its performance on
the nuScenes dataset is significantly lower than that of other methods. We attribute this discrepancy
to the parameters introduced by VPT-Deep and Time-Adapter, which cannot be effectively initialized
using zero or identity initialization, leading to instability during training. Compared to Full Fine-
tune, Time-Adapter, and LoRA-4 that have higher parameter costs, our method achieves superior
evaluation results across all four evaluation metrics, which demonstrates that our method strikes a
good tradeoff between generative capabilities and parameter cost.
Impact of DiT’s Modules. We first explore the effects of fine-tuning various modules of DiTs on

their generative performance. As seen in Table 5, fine-tuning the MHSA modules and the condition
MLP ("!%2 ) significantly enhances the performance. This may stem from the complex information
in driving conditions affecting the attention mechanisms. Moreover, since the DriveDiTFit method
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Table 4. The Performance Comparison of DriveDiTFit and Other Fine-Tuning Methods on the
nuScenes Dataset

Method FID↓ sFID↓ Precision↑ Recall ↑ Params (M)

Full Fine-tune 34.58 27.44 0.585 0.463 675.1 (100%)
Time-Adapter 39.04 27.73 0.589 0.420 260.3 (38.5%)

LoRA-R4 38.56 27.59 0.580 0.433 3.000 (0.44%)
VPT-Deep 51.06 32.85 0.412 0.325 1.380 (0.20%)
BitFiT 39.96 27.72 0.551 0.434 0.490 (0.07%)
DiffFit 37.47 27.40 0.563 0.458 0.590 (0.09%)

DriveDiTFit 32.49 27.17 0.596 0.478 2.372 (0.35%)

The underline indicates the best result.

Table 5. Ablation Experiments on Different Modules of DiTs on the Ithaca365 Dataset

MHSA "!%1 "!%2 Patch Conv FID↓ Params (M)

Ø 30.89 1.081 (0.16%)
Ø Ø 27.45 2.372 (0.35%)
Ø Ø Ø 27.09 3.984 (0.58%)
Ø Ø Ø Ø 29.84 3.991 (0.59%)

Our proposed DriveDiTFit selects MHSA and "!%2 as fine-tuning modules. The underline indicates the
best result.

modifies the relationship between the diffusion timestep t and the noise intensity in the noise
schedule, it is necessary to modulate the"!%2 , where its input receives the embeddings of diffusion
timestep t and conditions. Conversely, adjusting the MLP layer within the transformer blocks
("!%1 ) does not markedly improve the generative performance and only adds extra parameters.
Hence, fine-tuning this module is not within the scope of our subsequent considerations. We also
observed a decrease in model performance upon fine-tuning the Patch Convolution (Patch
Conv) module. We hypothesize that the method of mapping 2 × 2 patches into a high-dimensional
space remains effective for the driving dataset, as the method for mapping small patches, learned
on the large-scale ImageNet dataset, demonstrates strong generalizability.

Impact of SSEI. The findings depicted in Figure 6 demonstrate that SSEI outperforms other fine-
tuning methods by achieving better FID in 150 tuning iterations and enables efficiently achieving
higher precision more rapidly compared to DiffFit, BitFit, and Time-Adapter. This indicates that our
approach enables DiT models to converge more rapidly and attain superior generative capabilities.
Note that since the VPTmethod is not suited for zero initialization or identity initialization, resulting
in slow prompt learning, we do not plot its training curve in the graph. In Figure 6, we also explore
the impact of various initialization methods on the performance of DiT model, including zero
initialization, Kaiming initialization, Xavier initialization, and SSEI initialization. Our SSEI module
leads to faster convergence compared to the other methods.

In Figure 7, we examine the category embeddings from ImageNet corresponding to different
conditions in the Ithaca365 dataset, within the semantic encoding space of CLIP. For example, the
category most closely aligned with snowy conditions is snowplow, characterized by backgrounds
of expansive white roads, mirroring those found in snowy scenarios. This similarity in the semantic
space suggests that embeddings with close resemblance facilitate a quicker adaptation from the
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Fig. 6. The generative performance of different fine-tuning methods (row 1) and different initialization
methods (row 2) in early training.

Fig. 7. Category embeddings in ImageNet that are most similar to weather and lighting condition embeddings,
after using the CLIP image encoder with the cosine similarity metric.

source to the target distribution, requiring less fine-tuning time and thus enhancing the generative
performance.
Impact of DriveDiTFit’s Components. We conduct further ablation studies on the DriveDiTFit

method, with results detailed in Table 6. Each component contributes to improve the quality and
fidelity of the generated samples. The OSL increases precision from 0.448 to 0.488. This component
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Table 6. Ablation Experiments on DriveDiTFit’s Components

Modulation SSEI OSL RoPE PT FID↓ sFID↓ Precision↑ Recall↑
Ø 27.45 31.21 0.414 0.764
Ø Ø 26.93 29.10 0.448 0.760
Ø Ø Ø 25.35 29.29 0.488 0.731
Ø Ø Ø Ø 23.80 29.20 0.481 0.742
Ø Ø Ø Ø Ø 18.64 26.13 0.626 0.795

Each component helps improve the quality and fidelity of the generated samples.
OSL, object-sensitive loss; PT, progressive tuning; RoPE, rotary positional embeddings; SSEI, semantic-selective
embedding initialization. The underline indicates the best result.

encourages the model to focus on the vehicles in driving images and improves the realism of
generated images. We observe that adding RoPE in the attention mechanism reduces sFID from
25.35 to 23.80, which demonstrates its key role in maintaining the spatial relationships of local
objects. It is worth noting that the implementation of the Scos noise schedule significantly boosts
the generative performance by delaying the point at which vehicle details are obscured by noise.
This approach provides an extended timeframe for detailed generation during the denoising process.
Importantly, this progressive fine-tuning strategy is not limited to DiT models but is also applicable
to the fine-tuning of other diffusion models where the original noise schedule is suboptimal.

Impact of the Backbone. In this section, we discuss the motivation of selecting DiT for autonomous
driving data generation. Diffusion models include two main types of architectures—Convolutional
Neural Networks (CNN)-based UNet architecture [18] and Transformer-based DiT architec-
ture [31]. The CNN-based diffusion models typically employ the UNet backbone, a symmetric
encoder–decoder structure. The Transformer-based diffusion models, being a more concise archi-
tecture, replace the UNet backbone with scalable standard Transformer blocks. To further validate
the superiority of DiT backbone, we transferred our method to LDM [35], a CNN-based diffusion
model, and compared the results with DiT models. Specifically, we fine-tune the conditional module
within the UNet backbone, while keeping other modules consistent with those used in the DiT
backbone.

As shown in Tables 7 and 8, the evaluation results demonstrate that our method, when applied
to the Transformer-based diffusion model (DiT-XL/2), outperforms the CNN-based diffusion model
(LDM) on both the Ithaca365 and BDD100K datasets. We analyze two advantages of choosing DiT
for generating driving data: (a) Better capture of distance pixel dependencies in global images.
Driving scene images contain both complex global (e.g., weather, lighting) and local (e.g., vehicles,
traffic) information, requiring generative models to establish relationships between long- and
short-range pixel dependencies. In this context, the convolution operations in CNN-based diffusion
models are limited in capturing long-range dependencies. However, the attention mechanism in
Transformer-based diffusion models can automatically learn these relationships during training,
enabling a better understanding and generation of driving image data under complex weather and
lighting conditions. (b) Better alignment with scaling law. The scaling law [10, 31] for diffusion
generative models indicates that the quality of generated data is positively correlated with the
computational resources and model parameters of diffusion models. CNN-based architectures often
require the design of specific parameters for each convolution kernel, making the model structure
less flexible and harder to scale. On the other hand, Transformer-based diffusion models, which
only require stacking standard Transformer blocks, can easily increase computational resources
and model parameters, enabling the generation of higher quality driving image data.
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Table 7. Experimental Results of Different Backbones on the
Ithaca365 Dataset

Model Backbone FID↓ sFID↓ Precision↑ Recall↑
LDM UNet 65.42 42.09 0.254 0.590

DiT-XL/2 DiT 18.64 26.13 0.626 0.795

The underline indicates the best result.

Table 8. Experimental Results of Different Backbones on the
BDD100K Dataset

Model Backbone FID↓ sFID↓ Precision↑ Recall↑
LDM UNet 45.63 16.90 0.332 0.436

DiT-XL/2 DiT 33.38 11.93 0.659 0.611

The underline indicates the best result.

Table 9. Performance Comparison of Fine-Tuning Different Parameters on the
Ithaca365 Dataset

Configuration Params (M) FID ↓ sFID ↓ Precision ↑ Recall ↑
Config A 0.490 (0.07%) 29.23 31.40 0.379 0.751
Config B 2.372 (0.35%) 27.45 31.21 0.414 0.764

The underline indicates the best result.

Impact of Gap-driven Fine-tuning. In this section, we conduct the experiment to validate the
hypothesis that the gaps between fine-tuning datasets and original datasets influence the number
of parameters that need to be adjusted. We fine-tune the DiT model on the Ithaca365 dataset using
two configurations: fine-tuning the model’s bias parameters (small number of parameters, Config
A) and fine-tuning the model’s weight parameters (large number of parameters, Config B). As
shown in Table 9, the performance of Config B is superior to Config A in terms of the four metrics.
This indicates that fine-tuning only a small number of bias parameters is insufficient to bridge the
gap between the original dataset and the driving dataset. Therefore, our proposed DriveDiTFit
utilizes Config B and fine-tune a larger number of model parameters, adapting the significant gap
between the original and driving datasets.
Impact of the Fine-tuning Parameters. In Table 10, we conduct ablation experiments on various

fine-tuning hyperparameters, including the rank r in modulation, fine-tuning different layers in
DiT, the coefficient _> of the OSL, the learning rate, and the progressive variation of the noise
schedule exponent s.

We conducted an analysis to determine the influence of varying the rank r in the modulation
parameters on the image quality. As shown in Table 10(a), we notice a slight drop in the FID when
the rank is increased from 1 to 4, where it achieves its minimum value of 18.64. This suggests that
increasing the rank up to a certain point can be beneficial for the model’s performance in terms of
image generation quality. However, beyond rank 4, there is no substantial improvement in the FID
metric. It remains relatively stable as the rank continues to increase from 4 to 10. This indicates that
setting the rank to 4 is sufficient to effectively transfer the model from a pre-trained classification
dataset to a driving dataset.
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Table 10. Ablation Experiments of Fine-tuning Parameters on the Ithaca365 Dataset

(a) Rank r

Rank r FID ↓
1 20.32
2 19.18
4 18.64
6 18.68
8 18.73
10 18.70

The underline in-
dicates the best
result.

(b) Layer l
Layers l FID ↓
1→ 7 23.91
1→ 14 24.02
1→ 28 19.55
7→ 28 21.76
14→ 28 27.31
21→ 28 42.73

The underline in-
dicates the best
result.

(c) OSL Weight _>
_> FID ↓
10 30.43
5 21.64
1 19.45
0.5 20.12
0.1 21.69
0.01 22.21

The underline in-
dicates the best
result.

(d) Learning Rate
LR Ratio FID ↓
0.1× 24.21
0.5× 24.19
1× 20.09
5× 27.69
10× 32.66
50× 30.30

The underline in-
dicates the best
result.

(e) Noise Schedule Exponent s
Noise Schedule FID ↓

Linear Scos6 Scos5 Scos4 Scos3 Scos2

Ø 29.21
Ø Ø 29.25
Ø Ø Ø 24.74
Ø Ø Ø 27.56
Ø Ø Ø Ø 21.64
Ø Ø Ø Ø Ø 24.12
Ø Ø Ø Ø Ø 22.93
Ø Ø Ø Ø Ø Ø 19.82

The underline indicates the best result.

In Table 10(b), we study the impact of fine-tuning different layers on the model’s performance.
Our findings reveal that fine-tuning a comprehensive range of layers, specifically from layer 1 to
layer 28, achieves the lowest FID score of 19.55. This suggests that a broad spectrum of features,
both shallow and deep, contributes to the model’s ability to generate high-quality images for the
driving dataset. Moreover, we observe that fine-tuning the initial layers (1→ 7) results in an FID
score of 23.91, which is lower than the score of 42.73 when fine-tuning the deeper layers (21→ 28).
Similarly, fine-tuning a slightly broader range of initial layers (1→ 14) yields an FID score of 24.02,
which is better than the score of 27.31 achieved when fine-tuning the middle to deeper layers (14→
28). These results indicate that the features extracted by the shallower layers are more critical for
the generation of driving data.

In Table 10(c), we investigate the effect of scaling various OSL coefficient _> on the model’s
performance. Our findings indicate that the OSL coefficient plays a significant role in balancing the
training stability and the generation of fine details in driving data. When the coefficient is set too
high, it can lead to training instability, as it may overshadow the original diffusion model’s loss,
resulting in a degradation of the FID score and a subsequent decrease in image quality. For instance,
a coefficient of 10 yields an FID score of 30.43, which is significantly higher than the optimal score,
suggesting that such a high weight could be detrimental to the model’s performance. Conversely,
setting the coefficient too low, such as 0.01, may cause the OSL to be ineffective, failing to emphasize
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the generation of vehicle details. The most optimal balance is achieved with a coefficient of 1, where
the FID score is 19.45, indicating that this weight setting effectively enhances the model’s ability to
generate high-quality images without compromising training stability.

We conducted the influence of different learning rates on the fine-tuning process in Table 10(d).
Our results indicate that the choice of learning rate significantly affects the model’s ability to
converge to a good performance on the quality of the generated images. Since pre-training has
already initialized most of the model’s parameters on million scale of datasets, most fine-tuning
methods typically require a larger learning rate than pre-training [20], which helps quickly adapt
the remaining parameters to the new task. Compared with pre-training learning rate of 0.1 × (14−4),
using a learning rate of 1 × (14−3) yields the best FID metric. Besides, when the learning rate is
increased to 5×, 10×, and 50×, the FID scores deteriorate to 27.69, 32.66, and 30.30, respectively.
This trend indicates that higher learning rates lead to training instability, where the model may
overshoot the optimal weights during training, causing oscillations and preventing convergence to
a good solution.

In Table 10(e), we explored the effect of various exponents s of the noise schedule on the model’s
performance. We observed that transitioning from the linear noise schedule to the Scos2 noise
schedule through a gradual fine-tuning process yields more stable results and lower FID scores.
This approach is superior to a direct shift from the linear to the Scos2 noise schedule, which results
in worse FID scores of 29.21 and 29.25, respectively. This progressive approach allows the model to
adapt to the new noise characteristics in a controlled manner, which is crucial for improving the
quality of image generation.

4.3 Qualitative Evaluation
To gain a comprehensive understanding of the DriveDiTFit approach, we showcase its ability
to generate synthesized images across a variety of weather and lighting conditions, alongside
demonstrating the effectiveness of progressive tuning strategies employing the Scos noise schedule.

As illustrated in Figure 8, the DiT model, once fine-tuned with DriveDiTFit, can generate
high-quality and huge-diversity driving scenario images under given conditional embeddings.
Remarkably, this model can create realistic depictions of vehicles on roads without relying on
structured conditional inputs like vehicle bounding boxes [48] or segmentation maps [49].

In Figures 10 and 11, we showcase generated samples from the Ithaca365 and BDD100K datasets,
employing various effective fine-tuning methods. Our proposed DriveDiTFit method is capable
of generating high-quality driving data across diverse scenarios, including urban, highway, and
rural environments. For BitFit, DiffFit, LoRA, and VPT, we find that the fine-tuned DiT models
struggle to generate accurate vehicle details under complex weather conditions. For instance, in
Figure 10, DiffFit causes distortion in the vehicle contours under snowy conditions, while VPT
fails to fully generate tire details under cloudy conditions. In Figure 11, both BitFit and LoRA
exhibit vehicle deformation under overcast conditions. The reason behind these facts is that these
methods do not adequately account for the noise in the pre-trained model and its impact on the
driving data. As a result, the time window during detail generation is insufficient, failing to ensure
realism. Although the DiT model fine-tuned with Time-Adapter shows some improvement in
snowy driving images, the relationship between the snow cover and the vehicle remains unrealistic.
Similarly, Full Fine-tune also suffers from vehicle deformation issues, especially under complex
environmental conditions. In contrast, the DiT model fine-tuned with DriveDiTFit not only learns
significant weather and lighting characteristics but also captures scene details, including car
headlight halos in the night scenario of Figure 10, complete vehicle outlines in each scenario of
Figure 11, and the physical relationships between rain, snow, and the vehicle in the snowy and
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Fig. 8. Samples from DiTs fine-tuned on the Ithaca365 datasets through the DriveDiTFit method, each with a
resolution of 256 × 256.

Fig. 9. The process visualization of progressive tuning strategies with the Scos noise schedule.

rainy scenario of Figure 10. These observations validate the reliability of our proposed fine-tuning
method.

We further present the impact of the DriveDiTFit components, with a particular focus on the
generation of details at various phases of the progressive tuning process. The visualization in
Figure 9 serves to validate the suitability of the Scos noise schedule for driving datasets. Employing
a consistent noise, the integration of vehicle masks and the RoPE module, which leverages local
attention mechanisms, significantly contributes to the accurate formation of complete vehicle
contours, in contrast to traditional modulation methods. Furthermore, the use of the Scos noise
schedule in the progressive tuning regimen notably refines the representation of intricate details,
methodically enhancing the visualization of complex features such as tires, lane markings, and
windows, thereby demonstrating the effectiveness of this approach in producing highly detailed
and realistic images.
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Fig. 10. Comparing details of generated samples between different methods on the Ithaca365 dataset.

4.4 Extension on Classification Datasets
In this section, we conduct experiments on classification datasets to validate the generality of our
method. Following the work of Xie et al. [51], we choose two commonly used classification datasets:
Caltech [15] and Oxford Flowers [30]. The Caltech dataset comprises photos of objects within 101
distinct categories, while the Oxford Flowers dataset consists of 102 categories of fine-grained
classification images of flowers. We report FID metric using 50 sampling steps and set the classifier
guidance to 1.5. As shown in Table 11, our method outperformed other traditional fine-tuning
method by a margin across four metrics. This indicates that our method is not limited to driving
scenarios and can also be extended to other types of datasets, including both coarse-grained and
fine-grained classification datasets.
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Fig. 11. Comparing details of generated samples between different methods on the BDD100K dataset.

4.5 Downstream Task Evaluation
To validate that the generated dataset benefits downstream perception tasks in autonomous driving
applications, particularly in enhancing the performance of visual perception models for imbalanced
categories (such as adverse weather and lighting conditions), we choose the object detection task
using the YOLOv8 [43] model. We train the model separately on a real dataset and a mixed dataset
(real + generated data) using default training parameters on a single 4090 GPU. The trained object
detection models are then evaluated on a validation set consisting of adverse weather and lighting
conditions, including rainy, night, and snowy environments. As shown in Table 12, compared to
the real dataset, the generated dataset improved the YOLOv8 model’s performance by 0.021 on
the Ithaca365 dataset, by 0.019 on the BDD100K dataset, and by 0.031 on the nuScenes dataset.
This demonstrates that the proposed method’s generated dataset can enhance the YOLOv8 model’s
performance in object detection tasks, further confirming that the generated dataset is beneficial
for downstream tasks.
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Table 11. The Performance Comparison of
Different Fine-tuning Methods on the Caltech

and Oxford Flowers Dataset

Method Caltech Oxford Flowers

Full Fine-tune 35.25 21.05
Time-Adapter 35.83 20.98

LoRA-R8 86.05 164.13
VPT-Deep 42.78 25.59

BitFit 34.21 20.31
DiffFit 33.84 20.18

Ours 28.85 17.35

All FID results, except those for our method and Time-
Adapter, are sourced from [51]. The underline indicates
the best result.

Table 12. Validation Results for the Effectiveness of the Generated
Dataset in the Object Detection Task

Datasets Ithaca365 BDD100K nuScenes

Real Mixed Real Mixed Real Mixed

mAP@50 0.502 0.523 0.395 0.414 0.367 0.398

The underline indicates the best result.

5 Conclusion
In this article, we introduce DriveDiTFit, an innovative approach for efficient generation of au-
tonomous driving data through fine-tuning pre-trained DiTs. From the model architecture perspec-
tive, we have developed a modulation technique designed to adjust the overall style and layout
of the generated samples, making it suitable for autonomous driving datasets that significantly
diverge from pre-trained dataset. Building on this, we have implemented an SSEI approach to help
the model more rapidly learn the data distribution and achieve superior generative performance.
Notably, we are pioneers in identifying the influence of the original noise schedule on downstream
datasets and have introduced a novel Scos noise schedule and an OSL coupled with a progressive
fine-tuning strategy to enhance the detail generation of small objects in scenarios. Our experiments
demonstrate that our proposed method can produce high-quality, diverse driving datasets under
various weather and lighting conditions.
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Appendix
A Additional Generated Samples
We present more generated samples on the Ithaca365 and BDD100K datasets, respectively, in
Figures A1 and A2, using different fine-tuning methods, which thoroughly validates our proposed
DriveDiTFit method’s capability to generate high-quality driving data under diverse weather and
lighting conditions.

Fig. A1. Additional generated samples on the Ithaca365 dataset—part 1, part 2, and part 3.
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Fig. A1. Continued
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Fig. A1. Continued

Fig. A2. Additional generated samples on the BDD100K dataset—part 1, part 2, and part 3.
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Fig. A2. Continued
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Fig. A2. Continued
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