
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RL FOR REASONING
BY ADAPTIVELY REVEALING RATIONALES

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning in the combinatorially large output space of sequence generation prob-
lems is challenging as providing expert demonstrations scales poorly with sequence
length, and RL struggles with sparse rewards. Between dense demonstrations in
supervised training and no demonstrations in reinforcement learning lies an under-
explored regime: partial supervision. We ask whether some classes of sequence
learning problems become efficiently learnable by exploiting this gap. We address
this by introducing adaptive backtracking (AdaBack), a per-sample curriculum
learning algorithm that reveals a partial prefix of the target output. The supervision
length is adjusted dynamically for each sample based on the model’s past reward
signal, allowing it to incrementally learn to complete reasoning chains by condition-
ing on correct partial solutions. We investigate this intermediate regime between
SFT and RL and argue that per-sample curriculum learning is more than a trade-off
between efficiency and generality—it can succeed in tasks with long sequences of
latent dependencies where SFT and RL both fail to generalize. Using a synthetic
task with latent parity constraints, we show that AdaBack reliably solves problems
that are otherwise intractable. On two mathematical reasoning benchmarks, MATH
and GSM8k, we find that AdaBack enables models to solve problems that RL
alone cannot, acquiring new reasoning capabilities through incremental exposure
to partial solutions.

1 INTRODUCTION

The reasoning capabilities of Transformers (Vaswani et al., 2017) have been extensively studied
across domains such as mathematics (Saxton et al., 2019; Cobbe et al., 2021; Hendrycks et al., 2021;
Lewkowycz et al., 2022), algorithmic reasoning (Veličković et al., 2022), and code generation (Chen
et al., 2021). These studies indicate that the reasoning performance of such models is significantly
enhanced by training and inference mechanisms involving explicit reasoning traces or rationales,
commonly known as scratchpad (Nye et al., 2021) or chain-of-thought (Wei et al., 2023).

However, acquiring large-scale, high-quality reasoning traces for specialized domains, such as
mathematics, poses substantial challenges. Reinforcement learning (RL)-inspired methods have
emerged as a promising solution to this challenge. By utilizing (potentially noisy) reward functions
or verifiers (e.g., checking final answers to math problems), language models can generate novel
reasoning traces, effectively using the model as an RL policy. For instance, the REINFORCE
algorithm (Williams, 1992) has been employed by methods like STaR (Zelikman et al., 2022),
generating multiple solutions per problem and selectively fine-tuning on the correct ones. More
advanced methods utilize algorithms like Proximal Policy Optimization (PPO) (Schulman et al.,
2017) and, more recently, Group Relative Policy Optimization (GRPO) (Shao et al., 2024).

Despite recent progress, RL-based approaches for structured reasoning tasks continue to face signifi-
cant hurdles. The key challenge lies in exploration: as reasoning chains grow longer, the space of
valid output sequences increases exponentially, while reward signals remain sparse and often binary.
Consequently, the probability of sampling a correct solution through random exploration diminishes
exponentially with sequence length. As a result, standard RL tends to reinforce reasoning paths that
are already assigned non-negligible probability by the pretrained model. Empirical evaluations by
Havrilla et al. (2024) and Yue et al. (2025) support this observation, showing that RL fine-tuning
primarily amplifies existing behaviors without substantially exploring novel solution trajectories.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

These limitations motivate our investigation of a third regime: the space between supervised
fine-tuning (SFT) and RL. We study whether breaking down long reasoning chains into partial
rationales—and adaptively conditioning the model on only a prefix of the target solution during
training—can make exploration tractable, and ultimately expand the class of problems that sequence
models can learn to solve. This leads to our central research question:

Can reinforcement learning, when guided by adaptive partial supervision, teach
models genuinely new reasoning capabilities? Specifically, for sequences learning
tasks of variable lengths, can it enable discovery of solutions that were previously
exponentially (in sequence length) unlikely under the model’s initial distribution?

To illustrate this clearly, consider a reasoning task consisting of n sequential steps, each of which
must be performed correctly for the task to succeed (e.g., proving a math theorem). For simplicity,
assume the model performs each step correctly with a constant probability p. Naively attempting the
entire task yields a success probability of pn, meaning that positive reinforcement signals would be
exponentially infrequent—on average, every p−n iterations—making standard RL impractical. To
mitigate this, we propose adaptive guidance: initially, we reveal all but the final step of the solution
from the training dataset, using RL solely for this final step. Consequently, the model receives
feedback with probability p every iteration. As performance improves, we progressively conceal
more steps of the solution, training the model to complete increasingly larger segments, maintaining
frequent positive feedback. Eventually, the entire reasoning chain is learned step-by-step, effectively
transforming a complex search space with success probability pn into n simpler sub-searches, each
with success probability Θ(p). While this example includes simplifying assumptions, we empirically
demonstrate this phenomenon’s practicality on a parity task described in Section 2.2.

The scenario described above is simplified and idealized. In real-world problems, reasoning steps
may not be clearly distinguishable, and datasets typically contain tasks with varying difficulties and
solution lengths, making uniform partial reveals inefficient. To address these practical challenges,
we propose a per-sample adaptive algorithm that dynamically adjusts the revealed portion of each
solution based on its inherent difficulty. Specifically, we leverage the GRPO framework (Shao et al.,
2024), which naturally estimates task difficulty by generating multiple rollouts per question and
averaging the rewards. We term this method adaptive backtracking (AdaBack), detailed further in
Section 2.

Backtracking strategies have precedents in RL—for example, the method of Salimans and Chen
(2018). In language modeling, R3 (Xi et al., 2024) applies a curriculum that progressively trains
models to complete reasoning chains from earlier positions. Building on these ideas, we ask: how can
such slicing be adapted per sample, guided by model performance at each iteration, without relying
on a heuristically designed global curriculum?

Contributions Our contributions are as follows:

• We propose AdaBack, a per-sample adaptive curriculum learning algorithm that dynamically
adjusts the amount of supervision during RL training based on reward feedback. AdaBack enables
each sample to progress at its own rate, eliminating the need for manual curriculum staging or
handcrafted schedules, transitioning from full supervision to full exploration in a data-driven way.

• We show that AdaBack bridges the gap between SFT and RL, enabling learning in regimes where
both fail. On a synthetic parity task with sparse rewards, we demonstrate a separation result:
AdaBack reliably solves the task, while SFT, RL, and their combination all fail.

• On standard mathematical reasoning benchmarks (MATH, GSM8k), we show that AdaBack
improves performance over standard RL and SFT+RL pipelines. We also show that AdaBack
applied to base models often matches the performance of SFT-initialized counterparts.

• We introduce further two variants of GSM8k: Base-7, which uses an unfamiliar numerical format
never seen by the model during pretraining, and Tensor-2, which concatenates problems to
increase reasoning depth. AdaBack achieves strong performance on both, demonstrating robust
generalization to symbolic shifts and longer-horizon reasoning.

• Finally, we identify a limitation: for instruct-tuned models or models where pretraining has already
exposed the model to most problem types, AdaBack together with standard RL training provide no
benefits, underscoring their limitation in aiding exploration where uncertainty is low.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ρ(i)
min ρ(i)

max
[[

ρ(i)
t

Evaluating each value, f(1) = 3 ⋅ 1 + 1 = 4; f(f(1)) = f(4) = 4/2 = 2; f(f(f(1))) = f(2) = 2/2 = 1; finally, f(f(f(f(1)))) = f(1) = 4

if r(i)
t > τ : ρ(i)

t+1 ∼ U(0,ρ(i)
t)

Let f(x) = {x /2 if x is even,
3x + 1 if x is odd .

what is f(f(f(f(1))))?

if r(i)
t < τ : ρ(i)

t+1 ∼ U(ρ(i)
t , ρ(i)max)

Figure 1: AdaBack Update Rule. At epoch t, we sample a supervision ratio ρ
(i)
t ∼ U(ρ

(i)
min, ρ

(i)
max) and

condition the model’s generation on the question and the corresponding partial answer (shown in black text, with
unrevealed content grayed out). If the average reward is below a threshold τ , we increase supervision in the next
epoch by sampling from the red interval ρ(i)t+1 ∼ U(ρ

(i)
t , ρ

(i)
max). Otherwise, if the reward exceeds τ , we reduce

supervision and sample from U(0, ρ
(i)
t), the green interval, to make the task harder.

2 ADAPTIVE BACKTRACKING

The core idea is to expose a prefix of the target sequence during training and gradually reduce this
supervision based on model performance. Unlike fixed-step or handcrafted curricula, this method
allows each sample to progress at its own pace, naturally balancing difficulty and learning progress.

For RL algorithms like GRPO (Shao et al., 2024) or RLOO (Ahmadian et al., 2024) that perform
multiple rollouts for each sample, we dynamically adjust the supervision level so that the average
sample reward across the rollouts stays close to a desired amount (for example, 50% of the answers
are correct for each math question). For other RL algorithms, the criteria to change the supervision
level can depend on other estimation of the state’s value.

Problem Setup We denote random variables using capital letters. Let an input sample be repre-
sented as a sequence of tokens X = (X1, X2, . . . , Xℓ), corresponding to a natural language prompt,
such as a question or problem description. The desired output is a chain-of-thought (CoT) style
response Y = (Y1, Y2, . . . , Ym), where each Yt represents a token or step in the model’s reasoning
process. We assume we have a dataset of such (X,Y) pairs.

Our goal is to train a model to generate a correct reasoning sequence Y conditioned on input X .
Importantly, the correct CoT is not necessarily unique: multiple reasoning paths may lead to valid
answers. However, we assume that correctness is verifiable via a reward model r = R(X1:ℓ, Ŷ1:m)

where r = 1 if the generated output Ŷ is accepted as correct. We denote by rformat ∈ [0, 1) the reward
for a parsable generation when the generation has the correct format, and assume that r = 0 otherwise.
This setup reflects many real-world reasoning tasks. For instance, in mathematical problem solving,
final answers can often be verified, and different CoT traces may yield the same final result.

2.1 METHOD

At each training step, given an input X(i) = (X
(i)
1 , . . . , X

(i)
ℓi

) and its corresponding target output

Y (i) = (Y
(i)
1 , . . . , Y

(i)
mi), we reveal the first k tokens of Y , Y1:k, where k = ⌊ρ(i) · mi⌋ and

ρ(i) ∈ [0, 1] is a sample-specific supervision portion. The model is trained to continue generation
conditioned on the input and the revealed prefix Ŷ

(i)
k+1:m′

i
∼ Pθ(· | X(i), Y

(i)
1:k), where m′

i − k is the
length of the generated continuation.

Adaptive Update Rule For each training sample i, we maintain an interval [ρ(i)min, ρ
(i)
max] initialized

as [0, 1], from which we uniformly sample the supervision portion ρ
(i)
t for sample i at epoch t. After

generating a set of predictions and receiving an average reward r
(i)
t (or other estimations of the state’s

value if not using GRPO), we update this interval based on a fixed reward threshold τ :

If r(i)t < τ : ρ
(i)
min ← ρ

(i)
t

If r(i)t ≥ τ : ρ(i)max ← ρ
(i)
t , ρ

(i)
min ← 0.0

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The next level of supervision is then uniformly sampled from this updated range:

ρ
(i)
t+1 ∼ U(ρ

(i)
min, ρ

(i)
max).

This process is visualized in Figure 1.

Intuitively, the model receives less supervision when it performs well and more when it struggles,
enabling an automatic per-sample curriculum that adapts to the model’s learning progress. This
procedure naturally drives the model toward completing longer and more challenging portions of
the target sequence, only when it shows competence on easier prefixes. The threshold τ governs
how strictly we evaluate model success: higher values require stronger reward signals (e.g., higher
average rewards) for the supervision ratio to decrease. In general terms, this process performs a
form of stochastic binary search over the supervision ratio ρ, using reward feedback as a success
signal. The goal is to minimize the amount of revealed rationale while ensuring the model continues
to receive useful reward signals. As the model improves, the supervision ratio naturally decreases.
For samples with no reward history, we initialize ρ(i) from global moving averages ρ̄min and ρ̄max,
which are updated over time using exponential moving averages. Additionally, to close train-test
distribution mismatch, with a small probability we randomly set the portion to zero. These training
details are further discussed in Appendix C.

This adaptive scheme enables each training sample to follow its own trajectory from full supervision
to full generation, providing a flexible and data-efficient approach to curriculum learning in structured
sequence tasks. This per-sample scheduling ensures that each training point advances only when
ready, allowing the model to incrementally acquire reasoning skills without overfitting to fixed
patterns.

2.2 CHAIN-OF-PARITIES: A SYNTHETIC ENVIRONMENT FOR STUDYING REASONING

To better understand learning dynamics in isolation from the complexities of natural language and
pretraining, we introduce a synthetic sequence modeling task called the chain-of-parities. This task
could be viewed as a contextual blind cliff walk, inspired by Schaul et al. (2015), adapted to reflect
the challenges of chain-of-thought reasoning.

We aim to address a fundamental question: Are there sequence learning tasks that cannot be learned
by SFT, RL, or their naive combination but that can be solved by Adaptive Backtracking? We
construct such a task and demonstrate that the answer is affirmative.

Given a binary input sequence X ∈ {0, 1}L, the goal is to generate an output sequence
Y1, Z1, . . . , YL, ZL of length 2L, where

• Yi ∈ {0, 1} is unconstrained (both values are acceptable),

• Zi is the parity of Xi, Yi, and Zi−1, i.e, Zi = Zi−1 ⊕ Yi ⊕Xi, where ⊕ denotes the XOR
function and Z0 = 0.

This design enforces a latent, step-wise structure over the output. The Yi values act as a “scratch-
pad”—arbitrary values that influence Zi through an accumulating parity computation. In essence,
each Zi encodes the parity of the prefix (X1, . . . , Xi, Y1, . . . , Yi), making the correctness of Zi de-
pendent on the accuracy of Zi−1 and prior chain-of-thought (CoT) steps. This recursive dependency
mirrors real-world CoT tasks, where early mistakes cascade through the solution. Although there are
2L valid outputs per input due to unconstrained Yi, generating one randomly has a probability of just
2−L—analogous to sparse-reward regimes common in reasoning tasks.

We consider learning this task from a dataset of n uniformly sampled sequences (Xi, Yi). This setup
highlights the inherent limitations of SFT and RL:

• RL fails: Rewards are sparse, and discovering a single valid output via random exploration becomes
exponentially unlikely as the problem length grows.

• SFT fails: For small training sets, supervised training alone cannot learn this task. Specifically,
the task involves learning n− 1 parity functions of degree three, for which the theoretical sample
complexity is well-studied (Abbe et al., 2023a; Kou et al., 2024). For example, in the statistical
query (SQ) model (Kearns, 1998), weakly learning a degree-k parity from L input bits requires at

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

least Ω(Lk−1) samples. Consequently, regular fixed-size neural networks trained via stochastic
gradient descent (SGD) cannot even weakly learn a degree-three parity from only n = Õ(L)1

samples (Abbe et al., 2023a).

• SFT + RL fails: With a limited number of training samples, such as n = Õ(L) discussed above,
SFT does not provide weak learning. Therefore, the exploration of the model remains random, and
rewards remain exponentially sparse, hindering meaningful learning through standard RL.

In contrast, curriculum learning with adaptive supervision succeeds in solving this task using a
limited number of training samples. Suppose the reward threshold is fixed at 0.5. The adaptive
curriculum can initially present the input question X along with almost the entire solution—namely
Y1, . . . , ZL−1—to the model. In this case, the model only needs to generate the final step, YL, ZL.
Assuming the model has learned the task format during pretraining, the probability of generating a
valid final step is approximately 0.5, in contrast to 2−L when generating the entire sequence.

This setup enables the model to explore and learn the final reasoning step. Specifically, for each
partial sequence X1, . . . , XL, Y1, . . . , ZL−1, the model produces two valid continuations: YL, ZL

and Y ′
L, Z

′
L, where x′ = x⊕ 1 denotes the complement of x. This variation allows gradient-based

learners to infer that YL directly influences ZL: flipping YL changes ZL while all other inputs remain
fixed. Consequently, learning ZL reduces to learning a degree-two parity function, as one input
(YL) is already learned, which has lower sample complexity than learning the degree-three parity
function. In particular, degree-two parities can be learned with Ω̃(L) samples (Glasgow, 2024; Kou
et al., 2024). Once the model masters the final step, the curriculum is adjusted to reveal a shorter
solution prefix (up to ZL−2), requiring the model to generate YL−1, ZL−1, YL, ZL. Since it has
already learned to generate YL, ZL, the focus shifts to learning the (L− 1)-th step. This process is
repeated iteratively by gradually shortening the hint until the model learns the full sequence. This
progression demonstrates that there exist sample-size regimes where standard SFT + RL fails, but
AdaBack successfully learns the task.

We note that the argument above is simplified, as the actual learning complexity depends on the
specific learning model used. We will discuss such subtleties in Appendix B. Here, we focus on the
empirical evidence supporting this phenomenon. We consider the case of L = 16 with a training
set size of n = 1024, using the Llama 3.2 1B model (Grattafiori et al., 2024). The reward function
assigns a value of 1 to fully correct sequences and 0.1 to sequences that are syntactically valid (i.e.,
correct number of bits).

We first perform SFT on the training set to help the model learn the task format. We then compare
the performance of standard RL and AdaBack on the task. As shown in Figure 2 (left), AdaBack
achieves substantial reward early in training and progressively reduces the portion of the solution that
is revealed, leading to seamless learning of the task. In contrast, standard RL (Figure 2, right) fails to
obtain meaningful rewards and does not learn the task.

This experiment highlights how AdaBack enables guided exploration via partially correct sequences,
effectively expanding the class of learnable problems in structured sequence modeling. It also
establishes a clear separation between SFT + standard RL and AdaBack: while the former struggles
with sparse rewards, AdaBack offers a principled middle ground, avoiding both the limitations of full
supervision and the exploration challenges of standard RL.

3 EXPERIMENTS

In this section, we evaluate AdaBack on real-world reasoning tasks. In Section 2.2, we showed
that AdaBack enables models to solve problems that are intractable under standard supervised
fine-tuning, reinforcement learning, or their combination. Our goal here is to investigate whether
AdaBack improves generalization and reasoning ability beyond what standard RL pipelines achieve
on real-world reasoning tasks.

We train models using the GRPO algorithm (Shao et al., 2024) on base models of the Llama-3 family
(Grattafiori et al., 2024). For fairness of attribution and clarity, we have followed the standard practice
of works like (Shao et al., 2024; Xi et al., 2024) by using simple greedy or sampling-based decoding

1We use Õ to hide the logarithmic factors.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
/P

or
tio

n

AdaBack

Train Reward
Test Reward
Avg. Portion

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

Standard RL and R3

Standard RL
Train Reward
Test Reward

R3
Train Reward Test Reward

Figure 2: Training Dynamics. Left: Training and test rewards along with supervision ratios
throughout training. With AdaBack, Llama 3.2 1B successfully learns the task in under 700 iterations.
Right: Training and test rewards for SFT+RL (red) plateau at 0.1, indicating that only the output
format—learned during supervised pretraining—has been retained. Test reward for R3 (Xi et al.,
2024) is shown in purple; it reaches only 0.8 reward after more than 16,000 iterations. R3 segments
training examples at all whitespace positions and applies RL uniformly over these fragments, resulting
in inefficiency due to its non-adaptive strategy.

for our comparisons with a prompt as simple as ‘Please provide the final answer to the question in
\boxed{}.’ All baseline experiments are ran until convergence.

The standard RL recipe involves first performing SFT on rationales, followed by RL fine-tuning
(Gulcehre et al., 2023; Guan et al., 2025). However, this paradigm has recently been challenged
by models trained solely with RL updates such as GRPO, without any SFT phase (DeepSeek-AI,
2025). Accordingly, we compare four variants: GRPO on a base model, GRPO on an SFT model,
AdaBack-GRPO on a base model, and AdaBack-GRPO on an SFT model. Further experimental
details are provided in Appendix D.

Generalization on Natural Language Reasoning Tasks We evaluate on two standard mathemati-
cal reasoning benchmarks: MATH (Hendrycks et al., 2021) and GSM8k (Cobbe et al., 2021). In line
with Mirzadeh et al. (2024) and Li et al. (2024), to assess generalization beyond pretraining exposure,
we introduce two new variants of GSM8k:

• In Base-7 GSM8k, all numeric quantities and computations are represented in base-7.2 While the
problems themselves are unchanged, this symbolic shift forces the model to reason over a format
it has not encountered during pretraining—analogous to deploying a model in a culture with a
different numerical base. Performance on this dataset requires the model to generalize beyond
familiar surface forms and reasoning chains observed in pretraining.

• We create Tensor-2 GSM8k inspired by Hosseini et al. (2024), by concatenating pairs of GSM8k
problems and their solutions into single instances, yielding longer reasoning chains. While the
resulting chains may be semantically disjoint, this construction increases the number of sequential
reasoning steps required in the generation. This setup tests whether models can scale their reasoning
over longer inputs and outputs, beyond what is required in the original GSM8k.

Table 1 summarizes performance across these tasks. We find that AdaBack consistently outperforms
both GRPO and SFT+GRPO, particularly in out of pretraining distribution settings like Tensor-
2 GSM8k. Notably, AdaBack applied directly to the base model often matches or exceeds the
performance of the standard RL applied to the base and SFT-initialized models, suggesting that
adaptive partial supervision on a base model may serve as a more effective prior than initializing
from a SFT checkpoint. Interestingly, AdaBack applied on the base model may even outperform
AdaBack applied on the SFT model as in the Tensor-2 experiment. We elaborate on this phenomenon
further in the text.

2We dropped (fewer than 1000) samples where the question or answer required division, as base-10 divisions
can have periodic representations in base-7.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Final test accuracy for each method across tasks and model sizes.
Method MATH GSM8k Base-7 GSM8k Tensor-2 GSM8k

1B 3B 1B 3B 1B 3B 1B 3B

Base+RL 6.4 15.0 7.9 63.7 4.8 4.9 0.0 0.0
SFT+RL 7.4 17.7 36.7 72.7 14.4 45.4 6.9 42.7
AdaBack 9.1 19.1 39.2 73.3 18.4 43.9 8.5 49.2
SFT+AdaBack 9.5 19.9 43.2 70.7 24.5 49.9 11.3 42.2

Per-Sample Curriculum Without Manual Staging Curriculum learning typically requires hand-
crafted stages, scheduling heuristics, and careful tuning of hyperparameters—such as how long to
train at each difficulty level and with what parameters, and when to transition to harder ones. In
contrast, AdaBack performs an automatic per-sample curriculum by adjusting supervision based
on a simple reward threshold. Each training point progresses at its own pace, without global stage
definitions. Although our implementation uses a stochastic binary search over supervision ratios,
this is not essential: linear search or other adaptive strategies could be substituted. The key principle
is to allow each example to progress at its own pace, without requiring global curriculum design
or extensive hyperparameter tuning. As seen in Figure 3 (left) average portions naturally decrease
and rewards increase with AdaBack without any boilerplate curriculum scaffolding. τ is the only
hyperparameter needed to be set for AdaBack, and training is not sensitive to it. We have elaborated
the choice of τ in Section C.

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
/P

or
tio

n

AdaBack

Train Reward
Test Reward
Avg. Portion

0 2500 5000 7500 10000 12500 15000 17500
Iteration

Standard RL vs. AdaBack

Adaback
Train Reward
Test Reward

Standard RL
Train Reward
Test Reward

0 2000 4000 6000 8000 10000
Iteration

0.0

0.2

0.4

0.6

0.8

Re
wa

rd
/P

or
tio

n

AdaBack

Train Reward
Test Reward
Avg. Portion

0 2000 4000 6000 8000 10000
Iteration

Standard RL vs. AdaBack

Adaback
Train Reward
Test Reward

Standard RL
Train Reward
Test Reward

Figure 3: AdaBack vs. Standard RL Across Model Initializations. Results from training Llama3-
1B on GSM8k dataset. The top row shows results for models initialized with SFT, while the bottom
row shows base (non-SFT) models. The left column presents AdaBack training dynamics: train
reward increases as supervision ratios (portions) decrease. The right column shows standard RL.

Training Dynamics and Initialization Figure 3 shows training curves comparing AdaBack and
standard RL across SFT and base model initializations. In both settings, AdaBack achieves better
rewards both at training and test compared to standard GRPO training. We provide additional training
figure in Appendix F.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Does AdaBack Expand the Model’s Solution Space? Yue et al. (2025) argue that RL fine-tuning
reweights a model’s output distribution without expanding its effective reasoning capacity. To test this
claim, we evaluate models using pass@k3, a metric that captures the breadth of plausible solutions.
Figure 4 shows that AdaBack significantly improves pass@k over standard RL on both the base and
SFT models, especially at large k. These gains are most pronounced when AdaBack is applied to the
base model, again suggesting that it facilitates the discovery of new solution modes rather than just
refining existing ones. If SFT-free RL with AdaBack introduces novel capabilities, we expect pass@k
to increase even when base model coverage is low, which is what we show in Figure 4. In some
cases, such as on the Tensor-2 GSM8k (see Table 1), AdaBack on the base model even outperforms
AdaBack on the SFT-initialized model, suggesting that SFT may sometimes restrict the search space
too early, limiting the benefits of exploration.4 The latter can be observed in Figure 4 as well.

20 21 22 23 24 25 26 27 28

k

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
k

with SFT

20 21 22 23 24 25 26 27 28

k

without SFT (base model)

AdaBack
RL
Base

Figure 4: Pass@k for Llama3-1B SFT-initialized models (left) and base models (right) on GSM8k.
AdaBack keeps a significant gap compared to standard RL and improves performance at higher k
even without SFT suggesting it expands the solution distribution rather than reweighting known
answers (contra Yue et al. (2025)).

When Does AdaBack Fail to Help? On the MATH dataset with Llama 3.2 3B-Instruct, we observe
no gains from AdaBack. As shown in Figure 8, both train and test rewards saturate quickly, with
nearly all questions solved within a few hundred iterations. We observed a similar behavior on other
models like the Qwen 2.5 family of models (Yang et al., 2024) as well as in the case of GSM8k
for the 3B model in Table 1. This happens when RL reaches perfect training reward within a few
iterations during training, i.e., when the dataset is too simple for the model. This suggests that
these models have likely encountered much of the dataset during pretraining, leaving little room for
RL improvements or for AdaBack to assist exploration. In such cases, AdaBack provides limited
benefit—highlighting that its main strength lies in tasks where sparse reward or symbolic mismatch
creates a significant learning barrier.

4 RELATED WORK

Here, we provide a summary of the related work. We also provide a more extensive literature review
in Appendix A.

Limits of Reinforcement Learning for Reasoning Several studies have highlighted the difficulty
of applying reinforcement learning (RL) to structured reasoning tasks. Exploration remains a major
bottleneck: reward signals are sparse, and correct reasoning chains are exponentially rare in the output
space. Havrilla et al. (2024) empirically evaluated several RL strategies on reasoning benchmarks
and found that models fail to discover solutions outside the support of the base SFT model. They
tested curriculum-inspired techniques such as backtracking—starting the model partway through a
solution and gradually shifting the start point earlier Salimans and Chen (2018)—and prioritized

3Pass@k is the probability that at least one out of k model-generated outputs correctly solves a given
problem.Chen et al. (2021); Brown et al. (2024)

4In an extreme case, the model may just memorize the answers during the SFT phase, removing hope for any
exploration.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

level replay (PLR)—sampling more frequently from difficult problems Jiang et al. (2020). Despite
these interventions, performance gains were negligible: RL primarily amplified answers already
assigned non-trivial probability by the pretrained model. These findings align with recent theoretical
arguments by Yue et al. (2025), who claim that RL fine-tuning reweighs existing reasoning paths but
fails to induce fundamentally new capabilities.

In contrast, we find that curriculum learning with partial supervision can induce such capabilities.
Through carefully designed adaptive exposure to partial solutions, our models learn to complete
problems that neither SFT nor RL could solve—even partially—highlighting the limitations of
standard RL exploration and the promise of fine-grained curricula.

Curriculum Learning Curriculum learning was originally introduced to improve generalization
and convergence by training models on simpler examples before harder ones (Bengio et al., 2009).
In RL, backtracking (Salimans and Chen, 2018) and RFCL Tao et al. (2024) adopt this principle by
initializing rollouts from later points in expert demonstrations and gradually shifting the start point
backward.

In language modeling, R3 (Xi et al., 2024) introduces a step-wise curriculum where the model is
trained to complete reasoning chains from progressively earlier points. However, despite being
motivated as a dynamic curriculum, R3 effectively performs static data augmentation: demonstrations
are sliced at delimiter positions (e.g., newlines in GSM8k), and each slice is treated as an independent
training sample. In datasets without consistent delimiters, R3 falls back on uniformly partitioning
each solution into a fixed number of segments (e.g., five), regardless of problem difficulty or solution
length, and then mixing all segments across the dataset. This reliance on global heuristics limits
scalability and applicability to domains without clear step boundaries, such as MATH (Hendrycks
et al., 2021) or our synthetic parity benchmark. In particular, for the parity task we show that R3
has significantly worse learning speed and generalization in Figure 2. This is consistent with the
theoretical results of Cornacchia and Mossel (2023); Abbe et al. (2023b) where it is proven that
applying a curriculum over distributions can significantly improve the speed of convergence over
simply mixing the distributions.

Our approach differs in both granularity and adaptability. We introduce an adaptive per-sample
curriculum that dynamically controls the fraction of the output revealed to the model during training.
Unlike R3, we do not rely on external step segmentation or dataset-specific structure. This fine-
grained supervision allows the model to incrementally learn reasoning behaviors directly from reward
signals, without explicit hinting or hard-coding intermediate targets.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Curriculum learning is often seen as a training heuristic to improve convergence. In this work, we
show that per-sample curriculum learning via adaptive partial supervision enables fundamentally
new reasoning capabilities that are inaccessible to standard supervised fine-tuning or reinforcement
learning alone. Our proposed method, AdaBack, succeeds on a synthetic parity task where both
RL and SFT fail, offering a constructive separation result. On real-world datasets such as MATH
(Hendrycks et al., 2021), GSM8k (Cobbe et al., 2021), and its variants, AdaBack outperforms baseline
RL and SFT+RL pipelines, often matching or exceeding standard RL applied on SFT-initialized
models even when applied directly to a base model.

These results suggest that AdaBack not only improves sample efficiency, but also facilitates explo-
ration of new solution modes, as evidenced by consistent gains in pass@k. However, we also observe
that AdaBack provides limited benefit when the base model has already memorized much of the task,
as appears to be the case with modern reasoning-apt models and math datasets.

A key limitation of our current implementation arises in the large dataset regime. When the number
of unique training samples is high, most examples are seen infrequently and therefore rely heavily on
global moving averages for supervision scheduling. This may reduce the effectiveness of per-sample
adaptation. One promising direction for future work is to define supervision schedules not per
sample, but per region in embedding space—e.g., using the average supervision level of the k nearest
neighbors of each sample. This would preserve the benefits of adaptation while remaining scalable in
data-rich settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

E. Abbe and C. Sandon. On the universality of deep learning. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 20061–20072. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/e7e8f8e5982b3298c8addedf6811d500-Paper.pdf.

E. Abbe and C. Sandon. Polynomial-time universality and limitations of deep learning. Com-
munications on Pure and Applied Mathematics, 76(11):3493–3549, 2023. doi: https://doi.org/
10.1002/cpa.22121. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
cpa.22121.

E. Abbe, P. Kamath, E. Malach, C. Sandon, and N. Srebro. On the power of differentiable learning
versus PAC and SQ learning. In Advances in Neural Information Processing Systems, volume 34,
2021.

E. Abbe, E. B. Adsera, and T. Misiakiewicz. Sgd learning on neural networks: leap complexity and
saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on Learning Theory, pages
2552–2623. PMLR, 2023a.

E. Abbe, E. Cornacchia, and A. Lotfi. Provable advantage of curriculum learning on parity targets
with mixed inputs. Advances in Neural Information Processing Systems, 36:24291–24321, 2023b.

E. Abbe, S. Bengio, A. Lotfi, C. Sandon, and O. Saremi. How far can transformers reason? the
globality barrier and inductive scratchpad. Advances in Neural Information Processing Systems,
37:27850–27895, 2024.

A. Ahmadian, C. Cremer, M. Gallé, M. Fadaee, J. Kreutzer, O. Pietquin, A. Üstün, and S. Hooker.
Back to basics: Revisiting reinforce style optimization for learning from human feedback in llms,
2024. URL https://arxiv.org/abs/2402.14740.

M. H. Amani, N. M. Baldwin, A. Mansouri, M. Josifoski, M. Peyrard, and R. West. Symbolic
autoencoding for self-supervised sequence learning, 2024. URL https://arxiv.org/abs/
2402.10575.

Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, and et. al. Training a helpful and harmless assistant
with reinforcement learning from human feedback, 2022. URL https://arxiv.org/abs/
2204.05862.

B. Barak, B. L. Edelman, S. Goel, S. Kakade, E. Malach, and C. Zhang. Hidden progress in deep
learning: Sgd learns parities near the computational limit. arXiv preprint arXiv:2207.08799, 2022.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings of the
26th annual international conference on machine learning, pages 41–48, 2009.

Y. Bengio, N. Léonard, and A. C. Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. ArXiv, abs/1308.3432, 2013.

B. Brown, J. Juravsky, R. Ehrlich, R. Clark, Q. V. Le, C. Ré, and A. Mirhoseini. Large language
monkeys: Scaling inference compute with repeated sampling, 2024. URL https://arxiv.
org/abs/2407.21787.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P.
Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol,
A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr,
J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati,
K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba.
Evaluating large language models trained on code, 2021. URL https://arxiv.org/abs/
2107.03374.

K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging procedural generation to benchmark
reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

10

https://proceedings.neurips.cc/paper/2020/file/e7e8f8e5982b3298c8addedf6811d500-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e7e8f8e5982b3298c8addedf6811d500-Paper.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.22121
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.22121
https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2402.10575
https://arxiv.org/abs/2402.10575
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

E. Cornacchia and E. Mossel. A mathematical model for curriculum learning for parities. In
International Conference on Machine Learning, pages 6402–6423. PMLR, 2023.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

B. Edelman, S. Goel, S. Kakade, E. Malach, and C. Zhang. Pareto frontiers in deep feature learning:
Data, compute, width, and luck. Advances in Neural Information Processing Systems, 36, 2024.

G. Feng, B. Zhang, Y. Gu, H. Ye, D. He, and L. Wang. Towards revealing the mystery behind chain
of thought: a theoretical perspective. Advances in Neural Information Processing Systems, 36,
2024.

C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel. Reverse curriculum generation for
reinforcement learning. In Conference on robot learning, pages 482–495. PMLR, 2017.

S. Gao, A. Bosselut, S. Bengio, and E. Abbe. Abstral: Augmenting llms’ reasoning by reinforcing
abstract thinking, 2025. URL https://arxiv.org/abs/2506.07751.

M. Glasgow. SGD finds then tunes features in two-layer neural networks with near-optimal sample
complexity: A case study in the XOR problem. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=HgOJlxzB16.

S. Goyal, Z. Ji, A. S. Rawat, A. K. Menon, S. Kumar, and V. Nagarajan. Think before you speak:
Training language models with pause tokens. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=ph04CRkPdC.

A. Grattafiori, A. Dubey, and Others. The llama 3 herd of models, 2024. URL https://arxiv.
org/abs/2407.21783.

X. Guan, L. L. Zhang, Y. Liu, N. Shang, Y. Sun, Y. Zhu, F. Yang, and M. Yang. rstar-math:
Small llms can master math reasoning with self-evolved deep thinking, 2025. URL https:
//arxiv.org/abs/2501.04519.

C. Gulcehre, T. L. Paine, S. Srinivasan, K. Konyushkova, L. Weerts, A. Sharma, A. Siddhant, A. Ahern,
M. Wang, C. Gu, W. Macherey, A. Doucet, O. Firat, and N. de Freitas. Reinforced self-training
(rest) for language modeling, 2023. URL https://arxiv.org/abs/2308.08998.

A. Havrilla, Y. Du, S. C. Raparthy, C. Nalmpantis, J. Dwivedi-Yu, M. Zhuravinskyi, E. Hambro,
S. Sukhbaatar, and R. Raileanu. Teaching large language models to reason with reinforcement
learning, 2024. URL https://arxiv.org/abs/2403.04642.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt.
Measuring mathematical problem solving with the math dataset, 2021. URL https://arxiv.
org/abs/2103.03874.

A. Hosseini, A. Sordoni, D. Toyama, A. Courville, and R. Agarwal. Not all llm reasoners are created
equal. arXiv preprint arXiv:2410.01748, 2024.

M. Jiang, E. Grefenstette, and T. Rocktäschel. Prioritized level replay. In International Conference
on Machine Learning, 2020.

L. Kaiser and S. Bengio. Discrete autoencoders for sequence models. ArXiv, abs/1801.09797, 2018.

M. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983–1006, Nov.
1998. ISSN 0004-5411. doi: 10.1145/293347.293351. URL http://doi.acm.org/10.
1145/293347.293351.

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are zero-shot
reasoners. Advances in neural information processing systems, 35:22199–22213, 2022.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2506.07751
https://openreview.net/forum?id=HgOJlxzB16
https://openreview.net/forum?id=ph04CRkPdC
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2308.08998
https://arxiv.org/abs/2403.04642
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
http://doi.acm.org/10.1145/293347.293351
http://doi.acm.org/10.1145/293347.293351

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Y. Kou, Z. Chen, Q. Gu, and S. M. Kakade. Matching the statistical query lower bound for k-sparse
parity problems with sign stochastic gradient descent. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=EbSSBvwUWw.

J. Lanchantin, S. Toshniwal, J. Weston, S. Sukhbaatar, et al. Learning to reason and memorize with
self-notes. Advances in Neural Information Processing Systems, 36, 2024.

A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. Ramasesh, A. Slone, C. Anil,
I. Schlag, T. Gutman-Solo, et al. Solving quantitative reasoning problems with language models.
arXiv preprint arXiv:2206.14858, 2022.

Q. Li, L. Cui, X. Zhao, L. Kong, and W. Bi. GSM-plus: A comprehensive benchmark for eval-
uating the robustness of LLMs as mathematical problem solvers. In L.-W. Ku, A. Martins,
and V. Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 2961–2984, Bangkok, Thailand, Aug.
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.163. URL
https://aclanthology.org/2024.acl-long.163/.

B. Liu, S. Bubeck, R. Eldan, J. Kulkarni, Y. Li, A. Nguyen, R. Ward, and Y. Zhang. Tinygsm:
achieving >80URL https://arxiv.org/abs/2312.09241.

W. Merrill and A. Sabharwal. The expressive power of transformers with chain of thought. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=NjNGlPh8Wh.

I. Mirzadeh, K. Alizadeh, H. Shahrokhi, O. Tuzel, S. Bengio, and M. Farajtabar. Gsm-symbolic:
Understanding the limitations of mathematical reasoning in large language models, 2024. URL
https://arxiv.org/abs/2410.05229.

S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone. Curriculum learning for
reinforcement learning domains: A framework and survey. The Journal of Machine Learning
Research, 21(1):7382–7431, 2020.

M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D. Dohan,
A. Lewkowycz, M. Bosma, D. Luan, C. Sutton, and A. Odena. Show your work: Scratchpads for
intermediate computation with language models, 2021.

T. Olausson, A. Gu, B. Lipkin, C. Zhang, A. Solar-Lezama, J. Tenenbaum, and R. Levy. LINC:
A neurosymbolic approach for logical reasoning by combining language models with first-order
logic provers. In H. Bouamor, J. Pino, and K. Bali, editors, Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pages 5153–5176, Singapore, Dec.
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.313. URL
https://aclanthology.org/2023.emnlp-main.313/.

R. Y. Pang, W. Yuan, K. Cho, H. He, S. Sukhbaatar, and J. Weston. Iterative reasoning preference
optimization, 2024a. URL https://arxiv.org/abs/2404.19733.

R. Y. Pang, W. Yuan, K. Cho, H. He, S. Sukhbaatar, and J. E. Weston. Iterative reasoning preference
optimization. ArXiv, abs/2404.19733, 2024b. URL https://api.semanticscholar.
org/CorpusID:269457506.

N. Razin, H. Zhou, O. Saremi, V. Thilak, A. Bradley, P. Nakkiran, J. Susskind, and E. Littwin.
Vanishing gradients in reinforcement finetuning of language models, 2024. URL https://
arxiv.org/abs/2310.20703.

C. Resnick, R. Raileanu, S. Kapoor, A. Peysakhovich, K. Cho, and J. Bruna. Backplay: "man muss
immer umkehren", 2022. URL https://arxiv.org/abs/1807.06919.

T. Salimans and R. J. Chen. Learning montezuma’s revenge from a single demonstration. ArXiv,
abs/1812.03381, 2018.

12

https://openreview.net/forum?id=EbSSBvwUWw
https://openreview.net/forum?id=EbSSBvwUWw
https://aclanthology.org/2024.acl-long.163/
https://arxiv.org/abs/2312.09241
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://arxiv.org/abs/2410.05229
https://aclanthology.org/2023.emnlp-main.313/
https://arxiv.org/abs/2404.19733
https://api.semanticscholar.org/CorpusID:269457506
https://api.semanticscholar.org/CorpusID:269457506
https://arxiv.org/abs/2310.20703
https://arxiv.org/abs/2310.20703
https://arxiv.org/abs/1807.06919

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

R. J. Sánchez, L. Conrads, P. Welke, K. Cvejoski, and C. O. Marin. Hidden schema networks. In
A. Rogers, J. L. Boyd-Graber, and N. Okazaki, editors, Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 4764–4798. Association for Computational Linguistics, 2023.

D. Saxton, E. Grefenstette, F. Hill, and P. Kohli. Analysing mathematical reasoning abilities of neural
models. arXiv preprint arXiv:1904.01557, 2019.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. CoRR, abs/1511.05952,
2015. URL https://api.semanticscholar.org/CorpusID:13022595.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. K. Li, Y. Wu, and D. Guo.
Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024.
URL https://arxiv.org/abs/2402.03300.

S. Sukhbaatar, E. Denton, A. Szlam, and R. Fergus. Learning goal embeddings via self-play for
hierarchical reinforcement learning, 2018a. URL https://arxiv.org/abs/1811.09083.

S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus. Intrinsic motivation
and automatic curricula via asymmetric self-play, 2018b. URL https://arxiv.org/abs/
1703.05407.

S. Tao, A. Shukla, T.-k. Chan, and H. Su. Reverse forward curriculum learning for extreme sample
and demonstration efficiency in rl, 2024.

J. Uesato, N. Kushman, R. Kumar, F. Song, N. Siegel, L. Wang, A. Creswell, G. Irving, and
I. Higgins. Solving math word problems with process- and outcome-based feedback, 2022. URL
https://arxiv.org/abs/2211.14275.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

P. Veličković, A. P. Badia, D. Budden, R. Pascanu, A. Banino, M. Dashevskiy, R. Hadsell, and
C. Blundell. The clrs algorithmic reasoning benchmark. arXiv preprint arXiv:2205.15659, 2022.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou. Chain-of-
thought prompting elicits reasoning in large language models, 2023.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Z. Xi, W. Chen, B. Hong, S. Jin, R. Zheng, W. He, Y. Ding, S. Liu, X. Guo, J. Wang, H. Guo, W. Shen,
X. Fan, Y. Zhou, S. Dou, X. Wang, X. Zhang, P. Sun, T. Gui, Q. Zhang, and X. Huang. Training
large language models for reasoning through reverse curriculum reinforcement learning, 2024.

S. Xue, Z. Huang, J.-Y. Liu, X. Lin, Y. Ning, B. Jin, X. Li, and Q. Liu. Decompose, analyze
and rethink: Solving intricate problems with human-like reasoning cycle. In Neural Informa-
tion Processing Systems, 2024. URL https://api.semanticscholar.org/CorpusID:
276117098.

A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li, D. Liu, F. Huang, et al. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

K. Yang, A. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil, R. J. Prenger, and A. Anandkumar.
Leandojo: Theorem proving with retrieval-augmented language models. Advances in Neural
Information Processing Systems, 36:21573–21612, 2023.

Y. Yue, Z. Chen, R. Lu, A. Zhao, Z. Wang, Y. Yue, S. Song, and G. Huang. Does reinforcement
learning really incentivize reasoning capacity in llms beyond the base model?, 2025. URL
https://arxiv.org/abs/2504.13837.

13

https://api.semanticscholar.org/CorpusID:13022595
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/1811.09083
https://arxiv.org/abs/1703.05407
https://arxiv.org/abs/1703.05407
https://arxiv.org/abs/2211.14275
https://api.semanticscholar.org/CorpusID:276117098
https://api.semanticscholar.org/CorpusID:276117098
https://arxiv.org/abs/2504.13837

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

E. Zelikman, Y. Wu, J. Mu, and N. Goodman. Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

E. Zelikman, G. Harik, Y. Shao, V. Jayasiri, N. Haber, and N. D. Goodman. Quiet-star: Language
models can teach themselves to think before speaking, 2024. URL https://arxiv.org/
abs/2403.09629.

14

https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2403.09629

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A EXTENDED RELATED WORK

Scratchpads and Chain-of-Thought Strategies It is widely believed that success on challenging
problems requires a model to know how to use intermediary computations in the context, to reason
and deduct the final answers. Nye et al. (2021) proposed supervised training of Transformers to
use scratchpads in addition to final answer, showing improvements on tasks like executing Python
code and evaluating polynomials. Similarly, Wei et al. (2023) proposed chain-of-thought prompting,
showing that large language models can generate scratchpads via in-context demos and without
explicit training. Moreover, Kojima et al. (2022) studied zero-shot chain-of-thought generation for
language models. Lanchantin et al. (2024) introduced the concept of self-notes, showing benefits
of interleaving the intermediate reasoning steps within the question/context. Goyal et al. (2024)
introduced pause tokens which act as place-holder tokens providing models with more computation
time before output generations.

Several works have shown that allowing transformers to produce a chain-of-thought would increase
their expressivity (Feng et al., 2024; Merrill and Sabharwal, 2024). Further, Abbe et al. (2024) put
forward the notion of globality degree of a task as a hardness measure and show that scratchpads can
make learning more efficient by breaking the globality of a task. They also proposed inductive scratch-
pads which impose a Markovian structure over reasoning steps, improving length generalization.
Gao et al. (2025) proposed AbstRaL, showing improved robustness by training language models on
mathematical abstraction of reasoning traces, instead of natural language chain-of-thoughts. Outside
of reasoning and natural language scratch pads, unsupervised learning of intermediary symbolic
sequences using straight-through gradient estimators (Bengio et al., 2013) has been studied in (Amani
et al., 2024; Sánchez et al., 2023; Kaiser and Bengio, 2018).

RL and Reasoning Benchmarks Reinforcement learning has emerged as a dominant paradigm
for post-training language models on tasks involving sparse, verifiable reasoning signals Havrilla
et al. (2024). Our reasoning tasks and settings are closest to STaR (Zelikman et al., 2022), Quiet-
STaR (Zelikman et al., 2024), and R-STaR-MATH (Guan et al., 2025), which apply RL to improve
mathematical and symbolic reasoning through selective training on verified rationales.

In parallel, alignment with human preferences has also leveraged RL techniques—most prominently
Proximal Policy Optimization (PPO (Schulman et al., 2017)) (Bai et al., 2022; Pang et al., 2024a).
Recent efforts have explored variants of REINFORCE-style updates and reward model bootstrapping,
often using iterative fine-tuning pipelines. Interestingly, multiple works have reported that iterative
filtering and fine-tuning on correct completions can match or exceed PPO performance in some
domains (Gulcehre et al., 2023; Ahmadian et al., 2024).

Two standard benchmarks for mathematical reasoning used in most of the just-mentioned work in RL
for reasoning are GSM8k (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) datasets. GSM8k
consists of grade-school arithmetic problems requiring multi-step solutions, often accompanied by
natural language justifications. MATH contains higher-difficulty competition-style math problems
with structured step-by-step solutions. Nevertheless, RL approaches can be applied to any task for
which verifiers or other forms of reward functions are available, including coding (Chen et al., 2021)
and formal math (Yang et al., 2023).

Alternatively to RL, some natural language questions can be translated into formal logic and answered
using automated theorem provers—for instance, Olausson et al. (2023) maps questions into first-order
logic using an LLM, then delegates inference to a symbolic prover. AbstRaL also solves GSM8k-style
problems by first converting them into abstract symbolic equations and then using a solver (Gao et al.,
2025).

Process vs Outcome Supervision Uesato et al. (2022) compared process-based feedback (reward
each correct intermediate step) with outcome-based feedback (reward only at the final answer) on
GSM8k. They found final answer accuracy can be similar with outcome-only training, but the quality
of the reasoning steps was much higher with process supervision–the process supervision reducing
reasoning errors dramatically. This could be another motivation for backtracking methods as the
model learns by reinforcing small steps conditioned on correct chain-of-thoughts.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Curriculum Learning in Reinforcement Learning Several other works in reinforcement learning
have explored curriculum strategies to overcome sparse reward challenges (Narvekar et al., 2020).
Florensa et al. (2017) uses a reverse curriculum for training, where starting states become increasingly
difficult during training. However, compared to Salimans and Chen (2018), these starting states
do not come from demonstrations. Backplay (Resnick et al., 2022) demonstrated strong gains in
environments like Pommerman and Atari by starting episodes near the goal state using a single
demonstration and gradually moving the starting point backward, enabling the agent to outperform
the suboptimal demonstrator. Prioritized Level Replay (PLR) (Jiang et al., 2020) focuses training on
the hardest levels in procedural environments like Procgen(Cobbe et al., 2019) by adaptively replaying
levels where the agent performs poorly. Sukhbaatar et al. (2018b) proposed an automatic curriculum
where a teacher agent proposes increasingly difficult tasks for a learner agent, leading to emergent
complex curriculum strategies without any hand-designed task progression. This was extended in
Sukhbaatar et al. (2018a) to learn goal embeddings and reusable low-level policies through self-play.

Comparison with State-of-the-art Mathematical Reasoning Models Although recent leader-
board results show strong performance, they are not directly comparable to our work because
they typically rely on much larger models, additional math-heavy pretraining datasets, or complex
prompting and inference-time searching strategies Xue et al. (2024); Pang et al. (2024b); Liu et al.
(2023). In contrast, our focus is on isolating the contribution of AdaBack itself by comparing it fairly
against standard RL baselines under controlled settings. Importantly, AdaBack is not an alternative to
these methods but a complementary training enhancement. It can be combined with larger models,
post-training strategies, or prompting techniques like chain-of-thought prompting and majority voting
Xue et al. (2024) without overhead. This makes AdaBack a foundational component that strengthens
models from the ground up and can integrate seamlessly into more complex state-of-the-art pipelines
Pang et al. (2024b).

B DISCUSSION ON LEARNING PARITIES

The problem of learning parity functions has been extensively studied in the theory of machine
learning (Abbe and Sandon, 2020; 2023; Barak et al., 2022; Abbe et al., 2023a; Edelman et al.,
2024; Glasgow, 2024). Typically, the task is defined as follows5: each bit in the input is sampled
independently and uniformly from the Rademacher distribution Rad(1/2) (i.e., −1 or 1 with equal
probability). The target function is a parity over a subset of bits, i.e.,

∏
i∈S xi for some S ⊆ [d]. The

size of S, denoted |S|, is called the degree of the parity. When |S| = Od(1) is constant (with respect
to the input dimension), the problem is referred to as learning a sparse parity.

Due to symmetry, we often discuss learning a parity of degree k without specifying the particular
subset S. Most learning formulations assume the degree k is known while the identity of S must be
learned, yielding a hypothesis class of size

(
d
k

)
. It is well established that the difficulty of learning

sparse parities increases with the degree k. In the statistical query (SQ) model (Kearns, 1998), it has
been shown that learning a parity of degree k requires Ω(dk) queries, which translates to Ω(dk−1)
samples (Kou et al., 2024).

Similar lower bounds have been conjectured/shown for neural networks. In particular, fully connected
networks with bounded width and depth and rotationally invariant weight initializations are conjec-
tured to require Ω(dmax(k−1,1)) online gradient steps to learn a degree-k parity (Abbe et al., 2023a).
This has been proven under specific assumptions, such as for noisy population gradient descent (Abbe
and Sandon, 2023; Abbe et al., 2021). Recently, Kou et al. (2024) showed that this lower bound is
tight: a variant of SGD (namely, sign-SGD) can learn the task in O(log d) iterations using batches of
size Õ(dk−1). The problem becomes more subtle in the offline setting where samples can be reused.
In this case, Abbe et al. (2023a) conjecture the optimal sample complexity to be Θ(dmax(k/2,1)). We
note that one can often reduce the sample complexity at the cost of using larger models, where the
width/depth of the model scales with d (Edelman et al., 2024).

5We follow standard theoretical conventions and use ±1 values for the bits. Equivalent results hold for 0, 1
bits. Moreover, since Transformers embed inputs into continuous vectors, empirical results are invariant to the
bit representation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In our proposed chain-of-parities task, an input sequence of length L contains L−1 parity targets
of degree 3 and one initial parity of degree 2. Learning all of these parity targets jointly with a
single model may be harder (due to interference) or easier (due to shared information, such as the
influence of previous bit), depending on the model architecture—particularly positional embeddings
in Transformers. A simplifying assumption is to treat the learning of each parity target as independent.
Under this assumption, the problem reduces to learning parities of degree 3, for which, based on
the discussions above, one would not expect learnability using only Θ̃(L) samples. In contrast, the
degree-2 parity should be learnable with Θ̃(L) samples (Glasgow, 2024; Kou et al., 2024).

This explains why supervised fine-tuning with Θ̃(L) samples fails to weakly learn the degree-3 parity
targets Zi for i > 1. Consequently, SFT followed by standard reinforcement learning also fails, as
the RL phase remains unguided which makes the probability of stumbling upon a valid completion
(and receiving reward) exponentially small.

We now explain why AdaBack can succeed where SFT and RL fail. Consider a scenario in which
the first L−1 steps of the solution, i.e., Y1, Z1, . . . , YL−1, ZL−1, are provided, and the model
must complete YL, ZL. In this setup, there are two valid completions: (YL, ZL) and its com-
plement (Y ′

L, Z
′
L), where x′ denotes the bitwise complement of x. The fact that the same prefix

X1, . . . , XL, Y1, . . . , ZL−1 admits two such completions indicates that if ZL is a parity of the previ-
ous coordinates, then YL lies in the support of this parity. This effectively reduces the problem of
learning a degree-3 parity function for ZL to that of learning a degree-2 parity function (since one bit
is already revealed)—a task that is learnable with Θ̃(L) samples. This introduces a setting where
AdaBack is able to learn the task, while the combination of SFT and standard RL fails.

We do not explore the exact training dynamics here, as they depend on the model architecture and
optimization details. Instead, we empirically validate this separation result in Sec. 2.2.

C METHOD DETAILS

Improving Convergence via ρ = 0 Injection We observed that always sampling supervision ratios
from ρ

(i)
t ∼ U(ρ

(i)
min, ρ

(i)
max) led to slower convergence and a distribution mismatch between training

and validation. Specifically, when a large portion of samples remain difficult (i.e., ρ(i)min > c for many
i), the model would be significantly less exposed to fully unsupervised completions during training,
while validation is always conducted at ρ = 0.

To address this, we introduced a small amount of supervision-free training into the curriculum: with
10% probability, we sample ρ

(i)
t = 0 directly, while using the uniform interval sampling with the

remaining 90% probability. This stochastic exposure to 0-portion training helped close the train-test
gap and accelerated convergence in the early phases of AdaBack training.

Bootstrapping via Global Averages For samples with no reward history, we initialize ρ(i) from
global moving averages ρ̄min and ρ̄max, which are updated over time using exponential moving
averages:

ρ̄min ← αρ
(i)
min + (1− α) · ρ̄min

ρ̄max ← αρ(i)max + (1− α) · ρ̄max

Here α ∈ [0, 1] is a momentum parameter controlling the smoothing rate.

Choice of the reward threshold τ Curriculum learning often requires careful hyperparameter
tuning—such as deciding how long to train at each stage and with what optimizer parameters or
learning rate. AdaBack simplifies this process by collapsing these decisions into a single parameter:
the reward threshold τ . Intuitively, τ controls the average reward the model receives; the binary
search mechanism ensures that the supervision is adapted to maintain this target. We experimented
with several values of τ and found the final results to be largely robust, except near extreme values
(i.e., τ ≈ 0 or τ ≈ 1). We chose τ = 0.5 in our main experiments, as this maximizes reward variance,
following the insights of Razin et al. (2024) on avoiding vanishing gradients for PPO updates.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D EXPERIMENT DETAILS

Computation and Budget We conducted experiments using small language models ranging from
1B to 3B parameters. Input sequence lengths varied across tasks, with a maximum input length
of 2048 tokens and generation lengths up to 2048 tokens. Depending on model size and sequence
length, we used nodes equipped with either 4 or 8 NVIDIA A100 GPUs. Including all diagnostic and
development runs, our total compute usage amounted to approximately 80,000 A100 GPU hours.

Reinforcement Learning Setup We used the GRPO algorithm for all RL experiments, with 8
rollouts (generations) per input sample. Unless otherwise noted, we trained all models for at least
10,000 iterations to ensure convergence to long-term behavior. To further ensure the fairness of
comparisons, we continued each standard GRPO training at least as long as the corresponding
AdaBack training. Exploring different learning rates, we found lr = 10−6 to give us stable and rather
fast training. We report final test accuracy or reward as the average over the last 5 checkpoints. In rare
cases where performance deteriorated at the end of training, we averaged over the last 5 iterations
with increasing reward.

Our RL batch size was 256. We did not use a KL penalty or entropy regularization, neither in the loss
nor in the reward.

For supervised-fine tuning of the base models, we used a validation set to adjust the hyperparameters
and also the number of fine tuning iterations.

For datasets like Tensor-2 GSM8k and the chain-of-parities task, where the output format is nontrivial,
we applied a format reward of rformat = 0.1 to encourage structured outputs. This was unnecessary
for models initialized from SFT, which already generate syntactically valid sequences and thus begin
training with an initial reward near 0.1. However, for consistency, we kept this term in all settings.

Chain-of-Parities Task Setup We use 1024 labeled examples with sequence length L = 16. In
this setting, the probability of generating a valid solution by chance is 2−16, making reward signals
extremely sparse. As a result, standard RL fails to make progress, even when initialized from an
SFT checkpoint. The curriculum introduced by AdaBack mitigates this by incrementally revealing
intermediate reasoning steps, allowing learning to proceed from the final step backward.

E LLM USAGE

We have used ChatGPT and Gemini models to improve text quality at phrase and paragraph level.

F ADDITIONAL FIGURES

We show how portions and the train and test rewards evolve for GSM8k, MATH, Base-7 GSM8k,
and Tensor-2 GSM8k in Figures 3, 5, 6, and 7 respectively.

0 2000 4000 6000 8000 10000 12000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
wa

rd
/P

or
tio

n

AdaBack

Train Reward
Avg. Portion
Test Reward

0 2000 4000 6000 8000 10000 12000
Iteration

Standard RL vs. AdaBack

Adaback
Train Reward
Test Reward

Standard RL
Train Reward Test Reward

Figure 5: AdaBack on MATH. Results from training Llama3-3B base model (non-SFT) on MATH
dataset. The left column presents AdaBack training dynamics and the right column shows standard
RL for comparison.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 5000 10000 15000 20000
Iteration

0.0

0.2

0.4

0.6

0.8

Re
wa

rd
/P

or
tio

n

AdaBack

Train Reward
Test Reward
Avg. Portion

0 5000 10000 15000 20000
Iteration

Standard RL vs. AdaBack

Adaback
Train Reward
Test Reward

Standard RL
Train Reward
Test Reward

Figure 6: AdaBack on Base-7 GSM8k. Results from training Llama3-1B fine-tuned model (SFT)
on Base-7 GSM8k dataset. The left column presents AdaBack training dynamics and the right column
shows standard RL for comparison.

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
/P

or
tio

n

AdaBack

Train Reward
Test Reward
Avg. Portion

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

Standard RL vs. AdaBack

Adaback
Train Reward
Test Reward

Standard RL
Train Reward
Test Reward

Figure 7: AdaBack on Tensor-2 GSM8k. Results from training Llama3-1B fine-tuned model (SFT)
on Tensor-2 GSM8k dataset. The left column presents AdaBack training dynamics and the right
column shows standard RL for comparison. Note that for this task, outputting an answer with the
correct format has 0.1 reward. So the observed rewards are higher than the actual accuracies.

0 500 1000 1500 2000 2500 3000 3500
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
wa

rd

Adaback
Train Reward
Test Reward

Standard RL
Train Reward
Test Reward

Figure 8: Lack of Learning Signal on MATH. On the MATH dataset, Llama 3.2 3B-Instruct shows
minimal learning dynamics, with both train and test rewards saturating early. Nearly all questions
are solved within a few hundred iterations, leaving no room for AdaBack to provide further benefit.
This may be due to the model having been heavily exposed to examples similar to this dataset during
pretraining.

19

	Introduction
	Adaptive Backtracking
	Method
	Chain-of-Parities: A Synthetic Environment for Studying Reasoning

	Experiments
	Related Work
	Conclusion, Limitations, and Future Work
	Extended Related Work
	Discussion on Learning Parities
	Method Details
	Experiment Details
	LLM Usage
	Additional Figures

