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Abstract

Graph Contrastive Learning (GCL) aims to learn
node representations by aligning positive pairs
and separating negative ones. However, few of
researchers have focused on the inner law behind
specific augmentations used in graph-based learn-
ing. What kind of augmentation will help down-
stream performance, how does contrastive learn-
ing actually influence downstream tasks, and why
the magnitude of augmentation matters so much?
This paper seeks to address these questions by
establishing a connection between augmentation
and downstream performance. Our findings reveal
that GCL contributes to downstream tasks mainly
by separating different classes rather than gath-
ering nodes of the same class. So perfect align-
ment and augmentation overlap which draw all
intra-class samples the same can not fully explain
the success of contrastive learning. Therefore, in
order to understand how augmentation aids the
contrastive learning process, we conduct further
investigations into the generalization, finding that
perfect alignment that draw positive pair the same
could help contrastive loss but is poisonous to gen-
eralization, as a result, perfect alignment may not
lead to best downstream performance, so specifi-
cally designed augmentation is needed to achieve
appropriate alignment performance and improve
downstream accuracy. We further analyse the re-
sult by information theory and graph spectrum
theory and propose two simple but effective meth-
ods to verify the theories. The two methods could
be easily applied to various GCL algorithms and
extensive experiments are conducted to prove its
effectiveness. The code is available at https:
//github.com/somebodyhh1/GRACEIS
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1. Introduction
Graph Neural Networks (GNNs) have been successfully
applied in various fields (Yang et al., 2022a) such as recom-
mendation systems (He et al., 2020), drug discovery (Liu
et al., 2018), and traffic analysis (Wu et al., 2019), etc (Yang
et al., 2023; 2024; Tang & Liu, 2023). However, most GNNs
require labeled data for training, which may not always be
available. To address this issue, Graph Contrastive Learning
(GCL), which does not rely on labels, has gained popu-
larity as a new approach to graph representation learning
(Veličković et al., 2018; You et al., 2020).

GCL often generates new graph views through data aug-
mentation (Chen et al., 2020; Zhu et al., 2020; Jia & Zhang,
2022; Mumuni et al., 2024). GCL considers nodes aug-
mented from the same as positive samples and others as
negative samples. Subsequently, the model try to maximize
similarity between positive samples and minimize similarity
between negative ones (Wang & Isola, 2020; Hassani &
Khasahmadi, 2020) to learn a better representation. So, data
augmentation plays a vital role in graph contrastive learn-
ing, and data augmentation can be categorized into three
types (Zhao et al., 2022): random augmentation (Veličković
et al., 2018; Zhu et al., 2020), rule-based augmentation (Zhu
et al., 2021; Wei et al., 2023; Liu et al., 2022), and learning-
based augmentation (Suresh et al., 2021; Jiang et al., 2019).
For instance, GRACE (Zhu et al., 2020) randomly masks
node attributes and edges in graph data to obtain augmented
graphs; GCA (Zhu et al., 2021) uses node degree to measure
its importance and mask those unimportant with higher prob-
ability; And AD-GCL (Suresh et al., 2021) uses a model to
learn the best augmentation and remove irrelevant informa-
tion as much as possible. However, most data augmentation
algorithms are designed heuristically, and there is a lack of
theoretical analysis on how these methods will influence the
downstream performance.

Some researchers have explored the generalization ability
of contrastive learning (Arora et al., 2019; Wang & Isola,
2020; Huang et al., 2021). They propose that contrastive
learning works by gathering positive pairs and separating
negative samples uniformly. Wang et al. (2022b) argues that
perfect alignment and uniformity alone cannot guarantee
optimal performance. They propose that through stronger
augmentation, there will be support overlap between dif-
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ferent intra-class samples, which is called augmentation
overlap (Saunshi et al., 2022; Huang et al., 2021). The
augmentation overlap between two nodes mean that their
corresponding augmented node could be the same, in this
way aligning the anchor node with the the augmented node
could also align two anchor nodes. Thus, the alignment of
positive samples will also cluster all the intra-class samples
together. And due to the limited inter-class overlap, inter-
class nodes will not be gathered. However, Saunshi et al.
(2022) points out that augmentation overlap may be rela-
tively rare despite the excellent performance of contrastive
learning methods. Hence, chances are that the success of
contrastive learning cannot be solely attributed to alignment
and augmentation overlap. It is of vital importance to figure
out how augmentation works in the contrastive learning pro-
cess, why the magnitude of augmentation matters so much
and how to perform better augmentation. As data augmenta-
tion on graphs could be more customized and the magnitude
of augmentation can be clearly represented by the number
of modified edges/nodes (You et al., 2020), we mainly study
the augmentation on graphs.

In this paper, we provide a new understanding of Graph Con-
trastive Learning and use a theoretical approach to analyze
the impact of augmentation on contrastive learning process.
We find that with a stronger augmentation, the model is
performing better mainly because of inter-class separating
rather than intra-class gathering brought by augmentation
overlap. This aligns with the finding that augmentation over-
lap is actually quite rare in contrastive learning (Saunshi
et al., 2022). Also, (Wang et al., 2022b) proposes that a
stronger augmentation could help because of more augmen-
tation overlap, then more intra-class nodes are gathered due
to alignment. However, stronger augmentation naturally
conflicts with better alignment, so does stronger augmenta-
tion helps intra-class gathering remains questionable. More-
over, stronger augmentation leads to better performance
while the alignment is weaken, so we also question that
does perfect alignment actually helps contrastive learning?

To further analyze the phenomena, we formulate a relation-
ship between downstream accuracy, contrastive learning
loss, and alignment performance, find that weak alignment
performance caused by stronger augmentation can benefit
the generalization. This explains why stronger augmenta-
tion will lead to better performance and reveals that perfect
alignment is not the key to success, it may help to decrease
contrastive loss, but also enlarge the gap between contrastive
learning and downstream task, so specifically designed aug-
mentation strategy is needed to achieve appropriate align-
ment and get the best downstream accuracy. This is why
augmentation matters so much in contrastive learning.

Then, aiming to achieve better downstream accuracy, we
need to figure out how to perform augmentation to achieve

a better balance between contrastive loss and generaliza-
tion. Therefore, we further analyze the contrastive pro-
cess through information theory and graph spectrum theory.
From the information theory perspective, we find augmenta-
tion should be stronger while keeping enough information,
which is widely adopted explicitly or implicitly by designed
algorithms (Zhu et al., 2021; 2020; Suresh et al., 2021).
From the graph spectrum theory perspective, we analyze
how the graph spectrum will affect the contrastive loss and
generalization (Liu et al., 2022), finding that non-smooth
spectral distribution will have a negative impact on general-
ization. Then we propose two methods based on the theories
to verify our findings.

Our main contributions are as listed follows. (1) We re-
veal that when stronger augmentation is applied, contrastive
learning benefits from inter-class separating more than intra-
class gathering, and better alignment may not be helping as
it conflicts with stronger augmentation. (2) We establish the
relationship between downstream performance, contrastive
learning loss, and alignment performance. Finds that bet-
ter alignment would weaken the generalization, showing
that why stronger augmentation helps, then we analyze the
result from information theory and graph spectrum theory.
(3) Based on the proposed theoretical results, we provide
two simple but effective algorithms to verify the correctness
of the theory. We also show that these algorithms can be
extended to various contrastive learning methods to enhance
their performance. (4) Extensive experiments are conducted
on different contrastive learning algorithms and datasets
using our proposed methods to demonstrate its effectiveness
and verify our theory.

2. Augmentation and Generalization
2.1. Preliminaries

A graph can be represented as G = (V, E), where V is the
set of N nodes and E ⊆ V × V represents the edge set. The
feature matrix and the adjacency matrix are denoted as X ∈
RN×F and A ∈ {0, 1}N×N , where F is the dimension
of input feature, xi ∈ RF is the feature of node vi and
Ai,j = 1 iff (vi, vj) ∈ E . The node degree matrix D =
diag(d1, d2, ..., dN ), where di is the degree of node vi.

In contrastive learning, data augmentation is used to cre-
ate new graphs G1,G2 ∈ Gaug, and the corresponding
nodes, edges, and adjacency matrices are denoted as
V1, E1,A1,V2, E2,A2. In the following of the paper, v
is used to represent all nodes including the original nodes
and the augmented nodes; v+i is used to represent the aug-
mented nodes including both v1i and v2i ; v0i represents the
original nodes only.

Nodes augmented from the same one, such as (v1i , v
2
i ), are

considered as positive pairs, while others are considered as
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negative pairs. It is worth noting that a negative pair could
come from the same graph, for node v1i , its negative pair
could be v−i ∈ {v+j |j ̸= i}. Graph Contrastive Learning
(GCL) is a method to learn an encoder that draws the em-
beddings of positive pairs similar and makes negative ones
dissimilar (Chen et al., 2020; Wang & Isola, 2020). The
encoder calculates the embedding of node vi by f(vi), and
we assume that ||f(vi)|| = 1.

2.2. How Does Augmentation Affect Downstream
Performance

Previous work (Wang & Isola, 2020) proposes that effective
contrastive learning should satisfy alignment and uniformity,
meaning that positive samples should have similar embed-
dings, i.e., f(v1i ) ≈ f(v2i ), and features should be uniformly
distributed in the unit hypersphere. However, Wang et al.
(2022b) pointed out that perfect alignment and uniformity
does not ensure great performance. For instance, when
{f(v0i )}Ni=1 are uniformly distributed and f(v0i ) = f(v+i ),
there is a chance that the model may converge to a triv-
ial solution that only projects very similar features to the
same embedding, and projects other features randomly, then
it will perform random classification in downstream tasks
although it achieves perfect alignment and uniformity.

Wang et al. (2022b) argues that perfect alignment and intra-
class augmentation overlap would be the best solution. The
augmentation overlap means support overlap between differ-
ent intra-class samples, and stronger augmentation is likely
to bring more augmentation overlap. If two intra-class sam-
ples have augmentation overlap, then the best solution is
projecting the two samples and their augmentation to the
same embedding, which is called perfect alignment. For
example, if two different nodes v0i , v0j get the same aug-
mentation v+, then the best solution to contrative learning
is f(v0i ) = f(v+) = f(v0j ). As the intra-class nodes are
naturally closer, augmentation overlap often occurs between
intra-class nodes, so perfect alignment and augmentation
overlap could help intra-class gathering.

However, Saunshi et al. (2022) proposes that augmenta-
tion overlap is actually quite rare in practice, even with
strong augmentation. Also augmentation overlap requires
for strong augmentation, which makes alignment harder
and conflicts with perfect alignment, so the success of con-
trastive learning may not be contributed to intra-class gath-
ering brought by augmentation overlap. Therefore, it is
important to understand how is contrastive learning work-
ing, and why stronger augmentation helps. More related
work are introduced in Appendix E.

To begin with, we give an assumption on the label consis-
tency between positive samples, which means the class label
does not change after augmentation.
Assumption 2.1 (View Invariance). For node v0i , the cor-

responding augmentation nodes v+i get consistent labels,
i.e., we assume the labels are deterministic (one-hot) and
consistent: p(y|v0i ) = p(y|v+i ).

This assumption is widely adopted (Arora et al., 2019; Wang
et al., 2022b; Saunshi et al., 2022) and reasonable. If the
augmentation still keeps the basic structure and most of
feature information is kept, the class label would not likely
to change. Else if the augmentation destroys basic label
information, the model tends to learn a trivial solution, so
it is meaningless and we do not discuss the situation. The
graph data keeps great label consistency under strong aug-
mentation as discussed in Appendix C.3.

To further understand how is data augmentation working in
contrastive learning, we use graph edit distance (GED) to
denote the magnitude of augmentation, Trivedi et al. (2022)
proposes that all allowable augmentations can be expressed
using GED which is defined as minimum cost of graph
edition (node insertion, node deletion, edge deletion, feature
transformation) transforming graph G0 to G+. So a stronger
augmentation could be defined as augmentation with a larger
graph edit distance.

Assumption 2.2 (Augmentation Distance and Augmenta-
tion). While Assumption 2.1 holds i.e., p(y|v0i ) = p(y|v+i ),
as the augmentation getting stronger, the augmentation dis-
tance δ2aug = Ep(v0

i ,v
+
i )||f(v0i ) − f(v+i )||2 will increase,

i.e., δaug ∝ GED(G0,G+). GED(G0,G+) indicates the
graph edit distance between G0 and G+.

This is a natural assumption that is likely to hold because
a bigger difference in input will lead to a bigger difference
in output. Also we can notice that δaug is actually the
distance between the anchor node and the augmented node,
so δaug could naturally represent the alignment performance,
a smaller δaug means a better alignment. Then Assumption
2.2 means that stronger augmentation would lead to larger
δaug , i.e., worse alignment. This phenomena is common in
real practice as shown in Appendix C.3.

Definition 2.3. The class center is calculated by the ex-
pectation of all nodes belongs to the class, i.e., µy =
Ep(v,y) [f(vy)]. We use δy+ and δy− to represent intra-class
and inter-class divergence respectively, and

δ2y+ = Ep(y,i,j)||f(v0y,i)− f(v0y,j)||2,
δ2y− = Ep(y,y−,i,j)||f(v0y,i)− f(v0y−,j)||

2,

where y− stands for a class different from y.

Note that we calculate the class center µy by averaging
nodes from both original view and augmented views. As
the augmentation on graphs are highly biased (Zhang et al.,
2022), i.e., the mean of augmented nodes are different from
the original node, so the class center tends to be different.
Also contrastive learning actually learns embedding on the
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Figure 1. PCD means positive center distance (Ep(v0
y|y)||f(v

0
y)− µy||), NCD means negative center distance (Ep(v0

y|y)||f(v
0
y)− µy− ||)

and accuracy is the downstream performance. X-axis stands for dropout rate of both edge and feature.

augmented view, so the class gathering result is largely
affected by the augmentation, so it is more appropriate to
include the augmented nodes when calculate the class center.

With the assumptions, we can get the theorem below:

Theorem 2.4 (Augmentation and Classification). If Assump-
tion 2.1 holds, we know that:

Ep(v0
y|y)||f(v

0
y)− µy|| ≤ δy+ +

2

3
δaug, (1)

Ep(v0
y|y)||f(v

0
y)− µy− || ≤ δy− +

2

3
δaug, (2)

The proof can be found in Appendix A.1. This shows that
the distance between a node and the class center could be
represented by the augmentation distance δaug and the inter-
class/intra-class divergence δy− , δy+ . We then use positive
and negative center distance to represent Ep(v0

y|y)||f(v
0
y)−

µy|| and Ep(v0
y|y)||f(v

0
y)− µy− ||, respectively.

As we assumed in Assumption 2.2, when the augmentation
becomes stronger, augmentation distance i.e., δaug would
increase. Also we notice that both positive and negative
center distance are positively related to the magnitude of
augmentation δaug. Therefore, stronger augmentation sep-
arates both inter-class and intra-class nodes, i.e., it helps
inter-class separating and hinders intra-class gathering. But
the downstream performance tends to be better with stronger
augmentation (Wang et al., 2022b; Zhu et al., 2020), so the
performance gain may be brought by inter-class separating
more than intra-class gathering.

The experiment shown in Figure 1 confirms our suspicion.
We use dropout on edges and features to perform augmenta-
tion, and the dropout rate naturally represents the magnitude
of augmentation i.e., graph edit distance. We present the
positive/negative center distance and downstream accuracy
to show the changing tendency. Figure 1 shows that ini-
tially, as the dropout rate increases, positive center distance
is not decreasing, but downstream performance could be

enhanced as negative center distance increases sharply. So
the better performance correlates to inter-class separating,
and the intra-class nodes may not be gathered.

We show the results on more datasets including shopping
graph, graph with heterophily and coauthor network in Ap-
pendix C.2. From those experiments, we can conclude that
contrastive learning mainly contributes to downstream tasks
by separating nodes of different classes (increasing neg-
ative center distance) rather than gathering nodes of the
same class (non-decreasing positive center distance). This
explains why contrastive learning can achieve satisfying per-
formance with limited augmentation overlap and relatively
weak alignment (Saunshi et al., 2022).

We can also understand the phenomena intuitively, The
InfoNCE loss LNCE can be written as below:

LNCE = Ep(v1
i ,v

2
i )
Ep(v−

i )

[
− log

exp(f(v1i )
T f(v2i ))∑

exp(f(v1i )
T f(v−i ))

]
.

The numerator stands for positive pair similarity, so stronger
augmentation would make positive pair dissimilar and the
numerator is harder to maximize. Then GCL would pay
more attention to the minimize the denominator as shown in
Appendix C.5. Minimizing the denominator is actually sep-
arating negative samples, and separating negative samples
could effectively separate inter-class nodes as most negative
samples are from the different classes. In contrast, with
stronger augmentation augmentation overlap is still quite
rare and positive pair are harder to be aligned, so intra-class
nodes are hard to be gathered while the existence of intra-
class negative nodes further weaken intra-class gathering.
As a result intra-class nodes may not gather closer during
contrastive learning. Also we can observe from Figure 1
that when we drop too much edges/features, downstream
performance decreases sharply, and both positive and nega-
tive center similarity increases as too much information is
lost and the basic assumption p(y|v0i ) = p(y|v+i ) does not
hold, then a trivial solution is learned.
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2.3. Augmentation and Generalization

Although GCL with a stronger augmentation may help to im-
prove downstream performance, why it works stays unclear.
We need to figure out the relationship between augmentation
distance, contrastive loss and downstream performance to
further guide algorithm design. We first define the mean
cross-entropy (CE) loss below, and use it to represent down-
stream performance.

Definition 2.5 (Mean CE loss). For an encoder f and
downstream labels y ∈ [1,K], we use the mean CE loss

L̂CE = Ep(v0,y)

[
− log

exp(f(v0)Tµy)∑K
j=1 exp(f(v0)Tµj)

]
to evaluate

downstream performance, where µj = Ep(v|y=j) [f(v)].

It is easy to see that mean CE loss could indicate down-
stream performance as it requires nodes similar to their
respective class center, and different from others class
centers. Also it is an upper bound of CE loss LCE =

Ep(v0,y)

[
− log

exp(f(v0)Tωy∑K
i=1 exp(f(v0)Tωi)

]
, where ω is parameter

to train a linear classifier g(z) = Wz, W = [ω1, ω2, ..., ωk].
Arora et al. (2019) showed that the mean classifier could
achieve comparable performance to learned weights, so we
analyze the mean CE loss instead of the CE loss in this
paper.

Theorem 2.6 (Generalization and Augmentation Distance).
If Assumption 2.1 holds, and ReLU is applied as activation,
then the relationship between downstream performance and
InfoNCE loss could be represented as:

L̂CE ≥ LNCE − 3δ2aug − 2δaug − log
M

K
− 1

2
Var(f(v+)|y)

−
√
Var(f(v0)|y)− eVar(µy)−O(M− 1

2 ),

where M is number of negative samples1, K is number of
classes.

The proof can be found in Appendix A.2. Theorem 2.6
gives a lower bound on the mean CE loss, we find that
when we perform stronger augmentation, the lower bound
would be smaller. The smaller lower bound does not en-
force a better performance, but it shows a potential better
solution. When the lower bound becomes smaller, the best
solution is better so the model potentially performs better.
For example, if there exists two models with L̂CE ≥ 0.7 and
L̂CE ≥ 0.3 respectively, the latter one would be prefered
as it is more likely to perform better, and the former one
can never achieve performance better than 0.7. The upper
bound instead shows the worst case, smaller upper bound
means that the model could perform better at the worst case.

1the generalization are correlated with − logM −O(M− 1
2 ),

which is decreasing when M increases and M is large, so the
theorem encourages large negative samples.

From experimental results shown in Appendix C.2, we can
observe that the downstream performance tends to be bet-
ter with stronger augmentation which corresponds to the
decreasing lower bound, so the model is powerful enough
to be close to the lower bound. Therefore, a smaller lower
bound could lead to better performance.

Theorem 2.6 suggests a gap between L̂CE and LNCE, mean-
ing that the encoders that minimize LNCE may not yield
optimal performance on downstream tasks. Furthermore,
it suggests that a higher augmentation distance δaug would
make the bound smaller and enhance generalization, im-
prove performance on downstream tasks. This aligns with
previous finding that a stronger augmentation helps down-
stream performance. Also Inequality (1) demonstrates that
the positive center distance is positively related to δaug, so
better generalization correlates with higher positive center
distance. This aligns with the experiments before that better
downstream performance may come with a high positive
center distance.

Theorem 2.6 also highlights the significance of augmen-
tation magnitude in graph contrastive learning algorithms
like GRACE (Zhu et al., 2020). A weak augmentation
leads to better alignment but also a weak generalization,
InfoNCE loss might be relatively low but the downstream
performance could be terrible (Saunshi et al., 2022). When
augmentation gets stronger, although perfect alignment can-
not be achieved, it promotes better generalization and po-
tentially leads to improved downstream performance. And
when the augmentation is too strong, minimizing the In-
foNCE loss becomes challenging (Li et al., 2022), leading
to poorer downstream performance. Therefore, it is cru-
cial to determine the magnitude of augmentation and how
to perform augmentation as it directly affects contrastive
performance and generalization.

3. Finding Better Augmentation
Previous sections have revealed that perfect alignment, may
not help downstream performance. Instead a stronger aug-
mentation that leads to larger δaug will benefit generaliza-
tion while weakening contrastive learning process. There-
fore, we need to find out how to perform augmentation to
strike a better balance between augmentation distance and
contrastive loss, leading to better downstream performance.

3.1. Information Theory Perspective

Due to the inherent connection between contrastive learning
and information theory, we try to analyse it through informa-
tion perspective. As shown by Oord et al. (2018), LNCE is
a lower bound of mutual information. And, Var(f(v0)|y),
Var(f(v+|y)) and Var(µy) can be represented by inherent
properties of the graph and the augmentation distance δaug .
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Thus, we can understand the process through information
and augmentation, we can reformulate Theorem 2.6 as fol-
lows:

Corollary 3.1 (CE with Mutual Information). If Assump-
tion 2.1 holds, the relationship between downstream perfor-
mance, mutual information between views and augmenta-
tion distance could be represented as:

L̂CE ≥ log(K)− I(v1, v2)− g(δaug)−O(M− 1
2 ),

where I(v1, v2) stands for the mutual information between
v1 and v2, g(δaug) is monotonically increasing with δaug,
and is defined in Appendix A.3.

The proof can be found in Appendix A.3. Corollary 3.1
suggests that the best augmentation would be one that max-
imize the mutual information and augmentation distance.
Tian et al. (2020) propose that a good augmentation should
minimize I(v1, v2) while preserve as much downstream
related information as possible, i.e., I(v1, y) = I(v2, y) =
I(v0, y). However, downstream tasks is unknown while
pretraining, so this is actually impossible to achieve. Our
theory indicates that the augmentation should be strong
while preserving as much information as possible, and the
best augmentation should be the one satisfying InfoMin
which means the augmentation gets rid of all useless infor-
mation and keeps the downstream related ones. So InfoMin
propose the ideal augmentation which can not be achieved,
and we propose an actual target to train a better model.

To verify our theory, we propose a simple but effective
method. We first recognize important nodes, features and
edges, then leave them unchanged during augmentation to
increase mutual information. Then for those unimportant
ones, we should perform stronger augmentation to increase
the augmentation distance.

We utilize gradients to identify which feature of node v
is relatively important and carries more information. We
calculate the importance of feature by averaging the feature
importance across all nodes, the importance of node v could
be calculated by simply averaging the importance of its
features, and then use the average of the two endpoints to
represent the importance of an edge:

αv,p =
∂LNCE

∂xv,p
, αp = ReLU

(
1

|V ′|
∑
v

αv,p

)
,

αv = ReLU

(
1

|P ′|
∑
p

αv,p

)
, αei,j =

(
αvi + αvj

)
/2,

where αv,p is importance of the pth feature of node v, αp is
the importance of pth feature, αv iss importance of node v,
and αei,j means the importance of edge (vi, vj).

For those edges/features with high importance, we should
keep them steady and do no modification during augmen-
tation. For those with relatively low importance, we can
freely mask those edges/features, but we should make sure
that the number of masked edges/features is greater than the
number of kept ones to prevent δaug from decreasing. The
process can be described by the following equation:

Ã = A ∗ (Me ∨Se ∧De), F̃ = F ∗ (Mf ∨Sf ∧Df ),

where ∗ is hadamard product, ∨ stands for logical OR, ∧
stands for logical AND. Me, Mf represent the random
mask matrix, which could be generated using any masking
method, Se, Sf are the importance based retain matrix, it
tells which edge/feature is of high importance and should be
retained. For the top ξ important edges/features, we set Se,
Sf to 1 with a probability of 50% and to 0 otherwise. De,
Df show those edges/features should be deleted to increase
δaug, for the least 2ξ important edges/features, we also set
De, Df to 0 with a probability of 50% and to 1 otherwise.

This is a simple method, and the way to measure impor-
tance can be replaced by any other methods. It can be
easily integrated into any other graph contrastive learning
methods that require edge/feature augmentation. There are
many details that could be optimized, such as how to choose
which edges/features to delete and the number of deletions.
However, since this algorithm is primarily intended for the-
oretical verification, we just randomly select edges to be
deleted and set the number to be deleted as twice the number
of edges kept.

In fact, most graph contrastive learning methods follow a
similar framework as discussed in Appendix B.1.

3.2. Graph Spectrum Perspective

In this section, we attempt to analyze InfoNCE loss and
augmentation distance from graph spectrum perspective
as graph and GNNs are deeply connected with spectrum
theory. We start by representing them using the spectrum of
the adjacency matrix A.

Theorem 3.2 (Theorem 1 of Liu et al. (2022) Restated).
Given adjacency martix A and the generated augmenta-
tion A′,A′′, the ith eigenvalues of A′ and A′′ are λ′

i, λ
′′
i ,

respectively. The following upper bound is established:

LNCE ≥ N logN − (N + 1)
∑
i

θiλ
′
iλ

′′
i , (3)

where θi is the adaptive weight of the ith term, the detail of
θi is discussed in Appendix C.1.

Corollary 3.3 (Spectral Representation of δaug). If Assump-
tion 2.1 holds, and λ′

i, λ
′′
i are ith eigenvalues of A′ and A′′,
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Table 1. Quantitative results on node classification, algorithm+I stands for the algorithm with information augmentation, and algorithm+S
stands for the algorithm with spectrum augmentation. We show the error bar in Figure 12

Methods Cora CiteSeer PubMed DBLP Photo Computers mean p-value

B
as

el
in

e Supervised GCN 83.31±0.07 69.81±0.98 85.36±0.09 81.26±0.01 93.28±0.03 88.11±0.14 81.93 -
Supervised GAT 83.83±0.30 70.31±0.65 84.04±0.40 81.92±0.03 93.17±0.05 86.82±0.09 81.57 -
GRACE+SpCo 83.45±0.79 69.9±1.24 OOM 83.61±0.14 91.56±0.19 83.37±0.38 81.01 -

GCS 83.39±0.54 68.73±1.68 84.92±0.19 83.38±0.37 90.15±0.24 86.54±0.26 81.97 -

U
ns

up
er

vi
se

d

GRACE 82.52±0.75 70.44±1.49 84.97±0.17 84.01±0.34 91.17±0.15 86.36±0.32 83.25 -
GRACE+I 83.78±1.08 72.89±0.97 84.97±0.14 84.80±0.17 91.64±0.21 87.57±0.53 84.28 0.155
GRACE+S 83.61±0.85 72.83±0.47 85.45±0.25 84.83±0.18 91.99±0.35 87.67±0.33 84.40 0.003

GCA 83.74±0.79 71.09±1.29 85.38±0.20 83.99±0.21 91.67±0.38 86.77±0.31 83.77 -
GCA+I 84.93±0.81 72.74±1.05 85.73±0.13 84.79±0.28 91.94±0.13 86.60±0.29 84.46 0.089
GCA+S 84.51±0.89 72.38±0.86 85.35±0.09 84.49±0.24 92.02±0.34 86.97±0.40 84.29 0.147

AD GCL 81.68±0.80 70.01±0.97 84.77±0.15 83.14±0.16 91.34±0.33 84.80±0.51 82.62 -
AD GCL+I 83.46±1.06 71.06±0.91 85.52±0.33 84.76±0.09 91.71±0.78 86.02±0.53 83.76 0.003
AD GCL+S 82.96±0.53 71.35±0.47 85.38±0.30 84.45±0.19 91.79±0.33 86.49±0.26 83.74 0.006

respectively, then:

2δaug ≥ Ep(v1
i ,v

2
i )
||f(v1i )−f(v2i )|| ≥

√
2− 2

N

∑
i

θiλ′
iλ

′′
i .

(4)

Theorem 2.6 suggests that we should strive to make LNCE

small while increase δaug, but they are kindly mutually ex-
clusive. As shown in Theorem 3.2, and Corallary 3.3 proved
in Appendix A.4, when θi is positive, a small LNCE re-
quires for large |λi| while a large δaug requires for small
|λi|, and it works exclusively too when θi is negative. As
contrastive learning is trained to minimize LNCE, θs are
going to increase as the training goes, so we can assume
that θs will be positive, the detailed discussion and exact
definition of θ can be found in Appendix C.1. Therefore,
to achieve a better trade-off, we should decrease |λi| while
keep InfoNCE loss also decreasing. In fact, reducing |λi|
actually reduces the positive λi and increases the negative
λi, which is trying to smoothen the graph spectrum and nar-
row the gap between the spectrum. As suggested by Yang
et al. (2022b), graph convolution operation with unsmooth
spectrum results in signals correlated to the eigenvectors
corresponding to larger magnitude eigenvalues and orthogo-
nal to the eigenvectors corresponding to smaller magnitude
eigenvalues. So with enough graph convolution operations,
if |λi| > |λj |, then we can get the embedding f(v) satis-
fying sim(f(v), ei) ≫ sim(f(v), ej) where ei denotes the
eigenvector corresponding to λi, causing all representations
similar to ei. Therefore, an unsmooth spectrum may lead to
similar representations and result in over-smooth. This can
also be observed from Inequality (4), where a higher |λi|
draws f(v1i ) and f(v2i ) more similar.

We now know that smoothing the graph spectrum can help
with graph contrastive learning. The question is how to
appropriately smooth the spectrum. We propose a simple

method. As the training aims to minimize LNCE, the pa-
rameter θis are supposed to increase. Therefore, we can
use θi as a symbol to show whether the model is correctly
trained. When θi gradually increases, we can decrease λ as
needed. However, when θi starts to decrease, it is likely that
the change on the spectrum is too drastic, and we should
take a step back. The process could be described as follows:

λi = λi + directioni ∗ λi ∗ α,

directioni =


−1, cur(θi)− pre(θi) ≥ ϵ

1, cur(θi)− pre(θi) ≤ −ϵ,

0, otherwise

where α is a hyperparameter that determines how much we
should decrease/increase λi. ϵ is used to determine whether
θi is increasing, decreasing, or just staying steady. cur(θi)
and pre(θi) represents the current and previous θi.

In this way, the contrastive training will increase θi and re-
sult in a lower LNCE, while we justify λi to achieve a better
augmentation distance, which promises a better generaliza-
tion ability. Also some spectral augmentations implicitly
decreases |λ|s as shown in Appendix B.2.

4. Experiments
In this section, we mainly evaluate the performance of
the methods we proposed on six datasets: Cora, CiteSeer,
PubMed, DBLP, Amazon-Photo and Amazon-Computer.
We select 3 contrastive learning GNN, GRACE (Zhu et al.,
2020), GCA (Zhu et al., 2021) and AD-GCL (Suresh et al.,
2021), then we integrate those models with our proposed
methods to verify its applicability and correctness of the
theory. Details of datasets and baselines are shown in Ap-
pendix D.1. The results are summarized in Table 1. We
further investigate the positive/negative center distance in
Appendix D.4, the hyperparameter sensitivity is studied in
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Figure 2. Augmentation distance and InfoNCE, GRACE+I stands for GRACE with information augmentation, and GRACE+S stands for
GRACE with spectrum augmentation. GRACE+x MI means mutual information between two views after training, and GRACE+x δaug
is augmentation distance caused by the method.

Figure 3. Accuracy on downstream tasks with different number of layers.

Appendix D.5, and the change of θ and the spectrum while
training is shown in Appendix D.3.

From Table 1 shows that GRACE+I (GRACE with informa-
tion augmentation) and GRACE+S (GRACE with spectrum
augmentation) both improve the downstream performance.
This improvement is significant for GRACE since it pri-
marily performs random dropout, resulting in the loss of
valuable information. But for GCA, the performance gain
is relatively weak as GCA already drops the unimportant
ones with a higher probability, allowing it to capture suf-
ficient information. AD-GCL aggressively drops as much
information as possible and some important ones are also
dropped, so our methods help greatly. Overall, our methods
improve the performance of original algorithm and helps
downstream tasks, the p-value on the averaged performance
shown in Table 1 also prove that our method is effective.
We further discuss the two different methods and combine
then in Appendix D.7. Also we conduct further discussion
on some augmentation free methods in Appendix C.4.

4.1. Augmentation Distance

Figure 2 shows that for all three algorithms, our augmen-
tation methodologies can conduct stronger augmentation
while preserving similar mutual information. In this way,
our methods achieve higher augmentation distance while
capturing similar information of the original view. So our

methods achieve similar contrastive loss with better general-
ization, resulting in improved downstream performance.

4.2. Over-smooth

While reducing |λi|, we obtain a graph with smoother spec-
trum, and could relieve the over-smooth by preventing nodes
being too similar with the eigenvector corresponding to the
largest eigenvalue. This enables the application of relatively
more complex models. We can verify this by simply stack-
ing more layers. As shown in Figure 3, if applied spectrum
augmentation, the model tends to outperform the original
algorithm especially with more layer, and the best perfor-
mance may come with a larger number of layers, which
indicates that more complicated models could be applied
and our method successfully relieve over-smooth.

5. Conclusion
In this paper, we study the impact of contrastive learning
on downstream tasks and propose that perfect alignment
does not necessarily lead to better performance. Instead, we
find that a relatively large augmentation distance is more
beneficial for generalization by enlarging the distance of
inter-class nodes. We further study how the augmentation in-
fluences contrastive learning by information theory and the
graph spectrum theory and propose two effective methods.

8
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A. Theoretical Proof
A.1. Proof of Theorem 2.4

If we set δ2y+ = Ep(y,i,j)||f(v0y,i)− f(v0y,j)||2, and δ2y+ = Ep(y,y′,i,j)||f(v0y,i)− f(v0y′,j)||2. Then with Assumption 2.1 and
jensen inequality, we know that Ep(vi)||f(v0i )− f(v+i )||2 ≤ δ2aug , Ep(vi)||f(v0i )− f(v+i )|| ≤ δaug and Ep(y,i,j)||f(v0y,i)−
f(v0y,j)|| ≤ δy+ , Ep(y,y′,i,j)||f(v0y,i)− f(v0y′,j)|| ≤ δy− . Therefore, we can get the inequality below:

Ep(vy,i,vy,j |y)||f(v
+
y,i)− f(v0y,j)||2 ≤ Ep(vy,i,vy,j |y)||f(v

+
y,i)− f(v0y,i)||2 + Ep(vy,i,vy,j |y)||f(v

0
y,i)− f(v0y,j)||2

+ 2Ep(vy,i,vy,j |y)||f(v
+
y,i)− f(v0y,j)|| · ||f(v0y,i)− f(v0y,j)||

≤ δ2aug + δ2y+ + 2δaugδy+

= (δaug + δy+)2.

As µy = Ep(vy|y)[f(vy)] =
1
3Ep(v0

y|y)f(v
0
y) +

2
3Ep(v+

y |y)f(v
+
y ), we know that,

Ep(v0′
y |y)||f(v

0′

y )− µy|| = Ep(v0′
y |y)||f(v

0′

y )− 1

3
Ep(v0

y|y)f(v
0
y)−

2

3
Ep(v+

y |y)f(v
+
y )||

= Ep(v0′
y |y)

∥∥∥∥13 (f(v0′y )− Ep(v0
y|y)f(v

0
y)
)
+

2

3

(
f(v0

′

y )− Ep(v+
y |y)f(v

+
y )
)∥∥∥∥

≤ Ep(v0′
y |y)

[∥∥∥∥13 (f(v0′y )− Ep(v0
y|y)f(v

0
y)
)∥∥∥∥+ ∥∥∥∥23 (f(v0′y )− Ep(v+

y |y)f(v
+
y )
)∥∥∥∥]

≤ Ep(v0′
y |y)Ep(v0

y|y)
1

3
||(f(v0

′

y )− f(v0y))||+ Ep(v0′
y |y)Ep(v+

y |y)
2

3
||f(v0

′

y )− f(v+y )||

≤ 1

3
δy+ +

2

3
(δaug + δy+)

= δy+ + δaug

Similarly, we know that Ep(v0′
y |y)||f(v0

′

y )− µy− || ≤ δy− + δaug

Next we prove a bound for Ep(v0
y,y

−|y)f(v
0
y)

Tµy− for other use. As µy = Ep(vy|y)[f(vy)] = 1
3Ep(v0

y|y)f(v
0
y) +

2
3Ep(v+

y |y)f(v
+
y ), we know that,

Ep(v0′
y |y)f(v

0′

y )Tµy = Ep(v0′
y |y)f(v

0′

y )T (
1

3
Ep(v0

y|y)f(v
0
y) +

2

3
Ep(v+

y |y)f(v
0
y))

=
1

3
Ep(v0′

y |y)Ep(v0
y|y)f(v

0′

y )T f(v0y) +
2

3
Ep(v0′

y |y)Ep(v+
y |y)f(v

0′

y )T f(v+y ).

assume that Ep(a,b)||a− b||2 ≤ c2, ||a|| = ||b|| = 1, then

Ep(a,b)(a
T − bT )(a− b) ≤ c2

Ep(a,b)[a
Ta− aT b− bTa+ bT b] ≤ c2

Ep(a,b)[2− 2aT b] ≤ c2

Ep(a,b)a
T b ≥ 2− c2

2
= 1− c2

2
.

As we already know that Ep(y,y′,i,j)||f(v0y,i)− f(v0y′,j)||2 ≤ δ2y+ and Ep(vy,i,vy,j |y)||f(v
+
y,i)− f(v0y,j)||2 ≤ (δaug + δy+)2.

So Ep(v0′
y |y)Ep(v0

y|y)f(v
0′

y )T f(v0y) ≥ 1−
δ2
y+

2 and Ep(v0′
y |y)Ep(v+

y |y)f(v
0′

y )T f(v+y ) ≥ 1− (δaug+δy+ )2

2 .
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Then, we can calculate Ep(v0′
y |y)f(v

0′

y )Tµy as below:

Ep(v0′
y |y)f(v

0′

y )Tµy =
1

3
Ep(v0′

y |y)Ep(v0
y|y)f(v

0′

y )T f(v0y) +
2

3
Ep(v0′

y |y)Ep(v+
y |y)f(v

0′

y )T f(v+y )

≥ 1−
δ2aug
3

−
2δaugδy+

3
−

δ2y+

2
.

(5)

Similarly, we know that Ep(v0
y,y

−|y)f(v
0
y)

Tµy− ≥ 1− δ2aug

3 − 2δaugδy−

3 −
δ2
y−

2 .

A.2. Proof of Theorem 2.6

L̂CE = −Ep(v0
i ,y)

f(v0i )
Tµy︸ ︷︷ ︸

Λ1

+Ep(v0
i )
log

K∑
i=j

exp(f(v0i )
Tµj)︸ ︷︷ ︸

Λ2

.

Λ1 = −Ep(v0
i ,y)

f(v0i )
Tµy

= −Ep(v0
i ,y)

[
f(v0i )

T f(v+i ) + f(v0i )
T (µy − f(v+i ))

]
(a)

≥ −Ep(v0
i ,v

+
i ,y)f(v

0
i )

T f(v+i )− Ep(v+
i ,y)||f(v

+
i )− µy||

≥ −Ep(v0
i ,v

+
i ,y)f(v

0
i )

T f(v+i )− Ep(v0
i ,v

+
i ,y)||f(v

+
y )− f(v0y)|| − Ep(v0

i ,v
+
i ,y)||f(v

0
y)− µy||

(b)

≥ −Ep(v0
i ,v

+
i ,y)f(v

1
i )

T f(v2i )− 3δ2aug − δaug − Ep(v0
i ,v

+
i ,y)||f(v

0
y)− µy||.

(a) f(v0i )
T (µy − f(v+i )) ≤ (

µy−f(v+
i )

||µy−f(v+
i )|| )

T (µy − f(v+i )) = ||µy − f(v+i )||.

(b) Ep(v0
i ,v

+
i )||f(v0i )− f(v+i )||2 ≤ δ2aug , then:

δ2aug ≥ Ep(v0
i ,v

1
i )
(f(v0i )− f(v1i ))

T · (f(v0i )− f(v1i ))

= Ep(v0
i ,v

1
i ,v

2
i )
(f(v0i )− f(v1i ))

T · (f(v0i )− f(v1i ) + f(v2i )− f(v2i ))

= Ep(v0
i ,v

1
i ,v

2
i )
f(v0i )

T f(v0i )− f(v0i )
T f(v1i ) + f(v0i )

T f(v2i )− f(v0i )
T f(v2i )

− f(v1i )
T f(v0i ) + f(v1i )

T f(v1i )− f(v1i )
T f(v2i ) + f(v1i )

T f(v2i )

= 2 + Ep(v0
i ,v

1
i ,v

2
i )

[
−2f(v0i )

T f(v1i ) + f(v0i )
T f(v2i )− f(v0i )

T f(v2i )− f(v1i )
T f(v2i ) + f(v1i )

T f(v2i )
]

(c)

≥ 2− 2 + Ep(v0
i ,v

1
i ,v

2
i )

[
f(v0i )

T f(v2i )− 1− f(v1i )
T f(v2i ) + 1− 2δ2aug

]
= Ep(v0

i ,v
1
i ,v

2
i )

[
f(v0i )

T f(v2i )− f(v1i )
T f(v2i )

]
− 2δ2aug.

So, we can get the relationship between Ep(v0
i ,v

1
i ,v

2
i )
f(v0i )

T f(v2i ) and Ep(v0
i ,v

1
i ,v

2
i )
f(v1i )

T f(v2i )− 2δ2aug as below:

δ2aug ≥ Ep(v0
i ,v

1
i ,v

2
i )
f(v0i )

T f(v2i )− Ep(v0
i ,v

1
i ,v

2
i )
f(v1i )

T f(v2i )− 2δ2aug,

Ep(v0
i ,v

1
i ,v

2
i )
f(v0i )

T f(v2i ) ≤ Ep(v0
i ,v

1
i ,v

2
i )
f(v1i )

T f(v2i ) + 3δ2aug.

As v2i is an augmented node, we can get that,

Ep(v0
i ,v

+
i )f(v

0
i )

T f(v+i ) ≤ Ep(v0
i ,v

1
i ,v

2
i )
f(v1i )

T f(v2i ) + 3δ2aug.

13
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(c) f(v0i )
T f(v1i ) ≤ 1, f(v0i )

T f(v2i ) ≤ 1, and Ep(v1
i ,v

2
i )
f(v1i )

T f(v2i ) ≥
2−E

p(v1
i
,v2

i
)
||f(v1

i )−f(v2
i )||

2

2 ≥ 1 −
E
p(v1

i
,v2

i
)
(||f(v1

i )−f(v0
i )||+||f(v0

i )−f(v2
i )||)

2

2 ≥ 1− 2δ2aug .

Lemma A.1 ((Budimir et al., 2000) Corollary 3.5 (restated)). Let g : Rm → R be a differentiable convex mapping and
z ∈ Rn. Suppose that g is L- smooth with the constant L > 0, i.e. ∀x, y ∈ Rm, ∥∇g(x)−∇g(y)∥ ≤ L∥x− y∥. Then we
have

0 ≤ Ep(z)g(z)− g
(
Ep(z)z

)
≤ L

[
Ep(z)∥z∥2 − ∥Ep(z)z∥2

]
= L

n∑
j=1

Var(z(j)),

where z(j) denotes the j-th dimension of v.

Lemma A.2 ((Wang et al., 2022b) Lemma A.2. restated). For LSE := logEp(z) exp(f(v)
⊤g(z)), we denote its (biased)

Monte Carlo estimate with M random samples zi ∼ p(z), i = 1, . . . ,M as L̂SEM = log 1
M

∑M
i=1 exp(f(v)

⊤g(zi)). Then
the approvimation error A(M) can be upper bounded in expectation as

A(M) := Ep(v,zi)|L̂SE(M)− LSE| ≤ O(M−1/2).

We can see that the approvimation error converges to zero in the order of M−1/2.

Λ2 = Ep(v0
i )
log

K∑
j=1

exp(f(v0i )
Tµyj

)

= Ep(v0
i )
log

1

K

K∑
i=j

exp(f(v0i )
Tµyj

) + logK

= Ep(v0
i )
logEp(yj) exp(f(v

0
i )

Tµyj
) + logK

(d)

≥ Ep(v1
i )
logEp(yj) exp(f(v

1
i )

Tµyj
)− δaug − e

n∑
j=1

Var(µj) + logK

(e)

≥ Ep(v1
i )
Ep(yi) log

1

M

M∑
j=1

exp(f(v1i )
Tµyj )−A(M) + logK − δaug − e

n∑
j=1

Var(µj)

= Ep(v1
i )
Ep(yi) log

1

M

M∑
j=1

exp(Ep(v−
i |y−

i )f(v
1
i )

T f(v−i ))−A(M) + logK − δaug − e

n∑
j=1

Var(µj)

(f)

≥ Ep(v1
i )
Ep(yi)Ep(v−

i |y−
i ) log

1

M

M∑
i=1

exp(f(v1i )
T f(v−i ))

− 1

2

m∑
j=1

Var(fj(v
−|y))−A(M) + logK − δaug − e

n∑
j=1

Var(µj)

= Ep(v1
i )
Ep(yi)Ep(v−

i |y−
i ) log

M∑
i=1

exp(f(v1i )
T f(v−i ))

− logM − 1

2

m∑
j=1

Var(fj(v
−|y))−A(M) + logK − δaug − e

n∑
j=1

Var(µj).

(d) We can show that: exp(
[
f(v)Tµyj

]
is convex, and uyj

satisfy e-smooth,

||∂ exp(f(v)Ta)

∂a
− ∂ exp(f(v)T b)

∂b
||

14
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= || exp(f(v)Ta)f(v)− exp(f(v)T b)f(v))||
= | exp(f(v)Ta)− exp(f(v)T b)| · ||f(v)||
≤ | exp(f(v)Ta)− exp(f(v)T b)|
≤ e||(f(v)T )(a− b)|| (f(v)Ta, f(v)T b ≤ 1, so the biggest slope is e)
≤ e||a− b||.

So according to Lemma A.1, we get,

Ep(yj) exp(
[
f(v1i )

Tµyj

]
) ≤ exp(

[
f(v1i )

TEp(yj)µyj

]
) + e

n∑
j=1

Var(µj)

= exp(f(v1i )
Tµ) + e

n∑
j=1

Var(µj).

Then, we can calculate the difference between logEp(yj) exp(
[
f(v0i )

Tµyj

]
) and logEp(yj) exp(

[
f(v1i )

Tµyj

]
) by applying

reversed Jensen and Jensen inequality, respectively.

logEp(yj) exp(
[
f(v1i )

Tµyj

]
)− logEp(yj) exp(

[
f(v0i )

Tµyj

]
)

≤ logEp(yj) exp(
[
f(v1i )

Tµyj

]
)−

[
f(v0i )

Tµ
]

≤ log

exp(f(v1i )Tµ) + e

n∑
j=1

Var(µj)

−
[
f(v0i )

Tµ
]

= log
[
exp(f(v1i )

Tµ)
]
+ log

[
1 +

e
∑n

j=1 Var(µj)

exp(f(v1i )
Tµ)

]
−
[
f(v0i )

Tµ
]

≤ f(v1i )
Tµ− f(v0i )

Tµ+ log

1 + e

n∑
j=1

Var(µj)

 (e2
n∑

j=1

Var(µj), if not ReLU)

≤ (f(v1i )
T − f(v0i )

T )µ+ e

n∑
j=1

Var(µj)

≤ (f(v1i )− f(v0i ))
T ||µ||
||f(v1i )− f(v0i )||

(f(v1i )− f(v0i )) + e

n∑
j=1

Var(µj)

≤ (f(v1i )− f(v0i ))
T 1

||f(v1i )− f(v0i )||
(f(v1i )− f(v0i )) + e

n∑
j=1

Var(µj)

≤ δaug + e

n∑
j=1

Var(µj).

(e) We adopt a Monte Carlo estimation with M samples from p(y) and bound the approximation error with Lemma A.2.

(f) We also uses Lemma A.1, and as proof by Wang et al. (2022b), logsumexp is L-smooth for L = 1
2 .

LCE = Λ1 + Λ2

≥ −Ep(v,y)f(v
1
i )

T f(v2i )− 3δ2aug − δaug − Ep(v0,y)||f(v0y)− µy||

+ Ep(v1
i )
Ep(yi)Ep(v−

i |yi)
log

M∑
i=1

exp(f(v1i )
T f(v−i ))
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− logM − 1

2

m∑
j=1

Var(fj(v
−|y))−A(M) + logK − δaug − e

n∑
j=1

Var(µj)

=

[
−Ep(v1

i ,v
2
i )
f(v1i )

T f(v2i ) + Ep(v−
i ) log

M∑
i=1

exp(f(v1i )f(v
−
i ))

]
− 3δ2aug − δaug − Ep(v0,y)||f(v0y)− µy||

− logM − 1

2

m∑
j=1

Var(fj(v
−|y))−A(M) + logK − δaug − e

n∑
j=1

Var(µj)

= LNCE − 3δ2aug − 2δaug − log
M

K
− 1

2

m∑
j=1

Var(fj(v
−|y))−A(M)− e

n∑
j=1

Var(µj)− Ep(v0,y)||f(v0y)− µy||

(g)

≥ LNCE − 3δ2aug − 2δaug − log
M

K
− 1

2
Var(f(v+)|y)−

√
Var(f(v0)|y)−O(M− 1

2 )− eVar(µy).

(g) This holds because, v− is randomly selected from v+ and,

m∑
j=1

Var(fj(v
−|y))

=

m∑
j=1

Ep(y)Ep(v|y)(fj(v
+)− Ep(v′|y)fj(v

′))2

= Ep(y)Ep(v|y)

m∑
j=1

(fj(v
+)− Ev′fj(v

′))

= Ep(y)Ep(v|y)||f(v)− Ev′f(v′)||2

= Var(f(v+)|y).

And similarly, we can get
∑n

j=1 Var(µj) = Var(µy). So the lower bound is proved.

A.3. Proof of Corollary 3.1

For Var(f(v0y|y)), we can use augmentation distance and the intrinsic property of model and data to express.

Var(f(v0y|y)) = Ep(y)Ep(v0
y|y)||f(v

0
y)− µy||2

= Ep(y)Ep(v0
y|y)

[
(f(v0y)− µy)

T (f(v0y)− µy))
]

= Ep(y)Ep(v0
y|y)

[
f(v0y)

T f(v0y) + µT
y µy − 2f(v0y)

Tµy

]
≤ Ep(y)Ep(v0

y|y)
[
2− 2f(v0y)

Tµy

]
(h)

≤ Ep(y)Ep(v0
y|y)

[
2− 2(1− 1

3
δ2aug −

2

3
δaugδy+ − 1

2
δ2y+)

]
= Ep(y)Ep(v0

y|y)

[
2

3
δ2aug +

4

3
δaugδy+ + δ2y+)

]
≤ 2

3
δ2aug +

4

3
δaugLϵ0 + L2ϵ20,

where ϵ0 = Ep(y)Ep(v0
i ,v

0
j |y)||v

0
i − v0j || and L is the Lipschitz constant, so δ2y+ = Ep(y,i,j)||f(v0y,i)− f(v0y,j)||2 ≤ (Lϵ0)

2.
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Then we can easily get that,

Var(f(v+y )|y) = Ep(y)Ep(v−
y |y)||f(v

+
y )− µy||2

≤ Ep(y)Ep(v+
y |y)(||f(v

+
y )− f(v0y)||+ ||f(v0y)− µy||)2

= Ep(y)Ep(v+
y |y)||f(v

+
y )− f(v0y)||2 + Ep(y)Ep(v+

y |y)||f(v
0
y)− µy||)2

+ 2Ep(y)Ep(v+
y |y)||f(v

+
y )− f(v0y)|| · ||f(v0y)− µy||

≤ δ2aug +Var(f(v0y)|y) + 2δaug

√
Var(f(v0y)|y)

= (δaug +
√
Var(f(v0y)|y))2.

(h) We use Theorem 2.4.

And Var(µy) can also be expressed by intrinsic properties.

Var(µy) = Ep(y)||µy − µ||2

= Ep(y)||µy − f(v∗y) + f(v∗y)− µ||2

≤ Ep(y)(||µy − f(v∗y)||+ ||f(v∗y)− µ||)2

= Ep(y)||Ep(vy|y)f(vy)− f(v∗y)||2 + Ep(y)||f(v∗y)− Ep(v)f(v)||2

+ 2Ep(y)(||Ep(vy|y)f(vy)− f(v∗y)|| · ||f(v∗y)− Ep(v)f(v)||)
= Ep(y)||Ep(vy|y)[f(vy)− f(v∗y)]||2 + Ep(y)||Ep(v)[f(v

∗
y)− f(v)]||2

+ 2Ep(y)(||Ep(vy|y)[f(vy)− f(v∗y)]|| · ||Ep(v)[f(v
∗
y)− f(v)]||)

≤ Ep(y)Ep(vy|y)||f(vy)− f(v∗y)||2 + Ep(y)Ep(v)||f(v∗y)− f(v)||2

+ 2Ep(y)(Ep(vy|y)||f(vy)− f(v∗y)|| · ||f(v∗y)− f(v)||)
≤ L2ϵ21 + L2ϵ22 + 2L2ϵ1ϵ2

= L2(ϵ1 + ϵ2)
2,

where v∗y could be any node of class y, and ϵ1 = Ep(v,y)||vy − v∗y ||, ϵ2 = Ep(y)Ep(v)||v − v∗y ||.

L̂CE ≥ LNCE − 3δ2aug − 2δaug − log
M

K
− 1

2
Var(f(v−)|y)−

√
Var(f(v0)|y)−O(M− 1

2 )− eVar(µy)

≥ LNCE − 3δ2aug − 2δaug − log
M

K
− 1

2
(δaug +

√
Var(f(v0y)|y))2 −

√
Var(f(v0y)|y)−O(M− 1

2 )− eL2(ϵ1 + ϵ2)
2

= LNCE − 3δ2aug − 2δaug − log
M

K
− 1

2
δ2aug − (δaug + 1)

√
Var(f(v0y)|y))

− 1

2
Var(f(v0y)|y))−O(M− 1

2 )− eL2(ϵ1 + ϵ2)
2

= LNCE − g(δaug)− log
M

K
−O(M− 1

2 ),

where g(δaug) =
23
6 δ2aug +

1
2L

2ϵ20 + eL2(ϵ1 + ϵ2)
2 + 2δaug +

2
3δaugLϵ0 + (δaug + 1)

√
2
3δ

2
aug +

4
3δaugLϵ0 + L2ϵ20.

According to Oord et al. (2018), we get,

I(f(v1i ), f(v
2
i )) ≥ log(M)− LNCE,

LNCE ≥ log(M)− I(f(v1i ), f(v
2
i )).

Therefore, we can reformulate Theorem 2.6 as below:

L̂CE ≥ log(M)− I(f(v1i ), f(v
2
i ))− g(δaug)− log

M

K
−O(M− 1

2 )

= log(K)− I(f(v1i ), f(v
2
i ))− g(δaug)−O(M− 1

2 ).
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A.4. Proof of Corollary 3.3

Corallary 3.3 could be simply proved below:

Ep(v1
i ,v

2
i )
||f(v1i )− f(v2i )||2 = Ep(v1

i ,v
2
i )
[(f(v1i )

T − f(v2i )
T )(f(v1i )− f(v2i ))]

= Ep(v1
i ,v

2
i )
[2− 2f(v1i )

T f(v2i )]

= 2− 2

N
tr((H1)TH2)

(1)
= 2− 2

N

∑
i

θiλ
′
iλ

′′
i .

So (Ep(v1
i ,v

2
i )
||f(v1i ) − f(v2i )||)2 ≤ Ep(v1

i ,v
2
i )
||f(v1i ) − f(v2i )||2 = 2 − 2

N

∑
i θiλ

′
iλ

′′
i , then Ep(v1

i ,v
2
i )
||f(v1i ) − f(v2i )|| ≤√

2− 2
N

∑
i θiλ

′
iλ

′′
i .

(1) is suggested by Liu et al. (2022), tr((H1)TH2) could be represented as
∑

i θiλ
′
iλ

′′
i .

As we know that,

Ep(v1
i ,v

2
i )
||f(v1i )− f(v2i )|| ≤ Ep(v1

i ,v
2
i )
(||f(v1i )− f(v0i )||+ ||f(v0i )− f(v2i )||) ≤ 2δaug.

Then, we can get:

2δaug ≥ Ep(v1
i ,v

2
i )
||f(v1i )− f(v2i )|| ≥

√
2− 2

N

∑
i

θiλ′
iλ

′′
i . (6)

A.5. Proof of Lemma B.1

From Stewart (1990), we know the following equation:

∆λi = λ
′

i − λi = uT
i ∆Aui − λiu

T
i ∆Dui +O(||∆A||).

So we can calculate the difference between λ′
i, λ

′′
i and λi,

∆λi =
∑
m

(
∑
n

ui [n] ∆A [m] [n])ui [m]− λi

∑
m

ui [m] ∆D [m]ui [m] +O(||∆A||)

=
∑
m,n

ui [m]ui [n] ∆A [m] [n]− λi

∑
m,n

ui [m] ∆A [m] [n]ui [m] +O(||∆A||).

And we can directly calculate λ′
i − λ′′

i as below:

λ′
i − λ′′

i = ∆λ′
i −∆λ′′

i

=
∑
m,n

ui [m]ui [n] ∆Â [m] [n]− λi

∑
m,n

ui [m] ∆Â [m] [n]ui [m]

=
∑
m,n

ui [m] ∆Â [m] [n] (ui [n]− λiui [m]).

B. GCL Methods with Spatial and Spectral Augmentation
B.1. Spatial Augmentation

Most augmentation methods are applied to explicitly or implicitly increase mutual information while maintain high augmen-
tation distance. GRACE simply adjusts this by changing the drop rate of features and edges. AD-GCL (Suresh et al., 2021)
directly uses the optimization objective min{aug}max{f∈F}I(f(v), f(aug(v))) to search for a stronger augmentation.
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Figure 4. influence of pτ on Cora (all the data are nor-
malized for better visualization)

And GCA (Zhu et al., 2021) could always perform better than ran-
dom drop. This is mainly because GCA calculates node importance
and masks those unimportant to increase mutual information. Also
they use pτ as a cut-off probability, so for those unimportant fea-
tures/edges, all of them share the same drop probability pτ . By
setting a large pτ , GCA can reduce the drop probability for the least
important features/edges and drop more relatively important ones to
achieve a trade-off between mutual information and augmentation
distance.

From Figure 4, we could clearly see that, as pτ increases, augmen-
tation distance and LNCE are increasing, and leads to a better down-
stream performance, than when pτ becomes too large, we got a trivial
solution. And in the code provided by the author, pτ is set to 0.7.
So GCA performances well on downstream tasks not only because
its adaptive augmentation, but also its modification on augmentation
distance.

B.2. Spectral Augmentation

Furthermore, we can demonstrate that lots of spectral augmentations follow this schema to improve downstream performance.
Liu et al. (2022) proposes that increasing the number of high-frequency drops leads to better performance. This is because
high-frequency parts are associated with higher coefficients λi, so increasing the number of high-frequency drops can have a
stronger increasement on δaug , resulting in better performance.

Lemma B.1 (Change of Spectrum). if we assume that A′ = A+∆A1, A′′ = A+∆A2, λ′
i, λ

′′
i is the ith eigenvalue of A′

and A′′, respectively. ∆Â = A′ −A′′, and ui is the corresponding eigenvector.

λ′
i − λ′′

i =
∑
m,n

ui [m] ∆Â [m] [n] (ui [n]− λiui [m]).

Lemma B.1 is proved in Appendix A.5. Lin et al. (2022) propose to maximize the spectral difference between two views,
but Lemma B.1 shows that difference between spectrum is highly correlated with the original magnitude, so it is actually
encouraging more difference in large |λi|. But rather than just drop information, they try to improve the spectrum of first
view, and decrease the other view. if we simply assume λ′

i = λi + n, λ′′
i = λi − n, then λ′

iλ
′′
i = λ2

i − n2 ≤ λ2
i , so this

could also be explained by augmentation distance increasement.

C. Further Explanation
C.1. Value of θs

As defined by Liu et al. (2022), θs are actually linear combination of the eigenvalues of adjacency matrix A. To demonstrate
what θs actually are, we first focus on the assumption below.

Assumption C.1 (High-order Proximity). M = w0 + w1A+ w2A
2 + · · ·+ wqA

q , where M = X1W ·WT (X2)T , Ai

means matrix multiplications between i As, and wi is the weight of that term.

Where X1, X2 indicates the feature matrix of graph G1,G2, W stands for the parameter of the model, so M = X1W ·
WT (X2)T means embedding similarity between two views, and could be roughly represented by the weighted sum of
different orders of A. Furthermore, we have that:


w0 + w1λ1+ · · ·+ wqλ

q
1 = θ1

w0 + w1λ2+ · · ·+ wqλ
q
2 = θ2

. . .

w0 + w1λN+ · · ·+ wqλ
q
N = θN ,
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Figure 5. Percentage of positive θ

Figure 7. More experiments on PCS and NCS, the detailed data is slightly different due to randomness, but it shows similar tendency

where λ1, ..., λN is N eigenvalues of the adjacency matrix A.

So we know that θs are actually linear combination of λs. As the model is trained to minimize LNCE, θs are expected to
increase, and we can simply set w0, w2, ..., w2(q/2) to be positive and other wi to 0, then we can get θs that are all positive,
and the model would easily find better ws.

We can say that in the training process, θs are mostly positive, and the experiments shown in Figure 10 indicate it true.

C.2. PCS, NCS and Downstream Performance

Figure 6. relationship of PCD, NCD and performance on images

More experiments are conducted on various of datasets
to show that our finding could be generalized rather
that limited to few datasets in Figure 7. They show
similar tendency that with the dropout rate increasing,
the downstream accuracy increases first and decreases
when the augmentation is too strong. And those ex-
periments show that when the downstream accuracy
increases, the positive center distance are sometimes
increasing, and the better downstream performance is
mainly caused by the increasing distance of negative
center.

We also conduct experiments on images to verify our

20



Perfect Alignment May be Poisonous to Graph Contrastive Learning

theory, we control the magnitude of augmentation by adjusting the color distortion strength, and the results are normalized
by Min-Max normalization. From Figure 6, we can observe that the downstream performance is also closely correlated with
negative center distance especially when the color distortion strength changes from 0.2 to 0.6 the positive center distance
increases while downstream performance is increasing, but when color distortion is greater than 0.6 the positive center
distance also tends to decrease. This aligns with our finding in Theorem 2.4 that with the augmentation gets stronger the
negative center distance is increasing while the positive center distance does not change in specific pattern. Also the color
distortion is not strong enough to change the label information, so the downstream performance keeps increasing with
stronger augmentation.

C.3. Change of δaug and Label Consistency

Figure 8. relationship between δaug , KL divergence and augmentation

To verify how is δaug changing with stronger aug-
mentation, we use drop rate of edges/features as data
augmentation, and find that when the drop rate in-
creases, δaug also tends to increase. Also to verify
the view invariance assumption, we first train a well
conditioned model and use its prediction as p(vi), then
we change the drop rate and calculate new p′(vi), then
we can observe from Figure 8 that though the KL di-
vergence is increasing with drop rate, it remains quite
small magnitude, so the label is consistent with data
augmentation.

C.4. Augmentation Free Methods

In this paper, we mainly discuss how the augmentation will affect the contrastive performance, but actually, GCL methods
with or without augmentation aim for the same, they both try to align intra-class nodes and separate inter-class nodes.
However, during contrastive learning, label information is not accessible, so they use different methods to get intra-class
nodes.

• GCL methods with augmentation create intra-class nodes by data augmentation, so it is necessary to control the strength
of augmentation to ensure label consistency. But augmentation brings more flexibility, you can freely change the
topology and feature of the graph, so a good GCL method with augmentation always require a well-designed data
augmentation. This could lead to great performance, but the they require more time consumption and overlook the
unique properties of graphs.

• GCL methods without augmentation instead find intra-class nodes by other methods. For example, GMI (Peng et al.,
2020) and iGCL (Li et al., 2023) try to align the anchor with its neighbors and similar nodes (which are more likely to
hold the same label), and SUGRL (Mo et al., 2022) create intra-class nodes by two different embedding generation
methods. Label based methods like SupCon (Khosla et al., 2020) directly align samples with the same class. These
methods take advantage of the inherent property of the dataset such as homophily and the similarity between intra-class
samples but the positive sample construction is not as flexible as augmentation.

Therefore, GCL methods with or without methods are inherently the same, they both align positive samples, and they create
the positive samples differently. Our analysis focus on the difference between two positive samples, so the analysis can also
be employed on those methods.

C.5. change on positive/negative pair similarity

The InfoNCE loss LNCE can be written as LNCE = Ep(v1
i ,v

2
i )
Ep(v−

i )

[
− log

exp(f(v1
i )

T f(v2
i ))∑

{v−
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}
exp(f(v1
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]
, and when we perform

stronger augmentation, f(v1i )
T f(v2i ) would be hard to maximize, and the model will try to minimize f(v1i )

T f(v−i ) harder.
From Figure 9, when the augmentation gets stronger, negative and positive pair similarity both decreases, so the class
separating performance is enhanced.
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Figure 9. sim+ represents the positive pair similarity f(v1i )
T f(v2i ), and sim− is negative pair similarity f(v1i )

T f(v−i ), the x-axis stands
for dropout rate on edges

D. Experiments
D.1. Datasets and Experimental Details

We choose the six commonly used Cora, CiteSeer, PubMed, DBLP, Amazon-Photo and Amazon-Computer for evaluation.
The first four datasets are citation networks (Sen et al., 2008; Yang et al., 2016; Bojchevski & Günnemann, 2017), where
nodes represent papers, edges are the citation relationship between papers, node features are comprised of bag-of-words
vector of the papers and labels represent the fields of papers. In Amazon-Photos and Amazon-Computers (Shchur et al.,
2018), nodes represent the products and edges means that the two products are always bought together, the node features are
also comprised of bag-of words vector of comments, labels represent the category of the product.

We use 2 layers of GCNConv as the backbone of encoder, we use feature/edge drop as data augmentation, the augmentation
is repeated randomly every epoch, and InfoNCE loss is conducted and optimized by Adam. After performing contrastive
learning, we use logistic regression for downstream classification the solver is liblinear, and in all 6 datasets we randomly
choose 10% of nodes for training and the rest for testing.

Table 2. Dataset statistics
Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
DBLP 17,716 105,734 1,639 4

Amazon-Photo 7,650 119,081 745 8
Amazon-Computers 13,752 245,861 767 10
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Table 3. Dataset download links
Dataset Download Link

Cora https://github.com/kimiyoung/planetoid/raw/master/data
Citeseer https://github.com//kimiyoung/planetoid/raw/master/data
Pubmed https://github.com/kimiyoung/planetoid/raw/master/data
DBLP https://github.com/abojchevski/graph2gauss/raw/master/data/dblp.npz

Amazon-Photo https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon electronics photo.npz
Amazon-Computers https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon electronics computers.npz

And the publicly available implementations of Baselines can be found at the following URLs:

• GCN: https://github.com/tkipf/gcn

• GAT: https://github.com/PetarV-/GAT

• GRACE: https://github.com/CRIPAC-DIG/GRACE

• GCA: https://github.com/CRIPAC-DIG/GCA

• AD-GCL: https://github.com/susheels/adgcl

• GCS: https://github.com/weicy15/GCS

• SpCo: https://github.com/liun-online/SpCo

D.2. Hyperparameter Setting

Table 4. Hyperparameters settings
Dataset Learning rate Weight decay num layers τ Epochs Hidden dim Activation

Cora 5−4 10−6 2 0.4 200 128 ReLU
Citeseer 10−4 10−6 2 0.9 200 256 PReLU
Pubmed 10−4 10−6 2 0.7 200 256 ReLU
DBLP 10−4 10−6 2 0.7 200 256 ReLU

Amazon-Photo 10−4 10−6 2 0.3 200 256 ReLU
Amazon-Computers 10−4 10−6 2 0.2 200 128 RReLU

The hyperparameter settings is shown in Table 4, other hyperparameter correlated to only one algorithm are set the same as
the original author. The hyperparameter in our methods retain rate ξ and spectrum change magnitude α, we select them
from 0.05 to 0.45 and from -0.1 to 0.01, respectively.

D.3. Changes on the Spectrum

From Figure 10(a), we can see that, when the algorithm is training, θs are mostly increasing gradually, and when we perform
spectrum augmentation, θs will not increase as before, increasing number of θ is close even smaller to decreasing ones.
Then we take a step back on those decreasing ones, result in increasing θs again in the next epoch. Therefore, what we
do is actually perform augmentation to maximize augmentation distance first, then maximize the mutual information after
spectrum augmentation. The idea is actually similar AD-GCL, but we use θs to indicate whether the augmentation is
too much, so we get a more reasonable result. Figure 10(b) and (c) shows that as the training goes, the change on larger
magnitude eigenvalues are also more significant, causing the spectrum to be smoother.

Also there is one thing to notice that when we perform spectrum smoothen method, we are indirectly changing the edge
weights, causing the augmentation being weaker or stronger as drop an edge with weight of 1 is different than drop an edge
with weight 1 + noise. To reduce its influence, we conduct extra augmentation or recovery based on the average weight
change.
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Figure 10. As we perform spectrum augmentation each 10 epochs, the x-axis is epoch/10, the y-axis of the left figure is number of
decreasing λs minus number of increasing λs; for the middle one, y-axis stands for how much λs averagely decreases; and the right one is
the average value of λ.

D.4. Center Distance

As we mentioned earlier, GCL mainly contributes to downstream tasks by increasing the negative center distance while
maintaining a relatively small distance to the positive center. We propose two methods: one that increases mutual information
between two views while keeping a high augmentation distance by masking more unimportant edges or features. This
allows the model to learn more useful information, which forces nodes close to its positive center. The other method tries to
increase augmentation distance while maintaining a relatively high mutual information, so it may not learn as much useful
information. However, by increasing the augmentation distance, it forces the model to separate nodes from different classes
further apart. In summary, the first method brings nodes of the same class closer together, while the second method separates
nodes from different classes further apart just as shown in Figure 11.

Figure 11. distance of nodes between its positive center and negative center, GRACE stands for the pure GRACE, GRACEI stands for
GRACE with information augmentation, and GRACES stands for GRACE with spectrum augmentation

D.5. Hyperparameter Sensitivity

Analysis of retain rate. Retain rate controls how many important features/edges we kept, and how many unimportant ones
dropped. We can see from Figure 13 that AD-GCL benefits from a larger retain rate as it is designed to minimize the mutual
information, and lots of vital structures are dropped. And large datasets like PubMed, DBLP benefits less, it is mainly
because a graph with more edges are more likely to maintain enough information than graph with little edges. For example,
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Figure 12. The error bar of algorithms

after a 30% dropout on edges, a graph with 1000 edges would still kept enough information for downstream tasks, but a
graph with 10 edges would probably lose some vital information.

Analysis of α. α controls how much |λ| will decrease, as we take a step back when the |λ| decreases too much, the
hyperparameter α does not matter so much. But as shown in Figure 14, it still performs more steady on large graphs as a
wrong modification on a single λ matters less than on small graphs.

D.6. Time Complexity and Error Bar

Table 5. The time consumption (seconds) of algorithms

Cora CiteSeer PubMed DBLP Amazon-P Amazon-C

GRACE 8.02 10.08 62.37 56.89 19.05 28.71
GRACE+I 10.74 13.49 68.97 62.8 22.67 29.61
GRACE+S 9.61 12.46 78.11 69.44 21.13 36.94

From Table 5, we can observe that the information augmentation method achieve better performance with only few more
time consuming, this is mainly because we do not calculate the importance of features/edges every epoch like GCS (Wei
et al., 2023), we only calculate it once and use the same importance for the following training. However, the spectrum
augmentation method consumes more time on large graphs like PubMed and DBLP, this is mainly we explicitly change the
spectrum and calculate the new adjacency matrix, which could be replaced by some approximation methods but to prevent
interference from random noise and show that Theorem 3.2 is meaningful, we still conduct eigen decomposition, but it is
worth mentioning that the time complexity could be reduced by some approximation methods (Liu et al., 2022).

The error bar is reported in Figure 12, the experiments are conducted repeatedly for 10 times, we can observe that both the
information augmentation and spectrum augmentation achieve better results, and they performs stably.

D.7. Combination of Information&Spectrum Augmentation

We combine the information augmentation and spectrum augmentation methods and show the result in Table 6. We can
observe that combine the two methods achieve the best performance. We can observe that for larger and denser graphs,
the information could still be well-preserved even after strong augmentation, rendering the augmentation less powerful
compared to smaller graphs. And the spectrum augmentation modify the spectrum based on InfoNCE loss which will be
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Figure 13. accuracy on downstream tasks with different retain rate

Figure 14. Accuracy on downstream tasks with different α
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Table 6. Combine the information&Spectrum Augmentation (GRACE+IS)

Cora CiteSeer PubMed DBLP Amazon-P Amazon-C

GRACE 82.52±0.75 70.44±1.49 84.97±0.17 84.01±0.34 91.17±0.15 86.36±0.32
GRACE+I 83.78±1.08 72.89±0.97 84.97±0.14 84.80±0.17 91.64±0.21 84.54±0.53
GRACE+S 83.61±0.85 72.83±0.47 85.45±0.25 84.83±0.18 91.99±0.35 87.67±0.33
GRACE+IS 84.58±0.79 72.94±0.52 85.62±0.17 84.87±0.25 92.04±0.32 87.73±0.41

more stable on larger graphs, so it help more significantly in larger graphs.

E. Related Work
Graph Contrastive Learning. Graph Contrastive Learning has shown its superiority and lots of researcher are working on
it. DGI (Veličković et al., 2018) contrasts between local node embeddnig and the global summary vector; GRACE (Zhu
et al., 2020), GCA (Zhu et al., 2021) and GraphCL (You et al., 2020) randomly drop edges and features; AD-GCL (Suresh
et al., 2021) and InfoGCL Xu et al. (2021) learn an adaptive augmentation with the help of different principles. In theoretical
perspective, Liu et al. (2022) correlates the InfoNCE loss with graph spectrum, and propose that augmentation should be
more focused on high frequency parts. Guo et al. (2023) further discuss that contrastive learning in graph is different with
images. Lin et al. (2022) thinks that augmentation maximize the spectrum difference would help, and Yuan et al. (2022)
analyse GCL with information theory.

Contrastive Learning Theory. By linking downstream classification and contrastive learning objectives, Arora et al. (2019)
propose a theoretical generalization guarantee. Ash et al. (2021) further explore how does the number of negative samples
influence the generalization. And Tian et al. (2020); Wang et al. (2022a) further discuss what kind of augmentation is
better for downstream performance. Then Wang & Isola (2020) propose that perfect alignment and uniformity is the key to
success while Wang et al. (2022b) argues augmentation overlap with alignment helps gathering intra-class nodes by stronger
augmentation. However, Saunshi et al. (2022) show that augmentation overlap is actually quite rare while the downstream
performance is satisfying. So the reason why contrastive learning helps remains a mystery, in this paper we propose that the
stronger augmentation mainly helps contrastive learning by separating inter-class nodes, and different from previous works
(Wang et al., 2022b; Wang & Isola, 2020; Huang et al., 2021), we do not treat perfect alignment as key to success, instead a
stronger augmentation that draw imperfect alignment could help.
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