
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VISUAL SCRATCHPADS: ENABLING GLOBAL VISUAL
REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern vision models have achieved remarkable success in benchmarks where a
small subset of local features provides critical information about the target. There
is now a growing interest in solving tasks that require more global reasoning,
where local features offer no significant information. These tasks are reminiscent
of the connectivity problems discussed by Minsky and Papert in 1969, which ex-
posed the limitations of the perceptron model and contributed to the first AI winter.
In this paper, we revisit such tasks by introducing four global visual benchmarks
involving path findings and mazes. We show the following: (1) Although today’s
large vision models largely surpass the expressivity limitations of the early mod-
els, they still struggle with learning efficiency; we introduce the ‘globality degree’
to understand this; (2) we then demonstrate that the outcome changes and global
reasoning becomes feasible with the introduction of a ‘visual scratchpad’; simi-
larly to the text scratchpads and chain-of-thoughts used in language models, visual
scratchpads help break down global problems into simpler subproblems; (3) we
further show that more specific ‘inductive scratchpads’, which take steps relying
on less information, afford better out-of-distribution generalization and succeed
for smaller model sizes.

1 INTRODUCTION

Modern computer vision models, as well as text models, are often pre-trained on vast datasets en-
compassing much of the knowledge available on the internet. While this has led to impressive
capabilities, there is growing concern that these models may make decisions based on shallow, local
information rather than engaging in deep, complex reasoning. Evidence suggests that many of these
models function primarily through retrieval, acting as blurry, compressed versions of the Internet.
These models excel at smooth interpolation within this encoded knowledge but often fail to grasp the
underlying logic and complexity of the real world. Unfortunately, the community lacks benchmarks
that rigorously test a model’s ability to perform global reasoning and multi-step problem-solving in
the visual domain. Instead, most common visual benchmarks are limited to tasks that can be solved
with superficial cues and local features. In this work, we aim to close this gap by exploring whether
current models are capable of learning tasks that require deep, multi-step global processing.

In order to address this, it is crucial to define the characteristics of global visual tasks. In con-
trast to local tasks, where a small subset of pixels—typically organized into patches—is sufficient
to achieve better-than-random accuracy, global tasks require a more holistic understanding of the
entire visual scene. For example, in ImageNet classification (Deng et al., 2009), a single patch con-
taining cat whiskers significantly increases the likelihood that the model will classify the image as
a cat. This reliance on local features is further exemplified by the effectiveness of drastic image
cropping in object-centric datasets, where self-supervised models such as DINO (Caron et al., 2021)
employ aggressive multi-crop strategies, sometimes cropping as much as 90% of the image which
empirically improves the performance. Humans, in contrast, do not rely solely on local information;
for instance, when driving a car, it is insufficient to focus only on the view directly in front of the
vehicle. A competent driver must recognize multiple visual objects in the environment and con-
sider their complex behaviors before making decisions. Yet, using such complex real-world tasks,
like autonomous driving, to study model learning is impractical due to their complexity and unpre-
dictability. Instead, we need interpretable and deterministic tasks with well-defined data generation
processes to assess the reasoning ability of the models.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To address this need for visual tasks with global multi-step reasoning, we propose four simple
datasets, some reminiscent of connectivity task Minsky & Papert (1969) that played a significant
role in the AI winter (see Figure 14). Our tasks are closely related to these early studies as they
require an understanding of the connectivity concept. In particular, we propose a graph connectivity
task, the task of determining the number of strings in an image, and a maze solvability task where
we consider rectangular and circular mazes. We argue that these tasks possess the key ingredients
for testing global reasoning. They are inherently global because understanding a small portion of the
graph or maze offers no meaningful insight into the final label (whether the structure is connected
or not). At the same time, their data generation processes are fully controllable and deterministic,
allowing for straightforward manipulation of task complexity by simply increasing the number of
nodes in the graph or cells in the maze. We have also developed more visually engaging variants,
namely the strings task and the circular mazes to enhance the visual aspect. These datasets enable
us to simultaneously test both reasoning and visual recognition abilities, which is the core objective
of this paper.

Despite the increased expressivity of modern vision models compared to the perceptrons discussed
by Minsky & Papert (1969), current models still struggle with global tasks. While they can solve
simple and small graph connectivity and maze problems, their performance rapidly declines to the
accuracy of a random model as the tasks become more complex. This deterioration occurs regardless
of the model’s size, the task used, or whether a pre-trained checkpoint is employed (see Section 4.1).
To remedy this issue, we put forward the notion of visual scratchpads. Similar to the scratchpad idea
used in the text domain (Nye et al., 2021), a visual scratchpad is a single frame or a sequence of
frames that depict the underlying reasoning behind the label of a sample, e.g., the existence of a
path between the source and sink nodes in a maze. The model is supervised with the scratchpads
during training and has to generate them at test time. The scratchpad acts as a guide, showing
the model how to decompose the global problem into simpler subproblems, such as coloring two
nodes at a time in a graph or a few cells at a time in a maze. Interestingly, we find that even
using a one-shot single-frame scratchpad, which only provides a visualization of the final solution
boosts performance significantly making the model capable of learning most of the considered tasks.
Furthermore, the model exhibits a hierarchical “staircase” learning behavior, learning the solution
incrementally during training, even though it was trained to generate only the final solution in a
single shot. Moreover, for the multi-frame scratchpad, we propose a model that generates scratchpad
frames in an autoregressive, recurrent, and Markovian manner called the inductive scratchpad model.
We show that this model outperforms the single-scratchpad model both in in-distribution and out-
of-distribution settings thanks to its Markovian modeling and adaptive compute time at inference.

Our work differs from previous efforts in textual scratchpads due to the unique characteristics of
visual data. Unlike language, which consists of discrete tokens, vision deals with continuous inputs.
Additionally, vision operates within a 2D spatial neighborhood of pixels or patches, in contrast to
the linear, 1D structure of text. This difference influences how models generalize to OOD samples
(such as generalization to more challenging samples that require more reasoning steps), as more
objects can be represented within the same pixel space without requiring additional positional em-
beddings. These distinct features make vision a particularly interesting and fertile field for applying
and extending the scratchpad concept. Here is a summary of this paper’s contributions:

• Exploration of locality and globality in the visual domain: we analyze the concept of local-
ity/globality in vision, to distinguish between global and local tasks while paying particular atten-
tion to the vision Transformers (ViTs, Dosovitskiy et al., 2020), the currently dominant models.

• Development of datasets inspired by Minsky & Papert’s connectivity task: we revisit the
foundational work of Minsky & Papert (1969) by proposing four tasks related to the connectivity
concept that require global reasoning and are hard to learn for ViT models of different sizes.

• Introduction of visual scratchpads for global reasoning: we introduce the visual scratchpad to
enable multi-step reasoning in vision models. More specifically,

– we show that a single-frame scratchpad model can learn visual tasks that were not learnable
with the no-scratchpad models irrespective of size and pre-training;

– we introduce a recurrent model for generating multi-frame scratchpads, namely, the inductive
scratchpad model that allows for better in-distribution and out-of-distribution (OOD) general-
ization thanks to its Markovian modeling and adaptive compute time at inference.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 GLOBAL VISUAL REASONING DATASETS

Vision models have shown remarkable performance on different tasks including image classifica-
tion, image segmentation, object detection, etc. However, these mainstream visual tasks have two
characteristics in common:

1. Local features in the image are informative. For example, if we consider an image partitioned into
a set of patches, there is usually a small subset of patches that provides significant information
on the target (e.g., the label).

2. These tasks can be instinctively and instantaneously solved by humans. That is humans do not
need to ponder for longer periods of time to solve these tasks. Considering the System 1 / System
2 terminology (Kahneman, 2011), these visual tasks are dealt with by our System 1. In general
little or no multi-step chain of entailments is necessary to solve these tasks (e.g., no search).

Despite being common, not all visual tasks share these characteristics. As an example, consider
solving a maze, i.e., answering whether two points are connected in a maze or not. Assuming
the size of the maze is large enough, humans need some deliberation before solving the maze.
Normally, humans would follow paths with a pen on the maze to see where the starting point leads
to. Importantly, apart from trivial edge cases where the start and end locations are close, local
features are not informative on the maze task. For instance, if only three patches of a maze are
given, one cannot solve the maze (determine whether there is a connection) with high probability.
Motivated by the latter, we propose the following visual datasets in this paper:

• Connectivity datasets. Inspired by Minsky & Papert (1969), we consider two datasets based on
the notion of connectivity.

– Cycles task. In this task, 2n nodes are drawn randomly (on an invisible circle) in the image.
There are also 2n edges between these nodes that form either one cycle of size 2n or two cycles
of size n. The task is to determine whether the graph is connected (one cycle, label 1) or not
(two cycles, label 0) given an input image. See Figure 1 for an example. In this task, one has
reason on at least n nodes and the connections between them to determine the label correctly as
any n− 1 nodes do not provide any information on whether there are two cycles or one. Thus,
one can simply increase the complexity of this task by increasing n.

– Strings task. In order to further increase the visual complexity, we consider a dataset consisting
of random strings. In each sample, there are either two closed strings or one longer closed
string. The dataset generation process for these curves is similar to the cycles task above with
the difference that in the strings we do not make the (anchor) nodes visible and also connect
them using 3rd-degree Bézier curves which produces continuous strings (see Figure 1). Similar
to the cycles task, one can increase the complexity of this task by increasing the number of
invisible anchor points 2n which leads to longer more entangled strings.

• Maze solvability. We also consider a maze task in which there are always two connected compo-
nents, and we have a start/source point (shown in blue) and an end/sink point (shown in red). The
source and sink are in the same connected component or not equiprobably. The task is to deter-
mine whether they are connected (label 1) or not (label 0). We provide this dataset in a rectangular
and a circular version to increase the visual complexity. Examples can be seen in Figure 1. To
adjust the complexity of maze datasets, one can modify the size of the maze and hence the number
of cells, size of the components, and distance between the source and sink (if connected).

For each task, there exists a natural visual scratchpad that uncovers the underlying reasoning behind
the label. For the maze, similar to what humans do we can start coloring from the source cell (e.g.,
the cell in blue) to see which areas are reachable until reaching the sink cell or the end of the maze
region similar to doing a breadth-first search (BFS). This coloring is similar to what humans would
naturally do by following the paths from the beginning to see which one (if any) leads to the sink cell.
For the cycles task, we can use a similar idea, we can start by coloring one node, and then coloring
all of the nodes that are connected to this node (which is either half of the graph or all of the graph).
Analogously, for the strings task the visual scratchpad would be coloring one of the strings if there
are two strings or coloring the whole string if there is only one. To disambiguate which cycle/string
to color, we always color the cycle/string that passes through the rightmost (anchor) node.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Cycles (b) Strings (c) Rectangular maze (d) Circular maze

Figure 1: Examples of different tasks. The first row shows the inputs. The second row shows the
complete scratchpad (e.g., the target frame in the single-frame scratchpad model and the final frame
in the multi-frame scratchpad). In the examples of cycles and strings, we have two different cycles
and strings. In the example of the circular maze, the two cells are not connected while in the example
of the rectangular maze, they are. In each of the scratchpads, we start coloring from some point until
the whole connected part is colored (or the sink cell is reached in the maze examples).

Figure 2: Example of the cycles task showing how the scratchpad can contain several frames. The
input image is presented on the left side and then different frames of the visual scratchpad are
depicted from left to right ending with the complete image.

Note that the scratchpad can have a single frame format in which the full scratchpad (all coloring
done) is shown. The scratchpad can also be generated in multiple frames, i.e., consecutive frames
that lead to the final frame. This scratchpad is again analogous to what humans do: starting from
one point and coloring progressively. For example, this could be coloring a distance of 10 when
doing the search for the maze problems, and (up to) two (anchor) nodes for the cycles and strings
tasks. An example of doing so for cycles task is depicted in Figure 2. We start the coloring from
the source node in mazes and from the rightmost (anchor) node in cycles and strings examples. See
Appendix F for scratchpad figures for other datasets.

2.1 GLOBALITY, LOCALITY AND SCRATCHPADS IN THE VISUAL DOMAIN

Here, we further discuss the meaning of locality and globality in the visual domain and the connec-
tion of the visual scratchpad to the concept of scratchpad in the text domain (Nye et al., 2021).

Recently, Abbe et al. (2024) proposed the notion of globality degree to explain why some tasks
are hard to learn for Transformers and also to explain the effectiveness of scratchpads in the tex-
tual domain. Considering input tokens X1, . . . , Xn and output Y , the globality degree of a task
is defined as the minimum number of tokens k such that there exist k tokens Xi1 , . . . , Xik that
along with the histogram of tokens P̂X

1 provide significant information on the target Y , i.e.,
I(Xi1 , . . . , Xik , P̂X ;Y) = n−On(1) where I is the mutual information. It is further conjectured,
with empirical support, that the learning complexity of tasks increases with their globality degree,

1In the textual domain, histogram simply refers to reporting how many times each token is appearing re-
gardless of its position (similar to the bag of words).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

and Transformers can only learn tasks with a constant globality degree (in n) efficiently (polysize
model and polymany iterations). We extend this definition to vision tasks learnable by ViTs.
Definition 1. Globality degree (in vision with significant patch regime). Assume images are par-
titioned into patches X1, . . . , Xn. We define the globality degree with threshold α of a task as the
minimum number k such that there exist patches Xi1 , . . . , Xik that satisfy I(Xi1 , . . . , Xik ;Y) ≥ α
where I is the mutual information.

In words, this is the least number of patches k∗ required to obtain an α-mutual information with
the target. The higher α, the more informative these patches are on the target, and the lower k∗
(for the same α), the less global the task is. One may now try to use this measure to characterize
which targets are learnable in polynomial time in the number of patches n. This requires a closer
investigation of the scale of the parameters. To define our asymptotic quantities properly, we assume
that the number of patches n is scaling (e.g., as the size of the maze increases, we need a higher
resolution image to solve it).2 In this case, the requirement would be to have α = n−On(1) and
k∗ = On(1) in order for the whole3 learning complexity to be polynomial in n, i.e., we expect the
complexity of learning in this regime to depend polynomially on both n and 1/α with an exponent
given by k∗, i.e., poly(1

α , n)
k∗

where k∗ is the globality degree. Our main regime of interest, the
regime with significant patches, assumes that patches are large enough, e.g., P ×P sized-patch with
P =

√
n, such that only a unique ordering of the patches is valid (if one permutes the patches the

new sample does not belong to the distribution’s support w.h.p. as in many computer vision tasks
of interest). In this case, the histogram part should not be inserted as done in our current definition.
This is why we call this the globality degree in the ‘significant patch regime’, which we consider to
to be the right regime to better understand the targets of interest. In the small-patch regime where
the patches have a constant size, i.e., P × P sized-patch with P = On(1), one would also need to
update slightly the definition of the globality degree in order to capture the fact that targets that are
permutation invariant may be more easily learnable by the Transformer after dropping the positional
embeddings, which results in adding the histogram of the patches to the mutual information as was
done in the globality degree for text by Abbe et al. (2024).

Note that a task being “local” by affording a low k∗ for a significant α does not mean that it does not
depend on all the patches, but that these few k∗ patches are sufficient in order to obtain non-trivial
information about the target, and this gives the starting point to learning with a significant edge.

According to the definition above, classical vision tasks such as image classification are “local” as
a few patches often provide significant information on the class (e.g., having a patch containing a
dog’s ear). Whereas, in our proposed datasets, seeing a few patches often provides no information
on the label. Hence, our proposed datasets have a high globality degree, or in short, are rather
“global”. For example, in the maze examples, seeing just a few patches from the maze does not help
with determining the label. Similarly, for the cycles task of size 2n, if one only sees the connection
between n− 1 nodes, one cannot have any information on the label.

In order to further support our claim that mainstream vision tasks are local while our proposed tasks
are not, we conduct the following experiment. For each sample in a given dataset, we mask the
patches with probability p at both training and inference and see the performance of the model with
different values of p. We perform this experiment for the cycles 12 task and ImageNet. Since the the
cycles 12 task is not learnable from scratch we start from a CLIP (Radford et al., 2021) pre-trained
ViT-L/14 checkpoint (Fang et al., 2023) for both. The results are shown in Figure 3 (left) 4. We
observe that the model demonstrates good performance on the ImageNet dataset even when 90%
of the image is masked while it cannot learn the cycles 12 task once 30% (or more) of the image
is masked. The latter shows that the cycles 12 task is a high globality dataset where one needs on
average at least 70% of the patches to gain minimal information on the label while ImageNet is a
local task where weak learning is possible with only 10% of the patches.

Interestingly, we note that a model trained from scratch was not able to learn the cycles task even
when no patch was masked. To better explain this phenomenon, in Figure 4 (right), we compare the

2The number of patches in ViT models is usually constant as the images are usually resized unless the image
is so fine-grained that a higher resolution is required, e.g., when the number of graph nodes diverges.

3I.e., assuming networks with polynomial number of edges trained with a polynomial number of sam-
ples/epochs, the overall complexity would be polynomial

4We use min-max normalized accuracy in the plot, including the random baseline for normalization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60 70 80 90
Masking ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 a
cc

ur
ac

y

0% masking

Cycles random (50%)
ImageNet random (0.1%)

ImageNet
Cycles 12

Figure 3: Experimental evidence that Cycles 12
is a more global task w.r.t. common computer
vision benchmarks (e.g. ImageNet). Cycles
12 quickly becomes not learnable when more
patches are masked, while ImageNet is still far
from random accuracy.

8 10 12 14 16 18 20 22 24
Task complexity

50

60

70

80

90

100

A
cc

ur
ac

y

Scratch
Pre-trained

Figure 4: Comparison between training from
scratch and initializing with a pre-trained
model, while varying the task complexity. Pre-
training is not sufficient to guarantee conver-
gence for complex tasks. Convergence without
pre-training is not possible even for easier tasks.

performance when initializing with a pre-trained model (Fang et al., 2023) versus a model trained
from scratch on the cycles task of varying size. This shows that as the task complexity increases
with the number of nodes, none of the models are able to learn the cycles task, meaning that even
strong internet-sourced priors in the pre-trained model are not helpful.

Next, we discuss the connection of visual scratchpads to scratchpads used in text (Nye et al., 2021)
and why it helps. The idea of scratchpad generally refers to training the models with intermediate
reasoning steps, so that they generate both the reasoning steps and the final answer during inference.
For instance, consider math questions with simple numerical answers. Nye et al. (2021) showed
that training language models to first output the intermediate steps of the solution and then the final
numerical answer results in superior accuracy than training the model to directly output the answer.

Abbe et al. (2024) have shown that scratchpads can reduce the globality degree and by doing so
reduce the learning complexity. More specifically, the scratchpad can provide intermediate targets
Y1, . . . , Ym such that Ym = Y and each Yi is of low globality given the previous intermediate targets
and the input which makes predicting them in a sequential manner easily learnable. The same is true
for our proposed datasets and multiple-frame scratchpads as each scratchpad frame is a low globality
function of the previous frame and also the label is a low globality function of the final frame. For
example, in each frame of the multiple-frame scratchpad for the cycles task at most two nodes are
colored, and determining these nodes is possible by using a few patches. Similarly, determining
the final label from the final scratchpad frame is a local operation since checking one node’s color
provides significant information on the label. Note that to compute the label, one has to check
whether all nodes are colored or not. However, even checking whether one node is colored or not
provides non-trivial information on the output even though it may not determine the output perfectly
(if that node is colored). Thus, the multi-frame scratchpad can reduce the learning complexity of
tasks by breaking their globality degree. Interestingly, the single-frame scratchpad model can also
break the globality degree of the task. As explained before, predicting the label from the complete
scratchpad is a local function. Note that learning the full scratchpad from the input image is also a
low globality function. To see this, note that coloring the first three nodes of the scratchpad (which
corresponds to non-trivial mutual information) is a local function as it requires a limited number
of patches which allows weak learning of the scratchpad. A particularly interesting phenomenon
is that this weak learning can result in strong learning of the scratchpad frame through hierarchical
learning. We explain this in more details in Section 4.4.

3 METHODOLOGY

As discussed in the introduction, we have three supervision formats for our visual reasoning datasets:
no scratchpad, single-frame scratchpad, and multi-frame scratchpad. We use a vision Transformer
(ViT) (Dosovitskiy et al., 2020) backbone for all supervision modes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

No scratchpad baseline. In this case, the image is given to the model, and the model has to produce
the label directly. We use a ViT architecture with a classification token, CLS, for this setting. We use
a linear layer on the CLS token features to compute the label logits. We use the cross-entropy loss
function on the logits for training the model. As it will be shown in Section 4.1, this model is not
capable of learning the proposed datasets. Hence, we next introduce the single-frame scratchpad.

3.1 SINGLE-FRAME SCRATCHPAD

For generating the scratchpad in a single-frame format, we make some modifications to the no-
scratchpad architecture above. Here, the model predicts both the label and the scratchpad (the com-
plete one in the single-frame format). We keep the ViT encoder with a CLS as the backbone and add
a linear layer to the hidden representation of the last transformer layer to predict the scratchpad im-
age. During training, we use cross-entropy loss to supervise the label and pixel-wise mean-squared
loss similar to He et al. (2022); El-Nouby et al. (2024) to supervise the scratchpad image. In Section
4.1, we show that the single-frame model has better performance than the no-scratchpad model, and
for large enough models it may be able to learn the proposed tasks. In Section 4.2, we evaluate the
out-of-distribution (OOD) performance of this model. In the next part, we introduce our inductive
model for multi-frame scratchpads which has superior performance in both the in-distribution and
OOD settings.

3.2 MULTI-FRAME SCRATCHPAD AND INDUCTIVE SCRATCHPAD MODEL

In this section, we introduce the inductive scratchpad model that is used for the multi-frame scratch-
pad setting where the model predicts all the scratchpad frames in a sequential and Markovian man-
ner. In this setting, the model predicts each scratchpad frame based only on the previous scratchpad
frame predicted by the model (or the input at the beginning). For example, the model first predicts
the first scratchpad frame using the input image. Then, it uses the first frame to predict the second
one, and so on. More precisely, the model has a recurrent component M that takes an input image
(either the input image or a scratchpad frame) as input and predicts three outputs: the next scratch-
pad frame (f̂), the label (ŷ), and a binary variable for halting (ĥ). This recurrent module is applied
to the input image and the subsequent intermediate frames until the halting signal activates (or an
upper limit of recurrences is reached). The predicted label at the last recurrence is the predicted
label of the model. Note that generating each scratchpad frame depends only on the last generated
frame (or the input image) and there is no part of the recurrent module to record the history. As a
result, the model is independent of the number of scratchpad frames used in each sample.

Training procedure. During training, we initially used teacher forcing, that consists in providing
the model with perfect frames from the training set. However, this approach creates a discrepancy
during inference, where the model sees its own generated frames as input. Generated frames may
exhibit a slightly different distribution as the reconstructions are not perfectly accurate. While this
issue is well studied in text generation, where discrete tokens are used, it becomes more pronounced
in vision tasks with continuous outputs. To mitigate this discrepancy, we use an alternated training
procedure where the model sees perfect frames 50% of the times, and generated frames the other
50%. This ensures that the model learns to handle imperfect inputs, leading to improved perfor-
mance during inference. More details on this training procedure can be found in Appendix C.1.

4 EXPERIMENTS

In this section, we show the performance of different methods on our proposed datasets focusing
on required model size and OOD generalization. Each of our datasets contains 106 (1M) training
samples. See Appendix B for more details on the experiments.

4.1 MODEL SIZE EXPERIMENTS

First, we compare the performance of different methods with varying model sizes on our proposed
datasets. In particular, we compare the no scratchpad baseline, the single-frame scratchpad model,
and the inductive scratchpad model used for multi-frame scratchpad prediction. Moreover, we use
four different sizes for the ViT encoder of our models: small, base, large, and huge, which have

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

small base large huge
Model size

50

60

70

80

90

100

Ac
cu

ra
cy No scratchpad

Single-frame scratchpad
Inductive scratchpad

(a) Cycles 24 dataset

small base large huge
Model size

50

60

70

80

90

100

Ac
cu

ra
cy No scratchpad

Single-frame scratchpad
Inductive scratchpad

(b) Strings 20 dataset

small base large huge
Model size

50

60

70

80

90

100

Ac
cu

ra
cy No scratchpad

Single-frame scratchpad
Inductive scratchpad

(c) Maze (rect.) 32 dataset

Figure 5: Validation accuracy for different datasets learned by different methods and model sizes.
We can see that the model without a scratchpad is not capable of learning any of these tasks, while for
large enough models, the single-frame scratchpad model may be able to learn. Further, the inductive
scratchpad model can learn all the tasks with smaller models than the single-frame scratchpad model.

12 14 16 20 22 24
Task complexity (validation)

50

60

70

80

90

100

Ac
cu

ra
cy

Cycles

Single-frame scratchpad
Inductive scratchpad

Figure 6: OOD experiments where the model is trained
on Cycles 12 and tested on more complex Cycles tasks.

Table 1: OOD performance for maze 24
(rectangular) dataset. While both mod-
els are good in-distribution, the inductive
scratchpad achieves almost perfect accu-
racy on OOD while the single-frame model
hardly goes beyond the random baseline
(50%).

Method
Accuracy (%)

ID OOD
Single-frame 100.0 54.4

Inductive 99.8 99.8

respectively around 22M , 86M , 307M , and 632M parameters (see Appendix C for detailed spec-
ifications). The accuracy of different methods with different model sizes is shown in Figure 5. It
can be seen that the no-scratchpad baseline is not able to go beyond random accuracy for any of
these tasks. On the other hand, the single-frame scratchpad model can learn the cycles 24 and maze
(rect.) 32 tasks for large enough models while it still cannot learn the strings 20 task. The inductive
scratchpad model used for the multi-frame prediction, however, learns all the proposed tasks even
with smaller models. We report the results for the circular maze dataset in Appendix E.

We note that the number of parameters for the three methods is very similar. The single-frame model
only adds a linear layer for predicting the scratchpad to the no-scratchpad baseline. Likewise, the
inductive scratchpad model only adds a linear layer for predicting the halt signal to the single-frame
model. However, during inference, the inductive scratchpad model is applied a variable number of
times. Hence, the inductive scratchpad model uses compute adaptively depending on the complexity
of the sample, and therefore its inference time compute is usually larger than the baselines.

4.2 OOD GENERALIZATION

Next, we consider the out-of-distribution (OOD) generalization performance of different methods
where we show the inductive scratchpad model has a superior OOD generalization performance.
This observation is due to the fact that the inductive scratchpad model only learns the steps of the
reasoning process, and as a result, is independent of the number of reasoning steps required allowing
it to generalize to harder problems with its adaptive compute time.

For the cycles task, we can control the complexity of the task with the number of nodes. In particular,
for OOD experiments, we consider training on samples with 12 nodes and then testing on samples
with a higher number of nodes and thus higher complexity. The results are visualized in Figure 6.

For the maze tasks, we do not change the size of the maze as it would result in resolution inconsis-
tencies. Instead, we create a dataset of easier samples for training (e.g., if the source and sink points

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Iter = 2k (b) Iter = 6k (c) Iter = 8k (d) Iter = 10k (e) Iter = 13k (f) Iter = 50k

Figure 7: Generated scratchpads for an example at different stages during training. We have in-
creased the contrast of the images for better visualization. It can be seen that the model first learns
to color the rightmost node and then it goes one distance further each time during training.

are connected their distance is less than or equal to 30) and use the main task dataset for validation.
We explain the OOD training datasets for the maze tasks in more detail in Appendix D. The OOD
results for the rectangular maze task are shown in Table 1. It can be seen that the inductive scratch-
pad model achieves almost perfect accuracy on OOD samples while the single-scratchpad model
performs slightly better than random. We present more OOD experiments in Appendix E.

4.3 ABLATIONS

Method ID (%) OOD (%)

Inductive 99.99 88.21
Inductive (only TF) 99.91 85.15
Inductive w/o halting 99.94 80.89
Multi-frame 99.99 64.83
Single-frame 99.95 64.79

Table 2: Comparison of in-distribution and aver-
age out-of-distribution accuracy for multi-frame
and single-frame scratchpad variants.

The success of the inductive scratchpad model
can be attributed to several factors such as
increased supervision during training, halting
mechanism, and the combination of teacher
forcing (TF) and training on the output distri-
bution of the model at training. In this part,
we provide experiments that show the effect
of these elements. To do this, we consider
a multi-frame baseline model which is similar
to the single-frame model with the difference
that it has multiple heads for predicting multi-
ple scratchpad frames.5 For the “Inductive w/o
halting” baseline we simply set a fixed large number of steps. The OOD performance of different
variations on the cycles task is reported in Table 2. It can be seen that removing aspects such as
teacher forcing and adaptive (early) halting can each cause minor reductions in the performance of
the inductive scratchpad model, whereas, the multi-frame baseline provides no performance gain on
OOD samples compared to the single-frame model. More ablations are shown in Appendix E.4.

4.4 STAIRCASE LEARNING PHENOMENON

In our experiments with generating a single-frame scratchpad, we observed progressive hierarchical
learning over the scratchpad image prediction task. Consider the cycles task as a running example.
In the training set, we always color the cycle that passes the rightmost node. In the scratchpad
generations, we can observe that the model first learns to color the rightmost node. Then it learns to
color the two neighbors that are connected to the initial node. Similarly, at each of the later stages,
it learns to color roughly two more nodes (from the two sides). See Figure 7 for a visualization.

These hierarchical learning phenomena have been previously observed and proven in theoretical
settings, in particular, in the context of learning sparse Boolean functions where it is known as
the staircase behavior (Abbe et al., 2022; 2023a). The staircase phenomenon states that if the target
function has some hierarchical structure and is composed of different parts with different difficulties,
learning easier parts first can boost learning for the harder parts. To be more precise, assume we
have n i.i.d. uniform Boolean variables x1, . . . , xn ∈ {±1}. It is well known that the difficulty of
learning degree k ≤ n/2 parity function, e.g., x1x2 · · ·xk increases as k increases. In particular,
if k = ωn(1) then learning the parity function is not possible in polynomial time with regular
MLPs (and statistical query methods) and learning complexity of degree k parity for constant k
scales with nk (Abbe & Sandon, 2023). However, Abbe et al. (2022) show that functions such as

5We use a preset number of heads and repeat the last scratchpad frame for heads with a missing frame.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

x1 + x1x2 + · · · + x1x2 · · ·xk can be learned in O(n) time. This is because the network can first
learn the ‘easy’ linear component x1. Now, for learning x1x2 the model no longer needs to find two
variables (which would scale with

(
n
2

)
), but it needs to only find x2 since it knows that x1 is in the

support and can navigate the search space more efficiently to learn the terms like x1xi.

Considering the cycles task in the single-frame scratchpad again, coloring the first three nodes is
a low globality function and can be learned easily. Next coloring the next two nodes once the
coloring of the first three nodes is learned is a low globality function (similar to x1 · · ·xi when
x1 + x1x2 + · · ·x1 · · ·xi−1 is learned). More precisely, define Yk to be the color of all nodes (and
edges) with a distance less than or equal to k from the rightmost node (2k + 1 nodes in total). Y1 is
a local target, moreover, coloring Yk+1 correctly once Yk is learned is of constant globality degree.
This staircase structure allows the model to learn Y1, Y2, . . . and finally the complete scratchpad
frame sequentially during training as observed in Figure 7. Note that in the example of cycles
task the intrinsic staircase structure of the single-frame scratchpad coincided with the multi-frame
scratchpad, however, that is not necessarily always the case.

This example shows that the globality-degree does not satisfy the triangle inequality. In other words,
we show that for input X and target Y and diverging globality degree (e.g., increasing number of
nodes in the cycles task), there exists a single-frame scratchpad X1 such that globality degrees of
X1 from X and Y from X1, X is constant. Thus, a single-frame scratchpad can make both efficient
weak and strong learning (through the staircase effect) possible.

5 CONCLUSIONS AND FUTURE DIRECTIONS

Here, we summarize the contributions of our paper. (1) We explored the concept of locality and
globality in the domain of visual tasks. In particular, we extended the definition of globality degree
(Abbe et al., 2024) to vision tasks. Motivated by the latter we introduced four global vision tasks
reminiscent of the connectivity task of Minsky & Papert (1969) that are hard to learn for ViT models
regardless of their size even for pre-trained models. (2) We further put forward the concept of visual
scratchpads, variants of scratchpads methods used in language (Nye et al., 2021) but for vision,
that can break the globality degree of tasks by introducing intermediate subtasks of lower globality
degree. These subtasks are of the form of visual frames in vision. We show that training models
with a single-frame scratchpad supervision can make the introduced datasets learnable as it breaks
the globality degree of the initial task. (3) Finally, we introduce the inductive scratchpad model for
predicting multi-frame visual scratchpads in a Markovian manner such that each intermediate frame
is predicted using only the previous frame. We show that this model can learn the proposed datasets
with smaller model sizes while the single-frame scratchpad model fails. Moreover, we show that the
inductive scratchpad model has superior OOD performance as it focuses on learning the reasoning
steps and can apply them as many times as needed at inference thanks to the adaptive compute time.

Future work. With advancements in the field, we expect (global) reasoning to become increasingly
essential in the visual domain as well. In particular, we believe models with text and multi-image
input and output modalities will enable the integration of reasoning in the visual and the symbolic do-
mains in an interleaved manner. This reasoning capability can be used for new tasks such as solving
geometry questions (current systems rely on the symbolic approach), solving visual puzzles (such as
the maze introduced in this paper), and understanding high globality images such as maps. It could
also improve performance on existing tasks such as autonomous driving. However, suitable datasets
for such tasks are not yet readily available. Nevertheless, this paper takes a first step in this direction
by introducing datasets that require global reasoning and necessitate a new approach—the use of
visual scratchpads. With the increasing prevalence of multi-modal models, it may become feasible
to generate visual scratchpad frames through in-context learning and chain-of-thought prompting
rather than relying solely on training-time supervision.

In the long term, we believe our work will also influence research on image and video generation.
This can be achieved through a more globally consistent modeling of semantics in complex visual
scenarios, particularly in dynamic content generation. Such scenarios often involve understanding
high-order spatial relationships and global context reasoning across multiple frames. Global rea-
soning helps maintain coherence and continuity during generation, ensuring that objects, characters,
and environments are geometrically consistent and interact naturally within the visual flow.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Emmanuel Abbe and Colin Sandon. Polynomial-time universality and limitations of deep learn-
ing. Communications on Pure and Applied Mathematics, 76(11):3493–3549, 2023. doi: https:
//doi.org/10.1002/cpa.22121. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/cpa.22121.

Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. The merged-staircase property:
a necessary and nearly sufficient condition for SGD learning of sparse functions on two-layer
neural networks, COLT, 2022.

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks:
leap complexity and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on Learn-
ing Theory, pp. 2552–2623. PMLR, 2023a.

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the unseen, logic
reasoning and degree curriculum. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 31–60. PMLR, 23–29 Jul 2023b. URL https://proceedings.mlr.press/v202/
abbe23a.html.

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, Colin Sandon, and Omid Saremi. How far can trans-
formers reason? the locality barrier and inductive scratchpad. arXiv preprint arXiv:2406.06467,
2024.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. arXiv preprint arXiv:2207.04901, 2022.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zit-
nick, and Devi Parikh. Vqa: Visual question answering. In 2015 IEEE International Conference
on Computer Vision (ICCV), pp. 2425–2433, 2015. doi: 10.1109/ICCV.2015.279.

Anton Bakhtin, Laurens van der Maaten, Justin Johnson, Laura Gustafson, and Ross Girshick.
Phyre: A new benchmark for physical reasoning. Advances in Neural Information Processing
Systems, 32, 2019.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances in neural information processing systems,
28, 2015.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213–229. Springer, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. In An-
nual Meeting of the Association for Computational Linguistics, 2019. URL https://api.
semanticscholar.org/CorpusID:57759363.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

11

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.22121
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.22121
https://proceedings.mlr.press/v202/abbe23a.html
https://proceedings.mlr.press/v202/abbe23a.html
https://api.semanticscholar.org/CorpusID:57759363
https://api.semanticscholar.org/CorpusID:57759363

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev,
Vaishaal Shankar, Joshua M Susskind, and Armand Joulin. Scalable pre-training of large au-
toregressive image models. arXiv preprint arXiv:2401.08541, 2024.

Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander Toshev, and Vaishaal
Shankar. Data filtering networks. arXiv preprint arXiv:2309.17425, 2023.

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dim-
itris Papailiopoulos. Looped transformers as programmable computers. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 11398–11442. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/giannou23a.html.

Rohit Girdhar and Deva Ramanan. CATER: A diagnostic dataset for Compositional Actions and
TEmporal Reasoning. In ICLR, 2020.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith,
and Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal
language models. arXiv preprint arXiv:2406.09403, 2024.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
How do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795,
2020.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-
recurrent transformers. Advances in neural information processing systems, 35:33248–33261,
2022.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2901–2910, 2017.

Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2011.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers. arXiv preprint
arXiv:2305.19466, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2023.

Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical society, 7(1):48–50, 1956.

12

https://proceedings.mlr.press/v202/giannou23a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning,
pp. 2873–2882. PMLR, 2018.

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=dsUB4bst9S.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022.

Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, and Thomas Serre. Learning
long-range spatial dependencies with horizontal gated recurrent units. Advances in neural infor-
mation processing systems, 31, 2018.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101, 2017. URL http://arxiv.org/abs/1711.05101.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational Geometry.
MIT Press, Cambridge, MA, 1969.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Adam Santoro, Felix Hill, David Barrett, Ari Morcos, and Timothy Lillicrap. Measuring abstract
reasoning in neural networks. In International conference on machine learning, pp. 4477–4486,
2018.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and Hong-
sheng Li. Visual cot: Unleashing chain-of-thought reasoning in multi-modal language models.
arXiv preprint arXiv:2403.16999, 2024.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. In North American Chapter of the Association for Computational Linguistics, 2018. URL
https://api.semanticscholar.org/CorpusID:3725815.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=qVyeW-grC2k.

Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and
Candace Ross. Winoground: Probing vision and language models for visio-linguistic composi-
tionality. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 5238–5248, 2022.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

13

https://openreview.net/forum?id=dsUB4bst9S
http://arxiv.org/abs/1711.05101
https://api.semanticscholar.org/CorpusID:3725815
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino,
Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The clrs algorithmic reasoning bench-
mark. arXiv preprint arXiv:2205.15659, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B.
Tenenbaum. Clevrer: Collision events for video representation and reasoning. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=HkxYzANYDB.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to cognition: Visual
commonsense reasoning. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for relational
and analogical visual reasoning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 5317–5327, 2019.

Chi Zhang, Baoxiong Jia, Mark Edmonds, Song-Chun Zhu, and Yixin Zhu. Acre: Abstract causal
reasoning beyond covariation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2021a.

Chiyuan Zhang, Maithra Raghu, Jon M. Kleinberg, and Samy Bengio. Pointer value retrieval: A new
benchmark for understanding the limits of neural network generalization. ArXiv, abs/2107.12580,
2021b.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301,
2022.

Yizhe Zhang, He Bai, Ruixiang Zhang, Jiatao Gu, Shuangfei Zhai, Josh Susskind, and Navdeep
Jaitly. How far are we from intelligent visual deductive reasoning? arXiv preprint
arXiv:2403.04732, 2024.

14

https://openreview.net/forum?id=HkxYzANYDB
https://openreview.net/forum?id=HkxYzANYDB

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

We have discussed the most relevant works throughout the main sections of the paper. In this section,
we delve deeper into the related literature, examining it from multiple angles.

Reasoning with Transformers In recent years, reasoning capabilities of neural networks and in
particular Transformers (Vaswani et al., 2017) have been extensively studied on a variety of top-
ics ranging from completely synthetic symbolic datasets (Zhang et al., 2021b; 2022) to algorithmic
tasks (Veličković et al., 2022) and to more natural settings such as mathematical reasoning (Saxton
et al., 2019; Lewkowycz et al., 2022). These tasks usually have a combinatorial essence and hence an
exponentially large input space which makes memorization-based learning approaches impossible
for the Transformers. Another tool for assessing the reasoning abilities of neural networks is to test
their OOD generalization performance to see whether they rely on superficial cues that do not work
on OOD samples or rather they can compose the rules they have seen during training to generalize to
OOD and often more complex examples. As a special case of OOD generalization, it has been ob-
served that length generalization (Zaremba & Sutskever, 2014; Lake & Baroni, 2018; Hupkes et al.,
2020), generalizing to longer instances than what seen during the training, is particularly challeng-
ing for Transformers even for simple arithmetic tasks such as parity, addition, and multiplication
(Anil et al., 2022; Abbe et al., 2023b; Lee et al., 2024). This challenge may be further aggravated in
the settings where the input problem or its solution is longer than what the model has seen during
training and hence the model has to deal with (mostly) unseen positions where it has been shown
the absence or the use of different absolute or relative positional embeddings (Shaw et al., 2018;
Dai et al., 2019) result in significant variations on length generalization performance (Kazemnejad
et al., 2023). Despite the efforts to understand the reasoning abilities in the symbolic domain, works
in the visual domain have focused on shallower types of reasoning emphasizing understanding the
semantics of the image. This is despite the fact that vision provides an excellent ground for OOD
and length generalization experiments since one can easily depict more challenging examples with
the same image resolution which removes the element of using suitable positional embeddings from
the picture.

Visual reasoning. Different datasets have been introduced to evaluate various aspects of reason-
ing in the visual form. For instance, visual question answering (VQA) dataset (Antol et al., 2015)
asks questions about an image in natural language. These questions can rely on understanding the
semantics in the images and basic reasoning operations such as counting. CLEVR (Johnson et al.,
2017) is a diagnostic VQA dataset made up of synthetic objects that removes spurious correlations
that models can use in traditional VQA datasets, in addition to disambiguating the types of the er-
rors that the model can make. The reasoning operations considered in CLEVR include counting,
comparison, attribute identification, and combinations of those. GQA (Hudson & Manning, 2019)
is another VQA dataset with real images focusing on answering compositional questions inspired
by CLEVR. VCR (Zellers et al., 2019) is focused on commonsense reasoning, asking deeper ques-
tions based on images (e.g., intentions of people and why an event is happening). CLEVRER (Yi
et al., 2020) focuses on understanding videos of CLEVR-like objects. In these videos, events such
as collisions happen and different descriptive, explanatory, predictive, and counterfactual questions
are asked. The CATER dataset (Girdhar & Ramanan, 2020) is focused on temporal reasoning where
a video is given to a model and the model’s task is to track a particular (potentially occluded) ob-
ject throughout the video (similar to cups and ball shuffle game). ACRE (Zhang et al., 2021a) is
another dataset that aims to assess the performance of vision models in performing causal induc-
tion. Winoground dataset (Thrush et al., 2022) also focuses on compositional reasoning. Given two
images and two captions with the same set of words, the task is to match them correctly which is
shown to be very challenging for vision models. There are also datasets that require reasoning with
a physical world model such as the Phyre dataset (Bakhtin et al., 2019). Most of the aforementioned
datasets rely on understanding semantics in an image and in contrast to our proposed datasets are
easily solvable by humans.

MathVista dataset (Lu et al., 2023) focuses on mathematical reasoning in the visual context. In this
case, the questions are a combination of an image and text, however, the reasoning required for
answering the question is done in the text domain. Some datasets are inspired by human IQ tests
and Raven’s progressive matrices (Santoro et al., 2018; Zhang et al., 2019; 2024) that may be more

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

challenging for humans compared to the classical VQA datasets, however, it is still not clear how
one can increase the difficulty and the required number of reasoning steps for these datasets.

More visually similar to us is the Pathfinder (Linsley et al., 2018) which was introduced to show that
convolutional neural networks (CNNs) cannot model long-range spatial dependencies well enough.
The Pathfinder dataset in the text format was later included in the long-range arena benchmark (Tay
et al., 2021) which aims to evaluate Transformers’ ability to model long-range token dependencies.
We note that our datasets do not necessarily focus on the distance between tokens (or the distance
in the image) but rather the globality degree of the task and the number of reasoning steps required
to solve the task. To the best of our knowledge, the proposed datasets in this paper are unique in
terms of having a scalable globality degree and number of reasoning steps while being challenging
for humans as well.

Scratchpad and chain-of-thought. Nye et al. (2021) introduced the idea of scratchpads showing
that training Transformers to output the intermediate reasoning steps in addition to the final solution
can boost their performance on reasoning tasks such as arithmetic, math, and code understating.
Further, Wei et al. (2023) show that models can learn step-by-step reasoning by merely seeing a few
in-context examples referring to this by chain-of-thought (CoT). Later it was shown that pre-trained
language models can generate chains of thoughts only by prompting to do so (Kojima et al., 2023).
Abbe et al. (2024) provide theoretical explanations on the effectiveness of scratchpads using the
notion of globality concept.6 They also introduce a variant of the scratchpad method for multi-step
reasoning problems that uses a dynamic masking technique to only attend to the input question and
last step which causes the model to demonstrate superior length generalization performances.

Moreover, there have been recent efforts to use the visual form of scratchpad and chain-of-thought
in multi-modal models. In particular, visual-CoT (Shao et al., 2024) takes an image with a question
in the input. During the generation of the output, it first predicts a bounding box in the image that
may have important information inside, and then the model focuses on that part of the image to
answer the question better. This idea could be useful in cases where the answer can be given using
a small part of a high-resolution image (e.g., a text written with a small font in the corner of an
image). However, this work does not deal with hard reasoning tasks that require multiple reasoning
steps nor produce images as scratchpad/CoT. Concurrent to us is the work of Hu et al. (2024) where
they introduce the notion of sketchpad. For a question (consisting of textual and visual components)
they use a set of visual operations and tools including drawing lines, drawing bounding boxes with
object detection models, and using Python to produce plots to generate a sketch that can potentially
facilitate the reasoning process. The main difference between our works is that we focus on visual
tasks that have a high globality degree and require multiple reasoning steps to solve, whereas Hu
et al. (2024) do not consider visual tasks that require multistep reasoning. As a result, the view in
our work is to use visual scratchpads to make the tasks learnable, while in their case is to use tools
(e.g., object detection or plot creation using Python) to generate images that can guide the model.
As a result, in our case, the models can generate a sequence of frames that correspond to reasoning
steps where each image is generated freely by the model. While the sketchpad method can only
generate a single sketch in a limited manner by using a set of predefined tools and operations.

Recurrent architectures. Several works have introduced a recurrent component into Transformer
architectures (Dehghani et al., 2019; Hutchins et al., 2022; Giannou et al., 2023). Notably, Universal
Transformers (Dehghani et al., 2019) use shared weights between transformer layers and also uses
an adaptive computation time (Graves, 2016) by varying the number of times that the transformer
layer is applied. We note that the inductive model proposed in this paper is significantly simpler
than the architectures above. This is because in the proposed inductive model, due to the Markovian
modeling of scratchpad frames, there is no sort of adaptive compute time involved at train time,
and the model is simply supervised to generate the next frame given the current frame without any
history (see Appendix C). Further, the halting mechanism is supervised during training.

6In particular, for the symbolic version of the cycles task studied in Abbe et al. (2024), it is shown experi-
mentally that the learning complexity grows rapidly with the number of nodes (2n) increasing.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B TRAINING DETAILS

We first resize the input (and the scratchpad frames) to 224 × 224 resolution. We then use a patch
size of 16 × 16 to partition the images to 196 patches for all models before giving them to the ViT
backbone of the models. The models are evaluated on 10k validation samples.

For training, we use AdamW (Loshchilov & Hutter, 2017) optimizer with weight decay 0.05 and
learning rate 0.0003. For the learning rate, we first use a linear warm-up to increase the learning rate
from 0 to 0.0003. Afterward, we use a cosine schedule with 3e − 6 as the end value for the rest of
the training. The linear warm-up is applied for 5% of the training time (e.g., 2500 iterations if the
total number of iterations is set to 50k) and the cosine annealing is applied for the rest 95% of the
training time.

Each of our experiments has been run on 8 H100 or A100 GPUs and we use a batch size of 1024 for
each iteration. The whole project has a approximate total consumption of 160k GPU hours.

B.1 HYPERPARAMETER TUNING AND SENSITIVITY

Note that we have different settings in our experiments where we vary our methodology, model size,
and dataset. This gives rise to a combinatorially large number of experiments that each require their
own hyperparameter tuning which is infeasible. Nevertheless, we tried sweeps of learning rate and
weight decay for some of our in-distribution settings. We found that our models and methods are
relatively robust to learning rates in the range of 0.0001 to 0.0005 and weight decays in the range
of 0.01 to 0.1. In particular, we observed that a learning rate of 0.0003 and weight decay of 0.05
work well in all of the tested settings, and therefore we use this combination for all experiments
reported in this paper. Similarly, for the batch size we tried batch sizes 1024 and 2048. We observed
that batch size 2048 converges with slightly fewer number of iterations, however, longer wall-clock
time. Thus, we decided to use batch size 1024 across all of our experiments.

C MODEL IMPLEMENTATION

We use a ViT backbone for all of our methods. We use four standard sizes for the ViT model: small,
base, large, and huge. Different ViT models differ in the number of layers, embedding dimension
(hidden size), MLP size, and number of heads, see Table 3 for more details. Note that these model
sizes are standard (Dosovitskiy et al., 2020; Touvron et al., 2021), further, we always use 196 patches
of size 14× 14 for all model sizes.

Table 3: ViT model sizes and specifications

Model Hidden size Number of layers Attention heads MLP size Parameters
ViT-Small 384 12 6 1536 ∼22M
ViT-Base 768 12 12 3072 ∼86M
ViT-Large 1024 24 16 4096 ∼307M
ViT-Huge 1280 32 16 5120 ∼632M

Finally, note that currently, the scratchpad frames in our tasks are deterministic. As a result, our
image generation models are also deterministic. We expect that for more complicated tasks a random
generation model for the scratchpad frame(s) may be more suitable. One can use different solutions
in that case. For example, if there is a constant (say 2) number of possible scratchpad frames, the
model can try to generate all these possibilities with a bipartite matching loss similar to the DETR
work (Carion et al., 2020). Alternatively, one can add a noise variable z for the generation part to add
randomness such that the output scratchpad image is conditioned on the input image of the model.
Nevertheless, we emphasize that the focus of this work is on the idea of a visual scratchpad and the
need for it and modeling choices (e.g., multi-frame inductive model) and not on image generation
methods and hence we have used a simple generation method.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.1 TRAINING PROCEDURE FOR THE INDUCTIVE SCRATCHPAD MODEL

Consider an input image x = f0 with scratchpad frames f1, . . . , fT and label y from the training
set. The recurrent module M can be trained by teacher forcing, i.e., the model can be trained on
samples of the type fi → (f̂ , ŷ, ĥ) = (fi+1, y,1(i + 1 = T)). The issue with this training method
is that the recurrent module M is solely trained on samples from the training distribution. However,
during inference where scratchpad frames are not available, the recurrent module M will use its
own generated frames as the input to itself. This discrepancy between the input distribution of the
module at training and at test time could deteriorate the model’s performance. We initially imple-
mented our model with teacher forcing training described above and observed that the model can
learn all the tasks rather well. The issue, however, is that, especially at the beginning of training, the
predicted frames are not guaranteed to be close enough to the train distribution to perform well dur-
ing inference. Hence, we decided to use the following alternative approach. We provide a frame fi
from the training set to the model to get the predicted next frame f̂i+1 along with the predicted label
and halt variables ŷi+1, ĥi+1. We then provide the predicted scratchpad frame to get the next frame
f̂i+2 along with the next prediction for the label and halt variable ŷi+2, ĥi+2. Finally, we compute
the loss for all f̂i+1, ŷi+1, ĥi+1, f̂i+2, ŷi+2, ĥi+2 and their corresponding values in the training set.
Note that we consider f̂i+1 an independent input for the model and no gradient is backpropagated
through it. As a result, during training the model’s input comes from both the training distribution
and the distribution of the generated frames of the model itself. We found that this method gives
a considerable increase in the training speed of our models and decided to use this method for our
experiments.

We note that this problem of discrepancy between training distribution and generation distribution
during inference has been previously observed in settings such as text generation in recurrent neural
networks (RNNs) and reinforcement learning, for instance in (Bengio et al., 2015) which proposed
a scheduled sampling approach as follows: for each token, they sample it either from the train
distribution with probability ϵ or from the model itself with probability 1 − ϵ and use a schedule
(e.g., linear or exponential) to reduce ϵ during training. We note that our setting is simpler as the
modeling in our setting is Markovian and each scratchpad frame is only generated based on the
previous one and not the whole history in contrast to RNNs. Hence, our simplified approach of
having a fixed rate of samples from the training and generation distributions worked well.

We also note that one could use a large predetermined number of steps instead of using a halting
mechanism. For this, one needs to supervise the model such that if the final frame is given to the
model, the model outputs the same final frame without changes.

D DATASET GENERATION

For each task, we generate a dataset with 1M training samples and 10k validation samples. For both
validation and training sets half of the samples have 0 and half have 1 as the label meaning that
the baseline accuracy for this dataset would be 50%. It is important to note that these datasets are
generated in a way that minimal spurious correlations are introduced, otherwise, the model might
have used those correlations for weak learning and achieving better-than-random accuracies. We
explain the generation algorithm for each of the datasets below.

D.1 CYCLES TASK

The cycles task consists of 2n nodes and 2n edges such that the 2n edges either form a cycle of
size 2n or two cycles of size n. The label for the former is 1 (connected) and for the latter is 0
(disconnected).

For the cycles task, we generate images of size 448×448. We further choose the nodes randomly on
an invisible circle with a radius of 220. Constraining the nodes to be on an invisible circle ensures
that no three points are (almost) collinear. In this case, each node on the circle can be specified
by its angle θ. We also ensure that every two nodes are at least ϵ radians apart on the circle. To
generate the points, we select n − 1 random numbers between 0 and 2π − nϵ and then sort them:
x1 ≤ x2 ≤ . . . ≤ xn−1. We also select a parameter β randomly in [0, 2π]. Finally, we define the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

points to be

θ1 = β, θ2 = β + x1 + ϵ, θ3 = β + x2 + 2ϵ, . . . , θn = β + xn−1 + (n− 1)ϵ.

One can easily check that θi+1 − θi = ϵ + (xi − xi−1) ≥ ϵ (where we take x0 = 0). Also,
θn = β+xn−1+(n− 1)ϵ ≤ β+(2π− ϵ) = θ1+2π− ϵ showing that each two consecutive points
have a minimum distance of ϵ radians on the circle.

Scratchpads. For the multi-frame scratchpad of the cycles task, we first color the rightmost node
in blue for the first frame. At each later frame, we color (at most) two more nodes/edges from both
sides. In other words, the k + 1th frame includes all the nodes/edges with a distance less than or
equal to k from the rightmost node colored in blue. Consequently, the last scratchpad frame which
is the same as the single-frame scratchpad for this task colors the cycle that passes through the
rightmost node in blue (whether the label is 0 or 1). We note that this resembles to what humans
would naturally do by following one of the cycles (with a pen for instance).

OOD samples. For the OOD experiments, we simply use the cycles tasks with a different number
of nodes for out-of-distribution evaluation. We note that currently, we only generate the cycles task
datasets with up to 24 nodes. We believe one has to increase the image resolution for a larger number
of nodes to still keep the task visually meaningful.

D.2 STRINGS TASK

The generation process of the strings task is similar to the cycles task. We have 2n invisible nodes
(called anchor nodes) and these 2n nodes are connected with 2n 3rd-degree Bézier curves such that
we have either two strings (label 0) or a single string (label 1) equiprobably. For this task, we also
generate images of size 448× 448 and choose the anchor points on an invisible circle of radius 200
with the same process described for the cycles task.

Next, we explain how Bézier curves are drawn. To specify a kth degree Bézier curves between points
A and B one needs to first define k − 1 control points C1, . . . , Ck−1. To simplify the notation, we
define P0 = A,P1 = C1, . . . , Pk−1 = Ck−1, Pk = B. In this case, the Bézier curve is given by

B(t) =

k∑
i=0

(
k

i

)
(1− t)k−itiPi = (1− t)kP0 + k(1− t)k−1tP1 + · · ·+ k(1− t)tk−1Pk−1 + tkPk

for t ∈ [0, 1]. In particular, the cubic Bézier curves between points A and B with control points
C1, C2 is given by

B(t) = (1− t)3A+ 3(1− t)2tC1 + 3(1− t)t2C2 + t3B t ∈ [0, 1].

We need to specify two control points for each Bézier curve. We also want the curve to look continu-
ous to have smooth strings and as a result, we need the first derivative of the curve to be well-defined.
Note that the derivative of the cubic Bézier curve above is given by

B(t)′ = 3(1− t)2(C1 −A) + 6(1− t)t(C2 − C1) + 3t2(B − C2) t ∈ [0, 1].

More specifically, we need to ensure that the derivatives are the same at the points that two Bézier
curves meet, i.e., at t = 0 and t = 1 where the derivative is equal to B(0)′ = 3(C1 − A) and
B(1)′ = 3(B − C2) respectively. To define these points, further assume that points A,A′ and
B,B′ are connected with cubic Bézier curves (i.e., we want a continuous curve that passes through
A′, A,B,B′). Also, to disambiguate the control points, we use notation C1(X,Y) the first control
point for the Bézier curve between X and Y (similarly for C2). Given the derivatives computed
above, we need to ensure that C1(A,B)−A = A−C2(A

′, A) and B−C2(A,B) = C1(B,B′)−B.
To satisfy these conditions we take

C1(A,B) = A+ α(B −A′), C2(A,B) = B − α(B′ −A),

for a constant value of α. One can easily check that defining the control points with the equation
above makes the first derivative of the curve well-defined and the curve continuous. For instance, to
check the continuity at A we have

C1(A,B)−A = α(B −A′) = A− (A− α(B −A′)) = A− C2(A
′, A). (1)

For our datasets, we use the value α = 0.25 as we find it empirically to produce suitable samples.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Scratchpads. In order to generate the multi-frame scratchpad for the strings task, we use a similar
procedure to what we do for the cycles task. We first color the rightmost anchor node. At each of the
later frames, we extend the colored string from both sides by going to the next anchor nodes. Thus,
the k + 1th frame colors the string that passes through the rightmost anchor node up to the anchor
nodes that have distance k from the rightmost starting anchor node. Analogous to the cycles task,
the last scratchpad frame (equivalently the single-frame scratchpad) for this task colors the string
that passes through the rightmost node in blue. This is also similar to what humans would do by
following one of the strings.

OOD samples. Similar to the cycles task, we simply use strings task of different sizes (number of
anchor points) for the OOD experiments. Also, as one increases the number of anchor points, one
has to increase the image resolution to keep the task feasible to solve.

D.3 MAZE TASKS

First, we explain the logic shared by both the rectangular and circular mazes. Afterward, we discuss
the specifics of these two versions. Our mazes always have two parts a source/start cell colored in
blue and a sink/end cell colored in red. The source and sink cell are either in one component (label
1) or not (label 0). Both rectangular and circular mazes can be viewed as graphs where each cell is a
graph node and two nodes are connected if they are adjacent and there is no wall between them. We
first note that each of our maze components is a tree, which ensures that all cells in one component
are connected by a unique path. To generate our maze samples, we first generate a maze that is that
has a single fully connected component where any two cells are connected by a unique path (the
corresponding graph is a tree). Then we select the start and the end cells, and finally, we add a wall
to the maze to break the maze into two components. We will next explain each of these parts in
more detail.

There are several algorithms for generating a maze with one component. These algorithms differ
in their generation speed, the average length of the paths in the maze, and the branching factor of
the maze which specifies the average number of branches in the paths of the maze. Considering
these factors, we have decided to use Kruskal’s algorithm (Kruskal, 1956) for generating the mazes.
Kruskal’s algorithm starts with a maze where all possible walls are drawn. Then, at each step, the
algorithm selects a wall randomly and removes it if the two neighboring cells of this wall were not
previously connected. This algorithm is continued until the maze is fully connected. For the start
point of the maze, we select one of the cells adjacent to the first wall selected by the algorithm. We
then compute the distances of all the cells to the start cell and in particular the maximum distance
dmax. Then we uniformly choose the target distance in [dmax − 20, dmax], and select the end cell
such that its distance from the start cell is equal to the target distance. This approach ensures that
the distance between the start and end cells is random and also large enough to make the maze
challenging. Finally, we insert a wall in the maze to make two components. If the label is 0 we put
this wall in the unique path that connects the start and end cells, otherwise if the label is 1 we put the
wall such that the path between the start and end cells remains intact. In addition to that condition,
we select the wall that minimizes the difference in the size of the two resulting components (i.e., our
goal is to have components of the same size ideally).

Scratchpads. To generate the multi-frame scratchpads of the maze datasets we basically simulate
a breadth-first search (BFS) from the start cell. We start from the start/source cell and for each
scratchpad frame, we color any cell that is at a maximum distance of 10 from the previously colored
cells until we reach the end of the maze component or the solution is found. Note that adding
cells of distance 1 at each would have resulted in too many frames. What we do for generating the
scratchpads is similar to BFS. In particular, if we define dtarget equal to the distance to the end cell
if they are in the same component and the maximum distance from the start cell otherwise, then the
kth scratchpad frame colors all cells within distance min{10k, dtarget} from the start cell (note that
we end the search once the target is reached or the whole component is explored). In this case, also,
the single-frame scratchpad is the same as the final scratchpad frame in the multi-frame scratchpad.

OOD samples. Generating OOD examples for the maze datasets is more challenging than the
cycles and strings datasets since one cannot simply change the maze size as it will cause resolution
inconsistencies. Thus, for the maze dataset, we use the same maze size for the training set and OOD

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

small base large huge
Model size

50

60

70

80

90

100

Ac
cu

ra
cy

Maze (circ) 16

No scratchpad
Single-frame scratchpad
Inductive scratchpad

Figure 8: Maze (circular) 16 model size experiments. The model behavior is similar to the maze
(rectangular) dataset. Inductive scratchpad is on par with Single-frame for B, L and H but has a
significant advantage on S.

samples. Instead, we use easier samples for training and use the normal maze task dataset described
above for OOD evaluation. To generate easy samples, we choose our target distance between the
start and the end cell uniformly from [10, 30] which is significantly smaller than [dmax − 20, dmax]
used for the main dataset where dmax was the maximum distance from the start cell (see above).
The latter ensures that the number of scratchpad frames required to solve the task when the nodes
are connected is less than or equal to 3 during training. Further, instead of trying to split the maze
into two components of the same size, we try to add the wall such that the size of the component
that includes the start cell is closest to 30

dmax
(number of cells

2). By doing the latter, we make sure that
the search space seen during training (size of the component including the start cell) is smaller than
the main dataset, and hence samples are easier.

Next, we explain details specific to rectangular and circular mazes.

D.3.1 RECTANGULAR MAZE SPECIFICS

Rectangular mazes are primarily specific by a number n which indicates the number of rows and
columns of the maze resulting in n2 cells. E.g., maze (rect.) 32 has 1024 cells. Also, note that each
cell in the rectangular maze has at most 4 neighbors.

D.3.2 CIRCULAR MAZE SPECIFICS

Circular mazes are organized into a number of concentric rings and are primarily specified by the
number of rings. The zeroth circle only includes the center of the maze and is not counted into the
number of rings. The first ring contains 6 cells. For each of the next rings the number of cells is
kept fixed or is doubled. Also note that the center cell in the circular maze has 6 neighbors and other
cells can also have up to 5 neighbors.

E ADDITIONAL EXPERIMENTS

E.1 ADDITIONAL MODEL SCALING EXPERIMENTS ON MAZE (CIRCULAR)

In the model scaling experiments conducted on the maze circular dataset in Figure 8, we observe a
similar behavior to that seen on maze rectangular. For larger model sizes (Base, Large, and Huge),
both the inductive and single-frame scratchpads achieve near-perfect accuracy. However, the induc-
tive scratchpad particularly shines when it comes to smaller models. With the ViT Small model, the
inductive approach significantly outperforms the single-frame scratchpad, yielding a performance
improvement of more than 30 percentage points. This indicates the effectiveness of the inductive
method in handling resource-constrained settings, maintaining superior OOD generalization even
when model capacity is limited.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

12 14 16 20 22 24
Task complexity

50

60

70

80

90

100

Ac
cu

ra
cy

Model size: base

12 14 16 20 22 24
Task complexity

Model size: huge

Single-frame scratchpad Inductive scratchpad

Figure 9: OOD experiment with model size scaling

E.2 RELATIONSHIP BETWEEN MODEL SIZE AND OOD GENERALIZATION

The plot in Figure 9 presents the OOD generalization performance for models of different sizes (B
and H) trained on task complexity 12 and tested on more complex tasks ranging from 14 to 24.
Notably, the inductive scratchpad consistently outperforms the single-frame scratchpad across the
entire range of task complexities, irrespective of model size. This trend holds true for both the base
and huge models, although the performance gap between the two approaches seems to decrease as
model size increases. This suggests that the single-frame scratchpad can somewhat benefit from
larger models. However, as shown in the main paper, a key advantage of the inductive scratchpad
lies in its ability to improve performance by expanding more compute at inference time, enabling
smaller models to perform well. We hypothesize that the diminishing gap in performance with the
huge model might be attributed to it being more data-hungry. Since the inductive scratchpad sees
two steps per iteration for each sample, it may be more prone to memorization, suffering from the
additional exposure to images during training.

E.3 ADDITIONAL OOD EXPERIMENTS ON MAZE (CIRCULAR) AND STRINGS DATASETS

Similar to the experiments presented in the main paper, on the maze circular dataset (see Table 4),
both the inductive and single-frame scratchpads achieve near-perfect performance on in-distribution
(ID) tasks. However, for out-of-distribution (OOD) tasks, the inductive scratchpad significantly
outperforms the single-frame scratchpad, achieving 96.88% accuracy compared to 62.99%. This
trend mirrors the results observed on the maze rectangular dataset, where OOD generalization is
again much better for the inductive method. For the strings dataset (see Figure 10), the pattern
slightly differs. Strings is a more challenging dataset overall, as established in the main paper, which
makes OOD generalization particularly difficult. Nonetheless, the inductive scratchpad consistently
performs better than the single-frame scratchpad, especially on more complex OOD tasks, with the
exception of size 14, which is the simplest OOD task in this setting.

E.4 ADDITIONAL ABLATIONS FOR THE MULTI-FRAME BASELINE

In the main paper, we discussed the factors contributing to the success of the inductive scratchpad
model, including increased supervision during training, the halting mechanism, and the integration
of teacher forcing with training on the output distribution. In this section, we present additional
experiments to evaluate the impact of the multi-frame supervision. We introduced a multi-frame
baseline model, which, while similar to the single-frame model, features multiple heads for predict-
ing several scratchpad frames.

Our previous findings indicated that the multi-frame baseline did not yield any performance gains
on OOD samples compared to the single-frame model. However, there is a scenario where the
multi-frame approach proves beneficial: it aids convergence for smaller models (Base and Large).
As illustrated in Figure 11, the inductive scratchpad converges across all model sizes (Small, Base,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

12 14 16 18 20 22 24
Task complexity (validation)

50

60

70

80

90

100

Ac
cu

ra
cy

Strings
Single-frame scratchpad
Inductive scratchpad

Figure 10: OOD experiments where the model is trained
on strings 12 and tested on more complex strings tasks.

Method
Accuracy (%)

ID OOD

Single-frame scratchpad 100.00 62.99
Inductive scratchpad 99.98 96.88

Table 4: In-distribution (ID) and out-of-
distribution (OOD) performance on the
maze circular dataset for different meth-
ods. The inductive scratchpad outperforms
the single-frame scratchpad in the OOD
setting.

Large, and Huge), while the single-frame scratchpad only converges for the Huge model, indicating
a greater computational demand to find the solution. The multi-frame model mitigates this issue by
facilitating convergence in Base and Large models, suggesting that while it may still struggle with
OOD, as noted in the main paper, it may help model in discovering the solution. This improvement
can be attributed to the presence of additional frames, which provide better guidance on the path to
reaching the solution.

small base large huge
Model size

50

60

70

80

90

100

Ac
cu

ra
cy

Cycles 24

Single-frame scratchpad
Multi-frame baseline
Inductive scratchpad

Figure 11: Scaling parameters, Single-frame vs. Multi-frame vs Inductive scratchpad.

E.5 ADDITIONAL STAIRCASE EXAMPLES

While the main paper presents enhanced visualizations of the staircase phenomenon for clarity,
it’s important to note that this behavior is also evident in the non-enhanced outputs. As shown in
Figure 12, the third row displays the raw model outputs for the cycles 16 task, which exhibit the
same progressive learning pattern described earlier. This confirms that the staircase effect is not an
artifact of post-processing but a genuine characteristic of the model’s learning process.

Moreover, this hierarchical learning phenomenon is not limited to the cycles task. Figure 13 demon-
strates that a similar staircase behavior emerges in the more complex maze (rectangular) task. In
this case, the model’s behavior resembles a spreading “cloud” that progressively discovers contigu-
ous areas of the maze. This is particularly noteworthy because the model is trained only on the
final, fully solved maze configuration (shown in the second row of each column), with the first row
representing the input maze.

In both the cycles and maze tasks, we observe a consistent pattern of the model first solving easier,
more local aspects of the problem before progressively tackling more global structures. This aligns

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 12: Expanded staircase examples for the cycles 16 task.

Figure 13: Additional staircase examples for the maze (rectangular) task.

with the theoretical understanding of the staircase effect in learning sparse Boolean functions, but
now demonstrated in more diverse and visually complex domains.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 14: The cover of the 2017 edition of Perceptrons by Minsky & Papert (1969), which also
closely resembles the cover of the 1972 edition. Minsky & Papert (1969) showed that single-layer
perceptrons cannot distinguish the two figures based on connectivity due to expressivity issues.

F ADDITOINAL FIGURES

F.1 BOOK COVER OF MINSKY & PAPERT (1969)

Figure 14 shows the cover image of Minsky and Papert’s classic book Perceptrons (1969), which
explores early theories of neural networks and their limitations.

F.2 SCRATCHPAD EXAMPLES FOR OTHER TASKS

This section provides example scratchpads for several tasks, demonstrating target frames for the
model. The following figures illustrate scratchpads for tasks like connected and disconnected cycles,
strings, and solvable and non-solvable mazes. In Figure 15, we show examples of the cycles 20
dataset with connected cycles. In Figure 16 and 17, scratchpads for the strings 12 dataset with
disconnected strings are shown. For maze tasks, Figures 19 and 18 display scratchpads for solvable
and non-solvable rectangular mazes. Finally, Figures 21 and 20, does the same for maze circular 16.

Figure 15: Example of scratchpads for the cycles 20 dataset, connected cycles.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 16: Example of scratchpads for the strings 12 dataset, disconnected strings.

Figure 17: Example of scratchpads for the strings 12 dataset, connected strings.

Figure 18: Example of scratchpads for the maze (rectangular) 24 dataset, non-solvable maze.

Figure 19: Example of scratchpads for the maze (rectangular) 24 dataset, solvable maze.

Figure 20: Example of scratchpads for the maze (circular) 16 dataset, non-solvable maze maze.

Figure 21: Example of scratchpads for the maze (circular) 16 dataset, solvable maze.

26

	Introduction
	Global visual reasoning datasets
	Globality, locality and scratchpads in the visual domain

	Methodology
	Single-frame scratchpad
	Multi-frame scratchpad and Inductive scratchpad model

	Experiments
	Model size experiments
	OOD generalization
	Ablations
	Staircase learning phenomenon

	Conclusions and future directions
	Related work
	Training details
	Hyperparameter tuning and sensitivity

	Model implementation
	Training procedure for the inductive scratchpad model

	Dataset generation
	Cycles task
	Strings task
	Maze tasks
	Rectangular maze specifics
	Circular maze specifics

	Additional experiments
	Additional model scaling experiments on maze (circular)
	Relationship between model size and OOD generalization
	Additional OOD experiments on maze (circular) and strings datasets
	Additional ablations for the multi-frame baseline
	Additional staircase examples

	Additoinal figures
	Book cover of Minsky & Papert (1969)
	Scratchpad examples for other tasks

