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ABSTRACT

We present DistillKac, a fast image generator that uses the damped wave equa-
tion and its stochastic Kac representation to move probability mass at finite speed.
In contrast to diffusion models whose reverse time velocities can become stiff and
implicitly allow unbounded propagation speed, Kac dynamics enforce finite speed
transport and yield globally bounded kinetic energy. Building on this structure, we
introduce classifier-free guidance in velocity space that preserves square integra-
bility under mild conditions. We then propose endpoint only distillation that trains
a student to match a frozen teacher over long intervals. We prove a stability re-
sult that promotes supervision at the endpoints to closeness along the entire path.
Experiments demonstrate DistillKac delivers high quality samples with very few
function evaluations while retaining the numerical stability benefits of finite speed
probability flows.

1 INTRODUCTION

Diffusion models have catalyzed an enormous research wave. Since the seminal Denoising Dif-
fusion Probabilistic Models (DDPM) paper, there are now tens of thousands of diffusion-related
publications, and the DDPM work alone has accrued well over twenty-five thousand citations (Ho
et al., 2020; Sohl-Dickstein et al., 2015). Conceptually, diffusion models couple a stochastic for-
ward noising process with a reverse-time ordinary differential equation (ODE)/stochastic differen-
tial equation (SDE) whose density evolution is governed by the Fokker–Planck equation, a linear
second-order partial differential equation (PDE) (Song et al., 2021b). Learning consists of esti-
mating time-indexed scores/velocities and integrating them for sampling (Ho et al., 2020; Song &
Ermon, 2020; Song et al., 2021a) Recently, a growing body of work explores probability flow back-
bones: deterministic ODE flows trained via flow matching and its optimal transport variants (Lipman
et al., 2023; Tong et al., 2024), rectified flows (Liu et al., 2023), and unified stochastic interpolants
that bridge flows and diffusion (Albergo et al., 2023).

Yet the PDE lens on generative modeling need not be limited to Fokker–Planck. Other classical
PDEs offer different structural advantages but remain comparatively underexplored. For example,
Poisson flow models recast generation through electrostatics-inspired fields (Xu et al., 2022; 2023).
Most relevant to our work, Duong et al. (2025) replaces the Fokker–Planck equation with the telegra-
pher equation (1-dimensional damped wave equation) and its stochastic Kac representation, proving
finite-speed probability flows that are Lipschitz in Wasserstein distance with globally bounded ve-
locity norms. Crucially, telegrapher/Kac dynamics enforce a finite propagation speed: starting from
localized mass, the distribution remains inside a causal cone. In contrast, diffusion spreads mass
instantaneously with effectively infinite propagation speed, which also manifests as stiff, rapidly
growing reverse-time velocities near terminal time (Yang et al., 2023). This structural gap, finite
speed versus infinite-speed propagation, will be central to our modeling and algorithms.

In this paper, we pivot to the damped wave equation and its stochastic Kac representation, which
induces finite-velocity probability flows. Compared to diffusion ODEs/SDEs, whose velocity norms
can blow up near terminal time, Kac dynamics yield globally bounded kinetic energy and Lipschitz
regularity in Wasserstein space. Intuitively, the finite-speed cap c acts like a built-in stability con-
straint: trajectories cannot accelerate without bound, characteristic fronts move no faster than c, and
late-time integration is less stiff. Building on this structure, we introduce guided Kac flows for condi-
tional generation and distilled Kac flows for few-step sampling: (i) we adapt classifier-free guidance
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Parabolic PDE Elliptic PDE Hyperbolic PDE
Fokker–Planck equation Poisson equation Damped wave equation
Diffusion models Poisson flow models Kac flow models
(Sohl-Dickstein et al., 2015;
Ho et al., 2020) and tens of
thousands of other diffusion
papers

(Xu et al., 2022; 2023) (Duong et al., 2025) and this
work

Table 1: Three PDE lenses for generative modeling: representative model families and citations.
Our work belongs to the hyperbolic family, shown in the third column.

(Ho & Salimans, 2022) directly in velocity space while preserving bounded-energy guarantees, and
(ii) we develop an endpoint-only distillation scheme with a provable endpoint-to-trajectory stability
bound. Empirically, these properties support stable few-step samplers with strong sample quality.
Theoretically, they clarify why endpoint matching suffices under finite-speed Kac dynamics.

2 THEORETICAL FOUNDATIONS

2.1 PARTIAL DIFFERENTIAL EQUATIONS

The time evolution of the probability density of the diffusion process is governed by the Fokker-
Planck equation

∂tp(t, x) = −∇ · (pµ)(t, x) +
∑
i,j

∂xi
∂xj

(Dij(t, x)p(t, x)) (1)

where t ∈ R is time, x ∈ Rd is state, µ(t, x) is the drift vector, and D(t, x) = 1
2σσ

⊤ is the diffusion
tensor. The heat equation is a special case of the Fokker-Planck equation.

While the Fokker-Planck equation is a linear, second-order parabolic PDE, there are other important
classes of linear second-order PDEs, such as elliptic and hyperbolic equations. In particular, the
wave equation and its damped variant are canonical examples of hyperbolic PDEs. The damped
wave equation takes the general form

∂ttu(t, x) + ξ∂tu(t, x) = c2∆u(t, x) (2)

where ξ > 0 is a constant and c is the speed of the wave front. The telegraph(er) equation is a
1-dimensional damped wave equation.

2.2 KAC PROCESS AND RANDOM FLIGHTS

Just as the diffusion process is associated with the Fokker-Planck equation, the damped wave equa-
tion also corresponds to a stochastic process.

Define a stochastic process {X(t)}t≥0 in Rd, d ≥ 1, as follows:

1. Initial condition. The particle starts at the origin X(0) = 0 ∈ Rd.

2. Velocity and speed. The particle moves with constant speed c > 0. At any time, the
velocity is V (t) = cU(t), where U(t) is a random vector on the unit sphere Sd−1 = {u ∈
Rd : ||u|| = 1}.

3. Direction changes. The direction process {U(t)} changes at the jump times of a ho-
mogeneous Poisson process {N(t)}t≥0 of rate λ > 0. That is, if the jump times are
0 = s0 < s1 < s2 < · · · < sn, then:

• On each interval [sj−1, sj), the velocity is constant: V (t) = cUj .
• The random directions {Uj} are i.i.d. with uniform distribution on the unit sphere
Sd−1.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The position of the particle at time t is obtained by integrating the velocity

X(t) =

∫ t

0

V (s)ds = c

N(t)∑
j=1

(sj − sj−1)Uj , (3)

where s0 = 0 and sN(t) = t.

When d = 1, S0 = {±1}, and the particle flips directions between left and right. The d = 1 case
is usually called telegraph process or Kac process (Goldstein, 1951; Kac, 1974). When d ≥ 2, the
process is called a random flight (Orsingher & De Gregorio, 2007).

Theorem 1. (Orsingher & De Gregorio, 2007) For d = 1, 2, and 4, the distribution of the state
X(t) can be obtained analytically, while for any other positive integer d there is no explicit formula.

Theorem 2. (Orsingher & De Gregorio, 2007) For d = 1 and 2, the state distribution solves the
damped wave equation.

2.3 IMAGE GENERATION VIA COMPONENT-WISE 1-D TELEGRAPHER EQUATION

Duong et al. (2025) study Kac process and the telegrapher equation (the 1-D damped wave equation),
and derive a closed-form expression for the conditional velocity v(t, x|x0) for any time t, and noisy
state x ∈ R given data x0. Leveraging this expression, they propose a simple procedure to learn the
data distribution from noise:

1. Given data x0, sample a time t and then draw the state x from the analytic state distribution
(Theorem 1).

2. Evaluate the closed-form conditional velocity v(t, x|x0) and fit a neural network vθ(t, x)
to it by regression (e.g. minimizing E[||vθ(t, x)− v(t, x|x0)||2]).

At inference, draw xT ∼ p(T, x) (noise) and integrate the learned velocity field backward in time
from t = T to t = 0 to obtain a data sample x0.

For multi-dimensional data, e.g., images, they model each coordinate with an independent 1-D Kac
process, i.e., a component-wise product construction.

Because each coordinate follows the 1-D Kac dynamics, the component-wise image model inherits
finite-speed propagation and dimension-aware energy bounds. In 1-D, the Kac solution started at x0
is supported on [x0−ct, x0+ct], where c is the wave front speed in Equation (2), and the conditional
velocity satisfies |v(t, x|x0)| ≤ c, with v(t,±ct|x0) = ±c. Applying this per coordinate, the
component-wise construction for images propagates inside the ℓ∞ causal cone {x : ∥x − x0∥∞ ≤
ct}. Moreover, for the resulting d-dimensional (product) Kac flow (µt)t≥0 there exist dimension-
aware global bounds

W2(µs, µt) ≤ c
√
d|t− s|, ∥vt∥L2(µt) ≤ c

√
d for a.e. t ∈ [0, 1], (4)

and the support grows at most linearly in time. We will leverage these properties to prove bounded
energy under classifier-free guidance and endpoint-to-trajectory stability for distillation.

2.4 NOTATIONS

Let t ∈ R denote time, x ∈ Rd the state, and y ∈ N a class label. Let P2(Rd) denote the set of Borel
probability measures on Rd with finite second moment, endowed with the quadratic Wasserstein
distance

W 2
2 (µ, ν) := inf

π∈Π(µ,ν)

∫
Rd×Rd

||x− y||2dπ(x, y), (5)

for µ, ν ∈ P2(Rd), where Π(µ, ν) is the set of couplings of µ and ν. For a measurable map
F : Rd → Rd, the pushforward measure of µ is F#µ := µ ◦ F−1.

We use Kac process when we talk about individual random paths (simulation/noising), and Kac flow
when we talk about how distributions move in time and the ODE we integrate at inference.
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Algorithm 1 Endpoint Distillation (N steps)
1: Inputs: N , ∆t, ṽθ (normal/CFG velocity), η, B, max iter
2: Init: teacher uθ ← ṽθ (frozen), student vθ ← ṽθ
3: for i = 1 to max iter do
4: sample {(t(b), x(b), y(b))}Bb=1

5: x
(b)
⋆ ← TEACHER(uθ, t

(b), x(b), y(b), N,∆t)
6: x̂(b) ← x(b) − vθ(t(b), x(b); y(b))∆t
7: L(θ)← 1

B

∑
b ∥x̂(b) − x

(b)
⋆ ∥22; θ ← θ − η∇θL(θ).

8: end for

3 CLASSIFIER FREE GUIDANCE IN VELOCITY SPACE

While Duong et al. (2025) focus on unconditional image generation, we address both unconditional
and conditional generation, and further introduce classifier-free guidance in velocity space.

Let vθ(t, x) and vθ(t, x; y) be the learned unconditional and conditional velocities, respectively. We
define the velocity guidance with strength w(t) ≥ 0 by

ṽ(t, x; y) = vθ(t, x) + w(t)[vθ(t, x; y)− vθ(t, x)], (6)

and integrate the reverse ODE φ̇(t) = −ṽ(t, φ(t); y) from t = 1 to 0 to generate data samples.

Let ∆θ(t, x; y) := vθ(t, x; y)− vθ(t, x) denote the conditional-unconditional velocity gap.
Assumption 3. (Square-integrable guidance gap) For a.e. t ∈ [0, 1], Ex∼µt [||∆θ(t, x; y)||22] < ∞
for the random condition y, or equivalently, EyEx∼µt [||∆θ(t, x; y)||22] <∞.

Theorem 4. (Energy bound under guidance) Suppose the unconditional Kac flow satisfies
||vθ(t, ·)||L2(µt) ≤ c

√
d for a.e. t, and Assumption 3 holds. If |w(t)| is finite for a.e. t, then

ṽ(t, ·; y) ∈ L2(µt) for a.e. t.

The proof is in the Appendix. The assumption that ||vθ(t, ·)||L2(µt) ≤ c
√
d for a.e. t follows from

Proposition 10 in Duong et al. (2025) under its stated hypothesis, which is generally satisfied. In
practice, we may take w(t) to be a constant w, so the requirement that |w(t)| is finite for a.e. t is
automatically satisfied. The conclusion ṽ(t, ·; y) ∈ L2(µt) for a.e. t then implies that the guided
velocity has finite kinetic energy, unlike diffusion, where the kinetic energy can diverge near data
time.

4 DISTILLATION

We distill a student from a frozen teacher by endpoint matching. The teacher is either a learned
flow or a classifier-free guidance model. Unlike progressive distillation (Salimans & Ho, 2022),
which performs two-step distillation per iteration, we match over an arbitrary number of N substeps
with N ≥ 2. The distillation algorithm is shown in Algorithm 1. At each training iteration and for
each sample b, the TEACHER routine integrates the frozen teacher velocity uθ backward from t(b)

to t(b) − ∆t using N uniform substeps (e.g., explicit Euler, midpoint/RK2, Adams-Bashforth-2),
producing the reference endpoint x(b)⋆ . The endpoints t(b) and t(b) −∆t are chosen to coincide with
the student’s segment boundaries: for an M -step student with a uniform time grid 1 = t1 ≥ · · · ≥
tM+1 = 0, if t(b) = tk, then t(b) −∆t = tk+1. Over the same interval [t(b) −∆t, t(b)], the student
takes one explicit Euler step (backward in time), and is trained with an MSE loss to match x(b)⋆ .
Both the teacher and the student are initialized from the same pre-trained velocity model ṽθ, and the
teacher remains frozen throughout training.

Let u and v be the velocity fields for the teacher and the student Kac flows, respectively. The
corresponding ODEs defined on [0, 1] are

φ̇t = u(t, φt; y) (7)

ψ̇t = v(t, ψt; y) (8)
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Let µt and νt be the respective distributions of φt and ψt. Let Φs→t and Ψs→t denote the flows
associated with φt and ψt, respectively. That is, for 0 ≤ s ≤ t ≤ 1, the flow map Φs→t : Rd → Rd

is the unique map such that for every x ∈ Rd, the trajectory τ 7→ Φs→τ (x) is absolutely continuous
on [s, t] and solves the ODE Equation (7) for a.e. τ ∈ [s, t], with the initial condition φs = x:

Φs→t(x) = x+

∫ t

s

u(r,Φs→r(x); y)dr. (9)

The flow Φs→t is also well defined when 0 ≤ t ≤ s ≤ 1. In particular, sampling from noise (t = 1)
to data (t = 0) corresponds to the single map Φ1→0.

We now lay out mild conditions on the teacher and student dynamics that ensure the flows are
well defined. The subsequent assumptions and lemmas formalize these regularity and bounded-
ness requirements and show that small discrepancies do not explode as we evolve in time. With
this groundwork in place, the main stability result will convert endpoint agreement into closeness
of entire trajectories, and the concluding corollary will turn that principle into concrete accuracy
guarantees for practical, few-step students.
Assumption 5. (Spatial Lipschitz drifts) There existsL(t) such that, for a.e. t ∈ [0, 1], both u(t, ·; y)
and v(t, ·; y) are L(t)-Lipschitz in x on the support of µt ∪ νt, and

∫ 1

0
L(t)dt <∞.

Lemma 6. (Lipschitz constants of flow maps) Under Assumption 5, for any 0 ≤ s ≤ t ≤ 1,
Lip(Φs→t) ≤ exp(

∫ t

s
L(r)dr), and similarly for Ψs→t.

The proofs of this lemma and the next are provided in the appendix. Here Lip(Φs→t) denotes the
Lipschitz constant of the flow Φs→t.
Lemma 7. (Pushforward contraction and coupling) For any Lip(F )-Lipschitz map F : Rd → Rd

and µ, ν ∈ P2(Rd), W2(F#µ, F#ν) ≤ Lip(F )W2(µ, ν). Moreover, for any probability mea-
sure ν ∈ P2(Rd), and measurable maps F,G : Rd → Rd, with

∫
||F (x)||2dν(x) < ∞ and∫

||G(x)||2dν(x) <∞, one has W2(F#ν,G#ν) ≤ (EX∼ν ||F (X)−G(X)||22)1/2.

The following result captures the core stability principle behind endpoint distillation: if a student
matches the teacher at the end of each interval, then the two paths remain close throughout that
interval.
Theorem 8. (Endpoint-to-trajectory stability) Let ε :=W2(µs, νs) be the discrepancy at some time
s ∈ [0, 1]. Under Assumption 5, for every τ ∈ [s, 1],

W2(µτ , ντ ) ≤ exp

(∫ τ

s

L(r)dr

)
ε+

∫ τ

s

exp

(∫ τ

t

L(r)dr

)
||u(t, ·; y)− v(t, ·; y)||L2(νt)dt

(10)

Proof. By well-posedness, µτ = Φs→τ#µs and ντ = Ψs→τ#νs. Apply the triangle inequality and
Lemma 7,

W2(µτ , ντ ) ≤W2(Φs→τ#µs,Φs→τ#νs) +W2(Φs→τ#νs,Ψs→τ#νs) (11)

≤ Lip(Φs→τ )W2(µs, νs) + (EX∼νs ||Φs→τ (X)−Ψs→τ (X)||22)1/2 (12)

By Lemma 6, Lip(ϕs→τ ) ≤ exp(
∫ τ

s
L(r)dr), giving the first term.

For the second term, define ∆t(X) := Φs→t(X) − Ψs→t(X) for X ∼ νs. Then d
dt∆t =

u(t,Φs→t(X); y)− v(t,Ψs→t(X); y). We have

d

dt
||∆t|| ≤ ||

d

dt
∆t|| (by Cauchy–Schwarz inequality, see Equation (A-8) (13)

= ||u(t,Φs→t(X); y)− v(t,Ψs→t(X); y)|| (14)
≤ ||u(t,Φs→t(X); y)− u(t,Ψs→t(X); y)||︸ ︷︷ ︸

≤L(t)||∆t|| (by Assumption 5)

+ ||u(t,Ψs→t(X); y)− v(t,Ψs→t(X); y)||︸ ︷︷ ︸
=:δ(t,Ψs→t)

(by triangle inequality) (15)
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By Grönwall’s inequality with ||∆s|| = 0,

||∆τ (X)|| ≤
∫ τ

s

exp

(∫ τ

t

L(r)dr

)
δ(t,Ψs→t(X))dt. (16)

Take L2(νs) norms of both sides,

||∆τ (X)||L2(νs) ≤
∣∣∣∣∣∣∣∣∫ τ

s

exp

(∫ τ

t

L(r)dr

)
δ(t,Ψs→t(X))dt

∣∣∣∣∣∣∣∣
L2(νs)

(17)

≤
∫ τ

s

exp

(∫ τ

t

L(r)dr

)
||δ(t,Ψs→t(X))||L2(νs)dt (18)

=

∫ τ

s

exp

(∫ τ

t

L(r)dr

)
||u(t, ·; y)− v(t, ·; y)||L2(νt)dt. (19)

In (18) we used Minkowski’s integral inequality. In (19), we used pushforward identity Ψs→t#νs =
νt.

Setting s = 0, i.e., supervising only the data endpoint at t = 0, yields, for all τ ∈ [0, 1],

W2(µτ , ντ ) ≤ exp

(∫ τ

0

L

)
W2(µ0, ν0) +

∫ τ

0

exp

(∫ τ

t

L

)
||u(t, ·; y)− v(t, ·; y)||L2(νt)dt,

(20)

which is the endpoint-only distillation bound propagating the t = 0 mismatch to the whole trajectory.

Corollary 9. (Few-step students: order-p one-step methods) Let the student be a one-step method
(advancing to the next state using only the current state) of local order p ≥ 1 with nodes 1 = t1 ≥
· · · ≥ tM+1 = 0 and steps hk = tk− tk+1. Assume that along student trajectories, the teacher drift
u has bounded time derivatives up to order p and is L(t)-Lipschitz in x. Then there exist constants
Γk (depending on local p-th time derivatives of u along teacher paths and spatial Lipschitz moduli
L(t)) such that

∫ tk

tk+1

||u(s, ·; y)− v(s, ·; y)||L2(νs)ds ≤ Γkh
p+1
k . (21)

Consequently,

W2(µτ , ντ ) ≤ exp

(∫ τ

0

L

)
ε+ exp

(∫ τ

0

L

) M∑
k=1

Γkh
p+1
k , τ ∈ [0, 1] (22)

For explicit Euler (p = 1) and uniform steps hk = 1/M , the second term scales like O(M−1) up to
smoothness constants.

For explicit Euler (p = 1), we take the student velocity v(s, ·; y) = u(tk+1, ·; y) for all s ∈ Ik =
[tk+1, tk]. Then, by the Fundamental Theorem of Calculus,

||u(s, ·; y)− v(s, ·; y)||L2(νs) = ||u(s, ·; y)− u(tk+1, ·; y)||L2(νs) (23)

≤
∫ s

tk+1

||∂tu(r, ·; y)||L2(νr)dr. (24)

6
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Figure 1: Uncurated CIFAR-10 (left) and CelebA-64 (right) samples generated by Guided Kac Flow
(midpoint integrator, 100 steps, guidance w = 3 for CIFAR-10 and w = 0 for CelebA-64).

Integrating both sides over the interval Ik,∫ tk

tk+1

||u− v||L2(νs)ds ≤
∫ tk

tk+1

∫ s

tk+1

||∂tu(r, ·; y)||L2(νr)drds (25)

=

∫ tk

tk+1

(∫ tk

s=r

ds

)
||∂tu(r, ·; y)||L2(νr)dr (by Tonelli’s theorem) (26)

=

∫ tk

tk+1

(tk − r)||∂tu(r, ·; y)||L2(νr)dr (27)

≤
(
sup
r∈Ik

||∂tu(r, ·; y)||L2(νr)

)∫ tk

tk+1

(tk − r)dr (28)

=
1

2

(
sup
r∈Ik

||∂tu(r, ·; y)||L2(νr)

)
︸ ︷︷ ︸

Γk

h2k (29)

we recover Equation (21).

For a first-order student, doubling the number of steps typically cuts the error by about half. For
a higher-order student, the improvement is even faster. In practice, we balance efficiency and ac-
curacy: higher-order students often require more evaluations per step, so we choose the order and
step count to hit a target quality within a given compute budget. The constants depend on how
smooth the teacher is and on the strength of guidance, but the qualitative rates are robust thanks to
the finite-speed and bounded-energy structure of the Kac backbone.

5 EXPERIMENTS

5.1 SETUP

We train on CIFAR-10 (32×32) and CelebA-64 (64×64). The velocity backbone is a UNet and
the hyperparameters are in Appendix B.1. The procedure for selecting Kac flow hyperparameters is
described in Appendix B.2. For classifier-free guidance, we use a constant guidance strength w on
CIFAR-10 and unconditional generation on CelebA-64 (i.e., w = 0).

5.2 MAIN RESULTS

Our main CIFAR-10 results are summarized in Table 2. We train a conditional generative model
and apply velocity guidance at evaluation, referred to as Guided Kac Flow. Figure 2 plots FID
as a function of guidance strength w. We evaluate three time integrators: (1) Explicit Euler (first-
order); (2) Midpoint/RK2 (second-order); (3) Adams-Bashforth-2 (AB-2; second-order). As shown

7
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CIFAR-10 CelebA-64
Method FID ↓ NFE ↓ Conditional FID ↓ NFE ↓
Kac Flow (Duong et al., 2025) 6.80 100 – –
Guided Kac Flow (ours, 100 steps, midpoint) 3.54 200 ✓ 3.36 200
Guided Kac Flow (ours, 100 steps, AB-2) 3.58 100 ✓ 3.50 100
DistillKac (ours) 3.72 20 ✓ 3.42 20

4.14 4 ✓ 4.36 4
4.68 2 ✓ 6.91 2
5.66 1 ✓ 9.20 1

DDPM (Ho et al., 2020) 3.17 1000 – –
DDIM (Song et al., 2021a) 4.04 1000 3.51 1000

4.16 100 6.53 100
4.67 50 9.17 50
6.84 20 13.73 20
13.36 10 17.33 10

Progressive distillation (Salimans & Ho, 2022) 2.57 8 – –
3.00 4 – –
4.51 2 – –
9.12 1 – –

EDM (Karras et al., 2022) 1.79 35 ✓ – –
1.97 35 – –

iCT (Song & Dhariwal, 2024) 2.46 2 – –
2.83 1 – –

Soft Diffusion (Daras et al., 2023) – – 1.85 300
PDM-DDPM++ (Wang et al., 2023) – – 1.77 50
Soft Truncation-G++ (Kim et al., 2023) – – 1.34 131

Table 2: Main results on CIFAR-10 and CelebA-64. Lower is better for FID. We report means
over 50k samples. Ours denotes the Kac backbone with guidance and endpoint distillation. NFE
counts velocity evaluations; midpoint integrator uses 2 function evaluations per step.

in Figure 2, second-order methods, midpoint and AB-2, yield lower FID. Because AB-2 requires one
function evaluation per step whereas midpoint requires two, AB-2 offers a better efficiency–accuracy
trade-off.

Figure 2: Left: CIFAR-10 FID vs. guidance strength w for the 100-step Guided Kac Flow. Second-
order integrators (midpoint and AB-2) outperform Euler. Right: CIFAR-10 FID vs. integration
steps. DistillKac substantially reduces FID at 20, 4, 2, and 1 steps relative to Guided Kac Flow.

Starting from a 100-step Guided Kac Flow model as a teacher, we distill a 20-step student and then
iteratively distill to 4, 2, and 1 steps, each stage using the previously trained student as the teacher.
We refer to these distilled students as DistillKac. Table 2 reports their FIDs. As shown in Figure 2,
distillation significantly improves FID at 20, 4, 2, and 1 steps relative to the original Guided Kac
Flow at the same step counts. DistillKac reduces the sampler from 100 to 1 step with FID rising
only from 3.58 to 5.66 (+2.08). We attribute this robustness to the endpoint-to-trajectory stability of
Kac flows (Theorem 8).

Analogously, we train an unconditional CelebA-64 Kac flow model. To distinguish it from Distil-
lKac students, we still call it Guided Kac Flow teacher (w = 0). Starting from the teacher with 100
steps, we successively distill it to 20, 4, 2, and 1 steps. As the step count decreases, FID increases
from 3.42 (20 NFE) to 9.20 (1 NFE). For comparison, the original Guided Kac Flow teacher yields
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Figure 3: Time (seconds) to sample 50k images with one H100 GPU at 1, 2, 4, and 20 steps (NFE).

11.23 at 20 NFE and 443.01 at 1 NFE (See Appendix B.4). This indicates that distillation preserves
image quality far better than the teacher in the few-step regime.

Multi-stage distillation (S1 → S2 → · · · → Sℓ) can perform better than a single-stage distillation
(S1 → Sℓ) (See Appendix B.5). Multi-stage schedules (i) allow more hyperparameter tuning and
(ii) reduce per-stage runtime, enabling more effective hyperparameter search.

6 RELATED WORK

Progressive Distillation (Salimans & Ho, 2022) iteratively halves the sampling steps by training a
student to reproduce the effect of two teacher steps in one step. Consistency Models (Song et al.,
2023) learn a single network with a multi-time consistency objective so that a sample can be pro-
duced in 1 or 2 evaluations via the probability flow ODE. Our endpoint-only distillation trains each
student segment to match the teacher integrated over N ≥ 2 substeps on that segment and pro-
vides an endpoint-to-trajectory stability guarantee under Kac dynamics. Conceptually, our scheme
is closer to Progressive Distillation and, like Meng et al. (2023), we allow the teacher to employ
classifier-free guidance.

Our initial teacher, Guided Kac Flow, is a conditional Kac flow velocity model trained under hyper-
bolic, finite-speed Kac dynamics, i.e., a second-order system with an explicit velocity variable. By
contrast, flow matching (Lipman et al., 2023) and rectified flow (Liu et al., 2023) learn first-order
ODE velocity fields along chosen data–noise interpolants, with no independent velocity state or
no wave-like propagation, and thus no built-in finite-speed constant. Moreover, classical diffusion
has infinite propagation speed, and in learned diffusion models the score/velocity field becomes ill-
conditioned as σ → 0 (at the end of the denoising process), with Lipschitz blow-ups observed and
analyzed (Yang et al., 2023; Duong et al., 2025).

7 DISCUSSION AND FUTURE WORK

While our CIFAR-10 and CelebA-64 FIDs are below the state-of-the-art diffusion models, we do
not make SOTA claims. Instead, our results show that Guided Kac Flow and DistillKac produce
competitive, high-fidelity images at low NFE. We expect further improvements from stronger back-
bones and additional tuning of the Kac flow hyperparameters. These are orthogonal to our core
contribution. Our goal is to highlight Kac flow based generative modeling as a credible alternative
to diffusion and to encourage follow-up work in this direction.

Unlike diffusion models, whose full probability path satisfies the Fokker-Planck equation, Kac flows
enjoy a 1D Feynman-Kac correspondence with the telegrapher equation, yielding bounded-speed
probability flow. As shown in Theorem 2, for higher dimensions (d > 2), the solution to the damped
wave equation need not coincide with a probability density for the Kac process (and may fail to
be a valid density). Consequently, the Kac flow paper (Duong et al., 2025) adopts a component-
wise multi-D process built from independent 1D Kac marginals, for which the continuity equation
and Lipschitz and finite-speed properties hold. This raises a natural open question: can one con-
struct a genuinely d-dimensional stochastic process (with possibly dependent coordinates) whose
probability path satisfies a hyperbolic PDE while preserving mass, perhaps under specific boundary
conditions or coupling structures? Establishing such a model, along with stability guarantees and
asymptotic connections to diffusion, would broaden the toolbox of finite-speed generative flows.
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LLM USAGE

LLM use disclosure. We used large language models to (i) improve the grammar and wording of
this manuscript and (ii) assist with experimentation by drafting portions of the code and suggesting
debugging steps. All scientific ideas, claims, experiment designs, and final implementations are by
the authors. We reviewed and verified all LLM-assisted text and code before use, and the authors
remain fully responsible for the content of this paper.

A EXTRA PROOFS

A.1 PROOF OF THEOREM 4

By triangle inequality, for a.e. t,

||ṽ(t, ·; y)||L2(µt) ≤ ||vθ(t, ·)||L2(µt) + |w(t)|||∆θ(t, ·; y)||L2(µt) (A-1)

≤ c
√
d+ |w(t)|||∆θ(t, ·; y)||L2(µt) (A-2)

= c
√
d+ |w(t)|Ex∼µt

[||∆θ(t, x; y)||2] (A-3)
<∞ (A-4)

From Equation (A-1) to Equation (A-2), we used the assumption that ||vθ(t, ·)||L2(µt) ≤ c
√
d for

a.e. t. From Equation (A-3) to Equation (A-4), we used Assumption 3 and the assumption that
|w(t)| is finite for a.e. t.

Therefore, ṽ(t, ·; y) ∈ L2(µt) for a.e. t.

A.2 PROOF OF LEMMA 6

Let x, z ∈ Rd and t 7→ Φs→t(x),Φs→t(z) be teacher characteristics, i.e., the solution trajectories
(integral curves) of the ODE defined by Equation (7). Let

∆(t) = Φs→t(x)− Φs→t(z). (A-5)

Then

d

dt
∆(t) = u(t,Φs→t(x); y)− u(t,Φs→t(z); y). (A-6)

So

d

dt
||∆(t)|| =

〈
∆(t)

||∆(t)||
,
d

dt
∆(t)

〉
(A-7)

≤
∣∣∣∣∣∣∣∣ ∆(t)

||∆(t)||

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ ddt∆(t)

∣∣∣∣∣∣∣∣ (by Cauchy–Schwarz inequality) (A-8)

= ||u(t,Φs→t(x); y)− u(t,Φs→t(z); y)|| (A-9)
≤ L(t)||Φs→t(x)− Φs→t(z)︸ ︷︷ ︸

∆(t)

|| (by Assumption 5) (A-10)

By Grönwall’s inequality,

||Φs→t(x)− Φs→t(z)|| ≤ exp

(∫ t

s

L(r)dr

)
||x− z||, (A-11)

hence

Lip(Φs→t) ≤ exp

(∫ t

s

L(r)dr

)
. (A-12)
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A.3 PROOF OF LEMMA 7

Let π be an optimal coupling between µ and ν for W2. Then

W 2
2 (F#µ, F#ν) ≤

∫
||F (x)− F (z)||22dπ(x, z) (by definition of W2) (A-13)

≤ Lip(F )2
∫
||x− z||22dπ(x, z) (by definition of Lip(F )) (A-14)

= Lip(F )2W 2
2 (µ, ν) (by definition of W2). (A-15)

Let X ∼ ν and set Y := F (X), Z := G(X). Let γ be the joint distribution of (Y,Z), i.e.,
γ := (F ×G)#ν. Then γ is a coupling of F#ν and G#ν, i.e., γ ∈ Π(F#ν,G#ν).

By the definition of pushforward,∫
Rd×Rd

||y − z||2dγ(y, z) =
∫
Rd

||F (x)−G(x)||2dν(x) = EX∼ν ||F (X)−G(X)||2 (A-16)

By the definition of W2,

W 2
2 (F#ν,G#ν) = inf

η∈Π(F#ν,G#ν)

∫
Rd×Rd

||y − z||2dη(y, z) (A-17)

≤
∫
Rd×Rd

||y − z||2dγ(y, z) (A-18)

= EX∼ν ||F (X)−G(X)||2 (A-19)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 EXPERIMENT CONFIGURATIONS

We use the UNet architecture from OpenAI’s guided-diffusion github repository (OpenAI, 2021)
to train models on CIFAR-10 and CelebA-64. Following Duong et al. (2025), we define a mean-
reverting Kac process by

Mt := f(t)X0 +Kg(t), t ∈ [0, 1], (B-1)

where X0 ∼ µ0 denotes the data, Kt is a Kac process started from 0, and f, g : [0, 1] → R are
smooth functions satisfying

f(0) = 1, f(1) = 0, g(0) = 0, g(1) = 1. (B-2)

In particular, M0 = X0 and M1 = K1. Thus f and g are hyperparameters of the mean-reverting
Kac process. Let a := 1

2ξ, where ξ is the damping coefficient in the damped wave equation (Equa-
tion (2)), and let c denote the wave speed. The pair (a, c) are additional hyperparameters of the
mean-reverting Kac process. Table B-1 summarizes the UNet, training, and Kac process hyperpa-
rameters. We adopt early stopping when the validation FID curve flattens.

Section Parameter CIFAR-10 CelebA-64

UNet

Input resolution 32×32 64×64

Base channels 256 192
Residual blocks / stage 3 3
Dropout 0.0 0.0
Head channels / attn 64 64
Channel multipliers [1, 2, 2, 3] [1, 2, 3, 4]
Attention resolutions [16, 8, 4] [32, 16]
Scale–shift norm yes yes
Resblock up/down yes yes

Training

Optimizer AdamW AdamW
Learning rate 10−4 2× 10−4

Batch size 128 128
Weight decay 0.01 0.01
LR schedule Warmup → Flat → Cosine Warmup → Flat → Cosine
Warmup steps 2% 2%
Flat steps 58% 58%
Cosine steps 40% 40%
Gradient clip 1 1
EMA decay 0.9999 0.9999
Training steps 300k–400k 300k–400k
Early stopping yes yes

Kac
f(t) t t

g(t) t t2

(a, c) (25, 2) (3000, 20)

Table B-1: UNet, training, and Kac process hyperparameters for CIFAR-10 and CelebA-64.

B.2 KAC FLOW HYPERPARAMETERS

As detailed in Appendix B.1, Kac flow hyperparameters comprise a, c and the functions f and g. We
first use a lightweight UNet to search over different values of a, c, estimating FID with 2k samples
to efficiently identify promising settings. We then adopt a deeper UNet described in B.1 and report
final FID using 50k samples. Following Duong et al. (2025), we set f(t) = t, and consider g(t) = t
or t2.
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g(t) = t

(a, c) FID

(25, 1) 20.16
(25, 2) 19.83
(25, 3) 19.38
(25, 4) 20.25
(25, 5) 36.23
(900, 10) 37.31

g(t) = t2

(a, c) FID

(900, 10) 16.42
(1500, 10) 16.60
(1500, 12) 15.83
(3000, 10) 18.11
(3000, 20) 15.30
(6000, 20) 16.96

Table B-2: FID@2k samples with a lightweight UNet on CelebA-64

Table B-2 reports FID computed from 2k samples using a lightweight UNet on CelebA-64. The
set of hyperparameters (a, c) = (3000, 20), f(t) = t, g(t) = t2 yields the lowest FID and can be
adopted for subsequent experiments. The hyperparameters of the lightweight UNet are listed in
Table B-3.

Input resolution 64×64
Base channels 128
Residual blocks / stage 2
Dropout 0.1
Head channels / attn 64
Channel multipliers [1, 2, 2, 2]
Attention resolutions [16]
Scale–shift norm no
Resblock up/down yes

Table B-3: Lightweight UNet Hyperparameters

B.3 FID FOR GUIDED KAC FLOW ON CIFAR-10

Table B-4 and Table B-5 tabulate the FID values used to generate Figure 2. AB-2 uses one function
evaluation per step whereas midpoint uses two evaluations per step.

w 1.0 1.1 1.2 1.3 1.4 1.5

midpoint 4.20 3.73 3.54 3.56 3.72 4.10
AB-2 4.32 3.80 3.58 3.68 3.85 4.21
Euler 4.52 4.18 4.00 4.00 4.21 4.47

Table B-4: FID for Guided Kac Flow (100 steps) on CIFAR-10

steps 100 80 64 50 25 20 10 5 4 2 1

midpoint 3.54 3.55 3.59 3.60 3.87 4.39 13.03 49.14 70.36 202.37 396.46
AB-2 3.58 3.62 3.67 3.77 8.25 13.99 51.36 125.63 165.16 346.16 396.38

Table B-5: FID vs. integration steps for Guided Kac Flow (w = 1.2) on CIFAR-10.

B.4 FID FOR GUIDED KAC FLOW ON CELEBA-64

Table B-6 reports FID for the Guided Kac Flow teacher (w = 0) across various NFE using the
midpoint and AB-2 integrators. AB-2 uses one function evaluation per step, whereas midpoint uses
two evaluations per step. Consequently, midpoint cannot be run at NFE = 1. Figure B-1 shows
FID vs. NFE for both the Guided Kac Flow teacher (w = 0) and the DistillKac student. DistillKac
substantially reduces FID at 20, 4, 2, and 1 steps relative to the Guided Kac Flow teacher (w = 0).
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NFE 100 20 4 2 1

midpoint 3.61 11.31 71.28 443.01
AB-2 3.50 11.23 56.73 190.03 443.01

Table B-6: FID for the Guided Kac Flow teacher (w = 0) on CelebA-64.

Figure B-1: CelebA-64 FID vs. NFE. DistillKac substantially reduces FID at 20, 4, 2, and 1 steps
relative to the Guided Kac Flow teacher (w = 0).

B.5 MULTI-STAGE DISTILLATION VS SINGLE-STAGE DISTILLATION

Table B-7 shows that multi-stage distillation (S1 → S2 → · · · → Sℓ) performs better than a single-
stage distillation (S1 → Sℓ), where Si is the step count of the model. In Table B-7, 4 → 2 → 1
means we start from a 4-step DistillKac and successively distill it to 2 and 1 steps, while 4 → 1
means we directly distill the same 4-step DistillKac to 1 step. Similarly, 100 → 20 → 4 → 2 → 1
means we start from a Guided Kac Flow teacher with 100 steps and progressively distill it to 20, 4,
2, and 1 steps, while 100→ 1 means we directly distill the same Guided Kac Flow teacher to 1 step.
At the distillation stage Si → Si+1, the teacher substep is the quotient Si/Si+1 (assuming Si+1|Si),
i.e., for each sample, the student advances one step while the teacher must simulate Si/Si+1 steps.
The runtime at this stage is proportional to Si/Si+1. Therefore, multi-stage distillation has a shorter
per-stage runtime and makes hyperparameter search more tractable.

w 1.0 1.1 1.2 1.3 1.4 1.5

4 → 2 → 1 6.95 5.78 5.66 6.01 6.57 7.22
4 → 1 6.71 5.74 5.72 6.13 6.77 7.40

100 → 20 → 4 → 2 → 1 6.95 5.78 5.66 6.01 6.57 7.22
100 → 1 13.06 10.83 9.71 9.34 9.40 9.67

Table B-7: FID for multi-stage distillation and single-stage distillation.
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B.6 MORE GENERATED IMAGES

Figure B-2: Uncurated CIFAR-10 samples generated by DistillKac (Euler integrator, 20 NFE).

Figure B-3: Uncurated CelebA-64 generations with 1, 2, and 4 steps (NFE).
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Figure B-4: Uncurated CelebA-64 samples generated by DistillKac (AB-2 integrator, 20 NFE).
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Figure B-5: Uncurated CelebA-64 samples generated by DistillKac (Euler integrator, 4 NFE).
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