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Abstract001

Modern large language models (LLMs) employ002
diverse logical inference mechanisms for rea-003
soning, making the strategic optimization of004
these approaches critical for advancing their ca-005
pabilities. This paper systematically investigate006
the comparative dynamics of inductive (Sys-007
tem 1) versus abductive/deductive (System 2)008
inference in LLMs. We utilize a controlled ana-009
logical reasoning environment1, varying modal-010
ity (textual, visual, symbolic), difficulty, and011
task format (MCQ / free-text). Our analysis re-012
veals System 2 pipelines generally excel, partic-013
ularly in visual/symbolic modalities and harder014
tasks, while System 1 is competitive for tex-015
tual and easier problems. Crucially, task for-016
mat significantly influences their relative advan-017
tage, with System 1 sometimes outperforming018
System 2 in free-text rule-execution. These019
core findings generalize to broader in-context020
learning. Furthermore, we demonstrate that021
advanced System 2 strategies like hypothesis022
selection and iterative refinement can substan-023
tially scale LLM reasoning. This study offers024
foundational insights and actionable guidelines025
for strategically deploying logical inference to026
enhance LLM reasoning.027

"It is not enough to have a good mind;028

the main thing is to use it well."029

— René Descartes030

1 Introduction031

Logical Inference2 is the reasoning process of de-032

riving conclusions from known premises (Copi and033

Cohen, 1990; Johnson-Laird, 2010). It primar-034

ily categorizes into deductive inference — where035

conclusions follow with logical necessity from036

1Anonymous Github: [link_here]
2The term ‘inference’ encompasses multiple interpreta-

tions across different disciplines. This paper employs the term
strictly within its logical trichotomy: deductive, inductive, and
abductive inference, as defined in (Flach and Kakas, 2000).
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Figure 1: (a) An illustration of System 1 and System
2 logical inference pipelines in RAVEN’s progressive
matrix. (b) General comparative dynamics between
System 1 and System 2 pipelines in all experiments.

premises, and inductive inference — where conclu- 037

sions serves as general rules derived from specific 038

instances (Salmon, 1984). While the introduction 039

of abductive inference (Peirce, 1958; Frankfurt, 040

1958) serves as a third perspective, denoting the 041

process of forming an explanatory hypothesis from 042

an observation requiring explanation. Logical in- 043

ference plays a crucial role in artificial intelligence, 044

scientific research, and philosophy, where ratio- 045

nal decision-making and hypothesis formation are 046

foundational (Hempel and Oppenheim, 1948; Har- 047

man, 1965; Reiter, 1987). 048

Different logical inference pipelines can be ap- 049

plied in solving the same reasoning task. Figure 050

1(a) illustrates an example of Raven’s Progressive 051

Matrices (Raven, 1938; Zhang et al., 2019), where 052

1

https://anonymous.4open.science/r/logidynamics-repo


the missing element in the 3×3 matrix is inferred053

through the common patterns among different rows.054

There are two approaches to solving this problem:055

1) directly inferring the missing element from the056

observed elements in the matrix, and 2) explic-057

itly identifying the common patterns across rows,058

then deductively applying these patterns to deter-059

mine the missing element in the last row. The for-060

mer is driven by inductive inference and features061

fast, intuitive, pattern-recognition guided reasoning.062

The latter consists of abductive and deductive infer-063

ence, featuring slower but more deliberate analysis.064

These approaches correspond to System 1 and Sys-065

tem 2 thinking, respectively (Kahneman, 2011).066

Research on large language models (LLMs) has067

explored the logical inference pipelines employed068

by LLMs for solving a wide range of tasks. Qiu069

et al. (2024) and Wang et al. (2024) have demon-070

strated the effectiveness of the System 2 approach071

in various inductive reasoning datasets such as072

ARC (Chollet, 2019) and its variants (Kim et al.,073

2022; Xu et al., 2023). He et al. (2024) highlighted074

the potential of System 2 logical inference in the075

reasoning workflow of LLM-based agents. While076

Liu et al. (2024) compared both System 1 and Sys-077

tem 2 approaches in several in-context learning078

tasks, pointing out the inconsistency of their rel-079

ative performances across datasets. Nevertheless,080

all prior studies leave an open question: When and081

how can System 1 and System 2 logical inference082

pipelines be effectively leveraged to enhance LLM083

reasoning?084

To address this intricate question, we systemat-085

ically investigate the comparative dynamics of086

System 1 and System 2 pipelines within LLM087

reasoning tasks, specifically examining the con-088

tingency of their performance preferences on task089

attributes such as modality, difficulty, and task for-090

mat. First, we build a fully controllable evaluation091

environment using analogical reasoning tasks. The092

environment is controlled in three dimensions: 1)093

Modality: The data covers textual (word/phrase),094

visual (images), and symbolic modalities. 2) Diffi-095

culty: All tasks are labeled with relative difficulty096

levels (easy, medium, and hard). 3) Task Format:097

For each question, we provide two task formats:098

multiple-choice questions (MCQ) or free-text gen-099

eration (FTG) format.100

With experiments in 10 modern LLMs (and101

MLLMs), we discover several key findings:102

• Modality-dependent: System 2 logical in-103

ference shows superior performance in visual 104

and symbolic tasks, while System 1 performs 105

comparably in textual tasks. 106

• Difficulty-dependent: System 2 logical in- 107

ference is more advantageous in harder tasks, 108

while System 1 achieve comparable perfor- 109

mance in easier tasks. 110

• Task Format-dependent: For tasks involving 111

explicit rule execution, System 1 logical in- 112

ference outperforms System 2 in FTG format, 113

but underperforms in MCQ format. 114

To verify the generalizability of our findings, 115

we conduct further experiments in the List Func- 116

tion dataset (Rule, 2020) and SALT dataset (ours), 117

where we observe similar comparative dynam- 118

ics in difficulty and task format. We argue that 119

our findings can be generalized to broader in- 120

context learning (ICL) tasks where: 1) the few- 121

shot demonstrations are presented in Input-Output 122

format, and 2) the mapping function between input 123

and output can be explicitly defined. 124

Furthermore, we explored the effects of more 125

sophisticated System 2 logical inference pipelines, 126

including hypothesis selection, hypothesis verifi- 127

cation, and refinement. Using these paradigms, 128

LLMs demonstrate significant performance im- 129

provements as the number of inference tokens 130

increases. We show that, with sufficient com- 131

putational resources, LLMs under logical infer- 132

ence scaling achieve performance comparable 133

to state-of-the-art Long-CoT reasoning mod- 134

els. This highlights the potential of scaling infer- 135

ence through advanced System 2 logical inference 136

pipelines. 137

This work makes several key contributions to 138

understanding and improving LLM reasoning ca- 139

pabilities from a logical inference perspective: 140

1. We provide a systematic evaluation environ- 141

ment to compare logical inference paradigms 142

across controlled dimensions. (§3) 143

2. We present rich findings as clear guidelines 144

for leveraging different inference approaches 145

based on task characteristics. (§4) 146

3. We validate our findings’ generalizability to 147

broader in-context learning tasks. (§5) 148

4. We highlight the potential to scale up LLM 149

reasoning using advanced System 2 logical 150

inference paradigms. (§6) 151
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Collectively, these contributions establish a founda-152

tion for future research on enhancing LLM reason-153

ing through optimized logical inference strategies.154

2 Preliminaries155

2.1 Analogical Reasoning156

Analogical reasoning is a fundamental aspect of157

cognitive intelligence (Gentner et al., 2001). It158

involves inferring a missing element in a target159

domain according to relational structures from a160

source domain. Formally, given a source pair161

(A,A′) and an incomplete target pair (B, x), where162

A and A′ have an implicit relational pattern P , the163

goal is to infer x that have the same relational pat-164

tern P with B. This task can be defined as:165

B′ = argmax
x∈X

simP ((A,A
′), (B, x)),166

where simP measures the consistency of the rela-167

tional pattern P between the source pair (A,A′)168

and the candidate target pair (B, x), and X repre-169

sents the set of all possible candidates for B′. The170

complete analogy is denoted as A : A′ :: B : B′.171

For instance, given the source pair (sun, planet)172

and the incomplete target pair (nucleus, x), we can173

infer x = electron by identifying the pattern P as174

orbital relationship.175

The task of analogical reasoning is particularly176

well-suited for our investigation for several rea-177

sons: 1) it offers a well-defined task structure while178

encompassing diverse data modalities, 2) it is com-179

patible with a variety of logical inference pipelines,180

and 3) it is considered out-of-distribution for the181

training data of LLMs, enabling a robust evaluation182

of their reasoning capabilities under generalization183

(Stevenson et al., 2024).184

2.2 Logical Inference Pipelines185

In the main experiment, we compare three logical186

inference pipelines: direct induction, abduction +187

deduction, and automate inference. More sophis-188

ticated pipelines involving hypothesis selection,189

verification, and refinement are discussed in the190

scaling experiments in Section 6. Detailed prompt191

templates are provided in Appendix D.192

Direct Answering as Inductive Inference In-193

ductive inference is often associated with fast, intu-194

itive reasoning in cognition (Cohen, 1982). Similar195

to Liu et al. (2024), we regard the direct answering196

of LLMs as a form of inductive inference, repre-197

senting their System 1 logical inference pipeline.198

Dataset Difficulty Total
Task Modality Benchmark Easy Medium Hard

Analogy
Textual E-KAR 317 435 496 1248
Visual VASR 455 572 320 1347
Symbolic RAVEN 402 462 395 1259

General ICL Math/Code List Function 432 423 395 1250
Textual SALT 400 400 400 1200

Total 2006 2292 2006 6304

Table 1: Dataset statistics across modalities and diffi-
culty levels. Details of general in-context learning tasks
(List Function and SALT) are introduced in Section 5.

Abductive and Deductive Inference With this 199

System 2 pipeline, task completion is decomposed 200

into two steps. First, LLMs are required to abduc- 201

tively infer the hypothetical pattern Ph based on the 202

source pair(s). Then, they deductively apply this 203

pattern to the incomplete target pair as B
Ph−→ B′. 204

Zero-shot CoT as Automate Inference The rea- 205

soning process observed in zero-shot CoT (Chain- 206

of-Thought) (Wei et al., 2023), which we term “Au- 207

tomate Inference” for the purpose of this paper, 208

demonstrates an inherent logical inference capabil- 209

ity acquired during instruction-tuning or alignment 210

stages. Therefore, we included the “Automate In- 211

ference” in our comparison for reference. 212

3 Evaluation Environment 213

In this section, we introduce our evaluation envi- 214

ronment of analogical reasoning, providing details 215

on the settings for each control dimensions. 216

3.1 Modality 217

Exploring diverse data modalities is crucial for ob- 218

taining comprehensive insights. To this end, we 219

selected three analogical reasoning tasks across 220

different modalities. E-KAR (Chen et al., 2022) 221

consists of human-curated analogy questions be- 222

tween word pairs (or sets), where analogies are 223

determined by shared ontological relationships be- 224

tween words. VASR (Bitton et al., 2022) com- 225

prises human-annotated analogical questions be- 226

tween image pairs, where analogies are determined 227

by shared semantic transitions between images. 228

RAVEN (Raven, 1938; Zhang et al., 2019; Hu 229

et al., 2022) generates symbolic matrices using at- 230

tributed stochastic image grammar (A-SIG), where 231

analogies are determined by shared attribute shifts 232

among rows. To enhance comprehension in large 233

language models, we adopt the abstracted version 234

proposed by Hu et al. (2023), which tokenizes the 235
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Figure 2: LLM performances (in Accuracy %) in our evaluation environment under different reasoning pipelines.

matrix images into symbolic vectors.236

3.2 Difficulty237

Task difficulty, while a key determinant of thinking238

styles (Phillips et al., 2016), is largely overlooked239

in research on reasoning paradigms in LLMs. To240

address this, we conducted difficulty annotations241

for all three datasets. In analogical reasoning in-242

volving real-world data, difficulty is often mea-243

sured by the semantic distance between analogy244

pairs (Vendetti et al., 2012; Jones et al., 2022).245

For E-KAR, we compute the semantic distance be-246

tween word pairs using FastText embeddings (Bo-247

janowski et al., 2017), which are more suitable than248

Word2Vec (Mikolov et al., 2013a) or BERT (De-249

vlin et al., 2019), as the word pairs exhibit morpho-250

logical variations but lack contextual dependencies.251

For VASR, we calculate the distance between VGG252

encodings (Simonyan and Zisserman, 2015) to ac-253

count for both semantic and graphical features. For254

RAVEN, task complexity is defined by the number255

of attribute variations across the columns. The256

statistics of our datasets across different modalities257

and difficulty levels are presented in Table 1. Fur-258

ther details about our difficulty annotation process 259

are provided in Appendix B. 260

3.3 Task Format 261

The task format also serves as an important factor 262

influencing reasoning performance (Ribeiro et al., 263

2018; Zong et al., 2024). We conducted experi- 264

ments separately under two task formats3: multiple- 265

choice questions (MCQ) and free-text generation 266

(FTG), aiming to achieve a more comprehensive 267

perspective in our exploration. 268

4 Main Experiment Results and Analysis 269

We evaluated 10 modern LLMs / MLLMs (details 270

provided in Appendix A) within our exploration 271

environment. The experimental results are pre- 272

sented in Figure 2. Across the entire environment, 273

the tested LLMs achieved an overall average per- 274

formance of only 35.4%, demonstrating that our 275

datasets effectively stress-test the real reasoning 276

abilities of LLMs rather than simply retrieving 277

from memorization. Furthermore, the significant 278

3For the visual dataset, we evaluated only in the MCQ
format for feasibility.
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(a) Modality (Task Format = MCQ)

Modality
Pipeline Textual Visual Symbolic

Induction 55.70 38.88 28.58
Automate 58.05 51.52 34.99
Abduction+Deduction 59.13 53.93 37.69

System 2 Advantage +6.16% +38.73% +31.86%

(b) Difficulty (Task Format = MCQ)

Difficulty
Pipeline Easy Medium Hard

Induction 51.48 41.93 31.48
Automate 58.12 48.23 40.02
Abduction+Deduction 59.68 49.76 43.20

System 2 Advantage +15.92% +18.68% +37.20%

(c) Task Format

Textual Symbolic
Pipeline MCQ FTG MCQ FTG

Induction 55.70 23.36 28.58 19.18
Automate 58.05 24.89 34.99 8.67
Abduction+Deduction 59.13 24.93 37.69 11.33

System 2 Advantage +6.16% +6.74% +31.86% -40.93%

Table 2: Comparative dynamics of different logical infer-
ence pipelines in our evaluation environment, controlled
by modality, difficulty, and task format. Performances
(in Accuracy %) are averaged across all LLMs. "Sys-
tem 2 Advantage" denotes the relative improvements of
abduction + deduction pipeline over direct induction.

performance gaps across difficulty levels validate279

the effectiveness of our difficulty annotations. Gen-280

erally, the abduction + deduction pipeline outper-281

forms direct induction, while automated inference282

falls between the two pipelines in most scenarios.283

To better illustrate the comparative dynamics284

between different logical inference pipelines, we285

present the consolidated results controlled by each286

dimension in Table 2. From these results, we ob-287

serve the key findings as follows:288

Findings 1: The comparative advantages of the289

System 2 logical inference pipeline are modality-290

dependent. As shown in Table 2(a), the abduc-291

tion + deduction pipeline significantly outperforms292

direct induction in visual and symbolic tasks, with293

relative improvements of 38.73% and 31.86%, re-294

spectively. However, in textual tasks, direct in-295

duction achieves comparable performance, trailing296

behind by only 6.16%.297

Findings 2: The comparative advantages of the298

System 2 logical inference pipeline are difficulty-299

dependent. Based on Table 2(b), the abduction +300

deduction pipeline outperforms direct induction by 301

37.20% on hard questions, while the performance 302

gap reduces to 18.68% and 15.92% on medium and 303

easy questions, respectively. 304

Findings 3: The System 2 logical inference 305

pipeline falls short in free-text generation for- 306

mat when the task requires explicit rule execu- 307

tion. Results from Table 2(c) reveal a noteworthy 308

inconsistency: in textual tasks, the advantage of the 309

System 2 pipeline remains the same across task for- 310

mats. However, in symbolic tasks (i.e., RAVEN), 311

the System 2 pipeline severely underperforms di- 312

rect induction in the free-text generation format, 313

which sharply contrasts with its advantage in the 314

multiple-choice question format. 315

Interpretation of Findings 3: To investigate the 316

underlying mechanism leading to the limitation of 317

System 2 logical inference in free-text generation, 318

we conducted further analyses to decouple the per- 319

formance of abduction and deduction (detailed in 320

Appendix E). We identified the following explana- 321

tions for this task format sensitivity: 322

• The precise generation of complex rules is 323

challenging for most LLMs, as evidenced by 324

the poor pattern inference accuracy compared 325

to pattern execution (Table 7). 326

• Implicit pattern matching may be more ef- 327

fective in this case, as employed by di- 328

rect induction. However, in the System 2 329

pipeline, lengthy rationales disrupt the well- 330

structured few-shot patterns essential for in- 331

context learning, thereby rendering implicit 332

learning ineffective (Table 8). 333

• For multiple-choice questions, the System 2 334

pipeline can better infer patterns, as the an- 335

swer space is reduced to a few candidates. 336

It may also occasionally leverage reasoning 337

shortcuts to improve performance (Geirhos 338

et al., 2020; Zong et al., 2024) — an advantage 339

that cannot be employed in direct induction. 340

As a result, the abduction + deduction pipeline 341

tends to favor the MCQ format when address- 342

ing problems that require explicit rule execution, 343

whereas, under the FTG format, direct induction 344

demonstrates a surprising advantage. 345

5 Generalization Experiment 346

To further assess the generalizability of our find- 347

ings, we extend the scope from analogical reason- 348
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Figure 3: LLM performances (in Accuracy %) in List
Function and SALT under different reasoning pipelines.

ing to general in-context learning tasks. Specifi-349

cally, we formally define our target task scope us-350

ing the following constraints: 1) The task requires351

generating output y from input x, based on n-shot352

demonstrations D = [(x1, y1), . . . , (xn, yn)]. 2)353

The input-output function y = f(x) can be ex-354

plicitly defined. We conduct generalization experi-355

ments on two in-context learning datasets, both of356

which require explicit rule execution.357

List Function (Rule, 2020) takes lists of integers358

as input and maps them to output lists using 250359

predefined transition functions. In this task, LLMs360

must infer the underlying function from provided361

demonstrations (input-output pairs) and apply it to362

new input lists. The difficulty of the task is deter-363

mined by the complexity of the transition functions.364

SALT (Syntax-aware Artificial Language Trans-365

lation) is a machine translation benchmark that366

we developed to address key limitations in exist-367

ing datasets. Unlike benchmarks such as SCAN368

(Higgins et al., 2018) and Kalamang (Tanzer et al.,369

2024), SALT introduces diverse syntactic shifts370

(e.g., inversion of semantic unit order) while rig-371

orously mitigating data leakage—a common issue372

in low-resource machine translation benchmarks.373

The task difficulty is determined by the complexity374

of the syntactic structures, enabling fine-grained375

evaluation of model performance across varying376

levels of linguistic challenge. Details of the SALT377

(a) List Function
Difficulty Task Format

Pipeline Easy Medium Hard MCQ FTG

Induction 65.26 42.53 24.18 44.96 43.92
Automate 64.42 42.16 26.35 52.35 37.09
Abduction+Deduction 68.55 43.21 28.06 52.93 40.85

System 2 Advantage +5.04% +1.60% +16.06% +17.73% -6.98%

(b) SALT
Difficulty Task Format

Pipeline Easy Medium Hard MCQ FTG

Induction 49.75 33.58 23.42 41.44 29.72
Automate 41.88 36.17 29.46 45.83 25.83
Abduction+Deduction 43.71 39.17 33.58 50.53 27.11

System 2 Advantage -12.14% +16.63% +43.42% +21.92% -8.79%

Average -3.55% +9.11% +29.74% +19.83% -7.88%

Table 3: Comparative dynamics of different logical infer-
ence pipelines in List Function and SALT. Performances
(in Accuracy %) are averaged across all LLMs.

dataset are provided in Appendix C. 378

The results of the generalization experiments are 379

illustrated in Figure 3, with the consolidated find- 380

ings presented in Table 3. Across both datasets, 381

we observed patterns similar to those in our eval- 382

uation environment in analogy: The advantage of 383

the System 2 logical inference pipeline increases 384

significantly as task difficulty rises. While the two 385

pipelines exhibit contrasting task preferences be- 386

tween the MCQ and FTG format. Consequently, 387

we demonstrate that our findings are generaliz- 388

able to broader in-context learning tasks where 389

the input-output function is explicitly defined. 390

6 Scaling-up System 2 Logical Inference 391

Beyond the basic processes of abductive hypothesis 392

generation and deductive execution (which form 393

the core of our System 2 pipeline), more sophisti- 394

cated logical inference strategies can be employed 395

to tackle complex tasks and further enhance System 396

2 reasoning. We introduce two inference method- 397

ologies in philosophy and connect them to the logi- 398

cal inference pipelines of LLMs. 399

6.1 Liptonian and Holmesian Inference 400

Liptonian Inference (Lipton, 2000) provides a 401

widely recognized modern account of IBE (Infer- 402

ence to the Best Explanation). It characterizes the 403

process of selecting the most explanatory hypoth- 404

esis from a set of candidates based on its capacity 405

to best account for the observed evidence. In LLM 406

reasoning, this corresponds to the parallel sampling 407

of multiple hypotheses, followed by hypothesis se- 408
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Figure 4: Effect of hypothesis selection, verification and
refinement on LLM performances (in Accuracy %).

lection as a precursor to the final deductive execu-409

tion. In our experiment, we evaluated the effective-410

ness of hypothesis selection across sampling sizes411

ranging from 1 to 10.412

Holmesian Inference (Bird, 2005) provides an413

alternative model to Liptonian, emphasizing hy-414

pothesis verification rather than selection. Inspired415

by Sherlock Holmes’s famous dictum, it involves416

systematically eliminating all but one hypothesis to417

ensure that the remaining one is necessarily true. In418

LLM reasoning, this can be simulated through iter-419

ative verification and refinement (regeneration) of420

hypotheses, where candidate outputs are repeatedly421

evaluated and improved. In our experiment, we in-422

vestigated hypothesis verification and refinement423

across iteration rounds up to 5.424

6.2 Scaling Performances425

The experimental results of hypothesis selection,426

verification and refinement are presented in Figure427

4 (a) and 4 (b). In hypothesis selection, we observe 428

clear improvements in sampling sizes from 1 to 5. 429

However, the performance starts to decrease when 430

the sampling size increases to 10, as the diversity of 431

the sampled hypotheses begins to saturate, and the 432

selection process also becomes less effective with a 433

longer context. In terms of hypothesis verification 434

and refinement, the saturation of improvements 435

was reached after one round of verification, except 436

for GPT-4o in the List Function, where positive 437

improvements were observed in every additional 438

round of verification. This interesting inconsis- 439

tency can be explained as follows: 1) Stronger 440

LLMs lead to better verification quality. Com- 441

pared to the consistent improvements observed in 442

GPT-4o, GPT-4o-mini did not exhibit similar en- 443

hancements, as its ability to detect incorrect hy- 444

potheses is also weaker. 2) Well-formed hypoth- 445

esis formats make refinements easier. The im- 446

provement seen in the List-Function dataset (where 447

hypotheses are written in Python code) does not 448

hold for the RAVEN dataset (where hypotheses are 449

presented in free text). A better hypothesis format 450

may also enhance the effectiveness of proofreading 451

or maintaining the validity of existing hypotheses. 452

Figure 4 (c) illustrates the combined effect of 453

the two scaling strategies. In both datasets, GPT- 454

4o demonstrates significant performance improve- 455

ments as the number of inference tokens increases. 456

For instance, performance of GPT-4o in the List- 457

Function dataset improved from 46.8% to 61.6%, 458

consuming 25× more inference tokens compared 459

to automated inference. This underscores the po- 460

tential of scaling up LLM reasoning through 461

System 2 logical inference pipelines. 462

6.3 Discussions on Large Reasoning Models 463

Recent advances in large reasoning models (LRMs), 464

such as o1 (OpenAI, 2024) and Deepseek-R1 465

(DeepSeek-AI et al., 2025), have demonstrated im- 466

pressive performance in mathematical and code rea- 467

soning tasks. LRMs emerge strong self-reflec- tion 468

abilities during their reinforcement learning stage, 469

driven by rule-based rewards. From our explor- 470

ation, LRMs exhibit two noteworthy characteristics 471

within our task domain (in-context learning with 472

explicit input/output functions): 1) LRMs emulate 473

an "iterative holmesian inference" by engaging 474

in repeated cycles of hypothesis generation and 475

verification. 2) The number of inference tokens 476

(rounds of iterative hypothesis generation) in- 477

creases significantly as task difficulty rises. 478
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Model Inference Tokens (# Rounds) Accuracy
Easy Medium Hard

Deepseek-R1 2174.5 (3.9) 3353.1 (5.0) 5935.9 (6.5) 69.2
o1-mini 1345.5 (2.6) 2229.8 (3.2) 4188.0 (3.5) 69.6
o1 1949.1 (2.7) 3233.0 (3.3) 6995.7 (5.5) 77.2
o3-mini 1184.3 (2.5) 2126.3 (3.0) 5328.7 (6.2) 76.8

Deepseek-V3 989.0 1261.1 1260.9 57.2
+Sys2 Scaling (low) 1758.0 (2.4) 2124.4 (2.5) 2618.9 (2.7) 65.2
+Sys2 Scaling (high) 2356.8 (2.7) 2985.3 (2.9) 4308.0 (3.8) 69.6

Table 4: Performance of LRMs and LLMs with adaptive
logical inference scaling on the List Function dataset.

Nevertheless, can short-CoT LLMs achieve com-479

parable performance by scaling up System 2 logical480

inference? To answer this question, we conducted481

experiments on Deepseek-V3 (DeepSeek-AI et al.,482

2024), employing adaptive logical inference scal-483

ing under low and high computational consump-484

tions (details in Appendix F), where the model485

autonomously determined the number of iteration486

within a set limit. As illustrated in Table 4, under487

high consumptions, Deepseek-V3 demonstrates a488

similar inference scaling effect in difficulty and489

achieves comparable performance to LRMs.490

7 Related Work491

7.1 Logical Inference in Language Models492

Abductive Inference In the era of pre-trained493

language models, α-NLI (Bhagavatula et al., 2020)494

introduced abductive reasoning to commonsense495

reasoning, where plausible explanations are in-496

ferred from observations. Subsequent works pro-497

posed various techniques to enhance this capability498

(Qin et al., 2021; Kadik, is et al., 2022; Chan et al.,499

2023), including extensions to uncommon scenar-500

ios focusing on rare but logical explanations (Zhao501

et al., 2024). Unlike real-world data in common-502

sense reasoning, benchmarks like ProofWriter503

(Tafjord et al., 2021) evaluate formal abductive rea-504

soning within semi-structured texts with explicit505

logical relationships. Recent studies have explored506

LLMs in more challenging open-world reasoning507

contexts (Zhong et al., 2023; Del and Fishel, 2023;508

Thagard, 2024). Beyond natural language infer-509

ence, abductive reasoning has also been examined510

in graph-based modalities for commonsense and511

event knowledge (Du et al., 2021; Bai et al., 2024).512

Deductive and Inductive Inference Deductive513

inference is studied using benchmarks like Rule-514

Taker (Clark et al., 2020), where language models515

perform rule-based reasoning on natural language.516

Saparov et al. (2023) evaluate LLMs’ deductive rea-517

soning in out-of-distribution settings, emphasizing 518

challenges with longer proofs and complex logic. 519

Inductive inference is explored through datasets 520

like EntailmentBank (Dalvi et al., 2022), where 521

models construct step-by-step entailment trees to 522

explain answers. While LLMs demonstrate emer- 523

gent inductive abilities via few-shot learning (Wei 524

et al., 2022), Min et al. (2022) argue that structural 525

cues often outweigh label correctness in induction. 526

7.2 Analogical Reasoning 527

The study of analogical reasoning in AI has pro- 528

gressed from early symbolic systems, such as the 529

Structure-Mapping Engine (Falkenhainer et al., 530

1989), which used hand-crafted representations, to 531

models like the Latent Relation Mapping En- 532

gine (Turney, 2008), which integrated symbolic 533

rules with statistical learning. The neural era in- 534

troduced word embeddings for analogy evaluation 535

(Mikolov et al., 2013b), emphasizing local seman- 536

tic patterns. With LLMs, Webb et al. (2023) demon- 537

strated emergent analogical reasoning, but chal- 538

lenges remain. AnaloBench (Ye et al., 2024) shows 539

minimal scaling gains for long-context analogies, 540

while ANALOGICAL (Wijesiriwardene et al., 541

2023) highlights struggles with complex metaphors. 542

Story-level benchmarks like StoryAnalogy (Ji- 543

ayang et al., 2023) and ARN (Sourati et al., 2024) 544

reveal difficulties in cross-domain narrative map- 545

ping without explicit prompts. 546

8 Conclusion 547

This paper systematically dissects the interplay 548

of inductive (System 1) and abductive/deductive 549

(System 2) logical inference within LLMs. We 550

establish that while System 2 pipelines generally 551

yield superior performance—particularly in vi- 552

sual/symbolic modalities and with increasing task 553

difficulty—System 1 remains competitive for tex- 554

tual tasks and, crucially, can outperform System 555

2 in free-text rule-execution scenarios. These nu- 556

anced dynamics extend to broader ICL tasks involv- 557

ing explicit input-output functions. Furthermore, 558

we demonstrate that strategically scaling System 2 559

through methods like hypothesis selection and iter- 560

ative refinement significantly enhances reasoning 561

capabilities, enabling standard LLMs to approach 562

the performance of specialized reasoning models. 563

Ultimately, this study provides a foundational un- 564

derstanding and actionable guidelines for optimiz- 565

ing LLM reasoning by tailoring logical inference 566

strategies to specific task characteristics. 567
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Limitations568

While our extensive experiments and analyses yield569

rich findings, our exploration is limited to reason-570

ing frameworks for static LLMs. Future research571

could build on this work by focusing on the tun-572

ing stage of LLMs, aiming to develop systems that573

dynamically balance different types of logical in-574

ference. For example, a system capable of auto-575

matically identifying the nature of a question and576

determining whether to apply System 1 or System577

2 reasoning could not only maintain or enhance578

performance but also improve efficiency. Such579

adaptive reasoning closely mirrors the way humans580

naturally approach problem-solving.581

Ethics Statement582

This work aims to advance the understanding of583

logical inference in LLMs through systematic ex-584

perimentation and analysis. All LLMs used in this585

study are publicly available. We strictly prohibit586

harmful content in the selection, curation, and an-587

notation process of our datasets, ensuring they are588

free from sensitive or biased material. Our work is589

conducted with a focus on advancing understand-590

ing while adhering to ethical research practices.591
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A Model Details1020

In our experiments, we tested 15 modern LLM /1021

MLLMs / LRMs with their detailed information as1022

follows:1023

• Qwen-2.5-7b / Qwen-2.5-72b (Qwen et al.,1024

2025) is an open-source MoE LLM series,1025

trained with 18 trillion tokens of pre-training1026

corpus and 1 million fine-tuning examples.1027

• Llama-3.1-70b / Llama-3.1-405b (AI, 2024)1028

is an open-source dense LLM series, trained1029

with 15 trillion tokens of pre-training corpus,1030

and adopted DPO (Rafailov et al., 2024) dur-1031

ing its alignment stage.1032

• GPT-4o-mini / GPT-4o (OpenAI, 2024) is1033

the latest proprietary LLM series by OpenAI1034

prior to their reasoning models.1035

• Gemini-1.5-flash / Gemini-1.5-pro (Google,1036

2024) is a proprietary MoE LLM series featur-1037

ing a long context window of 1 million tokens.1038

• Gemini-2.0-flash (DeepMind, 2024) is the1039

latest Gemini series LLM, offering enhanced1040

multimodal and reasoning performance.1041

• Pixtral-12b (Agrawal et al., 2024) is a1042

lightweight open-source multimodal LLM.1043

• Deepseek-V3 (DeepSeek-AI et al., 2024) is1044

the state-of-the-art open-source LLM.1045

• Deepseek-R1 (DeepSeek-AI et al., 2025) is1046

the leading open-source LRM trained with1047

reinforcement learning using a rule-based re-1048

ward system.1049

• o1-mini / o1 (OpenAI, 2024) represents the1050

state-of-the-art proprietary LRM series devel-1051

oped by OpenAI.1052

• o3-mini (OpenAI, 2025) is the latest LRM by1053

OpenAI, featured its cost-effectiveness.1054

The temperature for all LLMs is set to zero in our1055

main experiments, while it is set to 0.4 during the1056

hypothesis sampling in our scaling experiments.1057

B Difficulty Annotation1058

The detailed difficulty annotation standards are pre-1059

sented in Table 5. For EKAR and VASR, we set1060

thresholds for semantic distances to categorize the1061

difficulty into easy, medium, and hard, ensuring1062

comparable sizes across categories. For RAVEN, 1063

we calculate the number of attributes in transition 1064

among rows, with fine-grained categorization ap- 1065

plied within each question typology. For List Func- 1066

tion, we use the predefined complexity ranking 1067

of mapping functions provided by (Rule, 2020). 1068

For SALT, we classify the syntax complexity of 1069

the translation examples into simple, medium, and 1070

complex categories. 1071

C Syntax-aware Artificial Language 1072

Translation 1073

Syntax-aware Artificial Language Translation 1074

(SALT) is a low-resource machine translation (MT) 1075

benchmark that we designed and developed to 1076

evaluate generalizable in-context learning in large 1077

language models. LLMs are required to infer 1078

vocabulary mappings as well as syntactic transi- 1079

tions from few-shot demonstrations and apply them 1080

to translate a compositionally crafted testing in- 1081

stance. SALT offers two key advantages over other 1082

low-resource MT benchmarks: 1) SALT synthe- 1083

sizes out-of-vocabulary strings for the artificial lan- 1084

guage, preventing data leakage, a common issue 1085

in other low-resource MT benchmarks. 2) SALT 1086

provides detailed difficulty control enabled by 1087

human-curated syntactic structures with composi- 1088

tional complexities. 1089

The creation of SALT involves two main stages: 1090

1. Syntax-aware Template Design In the first 1091

stage, we design syntactic rules that involve 1092

the permutation or repetition of semantic units 1093

in the artificial language, as illustrated in Ta- 1094

ble 6. Next, we manually craft templates for 1095

few-shot demonstrations with considerations 1096

in compositional generalization. We ensure 1097

that all the necessary underlying word map- 1098

pings and syntactic rules required for translat- 1099

ing the testing instances can be inferred from 1100

the provided few-shot demonstrations. 1101

2. Semantic-aware Data Synthesis After ac- 1102

quiring the templates, we populate them with 1103

semantically appropriate English words using 1104

LLM-assisted selection. Next, we randomly 1105

assign out-of-vocabulary letter strings as the 1106

artificial language equivalents for each En- 1107

glish word. Finally, a total of 1,200 ques- 1108

tions are sampled—400 at each difficulty 1109

level—ensuring comparability in size with 1110

other datasets. 1111
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Dataset Determinator Category Easy Medium Hard

E-KAR FastText Distance - <0.70 0.70∼0.80 >0.80

VASR VGG Distance - <0.70 0.70∼0.76 >0.76

RAVEN Number of Transitions

center_single 1 2 >=3
distribute_four <=2 3 >=4
distribute_nine <=2 3 >=4
in_center_single_out_center_single <=3 4 >=5
in_distribute_four_out_center_single <=3 4 >=5
up_center_single_down_center_single <=3 4 >=5
left_center_single_right_center_single <=4 5 >=6

List Function Function Complexity Ranking - <=84 85∼170 >=170

SALT Syntax Complexity - simple intermediate complex

Table 5: Difficulty classification standards for each datasets in our experiment.

English Sentence I like beautiful house. Giant elephant runs quickly.

Syntax Structure <pronoun - verb - adjective - noun> <adjective - noun - verb - adverb>

Grammar Rule <noun-adjective inversion> <predicate-subject inversion>

Transition Type Intra-Constituent Inter-Constituent

Vocabulary I → gkt, like → ivo, beautiful → prr, house → cbi giant → rgd, elephant → krt, runs → uco, quickly → xrk

Translation gkt ivo cbi prr. uco xrk rgd krt.

Table 6: Examples of intra-constituent and inter-constituent syntactic transitions in the SALT dataset.

D Prompt Templates1112

Textual Analogy (Induction)

Below is an analogy question, where analogy
x:y::x’:y’ exists between the two wordsets, your task
is to finish the second wordset to complete the analogy.

Wordset1: <word_x>:<word_x'>
Wordset2: <word_y>:[missing_word]

Your response should strictly follow the JSON dict format:

{
"answer": "missing word here"

}

1113

Textual Analogy (Automate)

Below is an analogy question, where analogy
x:y::x’:y’ exists between the two wordsets, your task
is to finish the second wordset to complete the analogy.

Wordset1: <word_x>:<word_x'>
Wordset2: <word_y>:[missing_word]

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "missing word here"

}

1114

Textual Analogy (Abduction)

Below is an analogy question, where analogy x:y::x’:y’
exists between the two wordsets, your task is to infer
the relational pattern within wordsets.

Wordset1: <word_x>:<word_x'>
Wordset2: <word_y>:[missing_word]

Your response should strictly follow the JSON dict format:

{
"reasoning": "reasoning steps here"
"pattern": "relational pattern here"

}

1115

Textual Analogy (Deduction)

Below is an analogy question, where analogy x:y::x’:y’
exists between the two wordsets, your task is to
finish the second wordset to complete the analogy.
Here’s the relational pattern: <pattern>

Wordset1: <word_x>:<word_x'>
Wordset2: <word_y>:[missing_word]

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "missing word here"

}

1116

15



Visual Analogy (Induction)

Below is an analogy question, where analogy x:y::x’:y’
exists between the two image pairs, your task is to
complete the second image pair to complete the analogy.

Image Pair 1: <img_x>:<img_x'>
Image Pair 2: <img_y>:[missing_img]

<Candidate Images>

Your response should strictly follow the JSON dict format:

{
"answer": "missing image choice here"

}

1117

Visual Analogy (Automate)

Below is an analogy question, where analogy x:y::x’:y’
exists between the two image pairs, your task is to
complete the second image pair to complete the analogy.

Image Pair 1: <img_x>:<img_x'>
Image Pair 2: <img_y>:[missing_img]

<Candidate Images>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "missing image choice here"

}

1118

Visual Analogy (Abduction)

Below is an analogy question, where analogy x:y::x’:y’
exists between the two image pairs, your task is to
infer the relational pattern within image pairs.

Image Pair 1: <img_x>:<img_x'>
Image Pair 2: <img_y>:[missing_img]

<Candidate Images>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"pattern": "relational pattern here"

}

1119

Visual Analogy (Deduction)

Below is an analogy question, where analogy x:y::x’:y’
exists between the two image pairs, your task is to
complete the second image pair to complete the analogy.
Here’s the relational pattern: <pattern>

Image Pair 1: <img_x>:<img_x'>
Image Pair 2: <img_y>:[missing_img]

<Candidate Images>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "missing image choice here"

}

1120

Symbolic Analogy (Induction)

Below is a 3x3 matrix of abstracted symbols. The
symbols follow a certain rule or pattern in rows. Your
task is to infer the missing symbol.

Incomplete Matrix: <incomplete_matrix>

Your response should strictly follow the JSON dict format:

{
"answer": "missing symbol here"

}

1121

Symbolic Analogy (Automate)

Below is a 3x3 matrix of abstracted symbols. The
symbols follow a certain rule or pattern in rows. Your
task is to infer the missing symbol.

Incomplete Matrix: <incomplete_matrix>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "missing symbol here"

}

1122

Symbolic Analogy (Abduction)

Below is a 3x3 matrix of abstracted symbols. The
symbols follow a certain rule or pattern in rows. Your
task is to infer the relational pattern.

Incomplete Matrix: <incomplete_matrix>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"pattern": "relational pattern here"

}

1123

Symbolic Analogy (Deduction)

Below is a 3x3 matrix of abstracted symbols. The
symbols follow a certain rule or pattern in rows.
Your task is to infer the missing symbol. Here’s the
relational pattern: <pattern>

Incomplete Matrix: <incomplete_matrix>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "missing symbol here"

}

1124
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List Function ICL (Induction)

Below are several examples of input and output lists.
There exists an unified function that maps the input
list to the output list.

Input 1: <input_list1>, Output 1: <output_list1>
Input 2: <input_list2>, Output 2: <output_list2>
Input 3: <input_list3>, Output 3: <output_list3>

Please infer the output list for the new input list below:
New Input: <new_input_list>

Your response should strictly follow the JSON dict format:

{
"answer": "output list here"

}

1125

List Function ICL (Automate)

Below are several examples of input and output lists.
There exists an unified function that maps the input
list to the output list.

Input 1: <input_list1>, Output 1: <output_list1>
Input 2: <input_list2>, Output 2: <output_list2>
Input 3: <input_list3>, Output 3: <output_list3>

Please infer the output list for the new input list below:
New Input: <new_input_list>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "output list here"

}

1126

List Function ICL (Abduction)

Below are several examples of input and output lists.
There exists an unified function that maps the input
list to the output list.

Input 1: <input_list1>, Output 1: <output_list1>
Input 2: <input_list2>, Output 2: <output_list2>
Input 3: <input_list3>, Output 3: <output_list3>

Please infer the mapping function in python.
Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"function": "python function here"

}

1127

List Function ICL (Deduction)

Below are several examples of input and output lists.
There exists an unified function that maps the input
list to the output list. The python code for the
function is: <function>

Input 1: <input_list1>, Output 1: <output_list1>
Input 2: <input_list2>, Output 2: <output_list2>
Input 3: <input_list3>, Output 3: <output_list3>

Please infer the output list for the new input list below:
New Input: <new_input_list>

Your response should strictly follow the JSON dict format:

{
"reasoning":"reasoning steps here",
"answer": "output list here"

}

1128

SALT ICL (Induction)

You are required to translate english sentences to an
artificial language. The translation involves both
vocabulary mapping and syntax rules transition. Below
are translation examples:

English 1: <english_1>, Translation 1: <translation_1>
English 2: <english_2>, Translation 2: <translation_2>
English 3: <english_3>, Translation 3: <translation_3>
English 4: <english_4>, Translation 4: <translation_4>

Please translate this sentence: <english_new>
Your response should strictly follow the JSON dict format:
{

"translation": "translated sentence here"
}

1129

SALT ICL (Automate)

You are required to translate english sentences to an
artificial language. The translation involves both
vocabulary mapping and syntax rules transition. Below
are translation examples:

English 1: <english_1>, Translation 1: <translation_1>
English 2: <english_2>, Translation 2: <translation_2>
English 3: <english_3>, Translation 3: <translation_3>
English 4: <english_4>, Translation 4: <translation_4>

Please translate this sentence: <english_new>
Your response should strictly follow the JSON dict format:
{

"reasoning":"reasoning steps here",
"translation": "translated sentence here"

}

1130

SALT ICL (Abduction)

You are required to study translations from english
sentences to an artificial language. The translation
involves both vocabulary mapping and syntax rules
transition. Below are translation examples:

English 1: <english_1>, Translation 1: <translation_1>
English 2: <english_2>, Translation 2: <translation_2>
English 3: <english_3>, Translation 3: <translation_3>
English 4: <english_4>, Translation 4: <translation_4>

Please infer the word mappings and syntax rules.
Your response should strictly follow the JSON dict format:
{

"reasoning":"reasoning steps here",
"vocabulary": "word mappings here",
"grammar": "syntax rules here"

}

1131

SALT ICL (Deduction)

You are required to translate english sentences to
an artificial language. The translation involves
both vocabulary mapping and syntax rules transition.
Vocabulary mapping: <vocab>; Syntax rules: <grammar>.
Below are translation examples:

English 1: <english_1>, Translation 1: <translation_1>
English 2: <english_2>, Translation 2: <translation_2>
English 3: <english_3>, Translation 3: <translation_3>
English 4: <english_4>, Translation 4: <translation_4>

Please translate this sentence: <english_new>
Your response should strictly follow the JSON dict format:
{

"reasoning":"reasoning steps here",
"translation": "translated sentence here"

}

1132
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E Interpretation on Task-Format1133

Dependency1134

We investigated System 2’s limitations in free-text1135

generation using the List Function dataset, where1136

intermediate rules are evaluatable Python func-1137

tions. This allows direct assessment of abductive1138

inference accuracy. We compared the accuracy of1139

LLMs generating these Python functions (abduc-1140

tion) against their accuracy in applying ground-1141

truth functions (deduction).1142

As evidenced by the results in Table 7, the sig-1143

nificantly lower abduction accuracy indicates that1144

a primary reason for System 2’s failure in free-1145

text rule execution ICL is the insufficient ability of1146

LLMs to precisely generate rules.1147

Model Abduction Deduction

Qwen-2.5-7b 26.80 86.64
Qwen-2.5-72b 50.20 90.72
GPT-4o-mini 40.60 92.56

Average 39.20 89.97

Table 7: Abduction vs. Deduction Accuracy (%) on List
Function Dataset.

Furthermore, to assess the impact of contextual1148

distance from lengthy reasoning chains, character-1149

istic of System 2 and Automate (CoT) pipelines,1150

we introduced dummy reasoning tokens of varying1151

lengths before the answer in Direct Induction and1152

Automate pipelines on the List Function dataset1153

(FTG). This simulates how extended context might1154

impair free-text generation precision.1155

As evidenced by the results in Table 8, perfor-1156

mance degrades for both pipelines as token length1157

increases. This suggests that lengthy rationales1158

contribute to task-format sensitivity by disrupting1159

precise free-text output.1160

Pipeline Contextual
Distance Qwen-2.5-7b Qwen-2.5-72b

Direct
Induction

0 25.6 47.6
100 10.4 46.0
400 9.2 40.4

Automate
(Zero-shot CoT)

0 27.6 46.8
100 17.6 43.6
400 16.4 38.8

Table 8: Impact of Dummy Reasoning Tokens on Per-
formance (%) in List Function (FTG).

F Details of Scaling Experiments 1161

This appendix outlines the methodologies for the 1162

scaling experiments in Section 6. 1163

• Figure 4a (Hypothesis Selection): The LLM 1164

first samples multiple candidate hypotheses, 1165

ranging from 1 to 10 candidates, using a tem- 1166

perature of 0.4. From these candidates, the 1167

LLM then selects the single best hypothesis. 1168

• Figure 4b (Hypothesis Verification and Re- 1169

finement): Initially, a single hypothesis is ob- 1170

tained through the regular abduction process. 1171

This hypothesis is then subjected to iterative 1172

verification and refinement by the LLM, with 1173

this process repeated for multiple rounds. 1174

• Figure 4c (Combined Selection and Refine- 1175

ment): This approach begins with the LLM 1176

selecting the best hypothesis from several sam- 1177

pled candidates. The chosen hypothesis then 1178

undergoes iterative verification and refinement 1179

over multiple rounds. 1180

• Table 4 (Adaptive Scaling for DeepSeek- 1181

V3): This method also combines selection and 1182

refinement, but with the LLM autonomously 1183

determining the number of refinement rounds 1184

within predefined limits. For the Low Con- 1185

sumption setting, the LLM selects from 3 can- 1186

didate hypotheses and refines the chosen one 1187

for at most 3 rounds. For the High Consump- 1188

tion setting, selection is from 5 candidates, 1189

followed by refinement for at most 5 rounds. 1190

G Full Results 1191

The detailed LLM performances in our analogy 1192

environement and in-context learning benchmarks 1193

is presented in tables below: 1194

• Table 9: Textual Analogy (E-KAR)-MCQ 1195

• Table 10: Visual Analogy (VASR)-MCQ 1196

• Table 11: Symbolic Analogy (RAVEN)-MCQ 1197

• Table 12: Textual Analogy (E-KAR)-FTG 1198

• Table 13: Symbolic Analogy (RAVEN)-FTG 1199

• Table 14: List Function ICL-MCQ 1200

• Table 15: List Function ICL-FTG 1201

• Table 16: SALT ICL-MCQ 1202

• Table 17: SALT ICL-FTG 1203
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Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 65.93 56.32 40.93 52.64
Automate 68.45 52.87 39.11 51.36
Abduction+Deduction 69.40 54.71 44.35 54.33

Qwen-2.5-72b
Induction 76.03 68.74 46.77 61.86
Automate 75.39 67.13 49.60 62.26
Abduction+Deduction 76.97 70.34 51.01 64.34

Llama-3.1-70b
Induction 64.67 56.32 37.90 51.12
Automate 73.19 64.14 46.37 59.38
Abduction+Deduction 73.19 62.53 46.17 58.73

Llama-3.1-405b
Induction 74.76 64.83 43.95 59.05
Automate 77.92 68.97 52.62 64.74
Abduction+Deduction 73.50 67.13 50.60 62.18

GPT-4o-mini
Induction 66.88 54.94 36.49 50.64
Automate 63.72 55.40 40.32 51.52
Abduction+Deduction 63.41 56.78 40.73 52.08

GPT-4o
Induction 73.82 64.83 44.15 58.89
Automate 69.72 63.22 48.59 59.05
Abduction+Deduction 73.50 68.74 51.61 63.14

Table 9: LLM performances on textual analogy dataset (E-KAR) in MCQ task format.

Model Pipeline Easy Medium Hard Total

Gemini-1.5-flash
Induction 38.90 30.59 29.38 33.11
Automate 54.07 49.83 47.50 50.71
Abduction+Deduction 59.34 47.73 48.75 51.89

Gemini-1.5-pro
Induction 50.55 45.28 43.13 46.55
Automate 65.49 54.37 59.06 59.24
Abduction+Deduction 65.71 57.34 59.38 60.65

Gemini-2.0-flash
Induction 52.31 47.38 47.50 49.07
Automate 63.96 60.84 61.56 62.06
Abduction+Deduction 67.47 59.44 65.62 63.62

Pixtral-12b
Induction 32.53 24.30 17.81 25.54
Automate 33.85 32.87 30.94 32.74
Abduction+Deduction 41.54 39.34 35.31 39.12

GPT-4o-mini
Induction 34.73 26.57 25.31 29.03
Automate 51.43 41.61 40.00 44.54
Abduction+Deduction 51.21 41.43 44.06 45.36

GPT-4o
Induction 54.95 47.90 46.56 49.96
Automate 66.37 55.07 59.06 59.84
Abduction+Deduction 68.13 59.97 60.94 62.95

Table 10: LLM performances on visual analogy dataset (VASR) in MCQ task format.

Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 29.10 19.26 11.39 19.94
Automate 29.10 20.35 14.43 21.29
Abduction+Deduction 30.10 21.43 16.46 22.64

Qwen-2.5-72b
Induction 40.55 28.57 18.99 29.39
Automate 51.24 38.74 26.08 38.76
Abduction+Deduction 54.48 43.72 36.20 44.80

Llama-3.1-70b
Induction 38.06 28.35 18.73 28.44
Automate 52.99 36.58 28.35 39.24
Abduction+Deduction 49.50 36.36 34.43 39.95

Llama-3.1-405b
Induction 54.23 38.10 25.06 39.16
Automate 53.48 38.53 28.35 40.11
Abduction+Deduction 64.93 47.62 37.72 50.04

GPT-4o-mini
Induction 36.82 22.51 15.44 24.86
Automate 37.56 26.41 12.91 25.73
Abduction+Deduction 36.32 25.11 22.78 27.96

GPT-4o
Induction 41.79 29.87 17.22 29.71
Automate 58.21 41.13 35.44 44.80
Abduction+Deduction 55.47 35.93 31.39 40.75

Table 11: LLM performances on symbolic analogy dataset (RAVEN) in MCQ task format.
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Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 28.08 22.99 16.33 21.63
Automate 28.71 25.98 19.56 24.12
Abduction+Deduction 27.76 23.68 17.74 22.36

Qwen-2.5-72b
Induction 35.02 29.20 21.77 27.72
Automate 33.75 28.74 22.18 27.40
Abduction+Deduction 34.07 29.66 21.98 27.72

Llama-3.1-70b
Induction 29.02 22.07 15.32 21.15
Automate 32.81 23.45 19.15 24.12
Abduction+Deduction 29.97 25.52 18.95 24.04

Llama-3.1-405b
Induction 28.71 24.60 16.94 22.60
Automate 29.34 25.75 18.75 23.88
Abduction+Deduction 32.18 27.59 19.76 25.64

GPT-4o-mini
Induction 28.08 22.99 16.33 21.63
Automate 29.34 25.29 20.16 24.28
Abduction+Deduction 29.97 25.75 19.15 24.20

GPT-4o
Induction 32.81 26.90 19.35 25.40
Automate 32.18 26.21 20.77 25.56
Abduction+Deduction 31.23 27.59 20.36 25.64

Table 12: LLM performances on textual analogy dataset (E-KAR) in FTG task format.

Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 19.15 8.87 5.57 11.12
Automate 0.75 0.87 0.00 0.56
Abduction+Deduction 1.00 2.60 1.77 1.83

Qwen-2.5-72b
Induction 37.81 20.13 13.42 23.67
Automate 17.91 5.41 1.52 8.18
Abduction+Deduction 25.37 13.85 8.86 15.97

Llama-3.1-70b
Induction 30.35 13.20 8.10 17.08
Automate 18.16 7.14 4.81 9.93
Abduction+Deduction 9.45 7.58 6.08 7.70

Llama-3.1-405b
Induction 42.29 20.78 13.42 25.34
Automate 30.85 12.99 7.34 16.92
Abduction+Deduction 28.61 16.45 12.15 18.98

GPT-4o-mini
Induction 26.37 12.34 8.61 15.65
Automate 11.19 4.76 2.53 6.12
Abduction+Deduction 11.69 6.93 3.54 7.39

GPT-4o
Induction 37.81 18.40 10.89 22.24
Automate 16.17 9.09 5.82 10.33
Abduction+Deduction 25.12 14.07 9.37 16.12

Table 13: LLM performances on symbolic analogy dataset (RAVEN) in FTG task format.
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Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 47.69 33.57 29.87 37.28
Automate 60.42 44.21 39.24 48.24
Abduction+Deduction 64.81 32.97 38.23 49.36

Qwen-2.5-72b
Induction 65.05 46.34 40.51 50.96
Automate 69.44 52.25 44.81 55.84
Abduction+Deduction 68.52 49.41 45.57 54.80

GPT-4o-mini
Induction 59.03 45.86 33.92 46.64
Automate 61.81 53.90 42.28 52.96
Abduction+Deduction 66.20 52.01 44.80 54.64

Table 14: LLM performances on List Function dataset in MCQ task format.

Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 65.18 36.24 9.75 37.60
Automate 54.59 24.71 7.50 29.36
Abduction+Deduction 57.88 24.71 8.00 30.64

Qwen-2.5-72b
Induction 79.06 49.65 17.25 49.28
Automate 74.59 44.94 13.75 45.04
Abduction+Deduction 80.47 47.53 17.75 48.32

GPT-4o-mini
Induction 75.53 43.53 13.75 44.88
Automate 65.65 32.94 10.50 36.88
Abduction+Deduction 73.41 41.65 14.00 43.60

Table 15: LLM performances on List Function dataset in FTG task format.

Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 21.50 16.75 10.00 16.08
Automate 36.00 31.75 19.75 29.17
Abduction+Deduction 35.25 31.50 22.75 29.83

Qwen-2.5-72b
Induction 58.50 54.25 52.00 54.92
Automate 61.25 60.00 60.00 60.42
Abduction+Deduction 60.75 62.00 63.25 62.00

GPT-4o-mini
Induction 63.50 56.75 39.75 53.33
Automate 53.00 47.25 43.50 47.92
Abduction+Deduction 64.75 61.25 53.25 59.75

Table 16: LLM performances on SALT dataset in MCQ task format.

Model Pipeline Easy Medium Hard Total

Qwen-2.5-7b
Induction 37.50 15.25 2.00 18.25
Automate 29.00 17.25 6.75 17.67
Abduction+Deduction 29.25 16.00 6.50 17.25

Qwen-2.5-72b
Induction 51.25 33.50 19.50 34.75
Automate 38.00 35.25 26.75 33.33
Abduction+Deduction 33.50 30.25 30.00 31.25

GPT-4o-mini
Induction 66.25 25.00 17.25 36.17
Automate 34.00 25.50 20.00 26.50
Abduction+Deduction 38.75 34.00 25.75 32.83

Table 17: LLM performances on SALT dataset in FTG task format.
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