
Under review as a conference paper at ICLR 2024

LEARNING TO COMPUTE GRÖBNER BASES

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving a polynomial system, or computing an associated Gröbner basis, has been
a fundamental task in computational algebra. However, it is also known for its
notoriously expensive computational cost—doubly exponential time complexity
in the number of variables in the worst case. In this paper, we achieve for the first
time Gröbner basis computation through the training of a transformer. The training
requires many pairs of a polynomial system and the associated Gröbner basis,
thus motivating us to address two novel algebraic problems: random generation
of Gröbner bases and the transformation of them into non-Gröbner polynomial
systems, termed as backward Gröbner problem. We resolve these problems with
zero-dimensional radical ideals, the ideals appearing in various applications. The
experiments show that in the five-variate case, the proposed dataset generation
method is five orders of magnitude faster than a naive approach, overcoming a
crucial challenge in learning to compute Gröbner bases.

1 INTRODUCTION

Understanding the properties of polynomial systems and solving them have been a fundamen-
tal problem in computational algebra and algebraic geometry with vast applications in cryptogra-
phy (Bard, 2009; Yasuda et al., 2015), control theory (Park & Regensburger, 2007), statistics (Dia-
conis & Sturmfels, 1998; Hibi, 2014), computer vision (Stewenius, 2005), systems biology (Lauben-
bacher & Sturmfels, 2009), and so forth. Special sets of polynomials, called Gröbner bases, play a
key role to this end. In linear algebra, the Gaussian elimination simplifies or solves a system of lin-
ear equations by transforming its coefficient matrix into the reduced row echelon form. Similarly, a
Gröbner basis can be regarded as a reduced form of a given polynomial system, and its computation
is a generalization of the Gaussian elimination to general polynomial systems.

However, computing a Gröbner basis is known for its notoriously bad computational cost in theory
and practice. It is an NP-hard problem, and its worst-case time complexity is doubly exponential
in the number of variables (Mayr & Meyer, 1982; Dubé, 1990). Nevertheless, because of its im-
portance, various computation algorithms have been proposed in computational algebra to obtain
Gröbner bases in better runtime. Examples include Faugère’s F4/F5 algorithms (Faugère, 1999;
Faugère, 2002) and M4GB (Makarim & Stevens, 2017).

In this study, we address this challenging task of computing Gröbner bases using machine learning.
Recent studies have revealed the potential of transformer models as a powerful solver of algebraic
computations. Namely, instead of designing explicit computational procedures, we train a machine
learning model using a large amount of (non-Gröbner set, Gröbner basis) pairs. A similar framework
has also been used for other mathematics tasks. For example, (Lample & Charton, 2019) showed
that transformer models can learn symbolic integration simply by observing many (df/dx , f) pairs
in training. The training samples are generated by first randomly generating f and computing its
derivative df/dx and/or the reverse process. Other examples include solving ordinary differential
equations (Lample & Charton, 2019), symbolic regression (Biggio et al., 2021), and basic linear
algebra (Charton, 2022a). For all the tasks, transformers exhibited a high performance.

A crucial challenge in the learning of Gröbner basis computation is that it is mathematically un-
known how to efficiently generate many (non-Gröbner set, Gröbner basis) pairs. To resolve this, we
need an efficient backward approach (i.e., solution-to-problem computation) because, as discussed
above, the forward approach (i.e., problem-to-solution computation) is prohibitively expensive. Par-
ticularly, we need to address (i) a random generation of Gröbner bases and (ii) a backward transfor-

1

Under review as a conference paper at ICLR 2024

mation from a Gröbner basis to an associated non-Gröbner set. To our knowledge, neither of them
has been addressed in computational algebra because of the lack of motivations and applications;
all the efforts have been dedicated to the forward computation from a non-Gröbner set to Gröbner
basis. The central contributions of this study are the discovery of these new mathematical problems,
efficient computational algorithms for them, and the first machine learning approach for Gröbner
basis computation, summarized as follows.

• We provide the first approach to the Gröbner computation using a machine learning model
and experimentally show that transformers can actually learn it. Unlike most prior studies,
our results indicate that training a transformer may be a compromise to NP-hard problems
to which no efficient (even approximate or probabilistic) algorithms have been designed.

• We uncovered two unexplored algebraic problems—random generation of Gröbner bases
and backward Gröbner problem and propose efficient methods to address them, particularly
for the zero-dimensional case. These problems are not only essential to generating a dataset
for training a transformer but also algebraically interesting, thus encouraging the interaction
between computational algebra and machine learning.

• Our experiments demonstrate that our method is highly efficient and faster than a baseline
method by two to five orders of magnitude in dataset generation. Transformers trained on
the generated datasets successfully compute Gröbner bases with moderate accuracy.

2 RELATED WORK

Gröbner basis computation. Gröbner basis is one of the fundamental concepts in algebraic ge-
ometry and commutative ring theory, see (Cox, 2005; Gruel & Pfister, 2008). By its computational
aspect, Gröbner basis is a very useful tool for analyzing the mathematical structures of solutions
of algebraic constraints. Notably, the form of Gröbner bases is very suited for finding solutions
and allows parametric coefficients. For such sought-after applications, it is vital to make Gröbner
basis computation very efficient and practical. Following the definition of Gröbner bases in (Buch-
berger, 1976), the original algorithm to compute them can be presented as (i) create potential new
leading terms by constructing S-polynomials, (ii) reduce them either to zero or to new polynomi-
als for the Gröbner basis, and (iii) repeat until no new S-polynomials can be constructed. Plenty
of works has been developed to surpass this algorithm. There are four main strategies: (a) avoid
unnecessary S-polynomials, following the F5 algorithm and the more general signature-based al-
gorithms (Faugère, 2002; Bardet et al., 2015). Machine learning appeared for this task in (Peifer
et al., 2020). (b) more efficient reduction using efficient linear algebraic computations, following
(Faugère, 1999) and the very recent GPU-using (Berthomieu et al., 2023). (c) perform modular
computations, following (Arnold, 2003; Noro & Yokoyama, 2018), to prevent coefficient growth
during the computation. (d) use the structure of the ideal, e.g., (Faugère et al., 1993; Berthomieu
et al., 2022) for change of term ordering for zero-dimensional ideals or (Traverso, 1997) when the
Hilbert function is known. In this study, we presents the fifth strategy: (e) Gröbner computation
fully via learning without specifying any mathematical procedures.

Math transformers. Recent studies have revealed that transformers can be used for mathemat-
ical reasoning and symbolic computation. The training of such math transformers only requires
samples (i.e., problem–solution pairs), and no explicit procedures need to be specified. (Lam-
ple & Charton, 2019) presented the first study that uses transformers for mathematical problems.
They showed that transformers can learn symbolic integration and differential equation solving with
training with sufficiently many and diverse samples. Since then, transformers have been applied
to checking local stability and controllability of differential equations (Charton et al., 2021), poly-
nomial simplification (Agarwal et al., 2021), linear algebra (Charton, 2022a;b), attack to the LWE
cryptography Wenger et al. (2022); Li et al. (2023), and symbolic regression (Biggio et al., 2021;
Kamienny et al., 2022; d’Ascoli et al., 2022; Kamienny et al., 2023). (Saxton et al., 2019) provides
comprehensive experiments over various mathematical tasks. Another line of math transformers is
for automatic theorem proving (Liu et al., 2022; Palermo et al., 2022; Wang & Deng, 2020; Lample
et al., 2022; Li et al., 2021; Polu & Sutskever, 2020; Li et al., 2020; Saxton et al., 2019), which is
not of our current scope. Several recent studies point out that transformers may only perform well
for in-distribution samples and not generalize well to out-distributions (Dziri et al., 2023). There

2

Under review as a conference paper at ICLR 2024

are several transformer models that address this challenge (Kim et al., 2021; Cognolato & Testolin,
2022). While this is a fundamental challenge of the math transformers, the focus of our study lies
in revealing whether transformers can learn an extremely difficult mathematical problem, Gröbner
basis computation, and establish a dataset generation method to experimentally examine it.

3 NOTATIONS AND DEFINITIONS

Throughout the paper, we consider a polynomial ring k[x1, . . . , xn] with a field k and variables
x1, . . . , xn.1 We here introduce basic definitions in algebra. Refer to App. A as necessary.
Definition 3.1 (Affine variety). Let F = {f1, . . . , fs} be a subset of k[x1, . . . , xn]. Then, we set

V (F) = V (f1, . . . , fs) = {p ∈ kn | f1(p) = · · · = fs(p) = 0}. (3.1)

We call this the affine variety defined by f1, . . . , fs (or by F).

Namely, the affine variety V (f1, . . . , fs) is the zero set of the polynomial system f1(x1, . . . , xn) =
· · · = fs(x1, . . . , xn) = 0. Next, we introduce a special set of polynomials.
Definition 3.2 (Ideal). A subset I ⊂ k[x1, . . . , xn] is an ideal if it satisfies the following: (i) 0 ∈ I ,
(ii) if f, g ∈ I , then f + g ∈ I , and (iii) if f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I .

An ideal I that contains f1, . . . , fs relates to the polynomial system f1(x1, . . . , xn) = · · · =
fs(x1, . . . , xn) = 0. Indeed, for any p ∈ kn, fi(p) = fj(p) = 0 implies (fi + fj)(p) = 0,
and for any h ∈ k[x1, . . . , xn], (hfi)(p) = 0 holds. Thus, roughly speaking, I contains all the
polynomials that can be freely appended to the system f1(p) = · · · = fs(p) = 0 without changing
its affine variety (i.e., solutions). This idea is formalized as follows.
Definition 3.3 (Generators). For F = {f1, . . . , fs} ⊂ k[x1, . . . , xn], the following set

⟨F ⟩ = ⟨f1, . . . , fs⟩ =

{
s∑

i=1

hifi | h1, . . . , hs ∈ k[x1, . . . , xn]

}
. (3.2)

is an ideal and said to be generated by f1, . . . , fs (or by F), and f1, . . . , fs are called generators.

We next define several notions that are necessary to define the Gröbner basis.
Definition 3.4 (Term order (informal)). A term order ≺ is an order of terms2 such as 1 ≺ xn ≺
xn−1 ≺ · · · . Constant term 1 = x0

1 · · ·x0
n is the least prioritized in any term order.

Strictly speaking, a term order satisfies a few more conditions, but we omit the detail as it is unnec-
essary to follow this study. We provide two well-known term orders to give an intuition.
Example 3.5. The lexicographic order ≺lex prioritizes terms with larger exponents for the variables
of small indices, e.g.,

1 ≺lex xn and x2 ≻lex x2
3 and x1x2x

2
3 ≺lex x1x

2
2x3. (3.3)

Two terms are first compared in terms of the exponent in x1 (larger one is prioritized), and if a
tie-break is needed, the next variable x2 is considered, and so forth.

The next notion plays an important role in the Gröbner basis theory.
Definition 3.6 (Leading term). Let F = {f1, . . . , fs} ⊂ k[x1, . . . , xn] and let ≺ be a term order.
The leading term LT(fi) of fi is the largest term in fi in ordering ≺. The leading term set of F is
LT(F) = {LT(f1), . . . ,LT(fs)}.

Given a polynomial set F , the computation of a Gröbner basis is essentially a simplification of F
without changing the affine variety V (F). For example, when F = {h1f, h2f} with h1 + h2 = 1,
we may simplify it to F̃ = {f} through polynomial divisions, while maintaining V (F) = V (F̃).
The leading term defines the simplicity of polynomials; given two polynomials f1, f2 ∈ I , f1
is considered simpler if LT(f1) ≺ LT(f2). Indeed, LT(f) ≺ LT(h1f),LT(h2f) in the above
example. Now, we introduce Gröbner bases.

1One may regard k[x1, . . . , xn] as the set of all n-variate polynomials with coefficients in k (e.g., k = R).
2Terms refer to power products of variables, i.e, xα1

1 · · ·xαn
n with α1, . . . , αn ∈ Z≥0.

3

Under review as a conference paper at ICLR 2024

Definition 3.7 (Gröbner basis). Fix a term order ≺. A finite subset G of an ideal I is said to be a
≺-Gröbner basis of I if ⟨LT(G)⟩ = ⟨LT(I)⟩.

Note that ⟨LT(G)⟩ ⊂ ⟨LT(I)⟩ is trivial from G ⊂ I . The nontriviality of the Gröbner basis lies in
⟨LT(G)⟩ ⊃ ⟨LT(I)⟩; that is, a finite number of leading terms can generate the leading term of any
polynomial in the infinite set I . The Hilbert basis theorem (Cox et al., 2015) guarantees that every
ideal I ̸= {0} has a Gröbner basis.

Other notations. The subset k[x1, . . . , xn]≤d ⊂ k[x1, . . . , xn] denotes the set of all polynomials
of total degree at most d. For a polynomial matrix A ∈ k[x1, . . . , xn]

s×s, its determinant is given
by det(A) ∈ k[x1, . . . , xn]. The set Fp with a prime number p denotes the finite field of order p.

We conclude this section with an intuitive (but not necessarily accurate) explanation of Gröbner
bases for those unfamiliar with this fundamental concept in algebra.

Intuitive explanation of Gröbner bases and polynomial system solving. Let G = {g1, . . . , gt}
be a Gröbner basis of an ideal ⟨F ⟩ = ⟨f1, . . . , fs⟩. The polynomial system g1(x1, . . . , xn) =
· · · = gt(x1, . . . , xn) = 0 is a simplified form of f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0
with the same solution set. With a term order ≺lex, G has a form g1 ∈ k[xn1 , . . . , xn], g2 ∈
k[xn2 , . . . , xn], . . . , gt ∈ k[xnt , . . . , xn] with n1 ≤ n2 ≤ . . . ≤ nt, which may be regarded as the
“reduced row echelon form” of a polynomial system. In our particular case (i.e., zero-dimensional
ideals in shape position; cf. Sec. 4.1), we have (n1, n2, . . . , nt) = (1, 2, . . . , n). Thus, one can
obtain the solutions of the polynomial system using a backward substitution, i.e., by first solving
a univariate polynomial gt, next solving bivariate polynomial gt−1, which becomes univariate by
substituting the solutions of gt, and so forth.

4 RANDOM GRÖBNER BASES AND BACKWARD GRÖBNER PROB.

Our goal is to realize Gröbner basis computation through a machine learning model. To train such
a model, we need a large training set {(Fi, Gi)}mi=1 with a finite polynomial set Fi ⊂ k[x1, . . . , xn]
and a Gröbner basis Gi of ⟨F ⟩. As the computation of Fi to Gi is computationally expensive in
general, we first generate a Gröbner basis Gi randomly and then transform it to non-Gröbner set
Fi. Such a backward generation (i.e., solution-to-problem process) has also been used in related
studies that train transformer models for mathematical computations. This is because in general, the
forward generation (i.e., problem-to-solution process) is much harder.

What makes the learning of Gröbner basis computation hard is that, to our knowledge, neither (i)
a random generation of Gröbner basis nor (ii) the backward transform from Gröbner basis to non-
Gröbner set has been considered in computational algebra. A central question in computational
algebra has been posed on an efficient Gröbner basis computation (i.e., forward generation), and
nothing motivates the random generation of Gröbner basis nor the backward transform. Interestingly,
machine learning now sheds light on these problems. Formally, we address the following problems
for dataset generation.
Problem 4.1 (Random generation of Gröbner bases). Fix a term order. Find a collection G =
{Gi}mi=1 of Gröbner bases, where Gi ⊂ k[x1, . . . , xn] is a Gröbner basis of ⟨Gi⟩. The collection
should contain diverse bases, and we need an efficient algorithm for constructing them.
Problem 4.2 (Backward Gröbner problem). Fix a term order. Given a Gröbner basis G ⊂
k[x1, . . . , xn], find a collection F = {Fi}µi=1 of polynomial sets that are not Gröbner bases but
⟨Fi⟩ = ⟨G⟩ for all i = 1, . . . , µ. The collection should contain diverse sets, and we need an efficient
algorithm for constructing them.

In this paper, we address these problems for zero-dimensional ideals.
Definition 4.3 (Zero-dimensional ideal). Let F be a set of polynomials in k[x1, . . . , xn]. An ideal
⟨F ⟩ is called a zero-dimensional ideal if all but a finite number of terms belong to LT(⟨F ⟩).

If k is an algebraically closed field (e.g., k = C), zero-dimensional ideals relate to polynomial sys-
tems with a finite number of solutions (i.e., V (F) is a finite set.). Zero-dimensional ideals appear
in various application of Gröbner bases. For example, a multivariate public-key encrypted commu-
nication (a candidate of the Post-Quantum Cryptography) with a public polynomial system F over

4

Under review as a conference paper at ICLR 2024

a finite field Fp will be broken if one finds an element of V (F ∪ {xp
1 − x1, . . . , x

p
n − xn}) and the

ideal ⟨F ∪ {xp
1 − x1, . . . , x

p
n − xn}⟩ is a zero-dimensional ideal (Ullah, 2012, Sec. 2.2).

A more general approach to Probs. 4.1 and 4.2 with positive-dimensional ideals is an open problem
for algebraists. The proofs of the results in the following sections can be found in App. C.

4.1 RANDOM GENERATION OF GRÖBNER BASES

To address Prob. 4.1, we propose to use the properties of ideals in shape position, for which Gröbner
bases have a simple structure. Another potential approach is discussed in App. B.
Definition 4.4 (Shape position). Ideal I ⊂ k[x1, . . . , xn] is called in shape position if its Gröbner
basis with respect to ≺lex has a form of

G = {h(xn), x1 − g1(xn), . . . , xn−1 − gn−1(xn)}, (4.1)
where h, g1, . . . , gn−1 are univariate polynomials in k[xn].

As can be seen, the ≺lex-Gröbner basis consists of a univariate polynomial in xn and the difference
of univariate polynomials in xn and a leading term xi (i < n). Unfortunately, not all ideals are in
shape position. Nevertheless, zero-dimensional radical ideals are almost always in shape position
(but the converse is not always true).
Proposition 4.5 (Gianni & Mora (1989), Prop. 1.6, Noro & Yokoyama (1999), Lem. 4.4). Let I be
a zero-dimensional radical ideal3. If k is of characteristic 0 or a finite field of large enough order,
then a random linear coordinate change puts I in shape position.

Thus, we can efficiently generate a random zero-dimensional ideal by sampling n polynomials in
k[xn], i.e., h, g1, . . . , gn−1 with h ̸= 0. This resolves Prob. 4.1 even with large m.

Gröbner bases for general term orders. This approach assumes term order≺lex. In most practi-
cal scenarios,≺lex-Gröbner bases are already sufficient as they provide a simplified form of polyno-
mial systems as presented at the end of Sec. 3. In computational algebra, it is more common to use
the graded reverse lexicographic order because it typically leads to faster computation and smaller
size of Gröbner bases. The obtained Gröbner basis is then transformed to the ≺lex-Gröbner basis
using an efficient change-of-ordering algorithm such as the FGLM algorithm (Faugère et al., 1993).
In our case, if necessary, one can similarly use it to obtain Gröbner bases in non-≺lex order from
≺lex Gröbner bases. The cost of FGLM algorithm (Faugère et al., 1993) is O(n · deg(h)3).4

4.2 BACKWARD GRÖBNER PROBLEM

To address Prob. 4.2, we consider the following problem.
Problem 4.6. Let I ⊂ k[x1, . . . , xn] be a zero-dimensional ideal, and let G = (g1, . . . , gt)

⊤ ∈
k[x1, . . . , xn]

t be a ≺-Gröbner basis of I with respect to term order ≺.5 Find a polynomial matrix
A ∈ k[x1, . . . , xn]

s×t that gives a non-Gröbner set F = (f1, . . . , fs)
⊤ = AG such that ⟨F ⟩ = ⟨G⟩.

Namely, we generate a set of polynomials F = (f1, . . . , fs)
⊤ from G = (g1, . . . , gt)

⊤ by fi =∑t
j=1 aijgj , for i = 1, . . . , s, where aij ∈ k[x1, . . . , xn] denotes the (i, j)-th entry of A. However,

⟨F ⟩ and ⟨G⟩ are generally not identical. The following provides how we should design A to achieve
⟨F ⟩ = ⟨G⟩ for the zero-dimensional case (without radicality or shape position assumption).
Theorem 4.7. Let G = (g1, . . . , gt)

⊤ be a Gröbner basis of a zero-dimensional ideal in
k[x1, . . . , xn]. Let F = (f1, . . . , fs)

⊤ = AG with A ∈ k[x1, . . . , xn]
s×t.

1. If ⟨F ⟩ = ⟨G⟩, it implies s ≥ n.

2. If A has a left-inverse in k[x1, . . . , xn]
s×t, ⟨F ⟩ = ⟨G⟩ holds.

3. The equality ⟨F ⟩ = ⟨G⟩ holds if and only if there exists a matrix B ∈ k[x1, . . . , xn]
t×s

such that each row of BA− Et is a syzygy6 of G, where Et is the identity matrix of size t.
3Refer App. A for the definition.
4Strictly speaking, the time complexity is here based on the number of arithmetic operations over k.
5We surcharge notations to mean that the set {g1, . . . , gt} defined by the vector G is a ≺-Gröbner basis.
6Refer to App. A for the definition.

5

Under review as a conference paper at ICLR 2024

In Thm. 4.7, the first statement argues that polynomial matrix A should have at least n rows to have
⟨F ⟩ = ⟨G⟩. If the ideal is in shape position, we have a ≺lex-Gröbner basis G of size n, and thus,
A becomes a square or tall matrix. The second statement shows a sufficient condition for designing
A such that ⟨AG⟩ = ⟨G⟩. The third statement provides the sufficient and necessary conditions.
In practice, the second statement provides a simple approach for the random transformation of a
Gröbner basis to a non-Gröbner set without changing the ideal.

We first assume to use ≺lex, where G has exactly n generators. Discussion on the case with general
term orders will come later. For the case of s = n, we have the following.

Proposition 4.8. For any A ∈ k[x1, . . . , xn]
n×n with det(A) ∈ k \ {0}, we have ⟨F ⟩ = ⟨G⟩.

As (non-zero) constant scaling does not change the ideal, we focus on A with det(A) = ±1 without
loss of generality. Then, such A can be constructed using a Bruhat decomposition in the form of

A = U1PU2, (4.2)

where U1, U2 ∈ k[x1, . . . , xn]
n×n are upper-triangular matrices with all-one diagonal entries (i.e.,

unimodular upper-triangular matrices) and P ∈ {0, 1}n×n denotes a permutation matrix. Noting
that A−1 satisfies A−1A = En, we have ⟨AG⟩ = ⟨G⟩ from Thm. 4.7. Therefore, random sampling
(U1, U2, P) of unimodular upper-triangular matrices U1, U2 and a permutation matrix P resolves
the backward Gröbner problem for s = n.

We extend this idea to the case of s > n using a rectangular unimodular upper-triangular matrix:

U2 =

(
U ′
2

Os−n,n

)
∈ k[x1, . . . , xn]

s×n, (4.3)

where U ′
2 ∈ k[x1, . . . , xn]

n×n denotes a unimodular upper-triangular matrix and Os−n,n ∈
k[x1, . . . , xn]

(s−n)×n is the zero matrix. The permutation matrix is now P ∈ {0, 1}s×s.

Note that U2G already gives a non-Gröbner set such that ⟨U2G⟩ = ⟨G⟩; however, the polynomials
in the last s− n entries of U2G are all zero by its construction. Thus, we need a permutation matrix
P to shuffle the rows and also U1 to exclude the zero polynomial from the final polynomial set.

To summarize, our strategy is to compute F = U1PU2G, which only requires a sampling of O(s2)
polynomials in k[x1, . . . , xn], andO(n2+ s2)-times multiplications of polynomials. Note that even
in the large polynomial systems given in the MQ challenge, a post-quantum cryptography challenge,
we have n < 100 and s < 200 (Yasuda et al., 2015).

4.3 DATASET GENERATION ALGORITHM

Summarizing the discussion in the previous sections, we have Alg. 1 and the following.

Theorem 4.9. Consider polynomial ring k[x1, . . . , xn]. Given dataset size m, maximum degrees
d, d′, maximum size of non-Gröbner set smax ≥ n, and term order ≺, Alg. 1 returns a collection
D = {(Fi, Gi)}mi=1 with the following properties: For all i = 1, . . . ,m,

1. Both Fi, Gi ⊂ k[x1, . . . , xn] are finite sets and |Fi| ≤ smax.

2. The set Gi is a ≺-Gröbner basis. The set Fi is not, unless Gi, U1, U
′
2, P are sampled in a

non-trivial Zariski closed subset.7

3. The ideal ⟨Fi⟩ = ⟨Gi⟩ is a zero-dimensional ideal in shape position.

The time complexity is O(m(nS1,d + s2Sn,d′ + (n2 + s2)Mn,2d′+d)) when ≺=≺lex, where Sn,d

denotes the complexity of sampling an n-variate polynomial with total degree at most d, and Mn,d

denotes that of multiplying two n-variate polynomials with total degree at most d. If ≺≠≺lex,
O(nd3) is additionally needed.

The proposed dataset generation method is a backward approach, which first generates solutions and
then transforms them into problems. In this case, we have control over the complexity of the Gröbner

7This can happen with probability zero if k is infinite and very low probability over large finite field.

6

Under review as a conference paper at ICLR 2024

Algorithm 1: Dataset generation for learning to compute zero-dimensional Gröbner bases.
Assumption: polynomial ring k[x1, . . . , xn]
Input: dataset size m, maximum degrees d, d′, maximum size of non-Gröbner set smax ≥ n,

and term order ≺.
Output: collection D = {(Fi, Gi)}mi=1 of non-Gröbner set Fi ∈ k[x1, . . . , xn]

m and a
≺-Gröbner basis Gi ⊂ k[x1, . . . , xn] with ⟨F ⟩ = ⟨G⟩, a zero-dimensional ideal.

1 D ← { }
2 for i = 1, . . . ,m do
3 Gi ← {h} with a non-constant polynomial h sampled from k[xn]≤d. ▷ Problem 4.1
4 for j = 1, . . . , n− 1 do
5 Gi ← Gi ∪ {gj} with gj sampled from k[xn]≤d.
6 end
7 s ∼ U[n, smax] ▷ Problem 4.2
8 Sample a unimodular upper-triangular matrix U1 ∈ k[x1, . . . , xn]

s×s
≤d′ .

9 Sample a unimodular upper-triangular matrix U ′
2 ∈ k[x1, . . . , xn]

n×n
≤d′ .

10 Sample a permutation matrix P ∈ {0, 1}s×s

11 Fi ← U1PU2Gi, where U2 = [U ′
2
⊤

On,s−n]
⊤ ∈ k[x1, . . . , xn]

s×n.
12 if ≺ ≠≺lex then
13 Gi ← FGLM(Gi,≺lex,≺)
14 end
15 D ← D ∪ {(Fi, Gi)} ▷ Reorder terms in Fi if ≺≠≺lex.
16 end

bases and can add some intrinsic structure if any prior information is available. For example, poly-
nomial systems used in a multivariate encryption scheme tend to have only a single solution, and it
belongs to the base field (Yasuda et al., 2015) (and thus, are zero-dimensional systems). Ideals gen-
erated by such polynomial systems are in shape position and have Gröbner bases of the following
form: G = ⟨xn−an, x1−a1, . . . , xn−1−an−1⟩, where a1, a2, . . . , an are constants (Ullah, 2012).
Backward approaches allow one to restrict the Gröbner bases in a dataset into such a class.

This is not the case with forward approaches. Instead, they can include prior information into non-
Gröbner sets, although it is computationally expensive to obtain the corresponding Gröbner bases
from them. It is also worth noting that a naive forward approach, which first randomly generates
non-Gröbner sets and then computes their Gröbner bases, should be avoided even when the compu-
tational cost could be resolved. In many such cases, a Gröbner basis G computed directly from a
random non-Gröbner set F will share some polynomials with F while such a behavior is unusual in
various cases where one needs to compute Gröbner bases.

5 EXPERIMENTS

We now present experimental results on training a transformer for Gröbner basis computation. All
the experiments were conducted on a workstation with 16-core CPUs, 512 GB RAM, and a single
NVIDIA RTX A6000 GPU. We provide more information on the profile of generated datasets, the
training setup, and additional experimental results in App. D. The code will be available soon.

5.1 DATASET GENERATION

We first demonstrate the efficiency of the proposed dataset generation framework. We constructed
eight datasets {Dn(Fp)}n,p for n ∈ {2, 3, 4, 5} and p ∈ {7, 31} and measured the runtime of the
forward generation and our backward generation.

Generation setup of Dn(Fp). The dataset Dn(Fp) consists of 1,000 pairs of non-Gröbner set and
Gröbner basis in Fp[x1, . . . , xn]. Each sample (F,G) ∈ Dn(Fp) was prepared using the process
given in Alg. 1 with (d, d′, smax,≺) = (5, 3, n + 2,≺lex). The number of terms of univariate
polynomials and n-variate polynomials is uniformly determined from [1, 5] and [1, 2], respectively.

7

Under review as a conference paper at ICLR 2024

Table 1: Runtime comparison (in seconds/milliseconds) of forward generation (F.) and backward
generation (B.) of dataset Dn(Fp) of size 1000. The forward generation used either of the three
algorithms provided in Sagemath with the libSingular backend. For n = 4, 5, we set a timeout limit
to one second (added to the total runtime at every occurrence) for each Gröbner basis computation.
The numbers with ∗ and † include the timeout for more than 10 % and 40 % of the runs, respectively.

Method F7[x1, . . . , xn] F31[x1, . . . , xn]
n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5

F. (STD) [sec] 0.38 3.46 185∗ 430† 0.36 2.61 207∗ 437†

F. (SLIMGB) 0.41 5.14 174∗ 444† 0.40 7.28 202∗ 460†

F. (STDFGLM) 0.97 1.36 15.5 114 1.00 1.45 18.7 166
B. (ours) [msec] 2.05 2.88 3.70 4.90 2.11 2.78 3.47 5.27

Table 2: Accuracy [%] of Gröbner basis computation by transformers on Dn(F7) with several batch
size B and term order. In the support accuracy, two polynomials are considered identical if they
consist of an identical set of terms (i.e., identical support). The last two column shows the results of
training with D2(F7) using≺lex-Gröbner bases or≺grvlex-Gröbner bases. Note that the datasets for
n = 3, 4, 5 are here constructed using U1, U

′
2 (cf. Alg. 1) with density σ = 0.6, 0.3, 0.2, respectively.

Refer to the main text for the details.

Method B = 8 B = 16, n = 2
n = 2 n = 3 n = 4 n = 5 ≺lex ≺grvlex

accuracy 41.8 64.0 74.1 79.7 50.2 5.6
support acc. 72.9 84.0 88.1 87.8 74.9 13.4

Forward generation. In the forward generation, one may first generate random polynomial sets
and then compute their Gröbner bases. However, this leads to a dataset with a totally different com-
plexity from that constructed by the backward generation, leading to an unfair runtime comparison
between the two generation processes. As such, the forward generation instead computes Gröbner
bases of the non-Gröbner sets given by the backward generation, leading to the identical dataset. We
used SageMath (The Sage Developers, 2023) with the libSingular backend.

In Tab. 1, our backward generation is significant orders of magnitude faster than the forward gen-
eration. A sharp runtime growth is observed in the forward generation as the number of variables
increases. Note that these numbers only show the runtime on 1,000 samples, while our training
requires a million samples. Therefore, the forward generation is almost infeasible, indicating that
the proposed method resolves a critical challenge in the learning of Gröbner basis computation.

5.2 GRÖBNER BASIS COMPUTATION WITH TRANSFORMERS

We now demonstrate that transformers can learn to compute Gröbner bases. To examine the gen-
eral transformer’s ability, we focus on a standard architecture (e.g., 6 encoder/decoder layers and 8
attention heads) and a standard training setup (e.g., the AdamW optimizer (Loshchilov & Hutter,
2019) with (β1, β2) = (0.9, 0.999) and the linear decay of learning rate from 10−4). The batch size
was set to 8, and models were trained for 10 epochs. Refer to App. D for complete information.

Each polynomial set in the datasets is converted into a sequence in the prefix representation. Unlike
natural language processing, our task does not allow the truncation of an input sequence to effec-
tively shorten the input sequences because the first term of the first polynomial in F certainly relates
to the last term of the last polynomial. To keep the input sequence length manageable for vanilla
transformers, we use simpler datasets than those in Sec. 5.1. If the matrices U1, U

′
2 in Alg. 1 are

dense, the final polynomials in F tend to have many terms, leading to long input sequences. Thus,
we construct datasets using U1, U

′
2 with a moderate density σ ∈ [0, 1] so that the maximum sequence

length becomes less than 4096. Specifically, we used σ = 1.0, 0.6, 0.3, 0.2 for n = 2, 3, 4, 5, respec-
tively. The training set has one million samples, and the test set has one thousand samples. Other
settings are the same as in Sec. 5.1 Using a more efficient attention mechanism such as (Kitaev et al.,
2020; Ding et al., 2023; Sun et al., 2023) to handle larger polynomial sets will be a future work.

8

Under review as a conference paper at ICLR 2024

Tab. 2 shows that transformers trained on the constructed datasets compute correct ≺lex-Gröbner
bases with moderate accuracy. Nevertheless, even when the transformer cannot produce the correct
basis, the support8 of each polynomial in the predicted basis tends to be correct. Since there are
efficient Gröbner basis computation algorithms if the support of each polynomial in Gröbner basis
is accessible (Traverso, 1997), our experiments successfully show the transformer’s potential in
accelerating Gröbner computation. Lastly, the last two columns of Tab. 2 suggest that learning with
≺grvlex may not be as effective as that with ≺lex.9 In contrast, ≺grvlex is preferred in computational
algebra because of its empirical runtime reduction in Gröbner basis computation. We consider that
the well-structured nature of ≺lex-Gröbner bases of ideals in shape position (c.f. Eq. (4.1)) may be
favorable to transformers. Refer to App. D for success and failure examples. Particularly, the failure
examples show that the incorrect outputs from transformers are still very reasonable.

6 DISCUSSION FROM AN ALGEBRAIC VIEWPOINT AND OPEN QUESTIONS

Without the Gröbner condition, Prob. 4.6 of characterizing the A such that F = AG and ⟨F ⟩ = ⟨G⟩
has been studied in (Busé et al., 2001; Busé, 2001) to provide an algebraic necessary and sufficient
condition for the polynomial system of F to have a solution outside the variety defined by G. This
condition is expressed explicitly by multivariate resultants. However, strong additional assumptions
are required: A,F,G are homogeneous, G is a regular sequence, and in the end, ⟨F ⟩ = ⟨G⟩ is only
satisfied up to saturation. Thus, they are not compatible with our setting and method for Prob. 4.1.

Prop. 4.8 states that any matrix A ∈ SLn(k[x1, . . . , xn]) satisfies Prob. 4.6. This raises two sets
of open questions: (i) are there matrices outside SLn(k[x1, . . . , xn]) satisfying Prob. 4.6? Can
we sample them? and (ii) is it possible to efficiently sample matrices of SLn(k[x1, . . . , xn])? To
efficiently generate our dataset, we have restricted ourselves to sampling matrices having a Bruhat
decomposition (see Eq. (4.2)), which is a strict subset of SLn(k[x1, . . . , xn]). Sampling matri-
ces in SLn(k[x1, . . . , xn]) remains an open question. Thanks to the Suslin’s stability theorem
and its algorithmic proofs (Suslin, 1977; Park & Woodburn, 1995; Lombardi & Yengui, 2005),
SLn(k[x1, . . . , xn]) is generated by elementary matrices and a decomposition into a product of el-
ementary matrices can be computed algorithmically. One may hope to use sampling of elementary
matrices to sample matrices of SLn(k[x1, . . . , xn]). It is unclear whether this can be efficient as
many elementary matrices are needed (Lombardi & Yengui, 2005).

In the experiments, we restricted ourselves to polynomial sets with a moderate sequence length so
that a standard transformer can handle it. Algebraically, this relates to zero-dimensional ideals with
small linear dimension (i.e., dimension of k[x1, . . . , xn]/⟨F ⟩, see Def. A.4). To cover more general
cases, zero-dimensional ideals with large linear dimensions and positive-dimensional ideals have to
be further considered, which needs breakthroughs both in machine learning and algebra.

7 CONCLUSION

Solving polynomial systems, or computing Gröbner bases, are fundamental in various applications
but known for its doubly exponential time complexity. In this study, we proposed the first training
framework of transformers that realizes Gröbner basis computation via learning. The main techni-
cal challenge lies in an efficient generation of many pairs of (non-Gröbner set, Gröbner basis) to
construct a training set, leading us to address two unexplored algebraic problems: random genera-
tion of Gröbner bases and the backward Gröbner problem. We resolved these problems in the case
of zero-dimensional radical ideals, which are important in various applications. Our experiments
validate that the proposed method achieves an extreme acceleration in dataset generation and that
the transformer’s ability in Gröbner basis computation. In a broad view, our study indicates that
transformers may serve as a solver for NP-hard problems, while most prior studies only address
rather easy/moderate-level problems. Besides, our results give a new motivation to computational
algebra to consider and address several unexplored problems, posing a new direction and potential
interactions of computational algebra and machine learning.

8The support of a polynomial f refers to the set of terms in f .
9The training with ≺grvlex used a dataset that is essentially identical to D2(F7). We simply apply the FGLM

algorithm to G and a term reordering to F for each (F,G) ∈ D2(F7).

9

Under review as a conference paper at ICLR 2024

REFERENCES

John Abbott, Claudia Fassino, and Maria-Laura Torrente. Stable border bases for ideals of points.
Journal of Symbolic Computation, 43(12):883–894, 2008.

Vishesh Agarwal, Somak Aditya, and Navin Goyal. Analyzing the nuances of transformers’ poly-
nomial simplification abilities. ArXiv, abs/2104.14095, 2021.

Rika Antonova, Maksim Maydanskiy, Danica Kragic, Sam Devlin, and Katja Hofmann. Analytic
manifold learning: Unifying and evaluating representations for continuous control. arXiv preprint
arXiv:2006.08718, 2020.

Elizabeth Arnold. Modular algorithms for computing gröbner bases. Journal of Symbolic Compu-
tation, 35:403–419, 2003.

Michael F. Atiyah and Ian G. MacDonald. Introduction To Commutative Algebra. Addison-Wesley
series in mathematics. Avalon Publishing, 1994.

Gregory V. Bard. Algorithms for Solving Polynomial Systems. Springer US, 2009.

Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of the F5 Gröbner basis
algorithm. Journal of Symbolic Computation, 70:49–70, September 2015.

Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner Bases: A Computational Ap-
proach to Commutative Algebra. Graduate texts in mathematics. Springer-Verlag, 1993.

Jérémy Berthomieu, Vincent Neiger, and Mohab Safey El Din. Faster change of order algorithm for
gröbner bases under shape and stability assumptions. In Proceedings of the 2022 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’22, pp. 409–418, New York, NY,
USA, 2022. Association for Computing Machinery.

Jérémy Berthomieu, Stef Graillat, Dimitri Lesnoff, and Theo Mary. Modular matrix multiplication
on gpu for polynomial system solving. ACM Commun. Comput. Algebra, 57(2):35–38, August
2023.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascan-
dolo. Neural symbolic regression that scales. arXiv, abs/2106.06427, 2021.

Michael Brickenstein. Slimgb: Gröbner bases with slim polynomials. Revista Matemática Com-
plutense, 23:453–466, 2010.

Bruno. Buchberger. A theoretical basis for the reduction of polynomials to canonical forms. SIGSAM
Bull., 10(3):19–29, Augest 1976.

Laurent Busé. Étude du résultant sur une variété algébrique. Theses, Université Nice Sophia
Antipolis, 2001.

Laurent Busé, Mohamed Elkadi, and Bernard Mourrain. Resultant over the residual of a complete
intersection. Journal of Pure and Applied Algebra, 164(1):35–57, 2001.

Francois Charton. Linear algebra with transformers. Transactions on Machine Learning Research,
2022a. URL https://openreview.net/forum?id=Hp4g7FAXXG.

Francois Charton. What is my math transformer doing? - three results on interpretability and
generalization. ArXiv, abs/2211.00170, 2022b.

Francois Charton, Amaury Hayat, and Guillaume Lample. Learning advanced mathematical com-
putations from examples. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=-gfhS00XfKj.

Samuel Cognolato and Alberto Testolin. Transformers discover an elementary calculation system
exploiting local attention and grid-like problem representation, 2022.

David A. Cox. Solving equations via algebras. In Solving Polynomial Equations, pp. 63–124.
Springer-Verlag, Berlin, 2005.

10

https://openreview.net/forum?id=Hp4g7FAXXG
https://openreview.net/forum?id=-gfhS00XfKj

Under review as a conference paper at ICLR 2024

David A. Cox, John Little, and Donald O’Shea. Ideals, Varieties, and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in
Mathematics. Springer International Publishing, 2015.

Stéphane d’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and François Charton. Deep
symbolic regression for recurrence prediction. International Conference on Machine Learning,
2022.

Persi Diaconis and Bernd Sturmfels. Algebraic algorithms for sampling from conditional distribu-
tions. The Annals of Statistics, 26(1):363 – 397, 1998.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning
Zheng, and Furu Wei. LongNet: Scaling Transformers to 1,000,000,000 tokens, 2023.

Thomas W. Dubé. The structure of polynomial ideals and Gröbner bases. SIAM Journal on Com-
puting, 19(4):750–773, 1990.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter
West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xi-
ang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers
on compositionality, 2023.

David Eisenbud. Commutative algebra: with a view toward algebraic geometry. Springer Science
& Business Media, 2013.

Claudia Fassino. Almost vanishing polynomials for sets of limited precision points. Journal of
Symbolic Computation, 45(1):19–37, 2010.

Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure
and Applied Algebra, 139(1):61–88, 1999.

Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases without reduction
to zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’02, pp. 75–83, New York, NY, USA, 2002. Association for Computing
Machinery.

Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora. Efficient computation of
zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation, 16(4):
329–344, 1993.

Patrizia Gianni and Teo Mora. Algebraic solution of systems of polynomial equations using Groeb-
ner bases. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pp. 247–257,
Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

Gert-Martin Gruel and Gerhard Pfister. A Singular Introduction to Commutative Algebra, 2nd Edi-
tion. Sringer Verlag, 2008.

Daniel Heldt, Martin Kreuzer, Sebastian Pokutta, and Hennie Poulisse. Approximate computation
of zero-dimensional polynomial ideals. Journal of Symbolic Computation, 44(11):1566–1591,
2009.

Takayuki Hibi. Gröbner bases. Statistics and software systems. Springer Tokyo, March 2014.

Chenping Hou, Feiping Nie, and Dacheng Tao. Discriminative vanishing component analysis. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI), pp. 1666–1672,
Palo Alto, California, 2016. AAAI Press.

Reza Iraji and Hamidreza Chitsaz. Principal variety analysis. In Proceedings of the 1st Annual
Conference on Robot Learning (ACRL), pp. 97–108. PMLR, 2017.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Francois Charton. End-
to-end symbolic regression with transformers. In Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=GoOuIrDHG_Y.

11

https://openreview.net/forum?id=GoOuIrDHG_Y

Under review as a conference paper at ICLR 2024

Pierre-Alexandre Kamienny, Guillaume Lample, Sylvain Lamprier, and Marco Virgolin. Deep gen-
erative symbolic regression with Monte-Carlo-Tree-Search. arXiv, abs/2302.11223, 2023.

Artur Karimov, Erivelton G. Nepomuceno, Aleksandra Tutueva, and Denis Butusov. Algebraic
method for the reconstruction of partially observed nonlinear systems using differential and inte-
gral embedding. Mathematics, 8(2):300–321, February 2020.

Achim Kehrein and Martin Kreuzer. Computing border bases. Journal of Pure and Applied Algebra,
205(2):279–295, 2006.

Hiroshi Kera. Border basis computation with gradient-weighted normalization. In Proceedings of
the 2022 International Symposium on Symbolic and Algebraic Computation, pp. 225–234, New
York, 2022. Association for Computing Machinery.

Hiroshi Kera and Yoshihiko Hasegawa. Noise-tolerant algebraic method for reconstruction of non-
linear dynamical systems. Nonlinear Dynamics, 85(1):675–692, 2016.

Hiroshi Kera and Yoshihiko Hasegawa. Approximate vanishing ideal via data knotting. In Proceed-
ings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), pp. 3399–3406, Palo
Alto, California, 2018. AAAI Press.

Hiroshi Kera and Yoshihiko Hasegawa. Spurious vanishing problem in approximate vanishing ideal.
IEEE Access, 7:178961–178976, 2019.

Hiroshi Kera and Yoshihiko Hasegawa. Gradient boosts the approximate vanishing ideal. In Pro-
ceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), pp. 4428–4425,
Palo Alto, California, 2020. AAAI Press.

Hiroshi Kera and Hitoshi Iba. Vanishing ideal genetic programming. In Proceedings of the 2016
IEEE Congress on Evolutionary Computation (CEC), pp. 5018–5025, Piscataway, NJ, 2016.
IEEE.

Segwang Kim, Hyoungwook Nam, Joonyoung Kim, and Kyomin Jung. Neural sequence-to-grid
module for learning symbolic rules. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 8163–8171, May 2021.

Franz J Király, Martin Kreuzer, and Louis Theran. Dual-to-kernel learning with ideals. ArXiv,
abs/1402.0099, 2014.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=rkgNKkHtvB.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. ArXiv,
abs/1912.01412, 2019.

Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat, Gabriel
Ebner, Aurélien Rodriguez, and Timothée Lacroix. HyperTree proof search for neural theorem
proving. ArXiv, abs/2205.11491, 2022.

Reinhard Laubenbacher and Bernd Sturmfels. Computer algebra in systems biology. American
Mathematical Monthly, 116(10):882–891, 2009.

Cathy Li, Jana Sotakova, Emily Wenger, Zeyuan Allen-Zhu, Francois Charton, and Kristin Lauter.
SALSA VERDE: a machine learning attack on Learning With Errors with sparse small secrets,
2023.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence Charles Paulson. Modelling high-level mathematical
reasoning in mechanised declarative proofs. ArXiv, abs/2006.09265, 2020.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. Isarstep: a benchmark for high-level
mathematical reasoning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Pzj6fzU6wkj.

12

https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=Pzj6fzU6wkj

Under review as a conference paper at ICLR 2024

Jan Limbeck. Computation of approximate border bases and applications. PhD thesis, Passau,
Universität Passau, 2013.

Zhouwu Liu, Yujun Li, Zhengying Liu, Lin Li, and Zheng Li. Learning to prove trigonometric
identities. ArXiv, abs/2207.06679, 2022.

Roi Livni, David Lehavi, Sagi Schein, Hila Nachliely, Shai Shalev-Shwartz, and Amir Globerson.
Vanishing component analysis. In Proceedings of the 30th International Conference on Machine
Learning, volume 28(1) of Proceedings of Machine Learning Research, pp. 597–605, Atlanta,
Georgia, USA, June 2013. PMLR.

Henri Lombardi and Ihsen Yengui. Suslin’s algorithms for reduction of unimodular rows. Journal
of Symbolic Computation, 39(6):707–717, 2005.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Rusydi H. Makarim and Marc Stevens. M4GB: An efficient Gröbner-basis algorithm. In Proceed-
ings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation,
ISSAC’17, pp. 293–300, New York, NY, USA, 2017. Association for Computing Machinery.

Ernst W. Mayr and Albert R. Meyer. The complexity of the word problems for commutative semi-
groups and polynomial ideals. Advances in Mathematics, 46(3):305–329, 1982.

H. Michael Möller and Bruno Buchberger. The construction of multivariate polynomials with pre-
assigned zeros. In Computer Algebra. EUROCAM 1982. Lecture Notes in Computer Science, pp.
24–31. Springer Berlin Heidelberg, 1982.

Masayuki Noro and Kazuhiro Yokoyama. A modular method to compute the rational univariate
representation of zero-dimensional ideals. Journal of Symbolic Computation, 28(1):243–263,
1999.

Masayuki Noro and Kazuhiro Yokoyama. Usage of modular techniques for efficient computation of
ideal operations. Math. Comput. Sci., 12(1):1–32, 2018.

Joseph Palermo, Johnny Ye, and Jesse Michael Han. Synthetic proof term data augmentation for
theorem proving with language models. In Proceedings of the 7th Conference on Artificial Intel-
ligence and Theorem Proving, 2022.

Hyungju Park and Georg Regensburger (eds.). Gröbner Bases in Control Theory and Signal Pro-
cessing. De Gruyter, 2007.

Hyungjyu Park and Cynthia Woodburn. An algorithmic proof of Suslin’s stability theorem for
polynomial rings. Journal of Algebra, 178(1):277–298, 1995.

Dylan Peifer, Michael Stillman, and Daniel Halpern-Leistner. Learning selection strategies in buch-
berger’s algorithm. In Proceedings of the 37th International Conference on Machine Learning,
ICML’20. JMLR.org, 2020.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
ArXiv, abs/2009.03393, 2020.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=H1gR5iR5FX.

Yunxue Shao, Guanglai Gao, and Chunheng Wang. Nonlinear discriminant analysis based on van-
ishing component analysis. Neurocomputing, 218:172–184, 2016.

Henrik Stewenius. Gröbner Basis Methods for Minimal Problems in Computer Vision. PhD thesis,
Mathematics (Faculty of Engineering), 2005.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to Transformer for large language models, 2023.

13

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=H1gR5iR5FX

Under review as a conference paper at ICLR 2024

Andrey Aleksandrovich Suslin. On the structure of the special linear group over polynomial rings.
Mathematics of the USSR - Izvestija, 11(2):221–238, April 1977.

The Sage Developers. SageMath, the Sage Mathematics Software System (Version 10.0), 2023.
https://www.sagemath.org.

Carlo Traverso. Hilbert functions and the Buchberger algorithm. Journal of Symbolic Computation,
6:287–304, 1997.

Ehsan Ullah. New Techniques for Polynomial System Solving. PhD thesis, Universität Passau, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates, Inc., 2017.

Lu Wang and Tomoaki Ohtsuki. Nonlinear blind source separation unifying vanishing component
analysis and temporal structure. IEEE Access, 6:42837–42850, 2018.

Mingzhe Wang and Jia Deng. Learning to prove theorems by learning to generate theorems. ArXiv,
abs/2002.07019, 2020.

Zhichao Wang, Qian Li, Gang Li, and Guandong Xu. Polynomial representation for persistence
diagram. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6116–6125, Los Alamitos, California, 2019. Conference Publishing
Services. doi: 10.1109/CVPR.2019.00628.

Emily Wenger, Mingjie Chen, Francois Charton, and Kristin E. Lauter. SALSA: Attacking lat-
tice cryptography with Transformers. In Advances in Neural Information Processing Systems,
volume 35, pp. 34981–34994. Curran Associates, Inc., 2022.

Elias Wirth and Sebastian Pokutta. Conditional gradients for the approximately vanishing ideal.
ArXiv, abs/2202.03349, 2022.

Elias Samuel Wirth, Hiroshi Kera, and Sebastian Pokutta. Approximate vanishing ideal compu-
tations at scale. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=3ZPESALKXO.

Hongliang Yan, Zifei Yan, Gang Xiao, Weizhi Wang, and Wangmeng Zuo. Deep vanishing compo-
nent analysis network for pattern classification. Neurocomputing, 316:240–250, 2018.

Takanori Yasuda, Xavier Dahan, Yun-Ju Huang, Tsuyoshi Takagi, and Kouichi Sakurai. MQ chal-
lenge: hardness evaluation of solving multivariate quadratic problems. Cryptology ePrint Archive,
2015.

A BASIC DEFINITIONS IN ALGEBRA

Definition A.1 (Ring, Field (Atiyah & MacDonald (1994), Chap. 1 §1)). A set R with an additive
operation + and a multiplicative operation ∗ is called a (commutative) ring if it satisfies the following
conditions:

1. a+ (b+ c) = (a+ b) + c for any a, b, c ∈ R,

2. there exists 0 ∈ R such that a+ 0 = 0 + a = a for any a ∈ R,

3. for any a ∈ R, there exists −a such that a+ (−a) = (−a) + a = 0,

4. a+ b = b+ a for any a, b ∈ R,

5. a ∗ (b ∗ c) = (a ∗ b) ∗ c for any a, b, c ∈ R,

6. there exists 1 ∈ R such that a ∗ 1 = 1 ∗ a = a for any a ∈ R,

7. a ∗ (b+ c) = a ∗ b+ a ∗ c for any a, b, c ∈ R,

14

https://openreview.net/forum?id=3ZPESALKXO

Under review as a conference paper at ICLR 2024

8. (a+ b) ∗ c = a ∗ c+ b ∗ c for any a, b, c ∈ R,

9. a ∗ b = b ∗ a for any a, b ∈ R.

A commutative ring R is called a field if it satisfies the following condition

10. for any a ∈ R \ {0}, there exists a−1 such that a ∗ a−1 = a−1 ∗ a = 1.
Definition A.2 (Polynomial Ring (Atiyah & MacDonald (1994), Chap. 1 §1)). In Definition A.1,
k[x1, . . . , xn], the set of all n-variate polynomials with coefficients in k, satisfies all conditions
(1)-(9). Thus, k[x1, . . . , xn] is called a polynomial ring.
Definition A.3 (Quotient Ring (Atiyah & MacDonald (1994), Chap. 1 §1)). Let R be a ring and I
an ideal of R. For each f ∈ R, we set [f] = {g ∈ R | f − g ∈ I}. Then, the set {[f] | f ∈ R} is
called the quotient ring of R modulo I and denoted by R/I . Indeed, R/I is a ring with an additive
operation + and a multiplicative operation ∗, where [f] + [g] = [f + g] and [f] ∗ [g] = [f ∗ g] for
f, g ∈ R respectively.
Definition A.4 (Zero-dimensional ideal (Cox et al. (2015), Chap. 5 §3, Thm. 6)). Let F be a set
of polynomials in k[x1, . . . , xn]. An ideal ⟨F ⟩ is called a zero-dimensional ideal if the k-linear
space k[x1, . . . , xn]/⟨F ⟩ is finite-dimensional, where k[x1, . . . , xn]/⟨F ⟩ is the quotient ring of
k[x1, . . . , xn] modulo ⟨F ⟩.
Definition A.5 (Radical ideal (Atiyah & MacDonald (1994), Chap. 1 §1)). For an ideal I of
k[x1, . . . , xn], the set {f ∈ k[x1, . . . , xn] | fm ∈ I for a positive integer m} is called the radi-
cal of I and denoted by

√
I . Also, I is called a radical ideal if I =

√
I .

Definition A.6 (Syzygy (Becker et al. (1993), Chap. 3, §3)). Let F = {f1, . . . , fs} ⊂
k[x1, . . . , xn]. A syzygy of F is an s-tuple of polynomials (q1, . . . , qs) ∈ k[x1, . . . , xn]

s such
that q1f1 + · · ·+ qsfs = 0.
Definition A.7 (Term (Becker et al. (1993), Chap. 2, §1)). For a polynomial f =∑

α1,...,αn
cα1,...,αn

xα1
1 · · ·xαn

n with cα1,...,αn
∈ K and α1, . . . , αn ∈ Z≥0, each xα1

1 · · ·xαn
n is

called a term in f .
Definition A.8 (Total Degree (Cox et al. (2015), Chap. 1 §1, Def. 3)). For a term xα1

1 · · ·xαn
n , its

total degree is the sum of indices α1 + · · · + αn. For a polynomial f , the total degree of f is the
maximal total degree of terms in f .
Definition A.9 (Term order (Becker et al. (1993), Definition 5.3)). A term order ≺ is a relation
between terms such that

1. (comparability) for different terms xα1
1 · · ·xαn

n and xβ1

1 · · ·xβn
n , either xα1

1 · · ·xαn
n ≺

xβ1

1 · · ·xβn
n or xβ1

1 · · ·xβn
n ≺ xα1

1 · · ·xαn
n holds,

2. (order-preserving) for terms xα1
1 · · ·xαn

n , xβ1

1 · · ·xβn
n and xγ1

1 · · ·xγn
n ̸= 1, if xα1

1 · · ·xαn
n ≺

xβ1

1 · · ·xβn
n then xα1+γ1

1 · · ·xαn+γn
n ≺ xβ1++γ1

1 · · ·xβn+γn
n holds,

3. (minimality of 1) the term 1 is the smallest term i.e. 1 ≺ xα1
1 · · ·xαn

n for any term
xα1
1 · · ·xαn

n ̸= 1.

Example A.10. The graded lexicographic order ≺grlex prioritizes terms with higher total degree.10

For tie-break, the lexicographic order is used, e.g.,

1 ≺grlex xn and x2 ≺grlex x2
3 and x1x2x

2
3 ≺grlex x1x

2
2x3. (A.1)

Term orders prioritizing lower total degree terms as ≺grlex are called graded term orders.

B BUCHBERGER–MÖLLER ALG. FOR PROB. 4.1

Here, we discuss another approach for Prob. 4.1 using the Buchberger–Möller (BM) algo-
rithm (Möller & Buchberger, 1982). Although we did not adopt this approach, we include this

10The total degree of term xα1
1 · · ·xαn

n refers to
∑n

i=1 αi. The total degree of polynomial f refers to the
maximum total degree of the terms in f .

15

Under review as a conference paper at ICLR 2024

for completeness because many algorithm variants have been recently developed and applied exten-
sively in machine learning and other data-centric applications.

Given a set of points X ⊂ kn and a graded term order, the BM algorithm computes a Gröbner basis
of its vanishing ideal I(X) = {g ∈ k[x1, . . . , xn] | g(p) = 0,∀p ∈ X}. While several variants
follow in computational algebra (Kehrein & Kreuzer, 2006; Abbott et al., 2008; Heldt et al., 2009;
Fassino, 2010; Limbeck, 2013; Kera, 2022), interestingly, it is also recently tailored for machine
learning (Livni et al., 2013; Király et al., 2014; Hou et al., 2016; Kera & Hasegawa, 2018; Kera &
Hasegawa, 2019; Kera & Hasegawa, 2020; Wirth & Pokutta, 2022; Wirth et al., 2023) and has been
applied to various contexts such as machine learning (Shao et al., 2016; Yan et al., 2018), signal
processing (Wang & Ohtsuki, 2018; Wang et al., 2019; Wang & Deng, 2020), nonlinear dynam-
ics (Kera & Hasegawa, 2016; Karimov et al., 2020), and more (Kera & Iba, 2016; Iraji & Chitsaz,
2017; Antonova et al., 2020). Such a wide range of applications derives from the distinguishing
design of the BM algorithm: while most computer-algebraic algorithms take a set of polynomials as
input, it takes a set of points (i.e., dataset).

Therefore, to address Prob. 4.1, one may consider using the BM algorithm or its variants, e.g., by
running the BM algorithm m times while sampling diverse sets of points. An important caveat
is that Gröbner bases that can be given by the BM algorithm may be more restrictive than those
considered in the main text (i.e., the Gröbner bases of ideals in shape position). For example, the
former generates the largest ideals that have given k-rational points for their roots, whereas this is
not the case for the latter. Another drawback of using the BM algorithm is its large computational
cost. The time complexity of the BM algorithm is O(n · |X|3). Furthermore, we need O(nd) points
to obtain a Gröbner basis that includes a polynomial of degree d in the average case. Therefore,
the BM algorithm does not fit our settings that a large number of Gröbner bases are needed (i.e.,
m ≈ 106). Accelerating the BM algorithm by reusing the results of runs instead of independently
running the algorithm many times can be interesting for future work.

C PROOFS

Theorem 4.7. Let G = (g1, . . . , gt)
⊤ be a Gröbner basis of a zero-dimensional ideal in

k[x1, . . . , xn]. Let F = (f1, . . . , fs)
⊤ = AG with A ∈ k[x1, . . . , xn]

s×t.

1. If ⟨F ⟩ = ⟨G⟩, it implies s ≥ n.

2. If A has a left-inverse in k[x1, . . . , xn]
s×t, ⟨F ⟩ = ⟨G⟩ holds.

3. The equality ⟨F ⟩ = ⟨G⟩ holds if and only if there exists a matrix B ∈ k[x1, . . . , xn]
t×s

such that each row of BA−Et is a syzygy11 of G, where Et is the identity matrix of size t.

Proof.
(1) In general, if an ideal I is generated by s elements and s < n, then the Krull dimension of
k[x1, . . . , xn]/I satisfies that dim k[x1, . . . , xn]/I ≥ n − s > 0 (Krull’s principal ideal theo-
rem (Eisenbud, 2013, §10)). Since the Krull dimension of k[x1, . . . , xn]/⟨G⟩ is 0, we have s ≥ n.

(2) From F = AG, we have ⟨F ⟩ ⊂ ⟨G⟩. If A has a left-inverse B ∈ k[x1, . . . , xn]
t×s, we have

BF = BAG = G, indicating ⟨F ⟩ ⊃ ⟨G⟩. Therefore, we have ⟨F ⟩ = ⟨G⟩.
(3) If the equality ⟨F ⟩ = ⟨G⟩ holds, then there exists a t × s matrix B ∈ k[x1, . . . , xn]

t×s such
that G = BF . Since F is defined as F = AG, we have G = BF = BAG and G = EtG in
k[x1, . . . , xn]

t. Therefore we obtain (BA − Et)G = 0. In particular, each row of BA − Et is a
syzygy of G. Conversely, if there exists a t× s matrix B ∈ k[x1, . . . , xn]

t×s such that each row of
BA−Et is a syzygy of G, then we have (BA−Et)G = 0 in k[x1, . . . , xn]

t, therefore the equality
⟨F ⟩ = ⟨G⟩ holds since we have G = EtG = BAG = BF .

Proposition 4.8. For any A ∈ k[x1, . . . , xn]
n×n with det(A) ∈ k \ {0}, we have ⟨F ⟩ = ⟨G⟩.

11Refer to App. A for the definition.

16

Under review as a conference paper at ICLR 2024

Proof. From the Cramer’s rule, there exists B ∈ k[x1, . . . , xn]
n×n such that BA = det(A)En,

where En denotes the n-by-n identity matrix. Indeed, the i-th row Bi of B satisfies for i = 1, . . . , n,

Bi =
(
det

(
Ã

(i)
1

)
, . . . ,det

(
Ã

(i)
n

))
, (C.1)

where Ã
(i)
j is the matrix A with the j-th column replaced by the i-th canonical basis ei =

(0, ..., 1, ..., 0)⊤. Since det(A) is a non-zero constant, A has the left-inverse B/ det(A) in
k[x1, . . . , xn]. Thus ⟨F ⟩ = ⟨G⟩ from Thm. 4.7.

Theorem 4.9. Consider polynomial ring k[x1, . . . , xn]. Given dataset size m, maximum degrees
d, d′, maximum size of non-Gröbner set smax ≥ n, and term order ≺, Alg. 1 returns a collection
D = {(Fi, Gi)}mi=1 with the following properties: For all i = 1, . . . ,m,

1. Both Fi, Gi ⊂ k[x1, . . . , xn] are finite sets and |Fi| ≤ smax.

2. The set Gi is a ≺-Gröbner basis. The set Fi is not, unless Gi, U1, U
′
2, P are sampled in a

non-trivial Zariski closed subset.12

3. The ideal ⟨Fi⟩ = ⟨Gi⟩ is a zero-dimensional ideal in shape position.

The time complexity is O(m(nS1,d + s2Sn,d′ + (n2 + s2)Mn,2d′+d)) when ≺=≺lex, where Sn,d

denotes the complexity of sampling an n-variate polynomial with total degree at most d, and Mn,d

denotes that of multiplying two n-variate polynomials with total degree at most d. If ≺≠≺lex,
O(nd3) is additionally needed.

Proof. Outside of the Zariski subset part, statements 1–3 are trivial from Alg. 1 and the discussion in
Sec.s 4.1 and 4.2. To obtain the desired Zariski subsets, we consider the vector space of polynomials
of degree d+ 2d′ or less. We remark that if Fi is a ≺-Gröbner basis, its leading terms must belong
to a finite amount of possibilities. For a polynomial to have a given term as its leading term, zero
conditions on terms greater than this term are needed, defining a closed Zariski subset condition. By
considering the finite union of all these conditions, we obtain the desired result.

To obtain one pair (F,G), the random generation of G needsO(nS1,d), and the backward transform
from G to F needs O(s2Sn,d′) to get U1, U2 and (n2 + s2)Mn,2d′+d) for the multiplication F =
U1PU2G. Note that the maximum total degree of polynomials in F is 2d′ + d.

D TRAINING SETUP AND ADDITIONAL EXPERIMENTAL RESULTS.

This section provides the supplemental information of our experiments presented in Sec. 5.

D.1 GRÖBNER BASIS COMPUTATION ALGORITHMS

In Tab. 1, we tested three algorithms provided in Sagemath with the libSingular backend for forward
generation.

STD (libsingular:std): The standard Buchberger algorithm.

SLIMGB (libsingular:slimgb): A variant of the Faugère’s F4 algorithm. Refer to (Brick-
enstein, 2010).

STDFGLM (libsingular:stdfglm): Fast computation using STD with the graded reverse
lexicographic order followed by the FGLM for the change of term orders.

D.2 DETASET PROFILES

We used datasets generated with a density control for training a transformer. The runtime compari-
son for these datasets is given in Tab. 3. Because of the density control, the forward generation uses

12This can happen with probability zero if k is infinite and very low probability over large finite field.

17

Under review as a conference paper at ICLR 2024

Table 3: Runtime comparison (in seconds/millisecond) of forward generation (F.) and backward
generation (B.) of dataset Dn(Fp) of size 1000. The forward generation used either of the three
algorithms provided in Sagemath with the libSingular backend. The backward generation is two
orders of magnitude faster than the forward generation.

Method F7[x1, . . . , xn] F31[x1, . . . , xn]
n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5
σ = 1 0.6 0.3 0.2 σ = 1 0.6 0.3 0.2

F. (STD) [sec] 0.37 0.40 6.33 4.29 0.38 0.42 7.32 4.77
F. (SLIMGB) 0.44 0.58 5.98 5.79 0.41 0.61 5.79 6.39
F. (STDFGLM) 0.99 1.11 6.24 6.34 1.01 1.11 6.34 6.62
B. (ours) [msec] 2.23 2.47 2.51 2.78 2.12 2.45 2.42 2.79

Table 4: A profile of the generated datasets (relevant to Tab. 1). The standard deviation is shown in
the superscript.

Method F7[x1, . . . , xn] F31[x1, . . . , xn]
n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5

size of F 3.0(±0.8) 4.0(±0.7) 5.0(±0.8) 6.0(±0.8) 3.0(±0.8) 3.9(±0.8) 4.9(±0.8) 6.0(±0.8)

max deg in F 8.9(±1.8) 9.8(±1.2) 10(±1.0) 10(±0.8) 8.7(±1.8) 9.9(±1.3) 10(±0) 10(±0)

min deg in F 5.6(±1.8) 5.9(±1.9) 6.3(±1.9) 6.5(±1.8) 5.4(±1.9) 6.1(±1.8) 6.4(±1.8) 6.6(±1.6)

#terms in F 23(±9.6) 34(±10) 45(±10) 57(±11) 22(±9.5) 33(±10) 45(±10) 57(±11)

GB ratio [%] 0.10 0.00 0.00 0.00 0.20 0.00 0.00 0.00
size of G 2.0(±0) 3.0(±0) 4.0(±0) 5.0(±0) 2.0(±0) 3.0(±0) 4.0(±0) 5.0(±0)

max deg in G 4.3(±1.0) 4.3(±0.8) 4.4(±0.8) 4.4(±0.7) 4.2(±1.0) 4.4(±0.8) 4.4(±0.7) 4.5(±0.70)

min deg in G 3.7(±1.5) 3.2(±1.6) 3.0(±1.7) 2.8(±1.6) 3.4(±1.6) 3.6(±1.6) 3.5(±1.7) 3.4(±1.7)

#terms in G 8.1(±2.4) 11(±3.6) 15(±4.9) 19(±6.1) 7.7(±2.5) 12(±3.6) 16(±4.8) 20(±6.1)

GB ratio [%] 100 100 100 100 100 100 100 100

Table 5: A profile of datasets generated with a density control (relevant to Tab. 3). The standard
deviation is shown in the superscript.

Method F7[x1, . . . , xn] F31[x1, . . . , xn]
n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5
σ = 1 0.6 0.3 0.2 σ = 1 0.6 0.3 0.2

size of F 3.0(±0.8) 4.0(±0.8) 5.0(±0.8) 6.0(±0.8) 3.0(±0.8) 4.0(±0.8) 5.0(±0.8) 6.0(±0.8)

max deg in F 8.8(±1.9) 8.5(±1.9) 8.4(±1.9) 8.6(±1.8) 8.7(±1.9) 8.8(±1.9) 8.6(±1.8) 8.7(±1.8)

min deg in F 5.6(±1.9) 4.1(±2.3) 3(±2.3) 2.6(±2.3) 5.5(±1.9) 4.3(±2.2) 3.2(±2.4) 2.9(±2.4)

#terms in F 23(±9.6) 26(±10) 29(±10) 34(±11) 23(±9.5) 27(±10) 30(±10) 35(±11)

GB ratio [%] 0.10 1.60 2.20 0.70 0.10 1.50 1.80 1.10
size of G 2.0(±0) 3.0(±0) 4.0(±0) 5.0(±0) 2.0(±0) 3.0(±0) 4.0(±0) 5.0(±0)

max deg in G 4.3(±1) 4.4(±0.8) 4.4(±0.79)4.5(±0.7) 4.2(±1.1) 4.4(±0.8) 4.5(±0.7) 4.5(±0.7)

min deg in G 3.8(±1.6) 3.2(±1.7) 3(±1.7) 2.9(±1.7) 3.5(±1.6) 3.6(±1.7) 3.5(±1.7) 3.5(±1.8)

#terms in G 8.1(±2.5) 12(±3.6) 15(±4.9) 19(±6.1) 7.7(±2.5) 12(±3.7) 16(±4.9) 20(±6.1)

GB ratio [%] 100 100 100 100 100 100 100 100

less runtime but still needs a long runtime if one needs to construct a training set with a million sam-
ples. The backward generation used roughly 100 times less runtime. The dataset profile of datasets
are given in Tabs. 4 and 5.

D.3 TRAINING OF TRANSFORMERS.

To examine the transformer’s ability to learn Gröbner basis computation, we focus on a standard
architecture and training setup. We used a transformer model (Vaswani et al., 2017) with standard

18

Under review as a conference paper at ICLR 2024

Table 6: Success examples (n = 2)
ID F G

15

f1 = −2x2
0x

4
1 − x2

0x1 − 2x0x1 − x4
1 + 3x3

1 g1 = x0 − 3x3
1 + 2x2

1

f2 = −2x3
0x

4
1 − x3

0x1 − 2x2
0x1 − x0x

4
1 +

3x0x
3
1 + x0x

2
1 − 3x5

1 + 2x4
1 − 2x3

1 − 1
g2 = −2x3

1 − 1

f3 = x3
0x

6
1−3x3

0x
3
1−x2

0x
3
1+3x0x

6
1−2x0x

5
1−

3x0x
4
1 − x4

1 − 3x3
1 − 3

f4 = −3x3
0x

3
1 − 2x2

0x
6
1 + x2

0x
5
1 − x2

0x
4
1 −

2x2
0x

3
1+x2

0x
2
1+3x2

0x1− 3x0x
5
1− 2x0x

4
1+

3x0x
3
1−2x0x1+x0−2x6

1−x5
1−3x3

1+2x2
1

16
f1 =−x2

0x
2
1−x2

0x1−3x0x
3
1−3x7

1−2x6
1+x3

1 g1 = x0 + x4
1 + 3x3

1 + 2
f2 = −x4

0x
3
1 − x4

0x
2
1 − 3x3

0x
4
1 − 3x2

0x
8
1 −

2x2
0x

7
1 + x2

0x
4
1 − x0x

3
1 − x7

1 − 3x6
1 − 2x3

1 +
x1 + 1

g2 = x1 + 1

f3 = −x4
0x

3
1 − x4

0x
2
1 − 3x3

0x
4
1 − 3x2

0x
8
1 −

2x2
0x

7
1 + x2

0x
4
1 − 2x2

0x
3
1 − 2x0x

7
1 + x0x

6
1 +

3x0x
3
1 + 2x0x1 + 3x0 + x4

1 + 3x3
1 + 2

19
f1 = x0 + 3x5

1 + 3x2
1 + 2x1 − 3 g1 = x0 + 3x5

1 + 3x2
1 + 2x1 − 3

f2 =−2x2
0x

2
1−2x2

0x1+2x2
0+x0x

7
1+x0x

6
1−

x0x
5
1 + x0x

4
1 − 3x0x

3
1 + x0x

2
1 + 3x0x1 +

x0 − 2x5
1 − 2x4

1 − 2x3
1 + 3x2

1

g2 = −2x5
1 − 2x4

1 − 2x3
1 + 3x2

1

f3 = 3x3
0x

2
1+3x3

0x1−2x3
0+2x2

0x
7
1+2x2

0x
6
1−

x2
0x

5
1−x2

0x
3
1+x2

0x
2
1−3x2

0x1−3x2
0−x0x

6
1−

x0x
5
1−2x0x

4
1−3x0x

3
1+x0x1−x0+x7

1+
2x5

1 + 3x4
1 − 2x3

1 + 3x2
1

23 f1 = x0 − x5
1 − x3

1 + 3x2
1 + 2x1 g1 = x0 − x5

1 − x3
1 + 3x2

1 + 2x1

f2 = x2
0x

2
1−3x2

0−x0x
7
1+2x0x

5
1+3x0x

4
1−

2x0x
3
1 − 2x0x

2
1 + x0x1 + 2x5

1 + 2x3
1 + 2

g2 = 2x5
1 + 2x3

1 + 2

architectures, e.g., 6 encoder/decoder layers, 8 attention heads, token embedding dimension of 512
dimensions, and feed-forward networks with 2048 inner dimensions. The dropout rate was set to
0.1. We used the AdamW optimizer (Loshchilov & Hutter, 2019) with (β1, β2) = (0.9, 0.999) with
no weight decay. The learning rate was initially set to 10−4 and then linearly decayed over training
steps. All training samples are visited in a single epoch, and the total number of epochs was set to
10. The batch size was set to 8. At the inference time, output sequences are generated using a beam
search with width 1.

Tabs. 6– 9 show examples of success cases and Tab. 10 shows examples of failure cases. One
can see from the former that transformers accomplish difficult computations and from the latter,
interestingly, that the incorrect predictions appear reasonable.

19

Under review as a conference paper at ICLR 2024

Table 7: Success examples (n = 3)
ID F G

5
f1 = x1 − x4

2 g1 = x0 + 3
f2 = 2x3

0x1 − x2
0x1 − 2x2

2 g2 = x1 − x4
2

f3 = 2x3
0x1+2x2

0x1−3x2
0x

4
2+x0−2x2

2+3 g3 = −2x2
2

6

f1 = 0 g1 = x0 + 2x5
2 − 2x4

2 + x3
2 − 2

f2 = x0 + 2x5
2 − 2x4

2 + x3
2 − 2 g2 = x1 − x5

2 + 2x3
2 − 3x2

2 − 3x2

f3 =−x2
0x1x2−3x2

0−2x0x1x
6
2+2x0x1x

5
2−

x0x1x
4
2+2x0x1x2+x0x

5
2−x0x

4
2−3x0x

3
2−

x0 + 3x5
2 + 2x4

2 − 2x3
2

g3 = 3x5
2 + 2x4

2 − 2x3
2

f4 = x3
0x1x

2
2+3x3

0x2−x2
0x

2
1x

2
2+2x2

0x1x
7
2−

2x2
0x1x

6
2+x2

0x1x
5
2−2x2

0x1x
2
2−3x2

0x1x2−
x2
0x

6
2+x2

0x
5
2+3x2

0x
4
2+x2

0x2− 2x0x
2
1x

7
2+

2x0x
2
1x

6
2−x0x

2
1x

5
2+2x0x

2
1x

2
2−2x0x

2
1x2+

2x0x
2
1 + x0x1x

6
2 − x0x1x

5
2 − 3x0x1x

4
2 −

x0x1x2−3x0x
6
2−2x0x

5
2+2x0x

4
2+3x2

1x
6
2+

x2
1x

5
2 + x2

1x
4
2 + 2x2

1x
3
2 − 3x2

1x2 + 3x2
1 +

3x1x
6
2+2x1x

5
2− 2x1x

4
2+x1−x5

2+2x3
2−

3x2
2 − 3x2

8

f1 = x1 + 2x5
2 + 2x2

2 + 2x2 + 3 g1 = x0 − 3x5
2 − 2x4

2 − 3x3
2 − x2

2 − 3x2

f2 =−3x2
0x

2
2+2x0x1x2+2x0x

7
2−x0x

6
2+

2x0x
5
2+3x0x

4
2+2x0x

3
2+x1x

6
2+3x1x

5
2+

x1x
4
2−2x1x

3
2+x1x

2
2−2x5

2−x4
2+2x2

2−3

g2 = x1 + 2x5
2 + 2x2

2 + 2x2 + 3

f3 = 3x2
0x1x

2
2 + x2

0x
4
2 − 2x0x

2
1x2 −

2x0x1x
7
2+x0x1x

6
2−2x0x1x

5
2−3x0x1x

4
2+

2x0x1x
3
2−3x0x

9
2−2x0x

8
2−3x0x

7
2−x0x

6
2−

3x0x
5
2 − x2

1x
6
2 − 3x2

1x
5
2 − x2

1x
4
2 + 2x2

1x
3
2 −

x2
1x

2
2 + 2x1x

8
2 − x1x

7
2 + 2x1x

6
2 + 3x1x

5
2 +

2x1x
4
2 + 3x7

2 − 2x6
2 − 3x4

2 + x2
2

g3 = −2x5
2 − x4

2 + 2x2
2 − 3

f4 = x2
0x1x2 + 2x2

0x
6
2 + 2x2

0x
3
2 + 2x2

0x
2
2 +

3x2
0x2+2x4

1−x3
1x

5
2+x3

1x
4
2+2x3

1x
2
2+2x3

1−
x2
1x

6
2 − x2

1x
3
2 − x2

1x
2
2 + 2x2

1x2

f5 = x0 − 3x5
2 − 2x4

2 − 3x3
2 − x2

2 − 3x2

10

f1 = −2x1x
6
2 − 3x1x

5
2 − x1x

4
2 + 3x1x

3
2 −

2x1x2 + 3x5
2 + x4

2 − 2x3
2 − x2

2 + 3
g1 = x0 − 3x4

2 − 3x3
2 − 2x2 − 3

f2 = 3x2
0x

2
1x

6
2 + x2

0x
2
1x

5
2 − 2x2

0x
2
1x

4
2 −

x2
0x

2
1x

3
2 +3x2

0x
2
1x2−x2

0x1x
5
2 +2x2

0x1x
4
2 +

3x2
0x1x

3
2 − 2x2

0x1x
2
2 − x2

0x1 − 2x0x1x
8
2 −

3x0x1x
7
2−x0x1x

6
2+3x0x1x

5
2−2x0x1x

3
2+

3x0x
7
2 + x0x

6
2 − 2x0x

5
2 − x0x

4
2 + 3x0x

2
2 +

x0 − 3x4
2 − 3x3

2 − 2x2 − 3

g2 = x1 − x5
2 − 3x3

2 − x2
2 − 3x2

f3 = 0 g3 = −3x5
2 − x4

2 + 2x3
2 + x2

2 − 3
f4 = −x0x1x2 + x0x

6
2 + 3x0x

4
2 + x0x

3
2 +

3x0x
2
2+2x2

1x
2
2− 2x1x

7
2+x1x

5
2− 2x1x

4
2+

x1x
3
2 − 3x5

2 − x4
2 + 2x3

2 + x2
2 − 3

f5 = x3
0x1x

2
2 − x3

0x
7
2 − 3x3

0x
5
2 − x3

0x
4
2 −

3x3
0x

3
2− 2x2

0x
2
1x

3
2− 2x2

0x
2
1x

2
2 +2x2

0x1x
8
2 +

2x2
0x1x

7
2 − x2

0x1x
6
2 + x2

0x1x
5
2 + x2

0x1x
4
2 −

x2
0x1x

3
2+3x2

0x
6
2+x2

0x
5
2− 2x2

0x
4
2−x2

0x
3
2+

3x2
0x2− 3x0x

3
1x

3
2 +3x0x

2
1x

8
2 +2x0x

2
1x

6
2 +

3x0x
2
1x

5
2+2x0x

2
1x

4
2+x0x1x

6
2−2x0x1x

5
2−

3x0x1x
4
2 + 2x0x1x

3
2 + x0x1x2 − 3x0x

2
2 +

3x0 + 2x1x
7
2 − x1x

6
2 + 2x1x

5
2 + 2x1x

4
2 −

x1x
3
2 + 2x1x

2
2 + 3x1x2 + x1 − x6

2 − x5
2 +

2x4
2 − 2x3

2 − x2
2 + 2x2 − 3

20

Under review as a conference paper at ICLR 2024

Table 8: Success examples (n = 4)
ID F G

1

f1 = −2x0x
3
3 − x8

3 + 2x6
3 − x5

3 + x3
3 + 2x3 g1 = x0 − 3x5

3 − x3
3 + 3

f2 = 3x2
0x1x

4
3 − 2x0x1x

9
3 − 3x0x1x

7
3 −

2x0x1x
6
3+2x0x1x

4
3−3x0x1x

2
3+x0−3x5

3−
x3
3 + 3

g2 = x1 + x5
3 − 3x3

f3 = 2x2
0x

2
2 + 3x0x

2
1x3 + x0x

2
2x

5
3 −

2x0x
2
2x

3
3−x0x

2
2−2x2

1x
6
3−3x2

1x
4
3+2x2

1x3+
x1 + x5

3 − 3x3

g3 = x2 + 3x5
3 + 2x4

3 − 3x2
3

f4 = −2x0x2x
2
3 + x0x

7
3 + 3x0x

6
3 − x0x

4
3 g4 = −x5

3 + 2x3

f5 = x2 + 3x5
3 + 2x4

3 − 3x2
3

2

f1 = 0 g1 = x0 − 3x5
3 − x4

3 + 1
f2 = x0 − 3x5

3 − x4
3 + 1 g2 = x1 + 2x5

3 − x4
3 − 2x3 + 3

f3 = −x2
0x1x2 − 2x2

0x2x
5
3 + x2

0x2x
4
3 +

2x2
0x2x3 − 3x2

0x2 − 2x1x
2
2 + 3x2

2x
5
3 +

2x2
2x

4
3−3x2

2x3+x2
2+x2−2x5

3−2x3
3+x3+1

g3 = x2 − 2x5
3 − 2x3

3 + x3 + 1

f4 = −3x2
0x

2
1 + 2x0x

2
1x

5
3 + 3x0x

2
1x

4
3 −

3x0x
2
1 − 2x0x

3
2 + x1 − x3

2x
5
3 + 2x3

2x
4
3 −

2x3
2 + 2x5

3 − x4
3 − 2x3 + 3

g4 = −3x5
3 − 3x4

3 + 2x2
3 − 1

f5 = −x2
0x

3
1x

2
2 − 2x2

0x
3
1x2 + 3x0x

3
1x

2
2x

5
3 +

x0x
3
1x

2
2x

4
3 − x0x

3
1x

2
2 − x0x

3
1x2x

5
3 +

2x0x
3
1x2x

4
3−2x0x

3
1x2−x0x

3
1−3x0x1x

5
2+

x0x1x
4
2+2x0x

2
2x3+3x3

1x
5
3+x3

1x
4
3−x3

1−
2x2

1x
2
2 + 3x2

1x2 + 2x1x
5
2x

5
3 + 3x1x

5
2x

4
3 −

3x1x
5
2 − 3x1x

4
2x

5
3 − x1x

4
2x

4
3 + x1x

4
2 +

3x1x
2
2x

5
3 + 2x1x

2
2x

4
3 − 3x1x

2
2x3 + x1x

2
2 −

x1x2x
5
3 − 3x1x2x

4
3 + x1x2x3 + 2x1x2 +

x2
2x

6
3− 2x2

2x
5
3+2x2

2x3−x2+2x5
3+2x3

3−
x3 − 1
f6 = −3x5

3 − 3x4
3 + 2x2

3 − 1

3

f1 = 0 g1 = x0 + x5
3 + 2x4

3 + x3 − 3
f2 = x2 + 2x4

3 + 2x3 + 1 g2 = x1 + x5
3 − 2x4

3 − 3x2
3 + 2x3

f3 = x0 + x5
3 + 2x4

3 + x3 − 3 g3 = x2 + 2x4
3 + 2x3 + 1

f4 =−2x2
0x

2
1−3x2

0−x0x
2
1x2−2x0x

2
1x

5
3+

x0x
2
1x

4
3 + 3x0x

2
1x3 − 2x0x

2
1 − 3x0x1 −

x0x
2
2x3− 2x0x2x

5
3− 2x0x2x

2
3−x0x2x3−

3x0x
5
3 + x0x

4
3 − 3x0x3 + 2x0 − 3x1x

5
3 +

x1x
4
3 − 3x1x3 + 2x1 + 2x4

3 + 2x2
3 − x3

g4 = 2x4
3 + 2x2

3 − x3

f5 = x1 + x5
3 − 2x4

3 − 3x2
3 + 2x3

5

f1 = x0 + 3 g1 = x0 + 3
f2 = −x0x2x

2
3 − 3x2x

2
3 + x2 − 2x2

3 g2 = x1 − x4
3

f3 = −3x1x
2
2x3 − x1x2x

3
3 − 2x3 g3 = x2 − 2x2

3

f4 = 2x3
0x1x2x

2
3 − x2

0x1x2x
2
3 − 2x2

0x1x2 −
3x2

0x1x
2
3 − 3x0x

3
1x

2
2x3 − x0x

3
1x2x

3
3 −

2x0x
2
1x3 + x1 − x4

3

g4 = −2x3

21

Under review as a conference paper at ICLR 2024

Table 9: Success examples (n = 5)
ID F G

0

f1 = x0 + 2 g1 = x0 + 2
f2 = x3 − x2

4 g2 = x1 + 3x2
4

f3 = x1 + 3x2
4 g3 = x2

f4 = x3
0x1+2x2

0x1− 3x1x
2
2− 2x2

2x
2
4− 3x4

4 g4 = x3 − x2
4

f5 = 2x3
0x

3
1x2 − 3x2

0x
3
1x2 + x3

1x
3
2 +

3x2
1x

3
2x

2
4 + x2

1x2x
4
4 − 2x1x2x3x4 +

2x1x2x
3
4 + x2

g5 = −3x4
4

1

f1 = x0 − 3x5
4 − x3

4 + 3 g1 = x0 − 3x5
4 − x3

4 + 3
f2 = 2x2

0x2 + x0x2x
5
4 − 2x0x2x

3
4 − x0x2 g2 = x1 + x5

4 − 3x4

f3 = −2x2
0x2x4 + x2

0x
6
4 + 3x2

0x
5
4 − x2

0x
3
4 −

2x0x1x4−x1x
6
4+2x1x

4
4+x1x4−2x5

4+3
g3 = x2 + 3x5

4 + 2x4
4 − 3x2

4

f4 = x1 + x5
4 − 3x4 g4 = x3 − x5

4 + 2x4

f5 = x3 − x5
4 + 2x4 g5 = −2x5

4 + 3
f6 = x2 + 3x5

4 + 2x4
4 − 3x2

4

3

f1 = x1x
2
2x4 + 2x1x2x

5
4 + 2x1x2x

2
4 +

x1x2x4−x2
2x3x4− 2x2x3x

5
4− 2x2x3x

2
4−

x2x3x4 − 2x5
4 + 3x3

4 + x4 + 1

g1 = x0 + x5
4 + 2x4

4 + x4 − 3

f2 = x1 + x5
4 − 2x4

4 − 3x2
4 + 2x4 g2 = x1 + x5

4 − 2x4
4 − 3x2

4 + 2x4

f3 = x3 + 2x4
4 + 2x2

4 − x4 g3 = x2 + 2x4
4 + 2x4 + 1

f4 = −3x2
1x

2
2x

2
3x4 + x2

1x2x
2
3x

5
4 +

x2
1x2x

2
3x

2
4 − 3x2

1x2x
2
3x4 − 2x1x

2
2x

3
3x4 +

3x1x2x
3
3x

5
4 + 3x1x2x

3
3x

2
4 − 2x1x2x

3
3x4 −

x1x
2
3x

5
4 − 2x1x

2
3x

3
4 − 3x1x

2
3x4 − 3x1x

2
3 −

2x2
2x

4
3x4+3x2x

4
3x

5
4+3x2x

4
3x

2
4−2x2x

4
3x4+

x2+3x3
3x

5
4−x3

3x
3
4+2x3

3x4+2x3
3+2x4

4+
2x4 + 1

g4 = x3 + 2x4
4 + 2x2

4 − x4

f5 = −x0x
2
1x4 − x0x1x2 − 3x0x2x3x4 +

x0x2x
5
4 + x0x2x

3
4 + 3x0x2x

2
4 − x2

1x
6
4 −

2x2
1x

5
4 − x2

1x
2
4 + 3x2

1x4 + 2x1x2x3x4 +
3x1x2x

5
4−2x1x2x

4
4−3x1x2x

3
4−2x1x2x

2
4−

x1x2x4 + 3x1x2 + 3x4
2 − x3

2x
4
4 − x3

2x4 +
3x3

2 + 2x2
2 − 3x2x

4
4 − 3x2x4 + 2x2

g5 = −2x5
4 + 3x3

4 + x4 + 1

f6 = x0 + x5
4 + 2x4

4 + x4 − 3

5

f1 = x1 − x4
4 g1 = x0 + 3

f2 = x0 + 3 g2 = x1 − x4
4

f3 = 2x2
0x1 − 2x2

0x
4
4 − x3

4 g3 = x2 − 2x2
4

f4 = x3 − 2x4 g4 = x3 − 2x4

f5 = 2x3
0x

2
1x2 − 2x3

0x1x2x
4
4 − x0x1x2x

3
4 +

x2 − 2x3x
3
4 − 3x4

4 − 2x2
4

g5 = −x3
4

22

Under review as a conference paper at ICLR 2024

Table 10: Failure examples
ID G (Ground Truth) G′ (Transformer)

1 g1 = x0 − 3x5
1 − x3

1 + 3 g′1 = x0 − 3x5
1 − x3

1 + 3
g2 = x5

1 − 3x1 g′2 = x5
1 + 3x1

2 g1 = x0 − 3x5
1 − x4

1 + 1 g′1 = x0 + 2x5
1 − x4

1 + 2
g2 = 2x5

1 − x4
1 − 2x1 + 3 g′2 = −x5

1 − 2x4
1 − 3x1 + 2

3 g1 = x0 + x5
1 + 2x4

1 + x1 − 3 g′1 = x0 − x5
1 + 3x4

1 + x1 − 3
g2 = x5

1 − 2x4
1 − 3x2

1 + 2x1 g′2 = −3x5
1 − 3x4

1 − 3x2
1 + 2x1

4 g1 = x0 + 3x5
1 + 3x4

1 − x3
1 − 2x1 − 2 g′1 = x0 + 2x5

1 + 3x4
1 − 2x3

1 + 2x1 − 2
g2 = 3x5

1 − 2x4
1 + 2x2

1 − 1 g′2 = 3x5
1 − 2x4

1 + 2x2
1 − 1

4
g1 = x0 + 3x5

2 + 3x4
2 − x3

2 − 2x2 − 2 g′1 = x0 + 3x5
2 + 3x4

2 − x3
2 − 2x2 − 2

g2 = x1 + 3x5
2 − 2x4

2 + 2x2
2 − 1 g′2 = x1 + 3x5

2 − 3x4
2 − x2

2 − 1
g3 = −x3

2 − x2 − 1 g′3 = −x5
2 − x4

2 − x3
2 − x2 − 1

7
g1 = x0 + 3x5

2 + 2x4
2 + x3

2 + 3x2 − 2 g′1 = x0 + 2x5
2 + 2x4

2 + x3
2 + 2x2

2 + 2x2

g2 = x1 + x5
2 + 3x3

2 + 3x2
2 + x2 − 2 g′2 = x1 + x5

2 + 3x3
2 + 3x2

2 + x2 − 2
g3 = −2x5

2 − 2x2
2 + 3x2 − 1 g′3 = −2x5

2 − 2x2
2 + 3x2 − 1

9
g1 = x0 − 2x5

2 + 2x3
2 + 3x2

2 − 2x2 − 2 g′1 = x0 − 2x5
2 + 2x3

2 + 3x2
2 − 2x2 − 2

g2 = x1 − 2x5
2 − 3x4

2 + 2x3
2 − x2

2 + x2 g′2 = x1 − 2x5
2 − 3x4

2 + 2x3
2 − x2

2 + x2

g3 = 3x5
2 + x3

2 + 2x2
2 + 2x2 + 3 g′3 = −x5

2 − x3
2 + 2x2

2 + 2x2 + 3

15
g1 = x0 − 3x3

2 + 2x2
2 g′1 = x0 − 3x3

2 + 2x2
2

g2 = x1 − 2x3
2 − 1 g′2 = x1 − 2x3

2 − 1
g3 = −x4

2 + 2x2 g′3 = 2x4
2 + 2x2

2

4

g1 = x0 + 3x5
3 + 3x4

3 − x3
3 − 2x3 − 2 g′1 = x0 + 2x5

3 − 2x4
3 − 2x3

3 − 2x2
3 − 3x3

g2 = x1 + 3x5
3 − 2x4

3 + 2x2
3 − 1 g′2 = x1 − x5

3 − x4
3 − x2

3 + 2
g3 = x2 − x3

3 − x3 − 1 g′3 = x2 − x3
3 − x3 − 1

g4 = −3x5
3 + 3x4

3 + 2x3
3 + 2x2

3 − 3x3 g′4 = −x5
3 + 2x4

3 − 2x3
3 + 2x2

3 − 3x3

7

g1 = x0 + 3x5
3 + 2x4

3 + x3
3 + 3x3 − 2 g′1 = x0 + 3x5

3 + 2x4
3 + x3

3 + 3x3 − 2
g2 = x1 + x5

3 + 3x3
3 + 3x2

3 + x3 − 2 g′2 = x1 + x5
3 + 3x3

3 + 3x2
3 + x3 − 2

g3 = x2 − 2x5
3 − 2x2

3 + 3x3 − 1 g′3 = x2 − 2x5
3 − 2x2

3 + 3x3 − 1
g4 = −x5

3 − 3x4
3 + x2

3 + x3 g′4 = −2x5
3 + 3x4

3 + 3x3
3 + 3x2

3

9

g1 = x0 − 2x5
3 + 2x3

3 + 3x2
3 − 2x3 − 2 g′1 = x0 − 2x5

3 + 2x3
3 + 3x2

3 − 2x3 − 2
g2 = x1 − 2x5

3 − 3x4
3 + 2x3

3 − x2
3 + x3 g′2 = x1 − 2x5

3 − 3x4
3 + 2x3

3 − x2
3 + x3

g3 = x2 + 3x5
3 + x3

3 + 2x2
3 + 2x3 + 3 g′3 = x2 + 3x5

3 + x3
3 + 2x2

3 + 2x3 + 3
g4 = 3x5

3 + 2x4
3 + 3x3

3 − x2
3 + 2 g′4 = 2x5

3 + 2x4
3 + 3x3

3 + 3x2
3 + 2x3

10

g1 = x0 − 3x4
3 − 3x3

3 − 2x3 − 3 g′1 = x0 + 3x4
3 − 2x3

3 − 2x3 − 3
g2 = x1 − x5

3 − 3x3
3 − x2

3 − 3x3 g′2 = x1 − x5
3 − 3x3

3 − x2
3 − 3x3

g3 = x2 − 3x5
3 − x4

3 + 2x3
3 + x2

3 − 3 g′3 = x2 − 3x5
3 − x4

3 + 2x3
3 + x2

3 − 3
g4 = −3x5

3 − 2x4
3 + 2x3

3 + 2x3 g′4 = −3x5
3 − 2x4

3 + 2x3
3 + 2x3

2

g1 = x0 − 3x5
4 − x4

4 + 1 g′1 = x0 − 3x5
4 − x4

4 + 1
g2 = x1 + 2x5

4 − x4
4 − 2x4 + 3 g′2 = x1 + 2x5

4 − x4
4 − 2x4 + 3

g3 = x2 − 2x5
4 − 2x3

4 + x4 + 1 g′3 = x2 − 2x5
4 − 2x3

4 + x4 + 1
g4 = x3 − 3x5

4 − 3x4
4 + 2x2

4 − 1 g′4 = x3 − 3x5
4 + 2x2

4 − 1
g5 = x2

4 + 3x4 g′5 = x2
4 + 3x4

4

g1 = x0 + 3x5
4 + 3x4

4 − x3
4 − 2x4 − 2 g′1 = x0 + 3x5

4 + 3x4
4 − x3

4 − 2x4 − 2
g2 = x1 + 3x5

4 − 2x4
4 + 2x2

4 − 1 g′2 = x1 − x5
4 − x4

4 − x2
4 − x4 − 1

g3 = x2 − x3
4 − x4 − 1 g′3 = x2 − x5

4 − x4
4 − x3

4 − x2
4 − 1

g4 = x3 − 3x5
4 + 3x4

4 + 2x3
4 + 2x2

4 − 3x4 g′4 = x3 − 3x5
4 + 3x4

4 + 2x3
4 + 2x2

4 − 3x4

g5 = −x5
4 − x3

4 + 2x2
4 + 2x4 + 3

6

g1 = x0 + 2x5
4 − 2x4

4 + x3
4 − 2 g′1 = x0 + 2x5

4 − 2x4
4 + x3

4 − 2
g2 = x1 − x5

4 + 2x3
4 − 3x2

4 − 3x4 g′2 = x1 + 2x5
4 + 2x3

4 + 2x2
4 − 3x4

g3 = x2 + 3x5
4 + 2x4

4 − 2x3
4 g′3 = x2 + 3x5

4 + 2x4
4 − 2x3

4

g4 = x3 + x5
4 − 2x3

4 + 3x2
4 g′4 = x3 + x5

4 − 2x3
4 + 3x2

4

g5 = 3x5
4 + 3x4 + 3 g′5 = 3x5

4 + 3x4 + 3

23

	Introduction
	Related Work
	Notations and Definitions
	Random Gröbner Bases and Backward Gröbner Prob.
	Random generation of Gröbner bases
	Backward Gröbner problem
	Dataset generation algorithm

	Experiments
	Dataset generation
	Gröbner basis computation with transformers

	Discussion from an Algebraic Viewpoint and Open Questions
	Conclusion
	Basic Definitions in Algebra
	Buchberger–Möller Alg. for Prob. 4.1
	Proofs
	Training Setup and Additional Experimental Results.
	Gröbner basis computation algorithms
	Detaset profiles
	Training of transformers.

