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Abstract

This paper is concerned with online targeted advertising on social networks. The main
technical task we address is to estimate the activation probability for user pairs, which
quantifies the influence one user may have on another towards purchasing decisions. This is
a challenging task because one marketing episode typically involves a multitude of market-
ing campaigns/strategies of different products for highly diverse customers. In this paper,
we propose what we believe is the first tensor-based contextual bandit framework for online
targeted advertising. The proposed framework is designed to accommodate any number of
feature vectors in the form of multi-mode tensor, thereby enabling to capture the hetero-
geneity that may exist over user preferences, products, and campaign strategies in a unified
manner. To handle inter-dependency of tensor modes, we introduce an online variational
algorithm with a mean-field approximation. We empirically confirm that the proposed
TensorUCB algorithm achieves a significant improvement in influence maximization tasks
over the benchmarks, which is attributable to its capability of capturing the user-product
heterogeneity.

1 Introduction

Online targeted advertising is one of the most interesting applications of machine learning in the Internet
age. In a typical scenario, a marketing agency chooses a set of “seed” users from the nodes (i.e. users) of
a social graph, and makes certain offers (e.g. coupons, giveaways, etc.), with the expectation that the seed
users will influence their followers and spread the awareness on the product(s) or service(s) being promoted.
An important question of interest is how to maximize the total purchases accrued over multiple marketing
campaign rounds under a fixed budget (i.e. the number of seed users per round). This task is commonly
referred to as (online) influence maximization (IM) in the machine learning community.

A key quantity of interest here is the activation probability {pi,j}, where pi,j is the probability of user i
influencing user j into buying the products being advertised. Since {pi,j} is unknown a priori, we are to
repeatedly update the estimate after each marketing round, starting from a rough initial estimate based, for
example, on demographic information. Many trials and errors are unavoidable especially in the beginning.
After a sufficient number of trials, however, we can expect to have systematically better estimates for
{pi,j}. These characteristics make the contextual bandits (CB) framework (Abe et al., 2003; Li et al., 2010;
Bouneffouf et al., 2020) a relevant and attractive solution approach. Here, the “bandit arms” correspond
to the seed users to be selected. The “context” corresponds to information specific to the products being
advertised and the users being targeted. The “reward” would be the number of purchases attained as a
result of the influence of the selected seed users.

There are two mutually interacting sub-tasks in IM as discussed in the literature: One is how to choose
the seed users when given {pi,j}; The other is how to estimate {pi,j} given a seed selection algorithm,
which is the focus of this paper. The approaches to the latter task can be further categorized into direct
and latent modeling approaches. The direct approaches mainly leverage graph connectivity combined with
simple features such as the number of purchases. Since transaction history is typically very sparse, the latent
modeling approach has been attracting increasing attention recently. In this category, two major approaches
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Figure 1: Overview of TensorUCB (simplest case). The context tensor encodes the features of user pairs and
product/marketing strategy, and is used to estimate the activation probability matrix PG = [pz

i,j ]. Based on
observed user responses, the estimation model is updated.

have been proposed to date. One is regression-based (Vaswani et al., 2017; Wen et al., 2017) and the other
is factorization-based (Wu et al., 2019; Wang & Chen, 2017; Barbieri et al., 2013). Although encouraging
results have been reported in these works, there is one important limitation that restricts their usefulness
in practice: Absence of capability to incorporate product features. This is critical in practice since marketing
campaigns typically include many different products and strategies applied to a diverse population, and
different types of products are expected to follow different information diffusion dynamics.

To address this issue, we propose TensorUCB, a general tensor-based contextual bandit framework. Unlike
the prior works, we use a tensor to represent the context information (“context tensor”), which makes
it possible to handle any number of feature vectors in principle. Figure 1 illustrates our problem in the
simplest setting. The user context tensor X is formed from three feature vectors in this simplest case:
user feature vectors of the i- and j-th users and a product feature vector z. By construction, the model
accommodates edge-level feedback that can depend on the product type. Then, the activation probability
matrix PG ≜ [pz

i,j ] is estimated as a function of X . Here we used pz
i,j instead of pi,j to show the dependence

on z. We formalize this task as online probabilistic tensor regression. As shown later, it can effectively
capture the heterogeneity over product types using a low-rank tensor expansion technique. We integrate
probabilistic estimation from tensor regression with the upper confidence bound (UCB) policy in a way
analogous to the LinUCB algorithm (Li et al., 2010).

To the best of our knowledge, this is the first proposal of a contextual bandit framework extended to context
tensors and applied to the task of IM. Our empirical results show that the proposed methods outperform
baseline algorithms in the presence of product heterogeneity.

2 Related work

Prior works relevant to this paper can be categorized into three major areas: CB-based IM approaches,
tensor bandits, and tensor regression.

CB-based IM Following the pioneering works by Valko et al. (2014) and Chen et al. (2016) that framed
IM as an instance of the bandit problem, a few approaches have been proposed to incorporate contextual
information. Vaswani et al. (2017) proposed DILinUCB, a contextual version of IM bandits, which uses user
contextual features to learn pi,j with linear regression. Wu et al. (2019) proposed IMFB, which exploits
matrix factorization instead of linear regression. Unlike our work, in which a single susceptibility tensor W
is shared by all the nodes, their approaches give latent parameters to each network node, and thus, tends
to require more exploration. Wen et al. (2017) proposed another regression-based approach IMLinUCB using
edge-specific features, which can be difficult to obtain in practice. There also exist prior works that attempt
to capture product features in addition to the user features. Sarıtaç et al. (2016) proposed COIN, which
assumes a predefined partition of product features and does not directly use the users’ context vectors. Our
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framework automatically learns multiple patterns in different products as well as different users through
multi-rank tensor regression. Chen et al. (2015) consider a topic distribution for the seed selection task, not
for learning {pz

i,j}.

Tensor bandits Apart from IM, bandits with structured arms are an emerging topic in the bandit research
community. The majority of the studies consider the bilinear setting, which can be solved through low-rank
matrix estimation or bilinear regression (Kveton et al., 2017; Zoghi et al., 2017; Katariya et al., 2017; Lu
et al., 2018; Hamidi et al., 2019; Jun et al., 2019b; Lu et al., 2021). However, it is not clear how they can be
extended to general settings having more than two contextual vectors which we are interested in. Azar et al.
(2013) is among the earliest works that used higher order tensors in bandit research. However, their task
is transfer learning among a multitude of bandits, which is different from ours. Recently, Hao et al. (2020)
proposed a tensor bandit framework based on the Tucker decomposition (Kolda & Bader, 2009). However,
their setting is not contextual and is not applicable to our task. Specifically, in our notation, their reward
model is defined solely for X = e1

j1
◦ · · · ◦ eD

jD
, where el

jl
is the dl-dimensional unit basis vector whose jl-th

element is 1 and otherwise 0. As a result of this binary input, the coefficient tensor W is directly observable
through the response u. In other words, the task is not a supervised learning problem anymore in contrast
to our setting. To the best of our knowledge, our work is the first proposal of variational tensor bandits in
the contextual setting.

Tensor regression We also believe this is the first work of contextual tensor bandits allowing an arbitrary
number of tensor modes. For generic tensor regression methods, limited work has been done on online
inference of probabilistic tensor regression. Most of the existing probabilistic tensor regression methods
(e.g. (Zhao et al., 2014; Imaizumi & Hayashi, 2016; Guhaniyogi et al., 2017; Ahmed et al., 2020)) require
either Monte Carlo sampling or evaluation of complicated interaction terms, making it difficult to directly
apply them to online marketing scenarios. In particular, they do not provide an analytic form of predictive
distribution, which is desirable to make the UCB framework applicable. We provide a tractable online
updating equation based on a variational mean-field approximation. To the best of our knowledge, TensorUCB
is among the first works that explicitly derived an online version of probabilistic tensor regression.

3 Problem Setting

In the online influence maximization (IM) problem on social networks, there are three major design points,
as illustrated in Fig. 1:

• Estimation model for yz
i,j (user j’s response (purchase etc.) by user i’s influence for a product z).

• Scoring model for pz
i,j (the probability that user i activates user j for a product z).

• Seed selection model to choose the K most influential users, given {pz
i,j} and a social graph G.

This paper deals with the first and the second tasks alone, following the existing IM literature (Wu et al., 2019;
Vaswani et al., 2017; Wen et al., 2017; Sarıtaç et al., 2016). We formalize the first task as online probabilistic
regression that takes a tensor as the contextual input (Sec. 4). The second task is handled by integrating
the derived probabilistic model with the idea of UCB (Sec. 5). The third task is not within the scope of this
paper. It takes care of the combinatorial nature of the problem and is known to be NP-hard (Kempe et al.,
2003). We assume to have a black-box subroutine (denoted by ORACLE) that produces a near-optimal solution
for a given {pi,j}, K, and a social graph G. In our experiments we use an η-approximation algorithm (Golovin
& Krause, 2011) proposed by Tang et al. (2014).

Although the use of {pz
i,j} implies the independent cascade (IC) model (Kempe et al., 2003) as the underlying

diffusion process, we do not explicitly model the dynamics of information diffusion. Instead, we learn the
latent quantity pz

i,j as a proxy for diffusion dynamics among the users. This is in contrast to the direct
approaches (Bhagat et al., 2012; Li et al., 2013; Morone & Makse, 2015; Lei et al., 2015; Lu et al., 2015), as
mentioned in Introduction.
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Table 1: Main mathematical symbols.
symbol definition

yz
i,j Binary user response for the event i⇒ j for a product z.

ūz
i,j Expected score (real-valued) for yz

i,j .
pz

i,j Activation probability of the event i⇒ j for a product z.
X Context tensor X = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕD (Eq. (4)) with ϕl in Rdl for l = 1, . . . , D.
ϕ1 Source user’s feature vector, which is xi in the event i⇒ j.
ϕ2 Target user’s feature vector, which is xj in the event i⇒ j.
ϕ3 Product feature vector (typically denoted by z).

wl,r Coefficient vector for ϕl of the r-th tensor rank.
w̄l,r Posterior mean of wl,r (Eq. (15)).
Σl,r Posterior covariance matrix of wl,r (Eq. (14)).

3.1 Data model

In addition to a social graph G = (V, E), where V is the set of user nodes (|V| is its size) and E is the set of
edges (|E| is its size), we consider two types of observable data. The first is the contextual feature vectors.
There are two major types of feature vectors. One is the user feature vector {xi | i ∈ V} while the other is
the product feature vector denoted by z. Let us denote by i⇒ j the event that “user i activates user j (into
buying a product z).” The contextual information of this event is represented by a tuple (xi, xj , z). There
can be other feature vectors representing campaign strategies, etc. In general, we assume that an activation
event is characterized by D contextual feature vectors ϕ1 ∈ Rd1 , . . . , ϕD ∈ RdD , where d1, etc., denote the
dimensionality. All the feature vectors are assumed to be real-valued column vectors.

In Fig. 1, we illustrated the case where ϕ1 = xi, ϕ2 = xj , and ϕ3 = z for the user pair (i, j) and a product
having the feature vector z. As summarized in Table 1, we will always allocate ϕ1, ϕ2, ϕ3 to the source user,
the target user, and the product feature vectors, respectively. Creating the feature vectors is not a trivial
task in general. See Section 7.1 for one reasonable method.

The second observable is the users’ response, denoted by yz
i,j ∈ {0, 1} for the event i ⇒ j for a product z.

yz
i,j = 1 if i ⇒ j has occurred, and yz

i,j = 0 otherwise. Although activation is not directly measurable in
general, a widely-used heuristic is a time-window-based method (Barbieri et al., 2013). Specifically, we set
yz

i,j = 1 if user j bought the product after actively communicating with user i within a certain time window.
Active communications include “likes,” retweeting, and commenting, depending on the social networking
platform. The size of the time window is determined by domain experts and is assumed to be given.

3.2 Activation probability estimation problem

We consider the situation where a fixed number (denoted by K) of seed users are chosen in each campaign
round (“budgeted IM”). The seed nodes may have a different number of connected nodes, as illustrated in
Fig. 2. Thus, the dataset from the t-th marketing round takes the following form:

{(ϕt(k),1, . . . , ϕt(k),D, yt(k)) | k = 1, . . . , nt}, (1)

where nt =
∑

i∈St
nout

i , St is the set of seed users chosen in the t-th marketing round (|St| = K) and nout
i is

the number of outgoing edges of the i-th node. In this expression, the identity of node pairs and the product
is implicitly encoded by k. In our solution strategy, the estimation model is updated as soon as a new sample
comes in. Hence, it is more useful to “flatten” (t, k) into a single “time” index τ when considering all the
samples obtained up to the current time τ , denoted as

D1:τ ≜ {(ϕτ ′,1, . . . , ϕτ ′,D, yτ ′) | τ ′ = 1, . . . , τ}. (2)

As a general rule, we use a subscript (t(k) or τ) to denote an instance of a random variable.

Our main task is to estimate the activation probability matrix PG ≜ [pz
i,j ] as a function of the contextual

feature vectors ϕ1, . . . , ϕD, where ϕ1 = xi, ϕ2 = xj and ϕ2 = z are assumed and we define pz
i,j = 0 for
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Figure 2: Illustration of data structure in one marketing round and the prediction model, corresponding to
Eq. (3) (the noise term is omitted for simplicity). {5, 13, i, 92} is the set of seed nodes here. K = 4 and
D = 3 are assumed.

disconnected node pairs. As mentioned at the beginning of this section, the task is divided into two steps.
The first step (estimation model) is to learn a regression function to predict yz

i,j from ϕ1, . . . , ϕD. We call
the output of the regression function the response score, and denote it by uz

i,j ∈ R to distinguish it from the
binary response:

uz
i,j = HW(ϕ1, ϕ2, . . . , ϕD) + (noise), (3)

where we have used the convention ϕ1 = xi, ϕ2 = xj , and ϕ3 = z, as mentioned before. HW is a parametric
model with W being a random variable called the susceptibility tensor (defined in the next section). To
systematically treat the uncertainty in the user response, we wish to learn a probability distribution of W
and ui,j explicitly, and eventually derive their updating rule to get a renewed estimate in every marketing
round t. As described in the next section, the noise term is assumed to be Gaussian.

In the second step (scoring model), once the distribution of uz
i,j is obtained, the activation probability

pz
i,j ∈ [0, 1] is computed not only with the expectation ūz

i,j but also with the variance through an appropriate
mapping function that reflects the UCB policy.

4 Online variational tensor regression

When activation i ⇒ j occurs, we naturally assume that the activation probability depends on the feature
vectors of the user pair and the product. One straightforward approach in this situation is to create a con-
catenated vector and apply, e.g., the LinUCB algorithm (Li et al., 2010), in which HW is the linear regression
function. However, it is well-known that such an approach is quite limited in its empirical performance. For
concreteness, consider the D = 3 case in Fig. 1 again. The main issue is that it amounts to treating xi, xj , z
separately hence failing to model their interactions: HW in this approach would be w⊤

1 xi + w⊤
2 xj + w⊤

3 z,
and fitting the regression coefficients w1, w2, w3 would result in giving the most weight on generally pop-
ular user and product types. This is not useful information in online advertising, as we are interested in
analyzing what kind of affinity there might be in a specific combination of user pairs and products. The
proposed tensor-based formulation allows dealing with such interactions while keeping the computational
cost reasonable with a low-rank tensor approximation.

4.1 Tensor regression model

We instead assume to have the context tensor in the form

X = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕD, (4)

where ◦ denotes the direct product. For example, in the case shown in Fig. 1, the (i1, i2, i3)-th element
of X is given by the product of three scalars: [xi ◦ xj ◦ z]i1,i2,i3 = xi,i1xj,i2zi3 , where the square bracket
denotes the operator to specify an element of tensors. As mentioned before, ϕ1, ϕ2 and ϕ3 correspond to
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the source user, target user, and product feature vectors, respectively. The other feature vectors ϕ4, . . . , ϕD

can represent marketing campaign strategies, etc. Note that Eq. (4) includes the regression model in bilinear
bandits (e.g. (Jun et al., 2019a)) and non-contextual tensor bandits (Hao et al., 2020) as special cases.
Specifically, bilinear models can handle only the D = 2 case while our model can handle D ≥ 3. Non-
contextual tensor regression cannot accommodate the feature vectors {ϕl ∈ Rdl | l = 1, . . . , D}.

For the regression function HW in Eq. (3), we employ a tensor regression model as

HW(ϕ1, . . . , ϕD) = (W , X ), (W , X ) ≜
∑

i1,...,iD

Wi1,...,iD
Xi1,...,iD

, (5)

where (·, ·) denotes the tensor inner product, and we call the regression coefficient W the susceptibility
tensor. For tractable inference, we employ the CP (canonical polyadic) expansion (Cichocki et al., 2016;
Kolda & Bader, 2009) of order R, which simplifies Eq. (5) significantly:

W =
R∑

r=1
w1,r ◦w2,r ◦ · · · ◦wD,r, ui,j =

R∑
r=1

D∏
l=1

ϕ⊤
l wl,r + (noise), (6)

where ⊤ denotes the transpose. In the second equation above, the r.h.s. now involves only the vector inner
products. There are two important observations to note here. First, this particularly simple form is due to
the specific approach of the CP expansion we employ. Other tensor factorization methods such as Tucker and
tensor-train do not yield simple expressions like Eq. (6), making the UCB analysis intractable. Second, with
R > 1, it has multiple regression coefficients for each tensor mode l. This flexibility provides the potential
to capture the characteristics of multiple product types, unlike vector-based linear regression.

Figure 2 illustrates one marketing round with K = 4 and D = 3. Each seed user has a few connected users.
For example, the 5th user is a “friend” of the 65th and 81st users. For a user pair (i, j), the response score
ui,j is computed from ϕ1 = xi, ϕ2 = xj , and ϕ3 = z through Eq. (6).

4.2 Variational learning of susceptibility tensor

One critical requirement in CB-based IM is the ability to handle stochastic fluctuations of the user response.
Here we provide a fully probabilistic online tensor regression model.

As the first step, let us formalize a batch learning algorithm, assuming that all the samples up to the τ -th
“time” are available at hand under the flattened indexing as in Eq. (2). Define X τ ≜ ϕτ,1 ◦ · · ·ϕτ,D. As
mentioned before, ϕτ,1 and ϕτ,2 are used for the node feature vectors, serving as the proxy for the node
indexes. We employ Gaussian observation and prior models, which follow the standard CB approach except
tensor-based parameterization:

p(u | X , W , σ) = N (u | (W , X ), σ2), p(W) =
D∏

l=1

R∏
r=1
N (wl,r | 0, Idl

), (7)

where p(·) symbolically represents a probability distribution and N (· | (W , X ), σ2) denotes Gaussian with
mean (W , X ) and variance σ2. Also, u ∈ R is the user response score (at any time and user pair), and Id is
the d-dimensional identity matrix. Since σ2 is assumed to be given and fixed, which is a common assumption
in the bandit literature, W is the only model parameter to be learned.

Despite the apparent simplicity of Eq. (6), inter-dependency among the parameter vectors {wl,r}makes exact
inference intractable. To address this issue, we introduce variational tensor bandits featuring variational
Bayes (VB) inference (Bishop, 2006). The key assumption of VB is to assume the posterior distribution in
a factorized form. In our case, the posterior of the succeptibility tensor W is assumed to be:

Q(W) = Q({wl,r}) =
D∏

l=1

R∏
r=1

ql,r(wl,r). (8)
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We determine the distribution {ql,r} by minimizing the Kullback-Leibler (KL) divergence:

Q = arg min
Q

KL[Q∥Q0], KL[Q∥Q0] ≜
∫ D∏

l=1

R∏
r=1

dwl,r Q(W) ln Q(W)
Q0(W) , (9)

where Q0(W) is the true posterior. We, of course, do not know the exact form of Q0(W), but we do know
that it is proportional to the product between the observation and prior models by Bayes’ theorem:

Q0(W) ∝ p(W)
∏

τ

p(yτ | X τ , W , σ). (10)

Equation (9) is a functional optimization problem. Fortunately, the Gaussian assumption allows us to find
an analytic form for the posterior. The result is simple: ql,r(wl,r) = N (wl,r | w̄l,r, Σl,r), where

w̄l,r = σ−2Σl,r
∑

τ

ϕτlβ
l,r
τ yl,r

τ , Σl,r = [ σ−2
∑

τ

ϕτ,lϕ
⊤
τ,lγτ,l + Idl

]−1. (11)

Here we have defined

βl,r
τ ≜

∏
l′ ̸=l

ϕ⊤
τ,l′w̄l′,r, yl,r

τ ≜ yτ−
∑
r′ ̸=r

(ϕ⊤
τ,lw̄

l,r′
)βl,r′

τ , γτ,l ≜
∏
l′ ̸=l

ϕτ,l′
⊤⟨wl′,r(wl′,r)⊤⟩\(l,r)ϕτ,l′ , (12)

where ⟨·⟩\(l,r) is the partial posterior expectation excluding ql,r. Derivation of Eqs. (11)-(12) is straightfor-
ward but needs some work. See Appendix A for the details.

4.3 Mean-field approximation and online updates

Equations (11)-(12) have mutual dependency among the {wl,r} and need to be performed iteratively until
convergence. This is numerically challenging to perform in their original form. In Eq. (11), γτ,l ∈ R plays the
role of the sample weight over τ ’s. Evaluating this weight is challenging due to the matrix inversion needed
for Σl′,r. For faster and more stable computation suitable for sequential updating scenarios, we propose
a mean-field approximation ⟨wl′,r(wl′,r)⊤⟩\(l,r) ≈ w̄l′,r(w̄l′,r)⊤, which gives γτ,l = (βl,r

τ )2. Intuitively, the
mean-field approximation amounts to the idea “think of the others as given (as their mean) and focus only
on yourself.” Using this, we have a simple formula for Σl,r:

Σl,r =
[

σ−2
∑

τ

(
βl,r

τ ϕτ,l

) (
βl,r

τ ϕτ,l

)⊤ + Idl

]−1

. (13)

Unlike the crude approximation that sets the other {wl,r} to a given constant, wl,r’s are computed iteratively
over all l, r in turn, and are expected to converge to a mutually consistent value. The variance is used
for comparing different edges in the UCB framework. The approximation is justifiable since the mutual
consistency matters more in our task than estimating the exact value of the variance. In Sec. 7, we will confirm
that the variational tensor bandits significantly outperforms the baseline even under these approximations.

Now let us derive the online updating equations. Fortunately, this can be easily done because w̄l,r in Eq. (11)
and Σl,r in Eq. (13) depend on the data only through the summation over τ . For any quantity defined as
Aτ+1 ≜

∑τ
s=1 as, we straightforwardly have an update equation Aτ+1 = Aτ + aτ in general. Hence when a

new sample (X τ , yτ ) comes in: First, Σl,r can be updated as

(Σl,r)−1 ← (Σl,r)−1 + (βl,r/σ)2ϕτ,lϕ
⊤
τ,l, Σl,r ← Σl,r −

Σl,rϕτ,lϕ
⊤
τ,lΣl,r

(σ/βl,r)2 + ϕ⊤
τ,lΣl,rϕτ,l

, (14)

where the second equation follows from the Woodbury matrix identity (Bishop, 2006). Second, for the
posterior mean w̄l,r, with the updated Σl,r, we have

bl,r ← bl,r + ϕτ,lβ
l,ryl,r

τ , w̄l,r = σ−2Σl,rbl,r. (15)

Equations (14)-(15) are computed over all (l, r) until convergence. Note that when R = D = 1, these update
equations essentially derive the ones used in LinUCB (Li et al., 2010) as a special case.
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u

Figure 3: Illustration of Gaussian tail probability and its upper confidence bound.

5 Tensor UCB Algorithm

This section presents TensorUCB, based on the online probabilistic tensor regression framework in Sec. 4.

5.1 Predictive distribution

With the posterior distribution Q(W) =
∏

l,r ql,r, we can obtain the predictive distribution of the user
response score u for an arbitrary context tensor X = ϕ1 ◦ · · · ◦ ϕD as

p(u |X ,D1:τ )=
∫
N (u | (W , X ), σ2) Q(W) dW . (16)

Despite Q(W) being a factorized Gaussian, this integration is intractable. We again use the mean-field
approximation when applying the Gaussian marginalization formula (see, e.g., Sec. 2.3.3 of (Bishop, 2006)).
The resulting predictive distribution is also a Gaussian distribution p(u|X ,Dt) = N (y | ū(X ), s̄2(X )) with

ū(X ) = (W̄ , X ) =
R∑

r=1

D∏
l=1

(w̄l,r)⊤ϕl, s̄2(X ) = σ2 +
R∑

r=1

D∑
l=1

(βl,rϕl)⊤Σl,r(βl,rϕl). (17)

Notice that the predictive mean ū(X ) is simply the inner product between the posterior mean W̄ and
the input tensor X , which is a typical consequence of the mean-field approximation. We also see that
the predictive variance s̄2 depends on the context tensor X , and some users/products may have greater
uncertainty in the expected score ū. We leave the detail of the derivation of Eq. (17) to Appendix B.

5.2 Upper confidence bound

To transform ū into the activation probability, we adopt the well-known UCB strategy. Thanks to the predic-
tive distribution being Gaussian, we can straightforwardly provide the upper confidence bound corresponding
to a tail probability.

We start with Markov’s inequality that holds for any non-negative random variable v and any r > 0:

P(v ≥ r) ≤ ⟨v⟩
r

, (18)

where P(·) is the probability that the argument holds true and ⟨·⟩ is the expectation. Although the response
score u can be negative, we can use Markov’s inequality by setting v = eλu:

P(eλu ≥ eλh) = P(u ≥ h) ≤ ⟨e
λu⟩

eλh
. (19)

Here we note that ⟨eλu⟩ is the definition of the moment generating function, and a well-known analytic
expression is available for the Gaussian distribution (17):

⟨eλu⟩ = exp
(

λū(X ) + 1
2λ2s̄2(X )

)
. (20)
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Algorithm 1 TensorUCB for contextual influence maximization (D = 3 case)
Input: K, σ, R and c > 0. Subroutine ORACLE.
Initialize {Σl,r, wl,r} and {pi,j}.
for t = 1, 2, ..., T do

Receive product context ϕ3 = z of this round.
St ← ORACLE({pz

i,j}, K,G)
Receive response from users connected to ∀i ∈ St.
for k = 1, . . . , nt do

Retrieve user feature vectors ϕ1, ϕ2 from k.
Update {w̄l,r} and {Σl,r} with (X t(k), yt(k)).

end for
for (i, j) ∈ E do

Set ϕ1 = xi, ϕ2 = xj , and X = ϕ1 ◦ ϕ2 ◦ ϕ3
Compute pz

i,j = proj (ū(X ) + UCB(X ))
end for

end for

The inequality (19) now reads

P(u ≥ h) ≤ exp
(

λ(ū(X )− h) + 1
2λ2s̄2(X )

)
. (21)

Here, recall that λ is any positive number. The idea of Chernoff bound is to exploit the arbitrariness of λ
to get the tightest bound. It is an elementary calculus problem to get the minimum of the r.h.s. of Eq. (21).
The minimum is achieved at λ = (h− ū)/s̄2, yielding the Chernoff bound of Gaussian:

P(u ≥ h) ≤ exp
(
− (h− ū(X ))2

2s̄2(X )

)
. (22)

Now let us assume that the tail probability P(u ≥ h) on the l.h.s. equals to δ, and denote the corresponding
upper bound by hδ + ū, as illustrated in Fig. 3. Solving the equation δ = exp

(
−h2

δ/[2s̄2(X )]
)

, we have

hδ =
√
−2 ln δ × s̄(X ). (23)

This is the upper confidence bound we wanted. Since σ2 has been assumed to be a constant and
(βl,rϕl)⊤Σl,r(βl,rϕl) ≥ 0 in Eq. (17), it suffices to use

pz
i,j = proj (ū(X ) + UCB(X )) , UCB(X ) ≜ c

R∑
r=1

D∑
l=1

√
(βl,rϕl)⊤Σl,r(βl,rϕl), (24)

where we remind the reader that ϕ1 = xi, ϕ2 = xj , and ϕ3 = z in X . Also, proj(·) is a (typically sigmoid)
function that maps a real value onto [0, 1], and c > 0 is a hyperparameter. Again, D = R = 1 reproduces
LinUCB (Li et al., 2010).

5.3 Algorithm summary

We summarize the proposed TensorUCB algorithm in Algorithm 1 in the simplest setting with D = 3. ORACLE
has been defined in Sec. 3. Compared with the existing budgeted IM works using linear contextual bandits,
TensorUCB has one extra parameter, R, the rank of CP expansion (6). R can be fixed to a sufficiently large
value within the computational resource constraints, typically between 10 and 100. As shown in Fig. 6 later,
the average regret tends to gradually improve as R increases up to a certain value. Except for the first
several values as in Fig. 6, changes are typically not drastic.

As for the other three “standard” parameters: The budget K is determined by business requirements. σ2 is
typically fixed to a value of O(1) such as 0.1. Note that σ2 is also present in other linear contextual bandit

9
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frameworks but they often ignore it by assuming unit variance. c needs to be chosen from multiple candidate
values (see Sec. 7), which is unavoidable in UCB-type algorithms. For initialization of the online algorithm,
Σl,r is typically set to Idl

and wl,r can be the vector of ones. {pz
i,j} can be non-negative random numbers

for connected edges and 0 otherwise.

Since our algorithm does not need explicit matrix inversion, the complexity per update can be evaluated
as O(RDd2), where d ≜ maxl dl. Note that, if we vectorized W to use standard vector-based inference
algorithms, the complexity would be at least O((

∏
l dl)2), which can be prohibitive. The vectorized model

also hurts interpretability as it breaks natural groupings of the features.

6 Regret analysis

We leverage the predictive distribution (17) to evaluate the regret bound of TensorUCB. Let f(S, PG) be
the total number of target users activated by a selected seed set S based on the activation probabilities PG .
Suppose that ORACLE (see Sec. 3 for the definition) is an η-approximation algorithm (Golovin & Krause,
2011). In the CB-based IM literature, a scaled version of regret is typically used as the starting point (Wen
et al., 2017; Vaswani et al., 2017; Chen et al., 2016):

Rη
T = 1

η

T∑
t=1

E[f(S∗, P∗
G)− f(St, P∗

G)], (25)

where P∗
G = [p∗z

i,j ] is the ground truth of the activation probability matrix and S∗ = ORACLE(P∗
G , K,G). One

campaign round is assumed to handle only one type of product. The expectation E(·) is taken over the
randomness of z and the other non-user contextual vectors (i.e., ϕl with l ≥ 3) as well as seed selection by
the ORACLE. Let Pt,G = [pz

t,i,j ] be the estimated activation probability matrix at the t-th round.

To derive a regret bound in our setting, we need to make a few assumptions. The first assumption (A1) is
called the bounded smoothness condition, which is commonly used in the bandit IM literature. We assume
that there exists a constant B such that

f(St, Pt,G)− f(St, P∗
G) ≤ B

∑
i∈St

∑
j∼i

|pz
t,i,j − p∗z

i,j |, (26)

for any P∗
G ,St, where the second summation for j runs over the nodes connected to the selected seed node i.

The second assumption (A2) is another commonly used condition called the monotonicity condition. For a
seed user set S and a product z, the monotonicity states that, if pz

i,j ≤ p′z
i,j for all i ∈ S and their connected

nodes j, we have f(S, PG) ≤ f(S, P′
G). The third assumption (A3) is ∥βl,r

t(k)ϕt(k),l∥ ≤ 1, ∀l, r, t, k, which can
be always satisfied by rescaling the feature vectors. Finally, the fourth assumption (A4) is about variability
due to the variational Bayes and mean-field approximations. Unlike vector-based linear regression, no exact
analytic solution is known in probabilistic tensor regression, and its rigorous theoretical analysis in the context
of contextual bandits is still an open problem. In what follows, we ignore their variability, assuming that
UCB(X ) in Eq. (24) is exact.

Now we state our main result on the regret bound:
Theorem 1. Under the assumptions (A1)-(A4) stated above and a condition

c ≥ DR

√
Kd ln

(
1 + T K

dσ2

)
ln
(
1 + 1

σ2

) + max
l,r
||wl,r||2, (27)

the upper regret bound of TensorUCB is given by

Rη
T ≤ O

(
cB

η
|V|DR

√
TKd ln

(
1 + T K

dσ2

)
ln
(
1 + 1

σ2

) )
(28)

with probability at least 1− δ.
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Figure 4: Distribution of out-degrees.

Table 2: Network statistics,
where nout(m) denotes the m-th
percentile of the out-degree.

Digg Flixster
|V| 2 483 29 384
|E| 75 895 371 722

nout(50) 1 9
nout(90) 8 154
nout(99) 101 2064

The proof is given in Appendix C. Although the complexity of this bound can depend on the assumed
scenario, it is at least comparable to the ones reported in the literature: IMFB (Wu et al., 2019),
DILinUCB (Vaswani et al., 2017), and IMLinUCB (Wen et al., 2017) reported the regret bounds ofO(d|V| 52

√
T ),

O(d|V|2
√

T ), and O(d|V|3
√

T ), respectively, which hold under a similar condition to Eq. (27).

7 Experiments

This section reports on empirical evaluation of TensorUCB. Our goal is to illustrate how it captures users’
heterogeneity as the tensor rank R increases (Fig. 6), to show its advantage in the presence of product/user
heterogeneity (Fig. 5), and to examine its computational overhead (Fig. 7).

7.1 Datasets

We used two publicly available datasets with significantly different levels of heterogeneity in products and
users: Digg (Hogg & Lerman, 2012a;b) records users’ voting history to posted news stories and has |V| =
2 843, |E| = 75 895, and 1 000 stories. Flixster (Zafarani & Liu, 2009) records users’ movie rating history
and has |V| = 29 384, |E| = 371 722, and 100 movies. Notice that the number of products is as large as
1 000. These are real-world datasets where naive product-wise modeling is unrealistic. Figure 4 compares
their distributions of out-degrees (i.e., the number of outgoing edges). In both datasets, the distribution is
highly skewed, as also seen in the out-degree percentiles summarized in Table 2. The out-degree distribution
of Digg is more power-law-like, where only a handful of users have a dominant number of followers.

In both, we removed isolated nodes and those with less than 50 interactions in the log. Activation is defined
as voting for the same article (Digg), or as watching or liking the same movie within 7 days (Flixster). These
activation histories allow for learning of the activation probability without extra assumptions on the diffusion
process, as opposed to the setting of some of the prior works, e.g., (Vaswani et al., 2017; Wu et al., 2019),
where activations are synthetically simulated using a uniform distribution.

Constructing contextual feature vectors is not a trivial task. Our preliminary study showed that categorical
features such as ZIP code and product categories lead to too much variance that washes away the similarity
between users and between products. To avoid pathological issues due to such non-smoothness, we created
user and product features using linear embeddings, as proposed in (Vaswani et al., 2017).

Specifically, for generating user features {xi | i ∈ V}, we employed the Laplacian Eigenmap (Belkin &
Niyogi, 2002) computed from the social graph G, which is included in both Digg and Flixster datasets.
Following (Vaswani et al., 2017), we used the eigenspectrum to decide on the dimensionality, which gave d1 =
d2 = 10. For product (story or movie) features, we employed a probabilistic topic model (see, e.g. (Steyvers
& Griffiths, 2007)) with the number of topics being 10. In this model, an product is viewed as a document in
the “bag-of-votes” representation: Its i-th dimension represents whether the i-th user voted for the product.
The intuition is that two articles should be similar if they are liked by a similar group of people. As a result,
each product is represented by a 10-dimensional real-valued vector, which corresponds to a distribution over
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Table 3: Methods compared. IMFB learns two node-wise coefficient vectors {(βi, θi)}. IMLinUCB learns only
one coefficient vector θ. DILinUCB learns one node-wise coefficient vector {βi}. ‘NA’ denotes ‘not available.’

score model ūz
i,j probability model pz

i,j source user target user product feature
COIN nq

i,j nq
i,j/Nq

i,j NA NA q = category(z)
IMFB β⊤

i θj proj(ūz
i,j + UCB) NA NA NA

IMLinUCB x⊤
i,jθ proj(ūz

i,j + UCB) xi,j = xi ⊙ xj NA
DILinUCB x⊤

j θi proj(ūz
i,j + UCB) NA xj NA

TensorUCB
∑R

r=1
∏D

l=1 ϕ⊤
l wl,r proj(ūz

i,j + UCB) ϕ1 = xi ϕ2 = xj ϕ3 = z

the 10 latent topics identified. Once the product feature vectors are computed on a held-out dataset, they
are treated as a constant feature vector for each product.

7.2 Baselines

Baseline methods were carefully chosen to comprehensively cover the major existing latent-modeling IM
frameworks (see Introduction), as summarized in Table 3.

• COIN (Sarıtaç et al., 2016) learns the activation probability independently for each of the product
categories {q}. The probability is computed based on the number of successful activations (nq

i,j) and
the total number of seed-selections (Nq

i,j). A control function is used for exploration-exploitation
trade-off. To decide on q, we picked the most dominant topic (see Sec. 7.1), rather than the raw
product labels for a fair comparison.

• IMFB (Wu et al., 2019) is a factorization-based method, where two node-wise coefficient vectors are
learned from user response data without using user and product feature vectors.

• IMLinUCB (Wen et al., 2017) is an extension of the classical LinUCB to the edges as arms. This
method requires an edge-level feature vector. The authors used the element-wise product of the user
feature vectors as xi,j = xi ⊙ xj in their experiments, which we used, too.

• DILinUCB (Vaswani et al., 2017) is another LinUCB-like algorithm that learns the coefficient vector
in a node-wise fashion. The feature vector xj in the table is the same as that of TensorUCB.

In addition, we implemented Random, which selects the seeds for a given round randomly.

Table 3 summarizes the high-level characteristics of the baseline methods. Since the number of seed nodes is
almost always much smaller than |V|, independently learning edge-wise or node-wise parameters is challenging
in general. Such an approach requires so many explorations to get a reasonable estimate of the activation
probability. COIN, IMFB, and DILinUCB are in this “overparameterized” category. On the other hand,
IMLinUCB imposes a single regression coefficient vector θ on all the edges. While this “underparameterized”
strategy can be advantageous in capturing common characteristics between the edges, it cannot handle
the heterogeneity over different products and over different types of user-user interactions. TesnsorUCB is
designed to balance these over- and under-parameterized extremes: All the edges share the same coefficients
{wl,r}, but they still have the flexibility to have R different patterns. Importantly, TesnsorUCB is a nonlinear
model that can capture user-user and user-product interactions through the product over l. See the first
paragraph of Sec. 4 for a related discussion.

All the experiments used K = 10. ORACLE was implemented based on (Tang et al., 2014) with η = 1− 1
e−0.1.

For TensorUCB, we fixed σ2 = 0.1 and the hyper-parameters R and c were optimized using an initial validation
set of 50 rounds. As the performance metric, we reported the average cumulative expected regret 1

t Rη
t

computed at each round. We reported on regret values averaged over five runs. For fair comparison, P∗
G is

computed by fitting a topic-aware IC model using maximum likelihood on the interaction logs as proposed
in (Barbieri et al., 2013), whose parameterization is independent of any of the methods compared.
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Figure 5: Average cumulative regret for Digg (left) and Flixster (right). Best viewed in colors.

7.3 Comparison of cumulative regret

As mentioned in Sec. 1, our original motivation for the tensor-based formulation is to capture the hetero-
geneity over different products. In our experiment, a new product (story or movie) is randomly picked (from
1 000 stories or 100 movies)at each campaign round t. In TensorUCB, c was chosen from {10−3, 10−2, 10−1, 1},
while R was chosen in the range of 1 ≤ R ≤ 50. We used the sigmoid function for proj(·) in Eq. (24).

Figure 5 compares TensorUCB against the baselines on Digg and Flixster. As is clearly shown, TensorUCB
significantly outperforms the baselines. The difference is striking in Flixster, which has only 100 products
(movies). Interestingly, TensorUCB captures the majority of the underlying preference patterns with only
about 10 rounds of explorations. This is in sharp contrast to the “slow starter” behavior of COIN and IMFB,
which can be explained by their “overparameterized” nature, as pointed out in Sec. 7.2. On the other hand,
the Digg dataset includes as many as 1 000 products, and the interaction patterns in it may not have been
fully explored in the relatively small number of rounds. This is consistent with the relatively small margin
in the left figure. In addition, Digg’s friendship network has a stronger power-law nature (Fig. 4). In such a
network, seed users tend to be chosen from a handful of hub nodes, making room for optimization relatively
smaller. Even in that case, however, TensorUCB captures underlying user preferences much more quickly
than any other method.

In Flixster, COIN exhibits relatively similar behavior to TensorUCB. COIN partitions the feature space at the
beginning, and hence, its performance depends on the quality of the partition. In our case, partition was
done based on the topic model rather than the raw product label, which is a preferable choice for COIN.
In Flixster, the number of products is comparable to the number of training rounds, which was 50 in our
case. Thus the initial partitioning is likely to have captured a majority of patterns, while it is not the case
in Digg. When the number of product types is as many as that of Digg, product-wise modeling can be
unrealistic. In fact, many products (stories) ended up being in the same product category q in Digg. Unlike
the baseline methods, TensorUCB has a built-in mechanism to capture and generalize product heterogeneity
directly through product context vector.

In the figure, it is interesting to see that the behavior of IMFB is quite different between the two datasets:
It even underperforms Random in Digg while it eventually captures some of the underlying user preference
patterns in Flixster. As shown in Table 3, IMFB needs to learn two unknown coefficient vectors at each
node, starting from random initialization. Since it does not use contextual features, parameter estimation
can be challenging when significant heterogeneity exists over users and products, as in Digg. Note that
the previously reported empirical evaluation of IMFB (Wu et al., 2019) is based on simulated activation
probabilities generated from its own score model and does not apply to our setting. It is encouraging that
TensorUCB stably achieves better performance even under rather challenging set-ups as in Digg, indicating
its usefulness in practice.

13



Under review as submission to TMLR

Figure 6: Average cumulative regret of
TensorUCB computed on Digg with differ-
ent Rs. Best viewed in colors.
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7.4 Dependency on tensor rank

TensorUCB uses the specific parameterization of CP expansion (6), whose complexity is controlled by the
tensor rank R. Since, as discussed in Sec. 7.2, having R > 1 potentially plays an important role in handling
heterogeneity in products and users, it is interesting to see how the result depends on R. Figure 6 shows how
the average regret behaves over the first several values of R on Digg. To facilitate the analysis, we randomly
picked a single product (story) at the beginning and kept targeting the item throughout the rounds. In the
figure, we specifically showed the first five R’s, where the change in the average regret was most conspicuous.
In this regime, the average regret tends to improve as R increases. Depending on the level of heterogeneity of
the data, it eventually converges at a certain R up to fluctuations due to randomness. The intuition behind
Eq. (6) was that R = 1 amounts to assuming a single common pattern in the user preference while R > 1
captures multiple such patterns. This result empirically validates our modeling strategy.

7.5 Comparison of computational cost

Finally, Fig. 7 compares the computation time per round on Flixter, measured on a laptop PC (Intel i7 CPU
with 32 GB memory). Error bars are negligibly small and omitted for clearer plots. To see the dependency
on the graph size, we randomly sampled the nodes to create smaller graphs of |V| ≈ 25 000, 20 000, 15 000.
As shown in the figure, the computation time scales roughly linearly, which is understandable because the
graph is quite sparse and the most nodes have a node degree that is much smaller than |V|. IMLinUCB is
fastest but significantly under-performed in terms of regrets in Fig. 5. TensorUCB is comparable to COIN and
much faster than IMFB and DILinUCB. These results validate that TensorUCB significantly outperforms the
baselines without introducing much computational overhead.

8 Concluding remarks

We have proposed TensorUCB, a tensor-based contextual bandit framework, which can be viewed as a new
and natural extension of the classical UCB algorithm. The key feature is the capability of handling any
number of contextual feature vectors. This is a major step forward in the problem of influence maximization
for online advertising since it provides a practical way of simultaneously capturing the heterogeneity in users
and products. With TensorUCB, marketing agencies can efficiently acquire common underlying knowledge
from previous marketing campaigns that include different advertising strategies across different products.
We empirically confirmed a significant improvement in influence maximization tasks, attributable to its
capability of capturing and leveraging the user-product heterogeneity.

For future work, a more sophisticated analysis of the regret bound is desired. In particular, how to evaluate
the variability due to the variational approximations of probabilistic tensor regression is still an open prob-
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lem. From a practical perspective, how to define user and product feature vectors is a nontrivial problem.
Exploring the relationship with modern embedding techniques would be an interesting future direction.
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Appendix

A Derivation of posterior distribution

This section explains how to solve Eq. (9). The the key idea of VB is to look at individual components
{ql,r} of Q one by one, keeping all the others fixed. For instance, for a particular pair of (l, r) = (3, 2), the
minimization problem of Eq. (8) reads

min
q3,2

{∫
dw3,2 q3,2 ln q3,2−

∫ D∏
l=1

R∏
r=1

dwl,rql,r ln Q0(W)
}

,

where Q0 has been defined in Eq. (10). The main mathematical tool to solve this functional optimization
problem is calculus of variations. A readable summary can be found in the appendix of Bishop (Bishop,
2006). Apart from deep mathematical details, its operational recipe is analogous to standard calculus. What
we do is analogous to differentiating x ln x − ax to get ln x + 1 − a, and equating it to zero. For a general
(l, r), the solution is given by:

ln ql,r = const. + ⟨ln Q0(W)⟩\(l,r), (A.1)

⟨ln Q0(W)⟩\(l,r) ≜
∫ ∏

l′ ̸=l

∏
r′ ̸=r

dwl′,r′
ql′,r′

ln Q0(W), (A.2)

where const. is a constant and ⟨·⟩\(l,r) denotes the expectation by Q({wl,r}) over all the variables except for
the (l, r).
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A.1 Solution under the Gaussian model

Now let us derive an explicit form of the posterior. Using Eq. (10) for Q0 together with Eq. (7) in Eq. (A.1),
we have

ln ql,r = const.− 1
2(wl,r)⊤wl,r − 1

2σ2

∑
τ

⟨{yτ − (W , X τ )}2⟩\(l,r). (A.3)

The expression (6) allows writing the last term in terms of {wl,r}:

⟨{yτ − (W , X τ )}2⟩\(l,r) = const.− 2wl,r⊤
ϕτ,lβ

l,r
τ ylr

τ

+ wl,r⊤
ϕτ,lϕ

⊤
τ,lw

l,r
∏
l′ ̸=l

ϕ⊤
τl′⟨wl′rwl′r⊤

⟩\(l,r)ϕτl′ , (A.4)

where βl,r
τ and yl,r

τ have been defined in Eq. (12).

Equations (A.3) and (A.4) imply that ln ql,r is quadratic in wl,r and thus ql,r is Gaussian. For instance, for
(l, r) = (3, 2), collecting all the terms that depend on w3,2, we have

lnq3,2 = const. + (w3,2)⊤ 1
σ2

∑
τ

(β3,2
τ ϕτ,3)y3,r

τ − 1
2(w3,2)⊤

{
Id + 1

σ2

∑
τ

(β3,2
τ ϕτ,3)(β3,2

τ ϕτ,3)⊤

}
w3,2.

By completing the square, we get the posterior covariance matrix Σ3,2 and the posterior mean w̄3,2 as

Σ3,2 =
{

Id + 1
σ2

∑
τ

(β3,2
τ ϕτ,3)(β3,2

τ ϕτ,3)⊤

}−1

, w̄3,2 = 1
σ2 Σ3,2

∑
τ

(β3,2
τ ϕτ,3)y3,r

τ , (A.5)

which are the (batch-version of) solution given in the main text.

B Derivation of the predictive distribution

This section explains how to perform the integral of Eq. (16) under

Q(W) =
D∏

l=1

R∏
r=1
N (wl,r | w̄l,r, Σl,r). (B.6)

We first integrate w.r.t. w1,r. By factoring out w1,r from the tensor inner product as (W , X ) =∑
r(ϕ1b1,r)⊤w1,r, we have

I1 ≜
∫ R∏

r=1
dw1,r N (w1,r | w̄1,r, Σ1,r)N (u | (W , X ), σ2) = N (u | u1, σ2

1),

where b1,r ≜ (ϕ⊤
2 w2,r) · · · (ϕ⊤

DwD,r) and

u1 =
R∑

r=1
(ϕ⊤

1 w̄1,r)b1,r, σ2
1 = σ2 +

R∑
r=1

(b1,rϕ1)⊤Σ1,r(b1,rϕ1).

To perform the integral we used the well-known Gaussian marginalization formula. See, e.g., Eqs. (2.113)-
(2.115) in Sec. 2.3.3 of Bishop (2006).

Next, we move on to the l = 2 terms, given I1. Unfortunately, due to the nonlinear dependency on w2,r in
σ2

1 , the integration cannot be done analytically. To handle this, we introduce a mean-field approximation in
the same spirit of that of the main text:

σ2
1 ≈ σ2 +

R∑
r=1

(β1,rϕ1)⊤Σ1,r(β1,rϕ1), (B.7)
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where w2,r, . . . , wD,r have been replaced with their posterior means w̄2,r, . . . , w̄D,r. The definition of βl,r
τ

is given by Eq. (12). We do this approximation for all σ2
1 , . . . , σ2

D while keeping u1, . . . , uD exact.

As a result, after performing the integration up to l = k, we have a Gaussian N (u | uk, σ2
k), where

uk =
R∑

r=1

k∏
l=1

(ϕ⊤
l w̄l,r)

D∏
l′=k+1

(ϕ⊤
l′ wl′,r), σ2

k = σ2 +
k∑

l=1

R∑
r=1

(βl,rϕl)⊤Σl,r(βl,rϕl). (B.8)

By continuing this procedure, we obtain the predictive mean and the variance in Eq. (17).

C Derivation of the regret bound

This section derives the upper bound given in Theorem 1 on the scaled regret defined in Eq. (25).

C.1 Relationship with confidence bound

In Sec. 6, we have introduced the bounded smoothness condition (A1) and the monotonicity condition (A2).
Let Pt,G = [pz

t,i,j ] be an estimate of the activation probabilities at the t-th round. Based on the moniton-
isity condition and the property of the ORACLE’s seed selection strategy, Wu et al. (2019) argued that the
instantaneous regret (25) is upper-bounded as

1
η
E
[
f(S∗, P∗

G)−f(St, P∗
G)
]
≤ 1

η
E
[
f(St, Pt,G)−f(St, P∗

G)
]

(C.9)

with probability 1−δ, where δ is the tail probability chosen in the UCB approach. Since K ≪ |V| in general,
it is possible for the event that may occur with possibility δ to play a significant role in the cumulative regret.
Fortunately, Lemma 2 of (Wen et al., 2017),which lower-bounds the UCB constant c, guarantees that its
contribution can be bounded by O(1), as argued by Wu et al. (2019). We will come back this point later to
provide a condition on c explicitly.

Combining with the smoothness condition (26) and the expression of UCB (24), we have

Rη
T ≤

cB|V|
η

T∑
t=1

K∑
k=1

D∑
l=1

R∑
r=1

κt(k),l,r +O(1), (C.10)

κt(k),l,r ≜
√

(βl,r
t(k)ϕt(k),l)⊤Σl,r

t(k)(β
l,r
t(k)ϕt(k),l), (C.11)

where we have used the “t(k)” notation introduced in Sec. 3.2 in the main text. Here, Σl,r
t(k) is the covariance

matrix computed using the data up to the k-th seed node in the t-th round. βl,r
t(k) and ϕt(k),l are defined

similarly. The summation over j in Eq. (26) produces a constant of the order of node degree, which is
bounded by |V|.

Now our goal is to find a reasonable upper bound of κt(k),l,r. This term has appeared in the definition of the
confidence bound UCB(X ) in the main text. This is reminiscent of the regret analysis of vector contextual
bandits (Dani et al., 2008; Chu et al., 2011; Abbasi-Yadkori et al., 2011), in which the analysis is reduced to
bounding the vector counterpart of κt(k),l,r.

C.2 Bounding confidence bound

Now that the cumulative scaled regret is associated with κt(k),l,r, let us prove the following Lemma, which
supports the regret bound reported in the main text:
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Lemma 1. Under the assumption ∥βl,r
t(k)ϕt(k),l∥ ≤ 1, ∀l, r, t, k,

∑
t,k,l,r

κt(k),l,r ≤ R

√√√√TKD
∑

l dl ln
(

1 + T K
dlσ2

)
ln
(
1 + 1

σ2

) , (C.12)

≤ DR

√
TKd ln

(
1 + T K

dσ2

)
ln
(
1 + 1

σ2

) , (C.13)

where d ≜ maxl dl.

(Proof) Under the t(k)-notation, the updating equation for the covariance matrix looks like

(Σl,r
t(k+1))

−1 = (Σl,r
t(k))

−1 +
(

βl,r
t(k)

σ

)2

ϕt(k),lϕ
⊤
t(k),l, (C.14)

which leads to an interesting expression of the determinant:

det |(Σl,r
T )−1| =

T −1∏
t=1

K∏
k=1

(
1 +

κ2
t(k),l,r

σ2

)
. (C.15)

This follows from repeated applications of the matrix determinant lemma det |A+ab⊤| = det |A|(1+b⊤A−1a)
that holds for any vectors a, b and invertible matrix A as long as the products are well-defined. Equa-
tion (C.15) implies det|Σl,r

t(k)| ≤ 1. By the assumption ∥βl,rϕt(k),l∥ ≤ 1, we have κt(k),l,r ≤ 1.

Interestingly, the cumulative regret (C.10) can be represented in terms of the determinant. Using an in-
equality

b2 ≤ 1
ln(1 + σ−2) ln(1 + b2

σ2 ), (C.16)

that holds for any b2 ≤ 1, we have

T∑
t=1

K∑
k=1

D∑
l=1

R∑
r=1

κt(k),l,r ≤

TKDR
∑

t,k,r,l

κ2
t(k),l,r

 1
2

,

≤

TKDR
∑

t,k,r,l

ln(1 + κ2
t(k),l,r

σ2 )
ln(1 + σ−2)

 1
2

, (C.17)

=

TKDR
∑
r,l

ln det|(Σl,r
T )−1|

ln(1 + σ−2)

 1
2

, (C.18)

where the last equality follows from Eq. (C.15).

The determinant is represented as the product of engenvalues. Since the geometrical mean is bounded by
the arithmetic mean, we have

det |(Σl,r
T )−1|

1
dl ≤ 1

dl
Tr[(Σl,r

T )−1], (C.19)

= 1 + 1
dlσ2

T −1∑
t=1

K∑
k=1
∥βl,r

t(k)ϕt(k),l∥2, (C.20)

≤ 1 + (T − 1)K
dlσ2 , (C.21)
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where the second equality is by Eq. (C.14) and the last inequality is by the assumption ∥βl,r
t(k)ϕt(k),l∥ ≤ 1.

Finally, we have

∑
t,k,r,l

κt(k),l,r ≤

[
TKDR2

ln(1 + σ−2)

D∑
l=1

dl ln
(

1 + (T − 1)K
dlσ2

)] 1
2

,

≤

[
TKDR2

ln(1 + σ−2)

D∑
l=1

dl ln
(

1 + TK

dlσ2

)] 1
2

. (C.22)

The final step for Eq. (C.13) is obvious.

As discussed above, to control the occurrence of tail events, the UCB constant c (introduced in Eq. (24)) has
to be lower-bounded. Using the expression (C.13) and following the same steps as in Lemma 3 in (Vaswani
et al., 2017), we can show that, if

c ≥ DR

√
Kd ln

(
1 + T K

dσ2

)
ln
(
1 + 1

σ2

) + max
l,r
||wl,r||2, (C.23)

the regret upper bound (28) holds with probability at least 1− δ.1

1We thank an anonymous reviewer for pointing out the need for explicitly stating the condition on c.
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