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Abstract

Optical astronomical images are strongly affected by the point spread function
(PSF) of the optical system and the atmosphere (seeing) which blurs the observed
image. The amount of blurring depends on both the observed band, and more
crucially, on the atmospheric conditions during observation. A typical astronomical
image will therefore have a unique PSF that is non-circular and different in different
bands. Observations of known stars give us an estimation of this PSF. Any serious
candidate for production analysis of astronomical images must take the known PSF
into account during image analysis. So far the majority of applications of neural
networks (NN) to astronomical image analysis have ignored this problem by assum-
ing a fixed PSF in training and validation. We present a neural network architecture
based on Deep Wiener Deconvolution Network (DWDN) that takes the PSF into
account when performing deconvolution, a possible approach of leveraging PSF
information in neural networks. We study the performance of this algorithm under
realistic observational conditions. We employ two regularization schemes and study
custom loss functions that are optimized for quantities of interest to astronomers.
We show that our algorithm can successfully recover unbiased image properties
such as colors, ellipticities and orientations for sufficiently high signal-to-noise.
This study represents a comprehensive application of Al in astronomy, where the
experimental design, model construction, optimization criteria, error estimation
and metrics of benchmarks are all meticulously tailored to the domain problem.

1 Introduction

The advent of large telescopes and big data sets are bringing about a transformable era for astronomical
survey science. New datasets obtained from upcoming ground-based and space-based observing
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facilities will contain data from large volumes of the observable sky at unprecedented depths and
cadences [11, 1, 7, 14, 6]. While the resolution of space-based telescopes is usually diffraction
limited, the large apertures of ground based survey telescopes are limited by seeing. Seeing is a
distortion of the image caused by the perturbation of an optical wavefront as it passes through the
turbulent atmosphere. This results in a finite point-spread function (PSF). The ground based surveys
often do not employ adaptive optics due to the large field of view, resulting in an arcsecond sized
point spread function.

The two main features of the PSF is that it is a variable and that it is known in each exposure. The
PSF is a variable because the atmosphere above the telescope fluctuates. It varies in size, shape and
orientation. It is typically asymmetric and different in different bands. On the other hand, it is also
known in each exposure, because invariably every exposure contains stars that are excellent point
sources and therefore can directly be used to probe the PSF.

Recovery of an object’s shape, position, flux and other intrinsic parameters in the presence of noise and
varying PSF is goal of astronomical image analysis. Machine learning techniques using convolutional
operations have demonstrated promising avenues for speeding up the astronomical processing.
Majority of these grapple with the galaxy deblending problem such as [15, 3, 2, 18].However, most
of the current neural-network based galaxy deblenders have a number of simplifying assumptions,
including a constant PSF. This problem is usually “swept under the rug” by assuming that several
training sets can be provided, one for each PSF. However, this is likely impractical for reasons we
will cover in the following sections. It is also clear that simply ignoring this problem will lead to
biased and sub-optimally inferred parameters for individual objects. Therefore the proper treatment
of PSF is one of the issues that need to be addressed before neural network based approaches can be
lifted from the realm of toy problems and benchmarking datasets to real observations from telescopes.
Other issues include blending, masking and modeling various detector artifacts. In this work we
specifically address the issue of leveraging PSF information and build a network that deconvolves a
noisy, convolved input image to produce the true image of the galaxy at the resolution supposed by
the PSF.

2 Description of the problem

We use a linear model for the observed astronomical image, a convolution with a point spread function
followed by addition of observational noise:

Iy = 15 ® PSF; + N, 1

where PSF; is the PSF for the channel ¢, V; is the noise, assumed to be homogeneous and normally
distributed and index gt refers to ground truth. It is important to note that PSF is band dependent
and that the amplitude of noise is also band-dependent. This model is an approximation, because the
brighter-fatter effects, amplifier non-linearities, and other detector phenomena make the transforma-
tion weakly non-linear. The shape of PSF also varies across the focal plane. However, in this work we
assumed that the region of interest is always small enough that the the PSF can be assumed constant.

One of the classical regularization techniques of deconvolution is the Wiener Deconvolution formu-
lated in Fourier space as (dropping the band subscripts for clarity):
P (k _
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where P,(k) and P, (k) are spectral densities of signal and noise respectively. A neural network
extension of the above formulation is the Deep Wiener Deconvolution Network [5].

3 Band-wise Deep Wiener Deconvolution Network

Works using neural networks for deblurring have emerged recently [9, 17], among which the Deep
Wiener Deconvolution Network (DWDN, [5]) provides a brand new solution for the non-blind image
deblurring problems. Instead of deconvolution in the image space like the existing methods do,
DWDN applies Wiener Deconvolution explicitly in the feature space. As a simple but effective
integration of classical Wiener Deconvolution and deep learning, DWDN achieves outstanding
performance with fewer artifacts. DWDN contains two components, the feature-based Wiener



deconvolution module and a multi-scale feature refinement module, where the former carries out the
deconvolution process and the latter restore high-quality images using features from the previous
module.

A restriction that limits the direct use of DWDN on astronomical images is that typically, for galaxy
images, different bands have different PSFs. However, in DWDN, the feature maps extracted from
the input have already mixed up and no longer have distinguishable bands as the image does. Thus,
we propose an enhanced version of DWDN that can work on band-dependent PSFs. Figure 1 shows
the architecture of our model. In order to apply feature-based deconvolution on different input bands
separately, we parallel three deconvolution modules. This number varies based on the number of
bands in the input image and PSF. Each band of the input image with the corresponding PSF band
will go through one of those modules to complete the feature-based deconvolution. Eq. 3 expresses
the deconvolution for [-th feature channel in ¢-th deconvolution module

B PSFi(k) 3)
PSF, (k)PSF; (k) + 3
H; =C[hl,...,hE] “)

where hé is the deconvolved feature of the [*! channel, and L is the total number of feature channels.

F refers to discrete Fourier transformation and PSF; (k) is the complex conjugate of PSF; (k). s7;

and s7; are the variance and standard deviation of this channel for noise and input image separately
which can be estimated by blurred features and mean-filtered features. After concatenation as Eq. 4,
we get output from ¢-th deconvolution module H;, that is, deconvolved features for ¢-th band of the
input image and PSF. H; will then be passed to the second module R as in Eq. 5 with C' denoting the
number of deconvolution modules.

I =R(Hi,..., He) &)

We keep the refining module R the same except the number of channels of its input feature is C'
times as original DWDN because of the concatenation. In this way, different bands of the input image
will execute their own deep Wiener deconvolution and the deconvolved features are utilized to restore
the clean images. More details of the architecture can be found in [5].

Image channel

\ [ PSF channel

[l Feature-based Wiener deconvolution

O] Convolutional layer

O] ReLU activation

[C] Residual Block

@ Encoder-decoder network

Blurred image Output

Figure 1: The framework of the model used in this paper. The three band-wise deconvolution
modules share the same architecture. The feature refinement module contains convolution-based
encoder-decoder network for multiple levels. The kernel size is 5 x 5 for all convolutional layers.

4 Custom loss function

In majority of image analysis problems, the networks are trained with one of the standard loss-
functions that encode some intuitive notion of similarity between the true and reconstructed image.
Typical example includes ¢1, {5 loss functions and the cross-entropy functions.

However, in astronomical image analysis we are interested in particular properties of the output image.
In fact the first few image moments described in the next section naturally describe the astronomical



quantities of interest: object brightness, its position and its shape. It is therefore natural to include
them into the loss function minimized during training — this way we ask neural network to focus
explicitly on the quantities of interest. We will describe this non-standard training procedure next.

4.1 Quantities of interest

Let I;; be flux value in pixel (7, j). We define raw moments as

W H
Mp(I) = 2™yl (6)

rz=1y=1
The following quantities are of interest:
Moo Total flux
(z) = %7(1)8 Astrometric position x
(y) = J]\%g Astrometric position y
oo = %ig — (z)? Second central moment x?
p1 = ”ML(I)(I) —(x) (y) Second central moment xy ™
fio2 = Hh2 (z)? Second central moment y2
— M20—Ho2 1otici
= £x-bu + Ellipticity component
e oL
ey = x Ellipticity component

These quantities can be trivially calculated from a noise-less image in a way that enable their use in
loss function.

4.2 Training procedure and loss function

The model is trained in an end-to-end manner with two phases. In the first phase, the model is
pre-trained to acquire the ability to deblur and produce reasonable prediction as output, while in the
second phase, the model is fine-tuned with a more complex loss including quantities listed in Section
4.1 for more accurate description of the galaxy.

The loss function for the first phase is formulated in Eq. 10. It contains ¢;-norm between the output
and the ground truth as shown in Eq. 8 and the difference of the total flux as Eq. 9. In Eq. 8, f is the
network, I and I ; refer to the input and true image. Ao controls the trade-off between the two parts.

1 ¢ W H
Lo = 5o ;;; 1 (Dae = Ugt)ay.cl ®)
1 C
Latge = & ; |Moo(f (1)) = Moo(Zge)] )
L1(I,15) = Lo, + MLty (10)

In the second phase, in addition to £, and Ly, the astrometric position () and (y), the second-
order central moments j411, (20, (o2 are utilized to fine-tune the model. The quantities are defined in
Section 4.1 and the loss for these quantities has the same form as Eq. 9. Thus, the total loss for the
second phase can be written as Eq. 11. \’s are the weights for different terms and manually adjusted
so that those terms are subdominant, but not negligible compared to the dominant #; loss.

Lo(I,15t) = Loy + MoLnrgo + MLy + XLy +A3Lpuy, + MLy + A5 Ly, (11)

5 Training and testing data

The dataset used in this work was generated using WeakLensingDeblending package' developed
in order to test the shear measurement of weak lensing by LSST Data Management. From the
galaxy catalog class FixedGalaxyCatalog, composite exponential galaxy images of single galaxy

"https://github.com/LSSTDESC/WeakLensingDeblending/



Accurate PSF Average PSF Accurate PSF (¢; loss) | Gaussian regularization
Mean  Median | Mean Median | Mean Median Mean Median
PSNR | 46408 45.951 | 45.172 44991 | 46.314 45.477 46.273 45.724
1-SSIM | 0.011 0.006 0.012 0.007 0.011 0.007 0.011 0.006

Table 1: PSNR(dB) and SSIM

are simulated in g, r and i bands with single exposures per band and Gaussian PSFs that vary
across the different bands (using industry standard galsim, [16]). For each galaxy, a noisy image, a
truth image and a PSF image are generated as a stack of the three aforementioned bands. Since our
objective is to ascertain the influence of incorporating PSF in neural networks for denoising puproses
of astronomical images, we have set shear to be zero. Moreover, we incorporated a signal-to-noise
(SNR) cut of > 10.

The 100, 000 images thus generated for each of the three categories (truth, noisy and PSF) have
dimensions of 35 x 35 x 3. The entire dataset is divided into training set with 90, 000 images and test
sets with 10, 000 images. Each image is sized 32 x 32 x 3 and normalized to [0, 1] by dividing its
overall maximum pixel value so that colors are preserved. During testing, in order to get the accurate
performance of the model, the prediction from the network are rescaled back by exactly same factor
which allows a direct comparison with the raw ground truth.

6 Results

6.1 Implementation and comparison models

For experiments, we adopt Adam optimizer [8] and the batch size is 128. During the first phase, the
model is trained for 80 epochs with learning rate as 10~%. In the second phase, we fine-tune the
model for 10 epochs and the learning rate is set to 10~°. The weights for moment-related loss are as
follows: Ag 1,2 = 0.01, A3 = 0.002 and A4 5 = 0.001.

In order to evaluate the performance of our model, we train 4 different models:

* The fiducial model as explained in the text;

* The Average PSF model, where the training and testing datasets remain the same, but instead
of fitting actual per-image PSF to the network, we freeze the PSF to its average shape. This
allows us to explore the information gain coming from knowledge of the actual PSF;

* The ¢; loss only model, where training is not fine-tuned with custom loss function;

* The Gaussian regularization model where Wiener deconvolution formula is replaced with a
different regularization as described in Appendix.

6.2 Evaluation

In most tests we split the sample into three categories by the value of M as a proxy for signal-to-
noise. Figure 2 visualizes the performance of the fiducial model on the testing set. We select one
example from samples with low, medium and high M separately. From the results, our deblurring
model can recover the morphological and color information for images under different conditions,
even for images with low fluxes. It can also be observed that the model performs better on images
with higher fluxes. We will analyse in detail in the following sections.

We first apply some standard metrics such as the peak signal-to-noise ratio (PSNR) and the structural
similarity index (SSIM) [19] to evaluate the quality of images recovered from our model compared
with the ground truth images. The results are listed in Table 1, including the mean and median
among the testing set. The best results are from the model with accurate PSF and moment loss.
Specifically, by comparison between the first and third columns in the table, we can conclude that
those moment-related loss terms help improve the performance, reflected by a higher PSNR and
SSIM value, but the improvement is modest. The results from models with accurate PSF and average
PSF also demonstrate that the quality of the prediction will get degraded if the accurate PSF is not
provided for each image again with surprisingly modest improvements.
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Figure 2: Visualization of typical results. Value of My is a proxy for object signal-to-noise.

6.3 Recovery of astronomical quantities

Table 2 in Appendix presents the difference between output from the model and true image for
astronomical quantities of interest. These values are averaged over the three available bands. For
our fiducial network, the relevant scatter plots can also be found in Figure 3. We find that across
the noise levels, the networks correctly recover the quantities of interest. The results nicely scatter
around z = y line with no obvious bias for the total flux, first moments (astrometric position) and
second moments. Ellipticity suffers from small bias, where the network tends to preferrably make
objects less round. This effect is observed for both e; and e». To understand this effect better we have
split objects by signal-to-noise and replotted the histograms for e; in the Figure 4a. Here we see that
high signal-to-noise objects have their shapes recovered without bias, while there is an emergence of
"multiplicative" bias for low signal-to-noise where measured ellipticites are systematically low.

Next we want to study how much information we are getting by using a per-band known PSF. Figure
4b plots the histograms for model with average PSF. We see essentially the same structure, but the
scatter around the mean is somewhat increased. Similar observations for e can be found in Figure
5 in the Appendix. This is confirmed in the Table 2, where rms errors when using average PSF are
systematically larger by about 5-10% compared to those of fiducial network for ellipticity and second
moments. We also find that the error on the astrometries are not affected by knowing or not the true
PSF — this makes sense because our PSFs are Gaussian with zero mean and therefore using a wrong
PSF to deconvolve the image is not going to affects its central position. Somewhat more surprising is
that the error on the object flux also seems to be unchanged between the two cases. More analysis on
the recovery of shapes and its biases can be found in Appendix.

6.4 Uncertainty quantification (UQ)

Like majority of the deep learning frameworks, our model is also a point-prediction method, i.e.,
the predictions in the network are not associated with error estimates. Large number of uncertainty
quantification approaches are currently applied in the context of Al applications in physics [4, 13, 10],
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some of which may be computationally expensive in our problem, where the individual model training
requires 25.5 hours on one Nvidia V100 GPU with 32GB memory.

In this paper, we perform a two-fold treatment of uncertainty. The first one aims at estimating the
model uncertainties, where we quantify the fluctuations in the predicted images due to imperfect
model training. Second, we quantify the uncertainty propagated due to the noisy input data during
testing. Both these treatments are approximations aimed at obtaining a rudimentary understanding of
the confidence intervals of our methods, within reasonable computational budgets. In applications
involving real observations, several systematic effects may have to be considered in a greater detail.



Model uncertainty using Monte Carlo methods: For model uncertainties, we choose the UQ
technique of Monte Carlo (MC) Dropout, that provides approximate errors with little computational
overhead and minimal changes to the architecture. The implementation of MC Dropout is: First,
we train a model without any UQ considerations to obtain a fiducial model. Next, we consider an
ensemble of NV;,; models with the same architecture, only differing from each other by a fraction
of trained neurons re-initialized to a random value. We obtain this ensemble of networks and the
fraction of randomized (or “dropped-out) weights is dictated by the dropout rate d. Since the Deep
Neural Networks are over-parametrized, a small number of randomized weights will only result in
small fluctuations in the output images. Each image in the testing set will be evaluated by those N,
models and obtain N, outputs. The mean and variance of these outputs will be considered as the
uncertainty quantified prediction from the ensemble.

Statistical uncertainty due to noisy image inputs: In addition to model uncertainty which in
physicist language corresponds to systematic error, any observation also has noise or random un-
certainty. Since neural network results are point estimates, one would ideally process the same
image with multiple noise realizations to estimate the noise in any derived quantities. Since this is
impossible, we instead generate V;,; images with additional noise drawn from the same distribution
as the real noise and run those through the network. These form an ensemble from which a noise
estimate on the derived quantities can be formed. Since these images now have double the noise
variance, the result is strictly speaking an overestimate of measurement uncertainty.

In the experiment, Ny, = 200 for both approaches and dropout rate d = 0.2. Results of these two
techniques are presented in the right panel of Figure 2. We see that the the truth is always within
the estimated uncertainty region, whose size is likely overestimated. We also see that the size of
the statistical uncertainty decreases with increasing SNR, but interestingly the size of the systematic
uncertainty also somewhat shrinks with an increasing signal to noise. In other words, as the SNR
increase, the network seems to internally produce more consistent results.

7 Discussion & Conclusions

Despite numerous applications of neural networks to the astronomical image analysis, the problem
of using the information from the known, band dependent and relatively large PSF has not been
addressed directly. In this work, we propose a neural network based deconvolution algorithm to
address this crucial missing link. It derives from a network that deploys Wiener Deconvolution in
the feature space. We have two notable improvements aimed at the properties of astronomical tasks.
Firstly, instead of a simplifying assumption of constant PSF, we employ a band-wise deconvolution
module. This enables the network to work with each band separately, rendering is compatible
with the PDFs of the imaging systems in astronomy. Secondly, we engage quantities representing
particular properties of astronomical images into our custom loss function. The model can have better
investigation on those properties by directly training on those quantities. Extensive experiments
and analysis demonstrate that the model can acquire more better recovery of shape than comparison
models, especially for images with higher SNR. This work is the start of incorporating band-separated
PSFs information in astronomical image processing. More broadly, this study motivates the need of
robust, domain-focussed architectures in Al-for-Astronomy problems.
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A Additional results

Difference of moments between predicted images and ground truth: Table 2 shows the difference
between the model’s output and the true image for astronomical quantities of interest. All four
comparison models in the text are included.

Accurate PSF Average PSF
Mean Variance = RMS Mean Variance  RMS
Myo | 0.015 131.416 11.464 | -0.053 129.831 11.394
(x) 0.011 0.046 0.214 | 0.003 0.045 0.212
(y) 0.009 0.045 0.213 0.017 0.044 0.211
oo | -0.038 2.577 1.606 | -0.160 2.867 1.701
o2 | -0.096 2.712 1.650 | -0.169 2.977 1.734
w11 | -0.017 0.413 0.643 | -0.007 0.491 0.701
el 0.007 0.020 0.140 | -0.003 0.024 0.154
es -0.002 0.020 0.142 | 0.005 0.039 0.198
lle|l | 0.155 0.016 0.152 | 0.179 0.031 0.202

(a) Results for model with accurate PSF and average PSF, both with moment loss

Accurate PSF (/1 loss) Gaussian regularization
Mean Variance  RMS Mean  Variance  RMS
Moo | -1.142  259.151 16.139 | -0.484 124569 11.172

() | 0.005 0.050 0.224 | 0.002 0.050 0.225
(y) 0.005 0.050 0.223 | 0.011 0.049 0.223
oo | -0.222 2.555 1.614 | 0.103 2.469 1.574
o2 | -0.255 2.655 1.649 | 0.072 2.566 1.604
mi1 | -0.016 0.466 0.683 | -0.001 0.440 0.664
e1 0.003 0.023 0.151 | 0.003 0.018 0.134
es -0.003 0.024 0.154 | 0.004 0.019 0.137
lle]l | 0.171 0.017 0.138 | 0.153 0.013 0.150

(b) Results for model with ¢; loss only and model with Gaussian regularization

Table 2: Difference of moments between predicted images and ground truth.

Recovery of ellipticity: Figure 5 is the same as Figure 4 but for es. Similar conclusion can be drawn
that the model recovers the shape high signal-to-noise objects without bias and model trained with
average PSF lost some information with a increased scatter around the mean compared with the
fiducial model.

Recovery of shapes and its biases: We also study the performance of our network in removing the
subtle biases that remain in the prediction. In particular, we want to study the remaining contamination
by the PSF shape. Our main motivation is to understand whether such methods could ever be used for
weak lensing application, where residual contamination with the PSF leads to to the so-called additive
bias (see [12] and references there-in for an in-depth review). In short if the shape of galaxy remains
correlated with the PSF after the convolution, then this PSF shape will leak into shear estimation and
lead to shape correlations that can mimic real weak gravitational signal.

The true galaxy ellipticities are uncorrelated with PSF shapes, but since the observed image is a
convolution of the PSF with true shape, the resulting predicted image ellipticies might still correlate
with the PSF shape. On the other hand, if a measurement is perfect, the predicted ellipticities should
correlated perfectly with true ones. To quantify this effect, we define the following correlations

<ePSF : epred>
(lepsrllepreal)’
<etrue . epred>

Strue = T v (13)
! <|etruc||eprcd|>

&psE (12)

where averages are calculated by simply averaging data in the testing dataset. Note that since invidiual
ellipticites of either PSF, true galaxy image or predicted galaxy image can reach zero, we average the
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Figure 5: 2D distributions of es recovery split by signal-to-noise.
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Figure 6: Cross correlation of the network output ellipticities with the PSF (left) and with the true
image ellipticities (right).

numerator and denominator separately. In ideal case, we expect the predicted image to remove any
trace of PSF from the resulting image, so {épsp = 0. However, this could also be achieved by making
all objects round (i.e. epeq = O for every objects). Therefore we also look at the correlation with the
true value, which should be, in the ideal case perfect, i.e irye = 1.

Results of this exercise are plotted in the Figure 6. We see that our fiducial case (denoted "Accurate
PSF" and plotted red) performs bettter than the "Average PSF" case across all signal-to-noise
levels. The cross-correlation with PSF is significantly lower and the cross-correlation with the
truth significantly higher. We conclude that the deconvolution is taking place, albeit imperfectly:
although the network does successfuly decorrelate PSF in the high SNR, but it still contains significant
contamination in the lower SNR region.

In order to improve upon this, we explore another version of deconvolution in which we replace the
Winer filter Equation 2 with a modified term, which we refer to as "Gaussian Regularization":

Py(k)
Pu(k) + Pa(k)G—2(k)

Wp©Gaussies PSF~(k), (14)
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In other words, the PSF is linearly deconvolved from the noisy image, but the resulting image is
then regularized with a circular Gaussian roughly the size of the PSF. In the original formulation of
the Wiener filter, modes are anisotropically regularized, taking into account that anistropic PSF has
destroyed more information in some directions than the others. However, the result is that the PSF
shape can sneak back into the resulting image. The Guassian regularization tries to prevent this at the
expense of formally decreased optimality, i.e. the resulting process is now manifestly worse than
minimum variance solution. We choose a Gaussian whose size is close to typical PSF size and have
explicitly demonstrated that the results are largely insensitive to precise choice of this kernel, if the
network is retrained.

In our tests, however, this methods seems to perform pretty well. In Figure 6, we see that the Gaussian
regularization model is performs signficiantly better than our fiducial network with no evidence
of PSF correlation at no loss in correlation with the truth. In Tables 2, we see that the Gaussian
regularization performs essentially as well as the fiducial model within the noise and that while
individual RMS values scatter favouring one or the other method, there is no clear winner.
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