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Abstract

As the scale of data and models for video understanding rapidly expand, handling
long-form video input in transformer-based models presents a practical challenge.
Rather than resorting to input sampling or token dropping, which may result in
information loss, token merging shows promising results when used in collaboration
with transformers. However, the application of token merging for long-form video
processing is not trivial. We begin with the premise that token merging should not
rely solely on the similarity of video tokens; the saliency of tokens should also be
considered. To address this, we explore various video token merging strategies
for long-form video classification, starting with a simple extension of image token
merging, moving to region-concentrated merging, and finally proposing a learnable
video token merging (VTM) algorithm that dynamically merges tokens based
on their saliency. Extensive experimental results show that we achieve better or
comparable performances on the LVU, COIN, and Breakfast datasets. Moreover,
our approach significantly reduces memory costs by 84% and boosts throughput
by approximately 6.89 times compared to baseline algorithms.

1 Introduction

Over the past few years, the Transformer architecture (Vaswani et al., 2017) has risen as a revolutionary
paradigm within natural language processing (NLP) (Devlin et al., 2018) and has seamlessly expanded
its influence into the domain of computer vision (Wang & Torresani, 2022; Bertasius et al., 2021; Wang
et al., 2022; Akbari et al., 2021; Li et al., 2022; Fan et al., 2021). This expansion has been exemplified
by remarkable achievements in recent multi-modality foundation models such as Sora (Brooks et al.,
2024), GPT4 (Achiam et al., 2023), and Gemini (gem), showcasing its exceptional performance and
versatility across diverse applications.

In contrast to the natural language processing, the visual input has much lower information density
and thus tokenizing the raw RGB image as non-overlapped patches becomes the essential operation
in vision transformers (Wang & Torresani, 2022; Bertasius et al., 2021; Dosovitskiy et al., 2021).
However, the computational cost of transformer exponentially increases with the sequence length,
which generates tremendous computation when feeding visual input into the large-scaled transformer
models with billions of parameters. Due to the redundancy in video sequence, this phenomenon
becomes more severe with video input, especially for long-form videos. This bottleneck impedes the
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Figure 1: Comparison of GPU memory footprint and throughput against scene prediction accuracy
on the LVU dataset (Wu & Krähenbühl, 2021).

further advancement of foundational models in handling long-form video data. Various attempts (Yin
et al., 2021; Wang et al., 2021; Meng et al., 2022; Rao et al., 2021; Liang et al., 2022) have been
proposed to improve the efficiency of vision transformer by introducing a token selection module.
However, these methods are primarily designed for images and may require non-trivial adaptation to
the long-form video scenarios due to the video-level long-term dependencies and motion dynamics.
Moreover, tokens dropped by the token selection module cannot be reused in later layers, which may
result in the loss of important information.

In addition to the token selection, token merging techniques (Bolya et al., 2022; Ren et al., 2023; Bolya
& Hoffman, 2023; Li et al., 2024) have been proposed to increase the efficiency and effectiveness
of transformer-based networks. Specifically, they reduce the sequence length by merging similar
tokens, thereby decreasing the computational cost. In addition to the efficiency, token merging
demonstrates huge advantages by increasing the contextual information so that the model can learn
from patterns presented across multiple tokens. Previous token merging algorithms in both the image
and video domains use manually designed token partitioning methods and merge tokens based on
their similarity. Even though the merged tokens would still keep the original information, they may
have different granularity after the merging operation. In this paper, it is argued that different regions
in the visual data may have different information density. Since the discriminative information of
tokens may be degenerated after merging, some visual tokens should not be merged even if they look
similar to each other. Rather than relying solely on similarity, we question whether more unmerged
tokens should be used to describe salient areas, while merging more tokens for the background.

In this paper, we explore various video token merging (VTM) methods in long-form video classifica-
tion task and aim to find the effective token merging method for long-form videos. Previous video
token merging method (Li et al., 2024) only decouples the spatial and temporal dimensions, which
is unfavorable, especially for long-form videos. As the long-term dependency plays an important
role in the long-form video understanding, spatiotemporal visual tokens should be considered jointly.
Sequentially merging token along with one dimension after another may generate biased prior. In
our work, we first naively extend the image-based token merging (Bolya et al., 2022) to the video
domain and then propose region-centralized and motion-based token merging algorithms, which
estimate the salient region of video sequences. Finally, we develop a learnable VTM which predicts
the saliency score of each token and adaptively merges spatiotemporal visual tokens in data-driven
manner. Experimental results demonstrate that the proposed algorithm improves the effectiveness
and the efficiency of the transformer-based network and outperforms the conventional long-video
understanding methods with better throughput and less memory usage, as also shown in Figure 1.

We summarize the contributions of this paper as following:

• We explore various video token merging methods including the naïve VTM, the region-
concentrated VTM, and the motion-based VTM.

• We propose the learnable video token merging algorithm, which estimates the saliency score of
each token and adaptively merges visual tokens based on their scores.

• The proposed algorithm achieves the best or competitive results on various datasets including
LVU, Breakfast and COIN. Moreover, we significantly reduce memory costs by 84% and improve
the throughput by 6.89 times via the proposed learnable VTM.
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2 Related Work
2.1 Long-form Video Modeling
Transformers have demonstrated remarkable prowess in capturing long-term dependencies, as evi-
denced in their success in natural language processing (NLP) tasks (Brown et al., 2020; Dai et al.,
2019; Devlin et al., 2018). However, the intensive computational requirements stemming from dense
self-attention calculations (Vaswani et al., 2017) pose a significant obstacle not only in NLP but also
in the domain of computer vision, especially for the long-form videos. Many recent video transformer
works (Wang & Torresani, 2022; Liu et al., 2021; Bertasius et al., 2021) focuses on improving the
global attention mechanism. However, they are not designed for dealing with redundant spatial and
temporal image tokens that are common in long-form video scenarios. To capture longer temporal
information, LF-VILA (Sun et al., 2022) develops a hierarchical architecture to include more frames
in the model. Similarly, MeMViT (Wu et al., 2022) utilizes longer temporal information by emerging
the previously cached “memory" from the past. A novel alternative to transformers is the Structured
State-Space Sequence (S4) model proposed by Gu et al. (2021), which models the long-range de-
pendencies by simulating a linear time invariant (LTI) system. Subsequently, ViS4mer (Islam &
Bertasius, 2022) and S5 (Wang et al., 2023) extend S4 model to the long-form video classification
task. ViS4mer (Islam & Bertasius, 2022) stacks multiple S4 layers with different scales in modeling
long-form videos, and S5 (Wang et al., 2023) include an additional selective module to further
improve the performance. Unlike these works that focus on the improvement of architecture and
attention mechanism, this paper will start from a more basic concept in the transformer, video tokens
and how to effectively merge them. Even though our proposed method can theoretically be applied
on S4 model, the scope of this paper is on the well established transformer architecture. We will
leave the investigation of video token merging on S4 (Gu et al., 2021) in the future work.

2.2 Adaptive Token Selection
Adaptive token selection is widely used to improve model efficiency by leveraging a light-weight
selection module to pick up the ‘useful’ tokens while dropping the ‘unuseful’ ones. In vision
transformer, STTS (Wang et al., 2021) utilizes a token selection module known as the named scorer
network to assign importance scores to each token, subsequently selecting the top-K frames with the
highest scores. Building upon this concept, AdaViT (Meng et al., 2022) further extends the approach
by developing instance-specific policies. These policies guide the activation of patches, self-attention
heads, and transformer blocks, enhancing adaptability and efficiency in processing visual data. STTS,
AdaVit and other similar approaches (Wang et al., 2021; Meng et al., 2022; Rao et al., 2021; Liang
et al., 2022) drop a significant number of tokens in the early decision stage to save more cost, but
the dropped tokens cannot be reused in the later layers, which is easier to degenerate the contextual
information in the long-form videos.

2.3 Token Merging
Visual token merging is first proposed in (Bolya et al., 2022) which aims at increasing the throughput
of existing ViT models without training. Following works (Ren et al., 2023; Bolya & Hoffman, 2023;
Li et al., 2024) leverage this idea to save computational cost in different downstream applications,
such as diffusion model, video and language understanding, and video editing. Specifically, visual
tokens are first partitioned into two sets with equal size; for each of the edge tokens in one set, find
the most similar token in another set and merge them by average pooling; finally, concatenate two
sets back together. Although the token merging is simple and effective, its applications have mostly
remained in the image domain. There is no fundamental research work has been explored for the
long-form video token merging strategies, where the spatiotemporal tokens are more redundant and
embed complicated dependencies locally and globally. In this work, we argue that visual tokens from
the long-form video should be carefully partitioned and merged based on the salient areas in videos.
To this end, we ablate various video token merging algorithms and provide extensive expermental
results and analysis.

3 Proposed Algorithm
3.1 Preliminary – Token Merging
Token merging (Bolya et al., 2022) aims to reduce the redundancy by merging similar tokens at each
transformer block, thereby increasing the effectiveness and efficiency of a transformer-based network.
Specifically, token merging has three steps: partitioning, matching, and merging.
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Partitioning: For given a set of N tokens X = {x1, x2, . . . , xN}, token merging first partition X
into a set of target tokens T and a set of source tokens S, given by

T = {xi : i mod γ = 0}, (1)
S = {xj : j mod γ ̸= 0} (2)

where γ is partition factor and mod denotes the modulo operator. Thus, |T | = |X |
γ . Also, X = T ∪S

and T ∩ S = ∅.

Matching: Then, for each source token in S, it finds the most similar target token in T . Here, the
similarity between tokens xi and xj is defined as the cosine similarity of the corresponding key
vectors ki and kj , which are obtained in the most recent self-attention layer. For a source token
xj ∈ S, the index of its matched target token mj is obtained by,

mj = argmax
i:{i:xi∈T }

ktikj
|ki||kj |

. (3)

Merging: Lastly, token merging merges the tokens based on the matching results. For each target
token xi ∈ T , it obtains the merged token yi by using average pooling,

yi =
xi +

∑
j∈Mi

xj

1 + |Mi|
(4)

where Mi = {j : mj = i,∀xj ∈ S} is the index set of source tokens which are matched with xi. In
this case, the number of tokens is reduced by |S| after token merging. It can also control the number
of reduced tokens by R by reassigning the matching index as

mj = −1 (5)

for all xj except for the source tokens with the R highest similarity scores.

3.2 Problem Definition
Suppose that a video with L frames is given, where L ≥ 60. To perform the classification or
regression on the given video, we can use a simple transformer-based network, which is shown in
Figure 2 (a) and (b). It first obtains the tokens X1, X2, . . . , XL ∈ RH×W×C by using an encoder.
Here, H,W, and C denote the height, the width, and the channel dimension of the token tensor,
respectively. Then, it utilizes transformer blocks to update the tokens. As its input, i-th transformer
block takes the tokens corresponding to Li frames without overlapping, where Li ≤ Lj ≤ L for
i < j. The prediction head yields the estimation results. However, it requires the prohibitively large
memory and computation costs due to the quadratic complexity of the self-attention O(L2H2W 2D2),
where D is the dimension of key vectors. Hence, our goal is to increase the efficiency of this baseline
network by reducing the number of tokens via token merging, while maintaining or even improving
the performances of the network by removing the redundant or noisy information in the video. To
this end, we explore various token merging methods for long video processing.

3.3 Video Token Merging – Exploration
Naïve video token merging: First, we combine the standard token merging with the baseline network
as intact as possible. To this end, we substitute transformer blocks with VTM blocks, in which token
merging layer is inserted after the dropout layer, as illustrated in Figure 2 (c). In this naïve VTM, we
employ the standard token merging in (1)-(4). At each i-th VTM block, naïve VTM reduces the Ri

tokens. For example, at γ = 4 and R = |S|, it gradually removes the 68% of tokens over the network.
Hence, the computation cost of the self-attention is reduced from O(N2D2) to O(( N

γi−1 )
2D2) at

i-th VTM block. As shown in Table 1, this naïve VTM shows better scores than the baseline network,
because the token merging reduces the information redundancy in the videos.

Region-concentrated video token merging: Compared to an image, a video contains redundant
spatiotemporal tokens. Depending on the tasks, some tokens are more important than others. However,
as shown in Figure 3 (a), naïve VTM selects every γ-th token as the target tokens since it exploits
uniform token partitioning in (1). Also, for token merging, it purely relies on the similarity between
tokens regardless of the semantics, and thus the self-attention can more easily swayed by unnecessary
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Figure 2: The architectures of (a) the baseline network, (b) the transformer block, and (c) the video
token merging block.

Table 1: Comparison of different VTM methods on the LVU dataset. The best results are boldfaced
and the second-best ones are underlined.

Content (↑) Meta data (↑) User (↓)
Algorithm Relationship Speaking Scene Director Genre Writer Year Like View

Baseline 57.14 36.68 69.76 62.61 56.73 49.40 39.86 0.28 4.18
Naïve 61.90 36.18 72.09 67.28 55.12 51.19 44.75 0.28 4.01
Boundary 59.52 37.18 69.76 61.68 57.21 50.0 47.55 0.26 4.16
Center 61.90 40.20 74.41 62.61 58.81 51.19 44.05 0.25 4.11
Motion 64.28 37.68 74.41 64.48 58.49 55.95 47.55 0.24 4.13
Learnable 64.28 42.12 75.58 70.09 59.77 53.57 48.55 0.21 4.01

information. Therefore, for better video token merging, it is important to consider the saliency of
each token before merging them.

To investigate this issue, we explore center-concentrated video token merging and boundary-
concentrated video token merging. The center-concentrated token merging samples 50% of the
entire target tokens from the center area with the size of H

2 × W
2 , which uses more unmerged tokens

to describe center area and merge more token from the boundary. Specifically, we use the partition
factor of γ

2 for the center area and 3
2γ for the remaining area. On the other side, we implement

the opposite operation for the boundary-concentrated video token merging. As shown in Table 1,
center-concentrated VTM shows better performances than naïve and boundary-concentrated VTM in
general. Since meaningful objects and motions are typically center-concentrated, this suggests more
tokens from salient regions should be unmerged while more of the rest tokens should be merged.
Figure 3 (b) shows the partitioning results of center-concentrated VTM.

Motion-based video token merging: Even though center-concentrated VTM has shown better
performances than naïve VTM, the meaningful tokens are not always located in the center area.
Moreover, the hand-crafted partitioning method forces the center-concentrated VTM to select the
same number of target tokens from each frame, which is not flexible enough when applied at scale.
Therefore, we explore motion-based video token merging which divides tokens into T and S based
on the motion information since the moving objects carry important cues in general (Fan et al., 2023).

Let us assume that we have the magnitude of motion vector vi for each token xi. We compute the
sampling probability by using softmax

pi =
evi∑N
j=1 e

vj
. (6)
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Figure 3: Visualizations of target tokens of different VTM methods: (a) naïve VTM, (b) center-
concentrated VTM, (c) motion-based VTM, and (d) learnable VTM. In (d), learnable VTM selects
the target tokens around salient objects rather than backgrounds.

Note that the sampling probability is proportional to the motion magnitude. Then, we construct T by
sampling N

γ tokens from X with the sampling probability pi for each token xi.

The goal of VTM is to increase the efficiency of transformer-based network for long video under-
standing. Therefore, the motion information should be obtained with negligible time and computation
costs. Hence, instead of estimating the motion information with an additional module, we use the
motion information which is already stored in the video files; most modern video codecs, such as
MPEG-4 (Richardson, 2004), H.264 (Richardson, 2004), and HEVC (Wien, 2015), exploit the motion
information for efficient compression. The motion decoding takes only 0.3 milliseconds for each
frame which is negligible. Figure 3 (c) shows the token partitioning examples of motion-based VTM.

3.4 Learnable Video Token Merging
There are some videos in which unimportant objects have large motions due to various factors such
as camera movement. Motion-based VTM may not yield good results on those videos. To maximize
the generalizability, we develop learnable video token merging method. Instead of depending on the
motion information, learnable VTM estimates the saliency score of each token and samples the target
tokens based on the estimated scores. Figure 4 shows the architecture of learnable VTM block.

Learnable VTM block contains two forward paths: a main path and an auxiliary path. Let us assume
that we have a tensor of N tokens X ∈ RN×C . In the main path, we first obtain query Q, key K,
and value V by

Q = XUq, K = XUk, V = XUv (7)
using learnable projection matrices Uq, Uk, Uv ∈ RC×D. We perform the standard self-attention on
Q,K, and V and yield the updated tokens X ′ as

X ′ =
softmax(QK⊤)√

D
V. (8)

Also, from K, we estimate the saliency scores S of tokens by

S = [s1, s2, . . . , sN ]⊤ = tanh(KUs) (9)
where Us ∈ RD×1 is a learnable matrix. Also, si ∈ (−1, 1) for 1 ≤ i ≤ N . Then, we compute the
sampling probability using (6) with si instead of vi for each token xi and sample T with the sampling
probability as in motion-based VTM. After the token partitioning, we match and merge the tokens in
X ′ by using (3) and (4), respectively.

However, the learnable matrix Us in (9) can not be trained only with the main path since the
partitioning process is not differentiable. To handle this issue, we employ the auxiliary path. This
path consists of a saliency guided self-attention layer and a merging operation. The auxiliary path
takes a tensor of auxiliary tokens Xaux ∈ RN×C as its input. Similar to the main path, we obtain
query Qaux, key Kaux, and value Vaux. Then, we perform the saliency guided attention to obtain the
updated auxiliary tokens X ′

aux as

X ′
aux =

softmax(QauxK
⊤
aux + 1S⊤)√

C
Vaux (10)
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Figure 4: An overview of the learnable video token merging block. The auxiliary path is used during
training only.

Table 2: Comparison of the proposed learnable VTM algorithm with conventional algorithms on the
LVU dataset.

Content (↑) Meta data (↑) User (↓)
Algorithm Relationship Speaking Scene Director Genre Writer Year Like View GPU Throughput

Obj. T4mer (Wu & Krähenbühl, 2021) 54.76 33.17 52.94 47.66 52.74 36.30 37.76 0.30 3.68 - -
VideoBERT (Sun et al., 2019) 52.80 37.90 54.90 47.30 51.90 38.50 36.10 0.32 4.46 - -
Performer (Choromanski et al., 2021) 50.00 38.80 60.46 58.87 49.45 48.21 41.25 0.31 3.93 5.93GB -
Orthoformer (Patrick et al., 2021) 50.00 38.30 66.27 55.14 55.79 47.02 43.35 0.29 3.86 5.56GB -
LST (Islam & Bertasius, 2022) 52.38 37.31 62.79 56.07 52.70 42.26 39.16 0.31 3.83 41.38GB -
ViS4mer (Islam & Bertasius, 2022) 57.14 40.79 67.44 62.61 54.71 48.80 44.75 0.26 3.63 5.15GB 25.64
S5 (Wang et al., 2023) 61.98 41.75 69.88 66.40 58.80 50.60 47.70 0.25 3.51 3.85GB 25.0
S5+LSMCL (Wang et al., 2023) 61.98 41.75 72.53 66.40 61.34 50.60 47.70 0.24 3.51 3.85GB 25.0
Learnable VTM 64.28 42.12 75.58 70.09 59.77 53.57 48.55 0.21 4.01 1.60GB 44.94

where 1 is a N dimensional vector of ones. In the saliency guided attention, the contribution of each
token is controlled by its estimated saliency score; if si is positive, i-th token affects more on X ′

aux,
whereas if si is negative it has less influence on X ′

aux. In other words, it increases the influences of
the tokens with high saliency scores in the attention process. Therefore, during training, the network
is encouraged to assign high saliency scores to the tokens with meaningful information and low
saliency scores to the others to obtain the better predictions. At the first VTM block, the auxiliary
path employs the same input with the main path. From the second VTM block, it takes the output of
auxiliary path in the previous VTM block as its input.

Also, it is worth pointing out that the auxiliary path is used for the network training only. Compared
to other VTM methods, learnable VTM only introduces additional computation of score estimation
module, which is fast and light enough, during test. Therefore, it shows almost same inference speed
with other VTM methods.

4 Experiments
4.1 Datasets

LVU (Wu & Krähenbühl, 2021): It contains ∼30K videos sampled from ∼3K movies on the
MovieClips (mov) website. Most videos are 1 to 3 minutes long. It provides the labels for 9
long-video understanding tasks which can be grouped into three major categories:

• Content understanding: ‘relationship,’ ‘speaking style,’ and ‘scene/place’
• Metadata prediction: ‘director,’ ‘genre,’ ‘writer,’ and ‘movie release year’
• User engagement: ‘YouTube like ratio,’ and ‘YouTube popularity’

As the evaluation metrics, we adopt the top 1 classification accuracy for content understanding and
metadata prediction tasks and mean-squared error (MSE) for user engagement tasks.
Breakfast (Kuehne et al., 2014): It provides 1,712 videos with the average length of 2.32 minutes
and the total length of 77 hours. The videos contain 52 individuals and 18 different backgrounds in
total. Each video belongs to one of 10 complex cooking activities.
COIN (Tang et al., 2019): It consists of 11,827 videos with the average length of 2.36 minutes,
collected from YouTube. Each video belongs to one of 180 distinct procedural tasks.
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Table 3: Comparison on the Breakfast dataset. PT stands for pretraining.

Algorithm PT Dataset #PT Samples Accuracy

VideoGraph (Hussein et al., 2019b) Kinetics-400 306K 65.50
Timeception (Hussein et al., 2019a) Kinetics-400 136M 71.30
GHRM (Zhou et al., 2021) Kinetics-400 495K 75.50
D-sprv (Lin et al., 2022) HowTo100M 136M 89.90
ViS4mer (Islam & Bertasius, 2022) Kinetics-600 495K 88.17
S5 (Wang et al., 2023) Kinetics-600 495K 90.14
S5+LSMCL (Wang et al., 2023) Kinetics-600 495K 90.70
Learnable VTM Kinetics-600 495K 91.26

Table 4: Comparison with the state-of-the-art methods on the COIN dataset. PT stands for pretraining.
Here, ∗ means the reproduction results with the official codes.

Algorithm PT Dataset #PT Samples Accuracy

TSN (Tang et al., 2020) Kinetics-400 306K 73.40
D-sprv (Lin et al., 2022) HowTo100M 136M 90.00
ViS4mer (Islam & Bertasius, 2022) Kinetics-600 495K 88.41
ViS4mer∗ (Islam & Bertasius, 2022) Kinetics-600 495K 87.11
S5 (Wang et al., 2023) Kinetics-600 495K 90.42
S5+LSMCL (Wang et al., 2023) Kinetics-600 495K 90.81
Learnable VTM Kinetics-600 495K 88.55

4.2 Implementation Details

We follow the experimental settings of conventional long-form video understanding algorithms (Islam
& Bertasius, 2022; Wang et al., 2023). We employ three transformer blocks in the baseline network.
As the encoder, we use ViT-L (Dosovitskiy et al., 2021) pretrained on ImageNet-21K (Ridnik et al.,
2021) on the LVU (Wu & Krähenbühl, 2021) dataset and employ Swin-B (Liu et al., 2021) pretrained
on Kinetics-600 (Kay et al., 2017) on the Breakfast (Kuehne et al., 2014) and COIN (Tang et al.,
2019) datasets. Images are resized to 224× 224 for the feature extraction. Hence, H = W = 16 and
C = 1024 for the LVU dataset and H = W = 7 and C = 1024 for the Breakfast and COIN datasets.
The size of the length of input video for each dataset is also same with (Islam & Bertasius, 2022;
Wang et al., 2023): we use 60 frames for the LVU dataset and 64 frames for the Breakfast and COIN
datasets. We use the AdamW (Loshchilov & Hutter, 2017) optimizer with a batch size of 16 and a
weight decay of 0.01. We set the learning rate to 0.001. We train the network for 70 epochs by using
cosine learning rate scheduler (Gotmare et al., 2018) with 10 epochs warm-up. For experiments, we
use 8 Tesla V100 GPUs and PyTorch.

4.3 Experimental Results

Comparison on LVU: In Table 2, we compare the proposed algorithm with the conventional
methods on the LVU dataset. With the smallest memory footprint, the proposed algorithm achieves
the best scores in 7 out of 9 tasks on the LVU dataset. Performer (Choromanski et al., 2021)
and Orthoformer (Patrick et al., 2021) employ the efficient variants of self-attention to reduce the
computation costs. The proposed learnable VTM outperforms these approaches with significant
performance margins and less GPU memory usages. It shows the efficiency and effectiveness of
our approach. Also, ViS4mer (Islam & Bertasius, 2022) and S5 (Wang et al., 2023) adopt S4 layers
instead of self-attention layers to capture the long-term dependencies in videos because of its linear
computation complexity to the number of input tokens. The promising results of these methods have
suggested that S4 layer can be an efficient replacement of self-attention layer for long-form video
inputs. However, the higher scores of the proposed algorithm broaden the potential usages of the
self-attention layers for various long-form video tasks. Moreover, S5 utilizes LSMCL, which is a
pretraining based on the contrastive learning, to boost its performances. Nevertheless, without the
time-consuming pretraining, the proposed algorithm yields better scores on the LVU dataset.
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Table 5: Comparison of long-video understand-
ing results on the LVU dataset according to γ.

Algorithm Scene Director Like Throughput GPU

Baseline 69.76 62.61 0.28 6.52 10GB
γ = 2 72.09 68.22 0.25 22.13 2.7GB
γ = 6 75.58 70.09 0.21 44.94 1.6GB
γ = 10 74.41 70.09 0.23 48.89 1.5GB

Table 6: Comparison of long-video understand-
ing results on the LVU dataset according to
(L1, L2, L3).
(L1, L2, L3) Scene Director Like Throughput GPU

(10, 30, 60) 75.58 69.15 0.21 33.62 2.7GB
(6, 30, 60) 75.58 70.09 0.21 44.94 1.6GB
(4, 20, 60) 73.25 68.22 0.23 53.75 1.4GB

Figure 5: Visualizations of video token merging results on the LVU dataset. Patches with same inner
and border color are merged together. The tokens corresponding to the backgrounds are merged
together, thereby increasing the influence of salient tokens in the attention process.

Comparison on Breakfast: Table 3 compares the performances of the proposed algorithm and
the conventional techniques on the Breakfast dataset. The proposed learnable VTM achieves the
best score on this challenging long-range activity classification dataset as well. For pretraining,
D-sprv (Lin et al., 2022) leverages the HowTo100M (Miech et al., 2019) dataset which contains much
more training samples than our pretraining dataset, Kinetics-600 (Carreira et al., 2018). Nevertheless,
we outperform D-sprv (Lin et al., 2022) with the accuracy gap of 1.36%.

Comparison on COIN: Table 4 compares the scores of the proposed algorithm and the conventional
techniques on the COIN dataset. We note that the COIN dataset consists of the videos on YouTube
and more than 1,000 videos are not available anymore. Therefore, ViS4mer, which is one of the
state-of-the-art method on the COIN dataset, achieves only 87.11% accuracy when it is trained on
the current version of the COIN dataset. It may be because of many missing training videos. Even
though the comparison is not perfectly fair, we report the results on the COIN dataset for reference.
The proposed learnable VTM yields better results than ViS4mer with the same training and test data.
Also, it shows the comparable score with S5 (Wang et al., 2023).

4.4 Analysis

Analysis on γ: Table 5 compares the performances of learnable VTM with different γ. Compared to
the baseline, at all γ, the proposed algorithm improves the performances. Also, at γ = 10, it increase
the throughput and the memory efficiency by 7.49 and 6.6 times, respectively. At γ = 6, the proposed
algorithm shows the best results.
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Table 7: Comparison of long-video understanding results of various VTM designs on the LVU
dataset.

Algorithm Scene Director Like

Weighted average 72.09 68.22 0.24
Motion 74.41 64.48 0.24
Motion weighted average 74.41 66.35 0.23
Learnable 75.58 70.09 0.21

Table 8: Comparison of throughput and memory footprint of learnable VTM for training and
inference.

Algorithm Phase Throughput Memory

ViS4mer (Islam & Bertasius, 2022) Inference 25.64 5.15GB
S5 (Wang et al., 2023) Inference 25 3.85GB
Learnable VTM Training 27.84 2.8GB
Learnable VTM Inference 44.94 1.6GB

Analysis on (L1, L2, L3): Table 6 shows the results of the proposed learnable VTM with different
(L1, L2, L3). Note that i-th VTM block takes the tokens in Li consecutive frames as its input at a
time. At (L1, L2, L3) = (4, 20, 60), the proposed algorithm yields the lowest scores, since it can not
capture the long temporal dependency in the early stage of the network. We see that the proposed
algorithm yields the best scores at (L1, L2, L3) = (6, 30, 60).

Weighted average pooling: To merge tokens, we use average pooling as the default setting in all
VTM methods. However, once tokens are merged, they may represent more than one input patch.
Thus, to reflect the token size in merging process, we combine tokens by averaging weighted by their
sizes. However, as shown in Table 7, this weighted average pooling decrease the performances of
learnable VTM. Thus, we exploit the average pooling to merge tokens.

Motion weighted average pooling: In motion-based VTM, we can combine tokens by averaging
weighted by their motion magnitudes. Table 7 shows the performances of motion-based VTM with
the motion weighted average pooling. It yields the similar scores with the standard motion-based
VTM with the average pooling.

Complexity: Table 8 compares the throughput and memory footprint of learnable VTM during train-
ing and inference. Since the auxiliary path is additionally employed during training, it requires more
computation costs. However, even during training, learnable VTM is still faster than conventional
methods including ViS4mer (Islam & Bertasius, 2022) and S5 (Wang et al., 2023) and it also requires
less amounts of memory than them.

Visualizations: In Figure 7, we visualize the tokens merging results at the end of the network over
multiple frames of video. We see that tokens with similar semantics are merged together. Also,
tokens corresponding to backgrounds or unnecessary informations are merged more than tokens
corresponding to salient objects. It is because learnable VTM selects tokens with high saliency scores
as the target tokens. More visualization results are available in the supplemental document.

5 Conclusion

In this paper, we investigate the video token merging techniques for long-form video data. Unlike
previous algorithms that apply uniform partitioning and merge tokens solely based on the visual
similarity, we argue tokens with different saliencies should be treated unequally to avoid undesirable
information loss after merging important tokens. To this end, we explore various video token merging
methods and receive interesting intuitions from region-concentrated and motion-based token merging
results. Lastly, we propose a learnable video token merging scheme that adaptively samples target
tokens and learns discriminative representations from the long-form videos. Compared to the baseline,
the proposed algorithm achieves substantial improvements in terms of the performance, memory cost
and throughput.
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A More Implementation Detail

A.1 Network Architecture

Figure 6 illustrates the detailed architecture of the proposed learnable VTM. For all datasets, the
encoder extracts the tokens with 1024 channel dimension. We note that the linear layer in each VTM
block reduces the channel dimension into half of it. Hence, after third VTM block, each token has
256 channel dimension. Also, the auxiliary path is only used for network training.
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Figure 6: A network architecture of the proposed learnable VTM.

B More Experiments

B.1 Analysis on R

Table 9 compares the results of the proposed algorithm at different R. Note that R denotes the
number of merged tokens at each VTM block. At R = |S|, we merge all source tokens with target
tokens. However, there may exist some source tokens which does not have target tokens with similar
semantics. Thus, at R = |S|, undesirable merging of tokens can happen, thereby decreasing the
performances. On the other hand, at R = 0.5|S|, only the half of source tokens are merged with
target tokens, and thus some source tokens may not be merged even though they have similar target
tokens. Therefore, the proposed algorithm shows the best scores at R = 0.8|S|.

Table 9: Comparison of long-video understanding results on the LVU dataset according to R.

R Scene Director Like

|S| 74.41 66.40 0.22
0.8|S| 75.58 70.09 0.21
0.5|S| 72.09 67.28 0.22
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C More Visualizations

Figure 7 visualizes the token merging results of the proposed learnable VTM on the LVU dataset.

Figure 7: Visualizations of video token merging results on the LVU dataset. Patches with same inner
and border color are merged together.

15



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See L65-L71 in Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See L280-287 in Section 4.3.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: NA
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4.2 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: NA
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: NA
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 4.2 and Appendix ??.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: NA
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: NA
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should citep the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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