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ABSTRACT

Bias in model estimation can lead to wider prediction intervals, diminishing the
utility of predictive inference. Existing methods have attempted to address this
issue, but they often rely on nontrivial assumptions such as specific error distri-
butions or model sparsity, and fail to guarantee coverage in finite samples, which
makes their predictions unreliable in practice. To overcome these limitations, we
propose a model-aware conformal prediction method that utilizes known model
information to achieve debiasing while leaving the unknown aspects, such as
data distribution, to the conformal prediction framework. This approach requires
only the assumption of exchangeability, making it broadly applicable across var-
ious models. Importantly, it retains the finite-sample coverage property and pro-
duces shorter prediction intervals compared to existing methods. When applied
to threshold ridge regression, we theoretically demonstrate that the model-aware
conformal prediction maintains finite-sample marginal coverage and, under cer-
tain assumptions, converges to the oracle prediction band, achieving asymptotic
conditional validity. Numerical experiments further show that our method out-
performs existing methods, providing more efficient prediction intervals across
diverse regression datasets.

1 INTRODUCTION

Uncertainty quantification is crucial in developing machine learning models, particularly in contexts
involving high-stakes decision-making in fields such as medicine and finance. However, a key chal-
lenge in constructing effective prediction bands is the bias in model estimation. Whether introduced
by model assumptions, data sparsity, or other factors, bias often leads to overly conservative predic-
tion bands that unnecessarily widen to account for the model’s systematic errors. This results in less
informative prediction bands and reduces their utility in practice. Many existing methods seek to ad-
dress this issue by constructing prediction bands that account for model bias(Zhang & Zhang|(2014);
Javanmard & Montanari (2014);|Van de Geer et al.|(2014);Zhang & Politis| (2022} 2023))). However,
these methods all rely on nontrivial assumptions such as the error distribution, the homoscedasticity
of errors, the quality of the estimator, sparsity, and low intrinsic dimensionality, which are often not
true in practice. In addition, most of them obtain asymptotic but not finite-sample validity.

To overcome these limitations, we propose the model-aware conformal prediction, a novel approach
integrating the underlying mechanisms of the model and parameters to alleviate the influence of bias
on prediction inference, and leaving the unknown aspects—such as the distribution of the data—to
the conformal prediction framework to maintain the finite-sample coverage property. Specifically,
We account for the bias when constructing the nonconformity score function. Then we take the
threshold ridge regression as an example to illustrate its better performance, since it is computa-
tionally simple and may be preferable in some settings(Zhang & Politis| (2022)) and |Shao & Deng
(2012)).

In summary, our contribution are as follows:
* We propose a model-aware conformal prediction framework, which provides shorter and

more efficient prediction intervals while retaining the finite-sample coverage property
across a wide range of applications.
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* We apply our method to threshold ridge regression and theoretically demonstrate that, un-
der certain conditions, it converges to the oracle prediction band, and achieves asymptotical
conditional validity.

* Through experiments on real-world datasets, we show that model-aware conformal pre-
diction produces shorter prediction intervals while maintaining the required coverage than
existing methods.

1.1 RELATED WORKS

In recent years, the inference problem in high-dimensional models has garnered significant atten-
tion, though much of the focus has been on regression coefficients. For instance, |[Zhang & Zhang
(2014) assumed that the linear model is correct and constructed confidence intervals for individual
coefficients 3; using debiased estimators obtained by inverting the KKT conditions of ¢;-penalized
regression problems. Similar methods are discussed in Javanmard & Montanari| (2014) and [Van de
Geer et al.| (2014). [Zhang & Politis| (2022)) proposed the debiasing method for the estimator in
threshold ridge regression and used Bootstrap to construct prediction intervals. [Zhang & Politis
(2023) extended it to linear models with heteroskedastic and correlated errors. Another prominent
approach in high-dimensional inference is post-selection inference(Liu & Yu| (2013)); Berk et al.
(2013)); |Lee et al.| (2016); Tibshirani et al.| (2018)); [Zrnic & Jordan| (2023))), which first applies vari-
able selection techniques to identify influential covariates, followed by fitting ordinary least-squares
regression on the selected covariates. These methods focus on providing coverage for coefficients in
the best linear approximation given the selected covariates. However, these approaches often rely on
nontrivial assumptions, such as specific error distributions, homoscedasticity of errors, the quality
of the estimator, sparsity, and low intrinsic dimensionality, which are frequently violated in prac-
tice. When these assumptions do not hold, the inference tools become invalid, especially in cases of
model misspecification.

In contrast, conformal inference does not depend on such stringent conditions, making it particularly
well-suited for high-dimensional settings where traditional assumptions are often unrealistic. There
have been several attempts to conformalize the high-dimensional models. Hebiri (2010) proposed
a partial conformalization of LASSO; however, this approach did not provide coverage guarantees.
Lei/(2019) introduced a piecewise linear homotopy method for LASSO to construct prediction bands
efficiently and extended this technique to the elastic net framework. Izbicki et al.| (2022)) considered
the conditional density function as a nonconformity score function and utilized a data-driven parti-
tion that scales to high dimensions. However, these methods do not adequately address the impact
of estimation bias in the models, which can significantly affect their efficiency.

Our work is related to a recent work by |Zhang & Politis|(2022)), which used a bias correction method
in threshold ridge regression to improve the performance of prediction inference. They proposed the
hybrid bootstrap to construct prediction intervals and established the consistency property of the
prediction region, but in an asymptotic sense, which is often insufficient in practice. This paper
uses the same debiasing technique as|Zhang & Politis| (2022) but extends it into the conformal pre-
diction framework, offering several advantages. First, our approach ensures finite-sample marginal
coverage without depending on strong assumptions, making it more robust and practical in real-
world applications. Second, we theoretically prove that the prediction intervals constructed by our
method converge to the oracle prediction band in|Lei et al.[|(2018) under certain conditions and have
asymptotic conditional validity.

1.2  ORGANIZATION

The paper is organized as follows. Section [2]includes notations, model setup, assumptions, and a
brief review of conformal prediction. In Section [3] we propose conformal prediction with model-
aware debiasing, apply it to the threshold ridge regression framework, and present the corresponding
theoretical results. We demonstrate its performance with numerical experiments, comparing with
the standard conformal prediction and the bootstrap method in Section[d] Section [5|contains further
remarks and future directions.
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2 PRELIMINARIES

2.1 NOTATION

Consider the following regression model:
y = u(X)+e (1)

The (n + 1) x p design matrix X is assumed to have rank r. X includes n + 1 pairs,
(X1,Y1),...,(X,,Y,)and (X, y) where (X1, Y1), ..., (X,,Y,) are observations and X is a given
data, y is unknown. Sometimes we write (X, y) as (X,,41,y) for convenience.

The error vector € has mean zero and satisfies assumptions to be specified later.

To analyze the efficiency of the prediction band, we first collect some common assumptions that will
be used throughout this paper. Further assumptions will be stated when they are needed.

A1l We observe i.i.d data (X;,Y;),i=1,...,n+ 1 from a common distribution P on R x R
with mean function p(z) = E(Y|X = x).

A2 For (X,Y) ~ P, the noise variable ¢; = Y; — u(X;) is independent of X, and the density
function of e is symmetric about 0 and nonincreasing on R .

A3 The density function of € is bounded away from zero by » > 0 in a neighborhood of its «
upper quantile.

Assumption A1 is a common assumption in the regression literature. Assumption A2 is less stringent
than the assumptions typically found in the statistical literature, as it does not necessitate that € has
a finite first moment. Furthermore, the symmetry and monotonicity conditions can be relaxed by
considering appropriate quantiles or density level sets of €; see more details in |Le1 et al.| (2018).
Assumption A3 is crucial for ensuring that the estimator of the o upper quantile of « is close to its
true value, which is essential for the proof. Specifically, the quantile function of e satisfies y-Holder
continuity at its & upper quantile with v = 1; see lemmal[]

Inspired by |Lei et al| (2018)), to quantify the efficiency of the prediction bands, we compare its
length to the idealized prediction band. Our work focuses on the linear regression model, where we
denote u(x) = 3 with the parameter vector 3 is p-dimensional. The estimator of the prediction is
represented as fi,, (z). The oracle prediction band is defined as

Cilx) = [m®) — qr—a, () + q1-a],

where ¢1 _, is the « upper quantile of £(|¢|). This band assumes complete knowledge of the regres-
sion function p(z) and the error distribution. Under Assumptions Al and A2, the band is optimal in
the sense outlined in|Lei et al. (2018):

* it is has valid conditional coverage: P(Y € C(z) | X =z) > 1 — o
* it has the shortest length among all bands with conditional coverage;

* it has the shortest average length among all bands with marginal coverage.

2.2 CONFORMAL PREDICTION

Let (X;,Y;) € RP x R,i = 1,...,n denote training samples. Given a desired coverage rate « €
(0,1), conformal prediction constructs a prediction band C,, : R? — {subsets of R} for Y;,, at
a test point X, satsifying P(Y,11 € Cr(Xp41) > 1 — @, under the assumption that all pairs
(X, Y;)?:Jrll are exchangeable. The idea behind the method is extremely simple: for each y € R,
we test if y is plausible value for Y,, 41 given (X;,Y;)? ; and X,,1; such that (X, Yi)fjll look like
exchangeable data. Since conformal prediction only relies on the assumption of exchangeability, it
is a flexible approach that can be applied using various algorithms, including those for regression,
classification, and unsupervised settings such as clustering and principal components analysis. In
this paper, we focus specifically on regression models.
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Given a model ¥ : X — R that was fitted on the dataset(X;, Y;)!_; U (X, 41,y), foreachy € R
we define nonconformity score function:

{|§/Z_ﬁy(X1)|7 izla"'7n

ly — ¥ (Xng1)l, i=n+1.

: 2)
The nonconformity score function typically involves a model-fitting process that evaluates the de-
gree of agreement between the latest input and the fitted model. A lower nonconformity score
indicates a higher concordance between the fitted model and the sample model. It is important to
note that the nonconformity score function is not unique. For example, |Lei et al.|(2018) constructed
a standardized absolute fitted residual

R =|Y; - [i(X;)| /6(x),i € I

where the conditional mean fi and conditional MAD &(x) are fit on samples in training dataset
7:, and Z, denotes the validation set. Similar improvements using quantile regression occur in
Kivaranovic et al.| (2020) and Romano et al.| (2019). We note that these improvements are based on
split conformal prediction, while this paper focuses on full conformal prediction. After that, we rank
RY | among the fitted residual RY, ..., RY |, and compute p-value:

. 1 n+1(S
P =g D Smreny ) 3)
i=1

where 4 is the indicator function. Then the prediction interval at X, is obtained by thresholding
the p-value:

Cn(Xny1) ={y:p¥ > a}. 4)
Equivalently, we can write C’n(X nt1) as
f(Xny1) £ (the[(1 — o) (n + 1)]-th smallest of (R, ..., RY . ,)). (5)

The conformal method is well-known to have finite sample and distribution-free coverage:

Proposition 1 (Vovk et al| (2005)). If (X;,Y;),i = 1,...,n arei.id. then for an new i.id. pair
(Xn+1, Yot1), we have

P (Yn+1 eC, (Xn+1)> >1—a,

If we assume additionally that for all y € R, the fitted absolute residuals {R; = |Y; — X1é|}::+11
have a continuous joint distribution, then it also holds that

P(Yypi1 € Crn(Xppr)) <1—a+ —

We note that the step and step must be repeated each time when producing a prediction
interval, which is impossible in practice. Therefore, we often use a discrete grid of trail values y or
use homotopy methods.

3 CONFORMAL PREDICTION WITH MODEL-AWARE DEBIASING

Recall the conformal prediction band constructed in Section the width of band is 277 _(|Y; —
Yi|) in where Ty _o(|Y; — Yi|) is [(1 — a)(n + 1)]-th quantile of (n + 1)=1 37 O 1vi—vi|<t}-
A natural thought is that if Y; is closer to the ground truth of Y;, the corresponding version of
nonconformity scores is likely to decrease, which may result in a narrower prediction band. More

specifically, we can alleviate the bias when constructing the nonconformity score function. We make
a small experiment on simulated data to show how it improves upon standard conformal prediction

in Fig[l]
Most models produce unavoidably biased solutions especially in high-dimensional settings, since

a point estimate & € R? must be produced from data in lower dimension. Take ridge regression
as an example, suppose the parameter of interest is a’ 3 in a linear model y = X3 + €; here,
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Figure 1: Prediction intervals on simulated data with outliers: (a) the standard conformalized ridge
regression, (b) conformalized ridge regression after debiasing, and (c) oracle prediction interval.
The length of the interval as a function of X is shown in (d). The target coverage rate is 90%. The
broken black curve in (a), (b) and (c) is the pointwise prediction from the ridge regression.

the dimension p < n, X has rank p, and a is a known vector. The ridge estimator is a”0 with
0= (XTX + p,1,) ! Xy, for some p,, > 0, with I, denoting the p-dimensional identity matrix.
Perform a thin singular value decomposition X = PAQT as in Theorem 7.3.2 in Horn & Johnson
(2012)), where P and Q is n x p and p x p orthonormal matrices and A is an p X p diagonal
matrix of full rank. Assume the error vector € consists of independent identically distributed (i.i.d.)
components. Then the bias and the standard deviation can be calculated (and controlled) as follows:

Ea’f —a’8 = —h,a’Q (A’ +h,1,) ' Q'8
which implies

pnllall2 x |82
A2+ pn

9

‘EaTé — aTﬂ’ <

Var (aTé) = \/Var (e1) x aTQ (A2 + p,I,) > A2QTa
Var (e1) |l
—_ Ap .

If || 3|2 does not have a bounded order, the bias is significantly larger than the standard deviation,
and may tend to infinity which makes prediction interval difficult (Zhang & Politis| (2022)). To
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address this issue, we account for the bias when constructing the nonconformity score function:

R} = |Yi = p(X;) + bias(u(X))|, i=1,...n, ©
RY Ly =y — (Xny1) + bias(i(Xpy1))]-
And the prediction band C, (X, 41)is

n

N 1 1
{yGR:RLJSQla<22n+1ﬁM+VH1.LM>}

i=1

The following result shows that the conformal prediction band with model-aware debiasing retains
finite sample validity.

Theorem 1. If (X;,Y;),i=1,...,nareiid., then for a new i.i.d. pair (X, 11, Yni1)-
PQhﬂeémmwXMg)z1—m

If we assume additionally that for all y € R, the fitted absolute residuals {Rl}?j‘ 11 have a continuous
Jjoint distribution, then it also holds that

P (}/n c C«Dehias X’n ) <1_ )
+1 (Xn41)) < 04+n+1

The bias-correction step of the nonconformity score function remains the exchangeability within
training data and test data. Therefore, the proof of this theorem is similar to the classical conformal
prediction, and we omit it here. We note that the bias is usually unknown unfortunately. So it is
often replaced by its estimation in practice.

3.1 CONFORMALIZE THRESHOLD RIDGE REGRESSION WITH MODEL-AWARE DEBIASING

In high-dimensional models, linear regression is the most common example. As noted by |Zhang &
Politis| (2022)) and |Shao & Deng|(2012), threshold ridge regression is computationally much simpler
than methods such as the LASSO(Tibshirani| (1996))), SCAD(Fan & Li| (2001)) and the ENET(Zou
& Hastie| (2005)) and may be preferable in some settings. Based on the above discussion, we give
results about coverage guarantee and efficiency on threshold ridge regression in this section. It
reduces to the classical ridge regression model as the threshold parameter approaches zero. Con-
formal prediction can be easily applied to the ridge regression model using the homotopy method
described by |[Vovk et al.|(2005), and its efficiency has been well-studied by Burnaev & Vovk](2014).
The procedure for applying conformalized threshold ridge regression with model-aware debiasing
is summarized in Algorithm I

Perform a thin singular value decomposition X = PAQ" as before, where P and Q is n x r and
p X r orthonormal matrices, and A is an r x r diagonal matrix. Denote Q, as the p X (p — 1)
orthonormal complement of Q, which satisfies the following properties:

Q'Q.=1,,, Q"Q. =0 and QQ"+Q.Q7 =1,.

Here, the matrix of zeros is of appropriate dimensions. Define 8 = QQ'Band 8, = Q_ Qf 3,
so B3 = 0 + 0. According to Shao & Deng| (2012)), the ridge regression estimate 6 rather than
B. If the design matrix X has rank p < n, then Q does not exist and we set 8, = 0 in this
case. For a chosen ridge parameter h,, > 0, we define the classical ridge regression estimator as

6= (XTX + hnIp) -1 XTy. For a threshold a,,, we define the set and the estimator éz as follows:
Man = {Z ‘ ‘91‘ > an}, éi = él X 1i€Ma-,L' (7)

Let ¢,, denote the number of elements in the set M, . We define ¢;, = > JEMa, TijQik, Vi =
1,...n,k=1,...,r, where Q = (qjk)]:l,__.m,,k=1,_“7,«. In the threshold ridge regression model, we
define threshold estimator 8* by letting the components of 8 whose absolute value less than or equal
to the threshold parameter a,, be zero.

Besides the conditions in Section 2.2, we need some additional assumptions.
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Algorithm 1 Conformalize Threshold Ridge Regression with Model-Aware Debiasing
Input:
Data (X;,Y;),7 = 1, ..., n, prescribed error level «, threshold parameter a,, and ridge parameter
B, points Xpew = {Xpn+1, Xnt2, ...} which are to construct prediction bands
Output:
Prediction bands at each points in Xy
1: for x € Xpew, do
2 Set® = (XTX+h,I,) ' X Ty and calculate M,
3:  Calulate the hat matrix H := PA[(A% + h, L)' + h,(A? + h,1,)"2]JAPT, where the
elements in ¢-th row are zeros, ¢ € M,
4 SetA = (ay,...,tns1) == Tnr1 — H) (Y1, Yn,0) T
5. SetB=(by,....bpy1) " i= Iy — H)(0,...,0,1) T
6: fori=1,...,ndo
7.
8

if b7,+1 — b7 > (0 then
: set u; 1= lz = (ai — an+1)/(bn+1 — bl)
9: else

10: set u; := oo and [; := —00
11: end if
12:  end for

13: sortuy,...,u, and [y, ..., 1, in the ascending order obtaining wy), ..., U(n) and lqy, ..., l(n)

Cn () = [l(|(a/2)(n+1)))> U(T(1—a/2)(n+1)])]
14: end for

15: return C,(z) for each points in Xy

B1 The largest positive eigenvalue \; and smallest positive eigenvalue A, of X " X, satisfies
Ar=0(n"), 0<n<1andn does not depend on n.

B2 We assume that
18] = O (n*¢), 0 < ay < 4nand oy does not depend on n.

B3 The ¢; is assumed that
E|e;|™ < 0o for an even integer m not depending on n.

B4 The dimension is assumed as
p = O (n°?), a;, does not depend on n.

BS We assume the ridge parameter that
hn = O0(n?17%),  ay —n < §and E22 <.

B6 We assume the threshold parameter that
an =0(n"%),aq > 0and g + 52 — 1 < 0.
Furthermore, we assume 3 a constant 0 < ¢, < 1 such that max;¢ x4, . 16;] < ¢4 X an, and
mine p,,, [0i = 22

B7 We assume there exists a constant C,,,, > 0 such that 22:1 cfk < Cay -

These assumptions are common in the statistical literature. Assumption Bl guarantees that the
smallest positive eigenvalue of X " X ensures the covariance matrix is well-conditioned and the re-
gression problem is stable with respect to small perturbations in the data. Examples satisfying the
condition are provided Bai & Yin/(2008)). In high-dimensional regression contexts, the sparsity of 3
implies the sparsity of @; thus, we impose a sparsity condition on 8 as outlined in Assumption B2.
Assumption B3 ensures that our estimators are robust to extreme values, facilitating consistent sta-
tistical inference even in high-dimensional or small-sample settings. Furthermore, this assumption
can be substituted with a normality condition, which is a specific case of the broader assumption.
Assumption B4 requires that the dimension of the parameter vector p diverges at a polynomial rate,
which can be much larger than n. Assumptions B5, B6, and B7 are similar to the conditions pre-
sented in Zhang & Politis| (2022), but they are formulated in a more relaxed manner here. We note
that these assumptions impose restrictions on the estimators obtained from threshold ridge regres-
sion. Even if they are violated, the prediction intervals derived from our method still satisfy marginal
validity.
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The following result shows the efficiency of prediction intervals produced by the standard conformal
prediction in threshold ridge regression.

Theorem 2. Fix o € (0,1), and let C’ThCRR denote the conformal interval of the threshold ridge
regression. Under assumptions Al1-A3 and BI1-B7, we have

Width <C’ThCRR(Xn+1)) —2g1_0 = O, (n®7). ®)

Theorem 2] demonstrates that the conformal interval converges to the oracle prediction band if oy <
0 as n — oo. Unfortunately, oy is typically not greater than §, and thus the efficiency of the
conformal interval generally lacks theoretical guarantees without stringent assumptions, such as
sampling stability, perturbation sensitivity, and consistency of the base estimator, as discussed in|Lei
et al.[|(2018)).

To mitigate the bias of the estimator, we define the debiased nonconformity score function as fol-

lows: . . )
RY =Y = X;0" — hn X;Q(A* + h,1,)7'QTO7|, i=1,..,n,

. . . ©))
Rzrlz-&-l = |y = Xp10" — han+1Q(A2 + hnI7')_1QT0*|~
And the prediction band CRi (X, 1) is (X110 — hy Xy 1Q(A2 + R, 1) "' QT 0%+ the [(1—
«)(n + 1)]-th smallest of(RY, ..., RY  |)). The efficiency of the intervals generated by conformal
prediction with model-aware debiasing in threshold ridge regression is outlined as follows:

Theorem 3. Fix o € (0,1), and let C’%fcbjgg denote the conformal interval through model-aware
debiasing in the threshold ridge regression. Under the same conditions as in Theorem[2] we have

Width ( }l?,fcb;'g,g(xnﬂ)) —2q1_0 = O,(n"). (10)

Since 7 is usually positive, the interval produced by our method converges to the oracle prediction
interval in|Lei et al.| (2018) at a certain rate, whereas the classical conformal interval may not. The
proof of Theorem [3|is presented in Appendix

Finally, we return to the discussion of the validity of prediction intervals. While the marginal validity
is established by Theorem |1} we seek stronger assurances. To this end, we leverage the definition
of asymptotic conditional validity from [Lei et al.| (2018) to demonstrate that our proposed method
possesses asymptotic conditional validity under certain conditions.

Definition 1. We say that prediction bands have asymptotic conditional coverage at the level (1— )
if there exist random sets A, C R such that P (X, 11 € A, | A,) =1 —0,(1) and

sup  |P(Y € Cn(Xpt1) | Xpg1 = zng1) — (1 —a)| = 0,(1)
Xnt1€A,

The following theorem shows that the prediction interval produced by our method has asymptotic
conditional coverage at the level 1 — a.

Theorem 4. Under the same condition in Theorem 3] we have
L(Chigia(Xnt1) A& C(x)) = 0,(1) (11)

where L(-) denotes the Lebesgue measure and /\ denotes the symmetric difference between two sets.

4 NUMERICAL SIMULATIONS

In this section, we systematically compare the conformalize threshold ridge regression with model-
aware debiasing with the standard conformal prediction version and the hybrid bootstrap method
Zhang & Politis| (2022), focusing on different p/n ratio. We conduct experiments on five bench-
mark datasets for the case where n > p: facebook_1(n=754, p=53), facebook_2(n=814, p=53),
bio(n=458, p=9), bike(n=1089, p=18) and concrete(n=510, p=8). For the scenario where n < p,we
perform experiments on two additional benchmark datasets. These datasets were previously also
considered by Romano et al.|(2019).
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For ease of interpretation, we center and scale the features to achieve zero mean and unit variance,
while scaling the response variables by dividing them by their mean absolute value. We report four
key metrics: the average coverage, the average length of the prediction set, and their respective
standard errors. In addition, we measure conditional coverage and results are shown in Appendix
These performance metrics are averaged over 20 different training-test splits, with 90% of the
data used for training and the remaining 10% reserved for testing. Throughout the experiments, the
nominal miscoverage rate is fixed at « = 0.1. In our data examples, the optimal ridge parameter h,,
and threshold a,, are determined by 5-fold cross-validation.

Table 1: Comparison of prediction intervals when n < p. The nominal miscoverage rate is fixed
at « = 0.1. "CRR’ abbreviates *Conformalized threshold ridge regression”, "DeCRR” abbreviates
’Conformalized threshold ridge regression with model-aware debiasing’, and 'Boot_DeRR’ abbrevi-
ates Bootstrap method in debiased threshold ridge regression. The standard errors are in parantheses.

Case Dataset Method Coverage Length

CRR 0.932(0.008) 4.262(0.177)

facebook_1 DeCRR 0.921(0.0145)  4.121(0.219)

Boot_.DeRR  0.902(0.000) 7.152(0.397)

CRR 0.885(0.006) 4.174(0.259)

facebook_2 DeCRR 0.876(0.012) 4.100(0.299)
Boot_.DeRR  1.000(0.000)  202.834(5.574)

CRR 0.978(0.001) 2.195(0.049)

n>p bio DeCRR 0.967(0.010) 2.118(0.096)

Boot_DeRR  0.660(0.010) 2.926(0.058)

CRR 0.900(0.011) 2.452(0.010)

bike DeCRR 0.900(0.005) 2.439(0.014)

Boot_.DeRR  0.812(0.012) 3.056(0.095)

CRR 0.912(0.020)  0.962(0.0128)

concrete DeCRR 0.913(0.015) 0.958(0.011)

Boot_DeRR  0.461(0.041) 1.795(0.033)
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Figure 2: Length of prediction intervals on the facebook_1 and bio datasets when n > p.

Table[T|and Fig[2]summarize the results of the first case. The average coverage of prediction intervals
produced by the bootstrap method in Zhang & Politis| (2022) is notably high, sometimes reaching
up to one in the facebook_2 dataset. However, this comes at the expense of a larger interval length,
as the intervals generated by this method are significantly wider than those produced by conformal
methods, particularly in the facebook_2 dataset, rendering them nearly impractical. Additionally,
the coverage exhibits high variability, which is undesirable in practical applications.

In contrast, the coverage of the conformal intervals is more stable and approaches the target value
of 90%. Furthermore, the experiments consistently demonstrate that, on the one hand, conformal
methods yield shorter intervals compared to the bootstrap method. On the other hand, following the
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bias correction step, the intervals become even shorter than a standard conformal prediction, thereby
confirming that our method enhances the efficiency of the prediction intervals while retaining finite-
sample coverage.

Table 2: Comparison of prediction intervals when n < p.

Case Dataset Method Coverage Length
CRR 0.993(0.025) 2.274(0.054)
community DeCRR 0.987(0.034) 2.152(0.114)
Boot_ DeRR  1.000(0.000) 3.577(0.092)
CRR 0.933(0.001) 3.206(0.326)
n <p blog_data DeCRR 0.933(0.001) 2.901(0.336)
Boot_ DeRR  0.934(0.001) 8.197(0.186)
community blog_data
45 7
< 4.0 5 6
D <)
E 35 § s
3.0
4 .
25 !
—— I — ==
20 = ’ =
CRR DeCRR Boot_DeRR CRR DeCRR Boot_DeRR
Method Method

Figure 3: Prediction intervals on two benchmark datasets when n < p.

Table 2| and Fig [3| summarize the results of the second case. A similar observation is that, on
average, our method produces shorter prediction intervals compared to both the standard conformal
prediction and the bootstrap method while successfully constructing prediction bands at the nominal
coverage rate of 90%.

5 CONCLUSION

In this paper, we propose conformal prediction with model-aware debiasing as a novel approach that
leverages known information from the data to formulate the debiasing nonconformity score function
and leaves the unknown aspects to the conformal prediction framework. Our method enhances
the efficiency of prediction intervals while preserving finite-sample coverage. Notably, it achieves
stronger validity, including asymptotic conditional coverage under some conditions.

We plan to extend this concept to more general settings. Such an extension of conformal prediction
holds promise not only for regression problems but also for classification and other unsupervised
learning tasks, such as clustering. Specifically, we aim to enhance our method to estimate a pre-
dictive probability distribution (see more details in |Izbicki et al.[(2022)) using a bias correction ap-
proach, rather than merely providing interval estimates. This is particularly important since oracle
prediction intervals can often be quite large, especially in the context of mixed models. Therefore,
we propose considering the highest predictive density set as the oracle prediction band. This pre-
dictive set requires minimal assumptions and represents the smallest Lebesgue measure with local
validity and asymptotic conditional validity, thereby facilitating improved performance in a broader
range of scenarios.

10
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A LEMMAS AND PROOFS

Lemma 1. [f the density of |Y — X8| is bounded below by | > 0 in a neighborhood of its o upper
quantile, then F{l is Holder continuous on this neigborhood with ~y-Hélder constant 1/l and v = 1.

Proof. Assume the density of |Y — X 6] is bounded from below from by [ > 0 in a neighborhood of

its o upper quantile [F, " (ga(0) — "), Fy " (ga(6) + 1*)] for some I* > 0, then for any q1,¢» €

[¢a(0) — 1%, 90 (0) + I*], assume WLOG that g» > ¢,
i (@) = Fyt(q) = {ta—t1 : P(IY — X8| < t9) = 2, P(|Y — XO| < 1) =q1 }
é {tQ _tl ]P(|Y —X0| S (t17t2]) = Q2 —ql}
<{ta—t1:1(ta —t1) <P(|Y — X0| € (t1,t2]) = 2 — 1}
<(¢2—aq)/l

Lemma 2. For two cumulative distribution functions Fy and F5, set
A =sup |Fiy(t) - B(t)]-
IFF7Y(), Fy (o) exist, and Fy '(-) is y-Hélder continuous on [q — A, q + A for v € (0,1), then

it holds that
[Fr () — Fy ' (g)] < A7,

where £ is the Holder continuity constant.

Proof. Note that
|Fy (F(9) — Fo (FH(9)| < A

=q-A<F(F () <qg+A

=Fy (g —A) S Fri(e) < By g+ A).
Therefore, using the Holder continuity assumption, we obtain

Fii(a) = Fy H(a) < By (g +A) = Fyl(g) < 2AY
and
Fi'(q) = F Y (g) > Fy (g —A) = Fy ' (g) > —£A7.

Hence the proof is completed. O

Lemma 3. Denote F,, is the empirical CDF of |Y;— X, 0|, and F}, is the empirical CDF of|Yi—X7;é|.

On the event {|Xzé — X;0| < pn}, we have

[EN ) = F N ()] < pn, VEE[0,1].

n
Proof. On the event {|X;0 — X;0| < p,}, we have |Y; — X;0| — |Y; — X;0| < p,. Therefore
according to the definition of the empirical CDF, we have

F’fL(t - pn) S Fn(t) S Fﬁ(t + pn)
Assume that t; and ¢, are the ¢ € [0, 1] quantiles of F, (¢) and F, (t) respectively, that is, for Ve > 0,

Fn(tl - 6) < quanan(tl) 24q,
Fa(ts — €) < q,andF,(t2) > q.

Since ¢ < F,(t1) < Fy(t1+pn), we have to < t1+ p,. Similarly, we have t; < t5+ p,,. Therefore,
[Fu(t)™ = F ' (0)] < pn,  VEE[0,1].
O

13
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Lemma 4. Suppose random variables €1, . .. , €, are i.i.d., Fey = 0, and 3 a constant m > 0 such
that E |e;|"™ < co. In addition suppose the matrix T' = (7vi;),_, 5 & i=1.2,. . Satisfies

n
2
200 = DD >0

Then 3 a constant Eqy which only depends on m and E |e1|™ such that for ¥§ > 0,

kED™/?
max E vij€i| >0 | < s
Proof. From theorem 2 in|Whittle (1960), for any ¢ = 1,2, ...k,
B|Sr e 2remElam (Sq2) "
- j=1"7ij€j " €1 ( Jj= 1%]) QmC(m)E|61|m Dm/2
P 27 :"Yijej >0 < gm < om = am

Choose Ey = 2" C(m)E |e1|™

- kE,D™/?
. r1n2ax Z%JGJ >4 <ZP Z%jej >0 gT

B PROOFS OF THEOREMS

Proof of Theorem 2] We calculate
6-0=X"X+h,L) ' XTy—8
= Q(A® +1,1,)"'APT(PAQ"B+¢) - QQ'3 (12)
= —h, Q(A* + 1, 1) ¢ + QA% + b, 1) TTAP e,

where ¢ = Q' 3. Denote /\//Yan = {z | 16;] > an}, we have

P(Ma, # Ma,) < P( i 0] < an) + P( max [6:] > an)

an an

_ ql]Cj o %]
<P Zenjr\l}ln |9\ max |h Z)\2+h Z_e |Z)\2+h ZPZJ61|<an

i Cj qu
+P énj\?{X |0 |+ H}\%X |hn2m g_/\/[ |Z )\2 —|—h Zplj€l| > an 5

(13)
From Cauchy inequality,
4G5 - - ]2 5
[3 2 _ Qg —
o 'hnz Ny b S e | Dy D gy = 00,
j=1 j=1 Y17
(14)
n T r 212 T 2
QijAj 9 05 A Zj:l 4i;
N2 = W< ==
1—1111?-)-(,19 1(]:1 )\? +h Pis) mgxp; (>\3 +h,)? 1:r111ax7p N

14
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Therefore, for sufficiently large n, from Assumption B5 and B6, we have

i€, 1.1
Jin 03] — max x | Z/\erz an 2 (o= = Dan,
5)
an —lénj\;alx 16;| — max |h Z )\;II_J’_C;I (1 — Cq) .
From lemma[d] there exist constants F'; and E» depending on m such that
|Ma, | x Ey (p—[Ma,l|) x Eo —mn+
(Ma,, 7é Ma,,) ~ s + 7 — O(nap mn maa)'
A7 x (5(oc = Dan)™ AP x (3(1 = ca)an)™
(16)
From Assumption B6, we verified the consistency of variable selection.
If /\//\lan = Many
X0 — X,0] < hnzr:cij/\Q_LLCj|+zT:Cij)\2)_;jfb zn:pqu‘ )
j=1 J n j=1 J L)
From Cauchy inequality and lemma 4,
T 1 T T
|hn20ijm@‘\ < hn ZC?J- Z )\2 T, =0(n%). (18)
j=1 J n j=1 j=1
n T )\ . n T )\2 CN'
S5 e Lol = Y g < S
=1 j=1 Aj o+ i =1 j=1 ()‘j +ha) A
r n E(>"_ Coi— S pel)™
s J=1"% X2 4-h,, £el=114
P(IZczjm szjel| >0) < o (19)
j=1 J
2mC(m)Ele|™ (3252, cij ,\2+h > o)) _ 2™ C(m)Ele " Oy
- om - omAm
2
Choose a constant C' = 2™C(m)FE|e;|™, we have | Y7, Cij)@./-\fijﬁn S pal = Op(n™M).

Therefore, we prove | X;0 — X,;0| = Op(n® =% 4+ n~") = 0, (n*~°) according to Assumption
B5.

Since |Y; — X;0| — |Y; — Xlé| < \Xlé — X;0|, for Ve € (0, 1), there exist a constant c3 > 0 such
that
IY; — X,0) — |Y; — Xi0] < csn® 0 i=1,...n, (20)

with at least 1 — e probability.

CDF of |Y; — X10A| and F7 is its distribution function. In the following proof, we will achieve our
conclusion through three main steps: first we clarify the relationship between F(;l and I} ! Next
use DKW Theorem bound the discrepancy between the inverse of the empirical distribution and the
true distribution, then analyze the relationship between the two empirical distributions, and finally
combine the results of the previous steps to conclude the proof.

From (20) we have
[Fu(t) — Fo(h)]| = P(|Yi — X8| < t) — P([Y; — X,6| < 1)
< P(|Y; — X8| —c3n®~° < t) — P(|Y; — X,;0| < t) 1)

< regn® 9.

15
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On the event |Y; — X;0| — |Y; — X;0| < csn® 9, using lemmaand lemmawe obtain |F; (1 —
a) — F; (1 — a)| < eqn® 9, where ¢4 > 0 is a constant. According to lemma we obtain

[F (1 =) = F N (1= a)| = Op(n™ ). (22)
Applying the Dvoretzky—Kiefer—Wolfowitz (DKW) inequality, we have
[F (L= a) = Fy (1 - a)| = Op(n~1/2),

23
F7 (1= @) = F (1 - )] = Op(n2). -

Therefore, combining with above inequalities , , and , we have |F 1(1 —a) —
Gi—o| = Op(no“’*‘s). O

Proof of Theorem[3] First we define
0=0"+h.X:Q(A* + 1h,1,)7'QTH", (24)
and the debiased conformal prediction band is given by
X,,0 + the [(1 — a)(n 4 1)]-th smallest of (RY, ..., RY. ).
We calculate

6—60=—h2Q(A* + h,L)"%¢ + Q((A? + hy L) 'A + hyy (A% + 2, L) 2A)P e, (29)

Following the analysis of Theorem 2, we have
|X:0 — X;0] = 0,(n" "2 + ") = Op(n™"), (26)

where ap — 29 < —n according to Assumption B5, and «y and § are constants defined under the
assumptions.

Since |Y; — X, 0| — |Y; — Xié| < |Xi0~ — X, 0], denote F}, as the empirical CDF of |Y; — Xié|, and
Fj as its corresponding distribution function. For any € € (0, 1), there exists a constant ¢5 > 0 such
that

IY; = Xi0| = |Yi = Xi6|| <csn”™, i=1,...,n, 27)
with at least 1 — e probability.
Similarly to Theorem 2, we derive
IFy(t) — Fo(t)] = P(IY; — X.6] < t) — P()Y; - X,6] < 1)
< P(|Y; — Xi0| —csn™" < t) — P(|Y; — X,0| < t)
<resn~ ", (28)
where r is a constant defined under the assumptions.
Using Lemma([I]and Lemma 2] we establish
|F; 1 (1—a) — Fy ' (1 — a)| = Op(n® =), (29)
Applying Lemma 3] we deduce
[Fo (1= a) = F, (1 - a)| = Oy(n* ). (30)

Finally, invoking the Dvoretzky—Kiefer—Wolfowitz (DKW) inequality, we have
[ (1—a) = Fy ' (1—a)| = Op(n~'/?). (31)

Combining these results, we conclude that

Width(CRigik (X)) = 2q1-a = Op(n").

16
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Proof of Theoremd We follow the methodology outlined in Theorem 3.4 of (2018). The
proof is divided into two main parts: first, we demonstrate that the center of the prediction interval
derived from our method is asymptotically close to the center of the oracle prediction interval;
second, we show that the lengths of the two intervals are also asymptotically equivalent.

Indeed, we establish that the center of the prediction interval, X, 16, is close to the oracle center,
X, 4+16. This claim can be rigorously verified using Equation (26). Next, we analyze the length of
the prediction interval. This part directly follows from Theorem [3] which provides the necessary
bounds and asymptotic equivalence for interval lengths.

By combining these two results, we conclude that the prediction interval constructed by our method
asymptotically matches the oracle prediction interval in both center and length, completing the proof.

O

C ADDITIONAL EXPERIMENTAL RESULTS

We present some additional experiments here. As mentioned in Sectiond] we conduct conformal-
ized threshold ridge regression, debiased conformalized threshold ridge regression, and debiased
threshold ridge regression using bootstrap on seven benchmark datasets. Details about mean and
standard deviation are presented in Table m visual results about bike, concrete and facebook_2 can
be seen in Fig[d] These datasets are described in Section 4]

To demonstrate performance of our method, we measure conditional coverage on three datasets,
bike, community and concrete, which include the cases n < p and n > p. And we compare our
method with more different methods: conformalized threshold ridge regression, debiased confor-
malized threshold ridge regression, boostrap, conformalized quantile regression, NuSVR and split
conformalized ridge regression. Results are shown in Fig[7] [§]and [0
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Figure 4: Length of prediction intervals on the benchmark dataset bike.
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Figure 5: Length of prediction intervals on the benchmark dataset concrete.
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Figure 6: Length of prediction intervals on the benchmark dataset facebook_2.
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