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Abstract

In many machine learning tasks, a common approach for dealing with large-scale
data is to build a small summary, e.g., coreset, that can efficiently represent the
original input. However, real-world datasets usually contain outliers and most ex-
isting coreset construction methods are not resilient against outliers (in particular,
an outlier can be located arbitrarily in the space by an adversarial attacker). In this
paper, we propose a novel robust coreset method for the continuous-and-bounded
learning problems (with outliers) which includes a broad range of popular op-
timization objectives in machine learning, e.g., logistic regression and k-means
clustering. Moreover, our robust coreset can be efficiently maintained in fully-
dynamic environment. To the best of our knowledge, this is the first robust and
fully-dynamic coreset construction method for these optimization problems. An-
other highlight is that our coreset size can depend on the doubling dimension of
the parameter space, rather than the VC dimension of the objective function which
could be very large or even challenging to compute. Finally, we conduct the exper-
iments on real-world datasets to evaluate the effectiveness of our proposed robust
coreset method.

1 Introduction

As the rapid increasing of data volume in this big data era, we often need to develop low-complexity
(e.g., linear or even sublinear) algorithms for machine learning tasks. Moreover, our dataset is often
maintained in a dynamic environment so that we have to consider the issues like data insertion and
deletion. For example, as mentioned in the recent article [20], Ginart et al. discussed the scenario
that some sensitive training data have to be deleted due to the reason of privacy preserving. Obvi-
ously, it is prohibitive to re-train our model when the training data is changed dynamically, if the
data size is extremely large. To remedy these issues, a natural way is to construct a small-sized
summary of the training data so that we can run existing algorithms on the summary rather than
the whole data. Coreset [18], which was originally studied in the community of computational
geometry [1], has become a widely used data summary for many large-scale machine learning prob-
lems [7, 27, 34, 38, 36, 25]. As a succinct data compression technique, coreset also enjoys several
nice properties. For instance, coreset is usually composable and thus can be applied in the environ-
ment like distributed computing [28]. Also, it is usually able to obtain small coresets for streaming
algorithms [23, 15] and fully-dynamic algorithms with data insertion and deletion [10, 24].
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However, the existing coreset construction methods are still far from being satisfactory in practice.
A major bottleneck is that most of them are sensitive to outliers. We are aware that real-world dataset
is usually noisy and may contain outliers; note that the outliers can be located arbitrarily in the space
and even a single outlier can significantly destroy the final machine learning result. A typical exam-
ple is poisoning attack, where an adversarial attacker may inject several specially crafted samples
into the training data which can make the decision boundary severely deviate and cause unexpected
misclassification [5]. In the past decades, a number of algorithms have been proposed for solving
optimization with outliers problems, like clustering [11, 14, 12, 21, 42], regression [39, 37, 17], and
PCA [8].

To see why the existing coreset methods are sensitive to outliers, we can take the popular sampling
based coreset framework [19] as an example. The framework needs to compute a “sensitivity” for
each data item, which measures the importance degree of the data item to the whole data set; how-
ever, it tends to assign high sensitivities to the points who are far from the majority of the data, that is,
an outlier is likely to have a high sensitivity and thus has a high chance to be selected to the coreset.
Obviously, the coreset obtained by this way is not pleasant since we expect to contain more inliers
rather than outliers in the coreset. It is also more challenging to further construct a fully-dynamic ro-
bust coreset. The existing robust coreset construction methods [19, 26] often rely on simple uniform
sampling and are efficient only when the number of outliers is a constant factor of the input size
(we will discuss this issue in Section 3.1). Note that other outlier-resistant data summary methods
like [21, 13] usually yield large approximation factors and are not easy to be maintained in a fully
dynamic scenario, to our knowledge.

1.1 Our Contributions

In this paper, we propose a unified fully-dynamic robust coreset framework for a class of opti-
mization problems which is termed continuous-and-bounded (CnB) learning. This type of learning
problems covers a broad range of optimization objectives in machine learning [41, Chapter 12.2.2].
Roughly speaking, “CnB learning” requires that the optimization objective is a continuous function
(e.g., smooth or Lipschitz), and meanwhile the solution is restricted within a bounded region. We
emphasize that this “bounded” assumption is quite natural in real machine learning scenarios. To
shed some light, we can consider running an iterative algorithm (e.g., the popular gradient descent
or expectation maximization) for optimizing some objective; the solution is always restricted within
a local region except for the first few rounds. Moreover, it is also reasonable to bound the solution
range in a dynamic environment because one single update (insertion or deletion) is not likely to
dramatically change the solution.

Our coreset construction is a novel hybrid framework. First, we suppose that there exists an ordi-
nary coreset construction method A for the given CnB optimization objective (without considering
outliers). Our key idea is to classify the input data into two parts: the “suspected” inliers and the
“suspected” outliers, where the ratio of the sizes of these two parts is a carefully designed parameter
λ. For the “suspected” inliers, we run the method A (as a black box); for the “suspected” out-
liers, we directly take a small sample uniformly at random; finally, we prove that these two parts
together yield a robust coreset. Our framework can be also efficiently implemented under the merge-
and-reduce framework for dynamic setting (though the original merge-and-reduce framework is not
designed for the case with outliers) [4, 23]. A cute feature of our framework is that we can easily
tune the parameter λ for updating our coreset dynamically, if the fraction of outliers is changed in
the dynamic environment.

The other contribution of this paper is that we propose two different coreset construction methods
for CnB optimization objectives (i.e., the aforementioned black box A). The first method is based on
the importance sampling framework [19], and the second one is based on a space partition idea. Our
coreset sizes depend on the doubling dimension of the solution space rather than the VC (shattering)
dimension. This property is particularly useful if the VC dimension is too high or not easy to
compute, or considering the scenarios like sparse optimization (the domain of the solution vector
has a low doubling dimension). To our knowledge, the only existing coreset construction methods
that depend on doubling dimension are from Huang et al. [26] and Cohen-Addad et al. [16], but their
results are only for clustering problems. Our methods can be applied for a broad range of widely
studied optimization objectives, such as logistic regression [38], Bregman clustering [2], and truth
discovery [31]. It is worth noting that although some coreset construction methods for them have
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been proposed before (e.g., [33, 38, 43, 17, 25]), they are all problem-dependent and we are the first,
to the best of our knowledge, to study them from a unified “CnB” perspective.

2 Preliminaries

We introduce several important notations used throughout this paper. Suppose P is the parameter
space. Let X be the input data set that contains n items in a metric space X , and each x ∈ X has a
weight w(x) ≥ 0. Further, we use (X, z) to denote a given instance X with z outliers. We always
use | · | and J·K respectively to denote the number of data items and the total weight of a given data
set. We consider the learning problem whose objective function is the weighted sum of the cost over
X , i.e.,

f(θ,X) :=
∑
x∈X

w(x)f(θ, x), (1)

where f(θ, x) is the non-negative cost contributed by x with the parameter vector θ ∈ P . The goal
is to find an appropriate θ so that the objective function f(θ,X) is minimized. Usually we assume
each x ∈ X has unit weight (i.e., w(x) = 1), and it is straightforward to extend our method to
weighted case. Given the pre-specified number z ∈ Z+ of outliers in X (for weighted case, “z”
refers to the total weight of outliers), we then define the “robust” objective function:

fz(θ,X) := min
O⊂X,JOK=z

f(θ,X\O). (2)

Actually, the above definition (2) comes from the popular “trimming” idea [39] that has been widely
used for robust optimization problems.

Below we present the formal definition of continuous-and-bound learning problem. A function
g : P → R is α-Lipschitz continuous if for any θ1, θ2 ∈ P , |g(θ1) − g(θ2)| ≤ α∥∆θ∥, where
∆θ = θ1 − θ2 and ∥ · ∥ is some specified norm in P .

Definition 1 (Continuous-and-Bounded (CnB) Learning [41]). Let α, ℓ > 0, and θ̃ ∈ P . Denote
by B(θ̃, ℓ) the ball centered at θ̃ with radius ℓ in the parameter space P . An objective (1) is called
a CnB learning problem with the parameters (α, ℓ, θ̃) if (i) the loss function f(·, x) is α-Lipschitz
continuous for any x ∈ X , and (ii) θ is always restricted within B(θ̃, ℓ).
Remark 1. We can also consider other variants for CnB learning with replacing the “α-Lipschitz
continuous” assumption. For example, a differentiable function g is “α-Lipschitz continuous gra-
dient” if its gradient ∇g is α-Lipschitz continuous (it is also called “α-smooth”). Similarly, a
twice-differentiable function g is “α-Lipschitz continuous Hessian” if its Hessian matrix ∇2g is
α-Lipschitz continuous. In this paper, we mainly focus the problems under the “α-Lipschitz continu-
ous” assumption, and our analysis can be also applied to these two variants via slight modifications.

We define the coreset for CnB learning problems below.
Definition 2 (ε-coreset). Let ε > 0. Given a dataset X ⊂ X and the objective function f(θ,X), we
say that a weighted set C ⊂ X is an ε-coreset of X if for any θ ∈ B(θ̃, ℓ), we have

|f(θ, C)− f(θ,X)| ≤ εf(θ,X). (3)

If C is an ε-coreset of X , we can run an existing optimization algorithm on C so as to obtain an
approximate solution. Obviously, we expect that the size of C to be as small as possible. Follow-
ing Definition 2, we also define the corresponding robust coreset (the similar definition was also
introduced in [19, 26] before).
Definition 3 (robust coreset). Let ε > 0, and β ∈ [0, 1). Given the dataset X ⊂ X and the objective
function f(θ, x), we say that a weighted dataset C ⊂ X is a (β, ε)-robust coreset of X if for any
θ ∈ B(θ̃, ℓ), we have

(1− ε)f(1+β)z(θ,X) ≤ fz(θ, C) ≤ (1 + ε)f(1−β)z(θ,X). (4)

Roughly speaking, if we obtain an approximate solution θ′ ∈ P on C, its quality can be preserved
on the original input data X . The parameter β indicates the error on the number of outliers if using
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θ′ as our solution on X . If we set β = 0, that means we allow no error on the number of outliers. In
our full paper [44], we present our detailed discussion on the quality loss (in terms of the objective
value and the number of outliers) of this transformation from C to X .

The rest of this paper is organized as follows. In Section 3, we introduce our robust coreset
framework and show how to implement it in a fully-dynamic environment. In Section 4, we propose
two different ordinary coreset (without outliers) construction methods for CnB learning problems,
which can be used as the black box in our robust coreset framework of Section 3. Finally, in Section 5
we illustrate the application of our coreset method in practice. Due to the space limit, some proofs
and the more detailed experimental results are placed in our full paper [44].

3 Our Robust Coreset Framework

We first consider the simple uniform sampling as the robust coreset in Section 3.1 (in this part, we
consider the general learning problems without the CnB assumption). To improve the result, we
further introduce our major contribution, the hybrid framework for robust coreset construction and
its fully-dynamic realization in Section 3.2 and 3.3, respectively.

3.1 Uniform Sampling for General Case

As mentioned before, the existing robust coreset construction methods [19, 26] are based on uni-
form sampling. Note that their methods are only for the clustering problems (e.g., k-means/median
clustering). Thus a natural question is that whether the uniform sampling idea also works for the
general learning problems in the form of (1). Below we answer this question in the affirmative. To
illustrate our idea, we need the following definition for range space.
Definition 4 (f -induced range space). Suppose X is an arbitrary metric space. Given the cost
function f(θ, x) as (1) over X , we let

R =
{
{x ∈ X : f(θ, x) ≤ r} | ∀r ≥ 0,∀θ ∈ P

}
, (5)

then (X ,R) is called the f -induced range space. Each R ∈ R is called a range of X .

The following “δ-sample” concept comes from the theory of VC dimension [32]. Given a range
space (X ,R), let C and X be two finite subsets of X . Suppose δ ∈ (0, 1). We say C is a δ-sample
of X if C ⊆ X and ∣∣∣∣ |X ∩R|

|X|
− |C ∩R|

|C|

∣∣∣∣ ≤ δ for any R ∈ R. (6)

Denote by vcdim the VC dimension of the range space of Definition 4, then we can achieve a δ-
sample with probability 1 − η by uniformly sampling O( 1

δ2 (vcdim + log 1
η )) points from X [32].

The value of vcdim depends on the function “f”. For example, if “f” is the loss function of logistic
regression in Rd, then vcdim can be as large as Θ(d) [38]. The following theorem shows that a δ-
sample can serve as a robust coreset if z is a constant factor of n. Note that in the following theorem,
the objective f can be any function without following Definition 1.
Theorem 1. Let (X, z) be an instance of the robust learning problem (2). If C is a δ-sample of X
in the f -induced range space. We assign w(c) = n

|C| for each c ∈ C. Then we have

fz+δn(θ,X) ≤ fz(θ, C) ≤ fz−δn(θ,X) (7)

for any θ ∈ P and any δ ∈ (0, z/n]. In particular, if δ = βz/n, C is a (β, 0)-robust coreset of X
and the size of C is O( 1

β2 (
n
z )

2(vcdim+ log 1
η )).

Proof. Suppose the size of C is m and let N = nm. To prove Theorem 1, we imagine to generate
two new sets as follows. For each point c ∈ C, we generate n copies; consequently we obtain a new
set C ′ that actually is the union of n copies of C. Similarly, we generate a new set X ′ that is the
union of m copies of X . Obviously, |C ′| = |X ′| = N . Below, we fix an arbitrary θ ∈ P and show
that (7) is true.

We order the points of X ′ based on their objective values; namely, X ′ = {x′
i | 1 ≤ i ≤ N}

and f(θ, x′
1) ≤ f(θ, x′

2) ≤ · · · ≤ f(θ, x′
N ). Similarly, we have C ′ = {c′i | 1 ≤ i ≤ N} and
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f(θ, c′1) ≤ f(θ, c′2) ≤ · · · ≤ f(θ, c′N ). Then we claim that for any 1 ≤ i ≤ (1− δ)N , the following
inequality holds:

f(θ, c′i+δN ) ≥ f(θ, x′
i). (8)

Otherwise, there exists some i0 that f(θ, c′i0+δN ) < f(θ, x′
i0
). Consider the range R0 = {x ∈ X |

f(θ, x) ≤ f(θ, c′i0+δN )}. Then we have

|C ∩R0|
|C|

=
|C ′ ∩R0|/n

|C|
≥ (i0 + δN)/n

m
=

i0
N

+ δ; (9)

|X ∩R0|
|X|

=
|X ′ ∩R0|/m

|X|
<

i0/m

n
=

i0
N

. (10)

That is,
∣∣ |C∩R0|

|C| − |X∩R0|
|X|

∣∣ > δ which is in contradiction with the fact that C is a δ-sample of X .
Thus (8) is true. As a consequence, we have

fz(θ, C) =
n

m

m−m
n z∑

i=1

f(θ, ci) =
1

m

N−mz∑
i=1

f(θ, c′i) ≥
1

m

N−mz∑
i=1+δN

f(θ, c′i) (11)

≥︸︷︷︸
by (8)

1

m

(1−δ)N−mz∑
i=1

f(θ, x′
i) =

(1−δ)n−z∑
i=1

f(θ, xi) = fz+δn(θ,X). (12)

So the left-hand side of (7) is true, and the right-hand side can be proved by using the similar
manner.

Remark 2. Our proof is partly inspired by the ideas of [37, 35] for analyzing uniform sampling.
Though the uniform sampling is simple and easy to implement, it has two major drawbacks. First,
it always involves an error “δ” on the number of outliers (otherwise, if letting δ = 0, the sample
should be the whole X). Also, the result is interesting only when z is a constant factor of n. For
example, if z =

√
n, the obtained sample size can be as large as n. Our hybrid robust framework

proposed in Section 3.2 can resolve these two issues for CnB learning problems.

3.2 The Hybrid Framework for (β, ε)-Robust Coreset

Our idea for building the robust coreset comes from the following intuition. In an ideal scenario,
if we know who are the inliers and who are the outliers, we can simply construct the coresets for
them separately. In reality, though we cannot obtain such a clear classification, the CnB property
(Definition 1) can guide us to obtain a “coarse” classification. Furthermore, together with some
novel insights in geometry, we prove that such a hybrid framework can yield a (β, ε)-robust coreset.

Suppose ε ∈ (0, 1) and the objective f is continuous-and-bounded as Definition 1. Specifically, the
parameter vector θ is always restricted within the ball B(θ̃, ℓ). First, we classify X into two parts

according to the value of f(θ̃, x). Let ε0 := min
{

ε
16 ,

ε·infθ∈B(θ̃,ℓ) fz(θ,X)

16(n−z)αℓ

}
and z̃ := (1 + 1/ε0) z;

also assume xz̃ ∈ X is the point who has the z̃-th largest cost f(θ̃, x) among X . We let τ = f(θ̃, xz̃),
and thus we obtain the set

{x ∈ X | f(θ̃, x) ≥ τ}. (13)
that has size z̃. We call these z̃ points as the “suspected outliers” (denoted as Xso) and the remaining
n − z̃ points as the “suspected inliers” (denoted as Xsi). If we fix θ = θ̃, the set of the “suspected
outliers” contains at least 1

ε0
z real inliers (since z̃ = (1 + 1/ε0) z). This immediately implies the

following inequality:

τz ≤ ε0fz(θ̃, X). (14)

Suppose we have an ordinary coreset construction method A as the black box (we will discuss it in
Section 4). Our robust coreset construction is as follows:

We build an ε1-coreset (ε1 = ε/4) for Xsi by A and take a δ-sample for Xso with setting
δ = βε0

1+ε0
. We denote these two sets as Csi and Cso respectively. If we set β = 0 (i.e., require no

error on the number of outliers), we just directly take all the points of Xso as Cso. Finally, we return
C = Csi ∪ Cso as the robust coreset.
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Theorem 2. Given a CnB learning instance (X, z), the above coreset construction method returns
a (β, ε)-robust coreset (as Defintion 3) of size

|Csi|+min
{
O

(
1

β2ε2
(vcdim+ log

1

η
)

)
, O

(
z

ε0

)}
(15)

with probability at least 1 − η. In particular, when β = 0, our coreset has no error on the number
of outliers and its size is |Csi|+O

(
z
ε0

)
.

Proof. (sketch) It is easy to obtain the coreset size. So we only focus on proving the quality guar-
antee below.

Let θ be any parameter vector in the ball B(θ̃, ℓ). Similar with the aforementioned classification
Xsi ∪ Xso, θ also yields a classification on X . Suppose τθ is the z-th largest value of {f(θ, x) |
x ∈ X}. Then we use Xri to denote the set of n − z “real” inliers with respect to θ, i.e., {x ∈
X | f(θ, x) < τθ}; we also use Xro to denote the set of z “real” outliers with respect to θ, i.e.,
{x ∈ X | f(θ, x) ≥ τθ}. Overall, the input set X is partitioned into 4 parts:

XI = Xsi ∩Xri, XII = Xso ∩Xri, XIII = Xso ∩Xro, and XIV = Xsi ∩Xro. (16)

Similarly, θ also yields a classification on C to be Cri (the set of “real” inliers of C) and Cro (the
set of “real” outliers of C). Therefore we have

CI = Csi ∩ Cri, CII = Cso ∩ Cri, CIII = Cso ∩ Cro, and CIV = Csi ∩ Cro. (17)

Our goal is to show that fz(θ, C) is a qualified approximation of fz(θ,X) (as Defintion 3). Note
that fz(θ, C) = f(θ, CI ∪CII) = f(θ, CI)+ f(θ, CII). Hence we can bound f(θ, CI) and f(θ, CII)
separately. We consider their upper bounds first, and the lower bounds can be derived by using the
similar manner.

The upper bound of f(θ, CI) directly comes from the definition of ε-coreset, i.e., f(θ, CI) ≤
f(θ, CI ∪ CIV) ≤ (1 + ε1)f(θ,XI ∪XIV) since CI ∪ CIV is an ε1-coreset of XI ∪XIV.

It is more complicated to derive the upper bound of f(θ, CII). We consider two cases. (1) If CIV = ∅,
then we know that all the suspected inliers of C are all real inliers (and meanwhile, all the real
outliers of C are suspected outliers); consequently, we have

f(θ, CII) ≤ fz(θ, CII ∪ CIII) ≤ f(1−β)z(θ,XII ∪XIII) (18)

from Theorem 1. (2) If CIV ̸= ∅, by using the triangle inequality and the α-Lipschitz assumption,
we have f(θ, CII) ≤ f(θ,XII) + 2z(τ + αℓ)). We merge these two cases and overall obtain the
following upper bound:

fz(θ, C) ≤ (1 + ε1)f(1−β)z(θ,X) + 4zτ + 4zαℓ. (19)

Moreover, from (14) and the α-Lipschitz assumption, we have τz ≤ ε0fz(θ,X) + ε0(n − z)αℓ.
Then the above (19) implies

fz(θ, C) ≤ (1 + ε)f(1−β)z(θ,X). (20)

Similarly, we can obtain the lower bound

fz(θ, C) ≥ (1− ε)f(1+β)z(θ,X). (21)

Therefore C is a (β, ε)-robust coreset of X .

3.3 The Fully-Dynamic Implementation

In this section, we show that our robust coreset of Section 3.2 can be efficiently implemented in a
fully-dynamic environment, even if the number of outliers z is dynamically changed.

The standard ε-coreset usually has two important properties. If C1 and C2 are respectively the ε-
coresets of two disjoint sets X1 and X2, their union C1∪C2 should be an ε-coreset of X1∪X2. Also,
if C1 is an ε1-coreset of C2 and C2 is an ε2-coreset of C3, C1 should be an (ε1 + ε2 + ε1ε2)-coreset
of C3. Based on these two properties, one can build a coreset for incremental data stream by using
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the “merge-and-reduce” technique [4, 23]. Very recently, Henzinger and Kale [24] extended it to the
more general fully-dynamic setting, where data items can be deleted and updated as well.

Roughly speaking, the merge-and-reduce technique uses a sequence of “buckets” to maintain the
coreset for the input streaming data, and the buckets are merged by a bottom-up manner. However,
it is challenging to directly adapt this strategy to the case with outliers, because we cannot determine
the number of outliers in each bucket. A cute aspect of our hybrid robust coreset framework is that
we can easily resolve this obstacle by using an O(n) size auxiliary table L together with the merge-
and-reduce technique (note that even for the case without outliers, maintaining a fully-dynamic
coreset already needs Ω(n) space [24]). We briefly introduce our idea below.

• • • • • •

• • • • • • • • • • • • • • • • • •

• • •

"($%, ') increasing suspected outliers

hot bucket

critical pointer p

x.value
x.position

suspected inliers

Figure 1: The illustration for our fully-dynamic
robust coreset construction.

Recall that we partition the input data X into
two parts: the n − z̃ “suspected inliers” and
the z̃ “suspected outliers”, where z̃ = (1 +
1/ε0)z. We follow the same notations used in
Section 3.2. For the first part, we just apply
the vanilla merge-and-reduce technique to ob-
tain a fully-dynamic coreset Csi; for the other
part, we can just take a δ-sample or take the
whole set (if we require β to be 0), and denote
it as Cso. Moreover, we maintain a table L
to record the key values x.value = f(θ̃, x)
and its position x.position in the merge-and-
reduce tree, for each x ∈ X; they are sorted by
the x.values in the table. To deal with the dy-
namic updates (e.g., deletion and insertion), we
also maintain a critical pointer p pointing to the
data item xz̃ (recall xz̃ has the z̃-th largest cost f(θ̃, x) among X defined in Section 3.2).

When a new data item x is coming or an existing data item x is going to be deleted, we just need
to compare it with f(θ̃, xc) so as to decide to update Csi or Cso accordingly; after the update, we
also need to update xz̃ and the pointer p in L . If the number of outliers z is changed, we just need
to update xz̃ and p first, and then update Csi and Cso (for example, if z is increased, we just need
to delete some items from Cso and insert some items to Csi). To realize these updating operations,
we also set one bucket as the “hot bucket”, which serves as a shuttle to execute all the data shifts.
See Figure 1 for the illustration. Let M(ε) be the size of the vanilla ε-coreset. In order to achieve
an ε-coreset overall, we need to construct an ε

logn -coreset with size M(ε/ log n) in every reduce
part [1]. We use M to denote M(ε/ log n) for short and assume that we can compute a coreset of X
in time t(|X|) [40], then we have the following result.

Theorem 3. In our dynamic implementation, the time complexity for insertion and deletion is
O(t(M) log n). To update z to z ± ∆z with ∆z ≥ 0, the time complexity is O(∆z

ε t(M) log n),
where ε is the error bound for the robust coreset in Definition 3.

4 Coreset for Continuous-and-Bounded Learning Problems

As mentioned in Section 3.2, we need a black-box ordinary coreset (without considering outliers)
construction method A in the hybrid robust coreset framework. In this section, we provide two
different ε-coreset construction methods for the CnB learning problems.

4.1 Importance Sampling Based Coreset Construction

We follow the importance sampling based approach [30]. Suppose X = {x1, · · · , xn}. For each
data point xi, it has a sensitivity σi = supθ

f(θ,x)
f(θ,X) that measures its importance to the whole input

data X . Computing the sensitivity is often challenging but an upper bound of the sensitivity actually
is already sufficient for the coreset construction. Assume si is an upper bound of σi and let S =∑n

i=1 si. The coreset construction is as follows. We sample a subset C from X , where each element
of C is sampled i.i.d. with probability pi = si/S; we assign a weight wi =

S
si|C| to each sampled

data item xi of C. Finally, we return C as the coreset.
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Theorem 4 ([7]). Let vcdim be the VC dimension (or shattering dimension) of the range space
induced from f(θ, x). If the size of C is Θ

(
S
ε2

(
vcdim · logS + log 1

η

))
, then C is an ε-coreset

with probability at least 1− η.

Therefore the only remaining issue is how to compute the upper bounds sis. Recall that we assume
our cost function is α-Lipschitz (or α-smooth, α-Lipschitz continuous Hessian) in Definition 1. That
is, we can bound the difference between f(θ, xi) and f(θ̃, xi), and such a bound can help us to com-
pute si. In our full paper [44], we show that computing si is equivalent to solving a quadratic frac-
tional programming. This programming can be reduced to a semi-definite programming (SDP) [3],
which can be solved in polynomial time up to any desired accuracy [22]. We denote the solving time
of SDP by T(d), where d is the dimension of the data point. So the total running time of the coreset
construction is O(n · T(d)).
A drawback of Theorem 4 is that the coreset size depends on vcdim induced by f(θ, x). For some
objectives, the value vcdim can be very large or difficult to obtain. Here, we prove that for a
continuous-and-bounded cost function, the coreset size can be independent of vcdim; instead, it
depends on the doubling dimension ddim [9] of the parameter space P . Doubling dimension is a
widely used measure to describe the growth rate of the data, which can also be viewed as a gen-
eralization of the Euclidean dimension. For example, the doubling dimension of a d-dimensional
Euclidean space is Θ(d).

Theorem 5. Given a CnB learning instance X with the objective function f(θ,X) as described
in Definition 1, let ddim be the doubling dimension of the parameter space. Then, if we
run the importance sampling based coreset construction method with the sample size |C| =

Θ
(

S2

ε2

(
ddim · log 1

ε + log 1
η

))
, C will be an ε-coreset with probability 1 − η. The hidden con-

stant of |C| depends on the Lipschitz constant α and infθ∈B(θ̃,ℓ)
1
nf(θ,X)3.

The major advantage of Theorem 5 over Theorem 4 is that we do not need to know the VC dimension
induced by the cost function. On the other hand, the doubling dimension is often much easier to
know (or estimate), e.g., the doubling dimension of a given instance in Rd is just Θ(d), even the cost
function can be very complicated. Another motivation of Theorem 5 is from sparse optimization.
Let the parameter space be RD, and we restrict θ to be k-sparse (i.e., at most k non-zero entries
with k ≪ D). It is easy to see the domain of θ is a union of

(
D
k

)
k-dimensional subspaces, and thus

its doubling dimension is O(k logD) which is much smaller than D (each ball of radius r in the
domain can be covered by

(
D
k

)
· 2O(k) = 2O(k logD) balls of radius r/2).

The reader is also referred to [26] for a more detailed discussion on the relation between VC (shat-
tering) dimension and doubling dimension.

4.2 Spatial Partition Based Coreset Construction

The reader may realize that the coreset size presented in Theorem 5 (and also Theorem 4) is data-
dependent. That is, the coreset size depends on the value S, which can be different for different
input instances. To achieve a data-independent coreset size, we introduce the following method
based on spatial partition, which is partly inspired by the previous k-median/means clustering core-
set construction idea of [15, 17, 25]. We generalize their method to the continuous-and-bounded
learning problems and call it as Generalized Spatial Partition (GSP) method.

GSP coreset construction. We set ϱ = minx∈X f(θ̃, x) and T = 1
|X|f(θ̃, X). Then, we partition

all the data points to different layers according to their cost with respect to θ̃. Specifically, we assign
a point x to the 0-th layer if f(θ̃, x)−ϱ < T ; otherwise, we assign it to the ⌊log( f(θ̃,x)−ϱ

T )⌋-th layer.
Let L be the number of layers, and it is easy to see L is at most log n + 1. For any 0 ≤ j ≤ L, we
denote the set of points falling in the j-th layer as Xj . From each Xj , we take a small sample Cj

uniformly at random, where each point of Cj is assigned the weight |Xj |/|Cj |. Finally, the union
set

⋃L
j=0 Cj form our final coreset.

3In practice, we often add a positive penalty item to the objective function for regularization, so we can
assume that infθ∈B(θ̃,ℓ)

1
n
f(θ,X) is not too small.
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Theorem 6. Given a CnB learning instance X with the objective function f(θ,X) as described in
Definition 1, let ddim be the doubling dimension of the parameter space. The above coreset con-
struction method GSP can achieve an ε-coreset of size Θ

(
logn
ε2

(
ddim · log 1

ε + log 1
η

))
in linear

time. The hidden constant of |C| depends on the Lipschitz constant α and infθ∈B(θ̃,ℓ)
1
nf(θ,X).

To prove Theorem 6, the key is show that each Cj can well represent the layer Xj with respect to
any θ in the bounded region B(θ̃, ℓ). First, we use the continuity property to bound the difference
between f(θ, x) and f(θ̃, x) for each x ∈ Xj with a fixed θ; then, together with the doubling
dimension, we can generalize this bound to any θ in the bounded region.

5 Experiments

In this section, we illustrate the application of our proposed robust coreset method in machine learn-
ing. We leave the more detailed experimental results to the full version of this paper [44].

Logistic regression (with outliers). Given x, θ ∈ Rd and y ∈ {±1}, the loss function of Logistic
regression is

f(θ, x) = ln(1 + exp(−y · ⟨θ, x⟩)). (22)

k-median/means clustering (with outliers). The goal is to find k cluster centers Cen =
{c1, c2, · · · , ck} ⊂ Rd; the cost function of k-median (resp. k-means) clustering for each x ∈ Rd

is f(Cen, x) = minci∈Cen d(ci, x) (resp. d(ci, x)2), where d(ci, x) denotes the Euclidean distance
between ci and x.

All the algorithms were implemented in Python on a PC with 2.3GHz Intel Core i7 CPU and 32GB
of RAM. All the results were averaged across 5 trials.

The algorithms. We use the following three representative coreset construction methods as the black
box in our hybrid framework for outliers. (1) UNIFORM: the simple uniform sampling method; (2)
GSP: the generalized spatial partition method proposed in section 4.2; (3) QR: a QR-decomposition
based importance sampling method proposed by [38] for logistic regression. For each coreset
method name, we add a suffix “+” to denote the corresponding robust coreset enhanced by our
hybrid framework proposed in section 3.

For many optimization with outliers problems, a commonly used strategy is alternating minimization
(e.g., [12]). In each iteration, it detects the z outliers with the largest losses and run an existing
algorithm (for ordinary logistic regression or k-means clustering) on the remaining n − z points;
then updates the z outliers based on the obtained new solution. The algorithm repeats this strategy
until the solution is stable. For logistic regression with outliers, we run the codes from the scikit-
learn package4 together with the alternating minimization. For k-means with outliers, we use the
local search method [21] to seed initial centers and then run the k-means-- algorithm [12]. We apply
these algorithms on our obtained coresets. To obtain the initial solution θ̃, we just simply run the
algorithm on a small sample (less than 1%) from the input data.

Datasets. We consider the following two real datasets in our experiments. The dataset Covetype [6]
consists of 581012 instances with 54 cartographic features for predicting forest cover type. There
are 7 cover types and we set the dominant one (49%) to be the positive samples and the others to
be negative samples. We randomly take 10000 points as the test set and the remaining data points
form the training set. The dataset 3Dspatial [29] comprises 434874 instances with 4 features for
the road information. To generate outliers for the unsupervised learning task k-means clustering, we
randomly generate 10000 points in the space as the outliers, and add the gaussian noisy N (0, 200)
to each dimension for these outliers. For the supervised learning task logistic regression, we add
Gaussian noise to a set of randomly selected 10000 points (as the outliers) from the data and also
randomly shuffle their labels.

Results. Table 1 and Table 2 illustrate the loss ratio (the obtained loss over the loss without using
coreset) and speed-up ratio of different robust coreset methods. We can see that the robust coreset
methods can achieve significant speed-up, and meanwhile the optimization qualities can be well
preserved (their loss ratios are very close to 1). Figure 2(a) and 2(b) illustrate the performance

4https://scikit-learn.org/stable/
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Table 1: Logistic regression on Covetype. |C|
denotes the coreset size.

Method |C| Loss ratio Speed-up
GSP+ 4 × 103 1.046 ×26.9

GSP+ 8 × 103 1.031 ×19.19

UNIFORM+ 4 × 103 1.134 ×45.8

UNIFORM+ 8 × 103 1.050 ×29.1

QR+ 4 × 103 1.025 ×23.4

QR+ 8 × 103 1.012 ×17.9

Table 2: k-means clustering on 3Dspatial with
k = 10. |C| denotes the coreset size.

Method |C| Loss ratio Speed-up
GSP+ 5 × 103 1.016 ×41.1

GSP+ 104 1.008 ×15.4

UNIFORM+ 5 × 103 1.029 ×78.9

UNIFORM+ 104 1.011 ×46.9
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(c) Speed-up with the Merge-and-Reduce tree in the
dynamic setting.

Figure 2: The performances of different coreset methods for logistic regression on Covetype. The
results are normalized over the results obtained from the original data (without using coreset).

of the (robust) coreset methods with varying the coreset size. In general, our robust coreset can
achieve better performance (in terms of the loss and accuracy) compared with its counterpart without
considering outliers. Figure 2(c) illustrates the speed-up ratio of running time in the dynamic setting.
Our robust coreset construction uses the merge-and-reduce tree method. When the update happens
in one bucket, we perform a “bottom-up” re-construction for the coreset. We let the bucket size
be n/2h−1, where h is the height of the tree; thus the higher the tree, the smaller the bucket size
(and the speed-up is more significant). The results reveal that using the coreset yields considerable
speed-up compared to re-running the algorithm on the entire updated dataset.

6 Conclusion

In this paper, we propose a novel robust coreset framework for the continuous-and-bounded learning
problems (with outliers). Also, our framework can be efficiently implemented in the dynamic setting.
In future, we can consider generalizing our proposed (dynamic) robust coreset method to other types
of optimization problems (e.g., privacy-preserving and fairness); it is also interesting to consider
implementing our method for distributed computing or federated learning.
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