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Abstract001

Despite recent advances in large language mod-002
els (LLMs) for materials science, there is a003
lack of benchmarks for evaluating their domain-004
specific knowledge and complex reasoning005
abilities. To bridge this gap, we introduce006
MSQA, a comprehensive evaluation bench-007
mark of 1,757 graduate-level materials science008
questions in two formats: detailed explana-009
tory responses and binary True/False assess-010
ments. MSQA distinctively challenges LLMs011
by requiring both precise factual knowledge012
and multi-step reasoning across seven materials013
science sub-fields, such as structure-property014
relationships, synthesis processes, and compu-015
tational modeling. Through experiments with016
10 state-of-the-art LLMs, we identify signifi-017
cant gaps in current LLM performance. While018
API-based proprietary LLMs achieve up to019
84.5% accuracy, open-source (OSS) LLMs020
peak around 60.5%, and domain-specific LLMs021
often underperform significantly due to over-022
fitting and distributional shifts. MSQA repre-023
sents the first benchmark to jointly evaluate the024
factual and reasoning capabilities of LLMs cru-025
cial for LLMs in advanced materials science.026

1 Introduction027

Recent advances in large language models (LLMs)028

hold considerable promise for accelerating materi-029

als research by automating complex analysis (Miret030

and Krishnan, 2024), prediction (Rubungo et al.,031

2024), and design tasks (Jablonka et al., 2023).032

However, progress in applying LLMs to materi-033

als science has been constrained by the scarcity034

of high-quality domain-specific annotated datasets035

(Miret and Krishnan, 2024) and robust evaluation036

benchmarks (Zaki et al., 2023).037

Existing datasets for materials science primarily038

focus on conventional natural language process-039

ing (NLP) tasks, such as named entity recognition040

(NER) (Weston et al., 2019; Shetty et al., 2023),041

classification (Venugopal et al., 2021; Gupta et al.,042

Question:
What structural transitions occur in tetraphenylethylene carboxylate 
aggregates as the size of the liquid phase decreases from micro to 
submicro dimensions?
Long-answer Response:
Tetraphenylethylene carboxylate (TPEC) aggregates undergo a 
two-step structural transition as the size of the liquid phase 
decreases from micro- to submicrometer dimensions due to ice 
confinement. Initially, in relatively large confined spaces (greater 
than 2 μm), TPEC aggregates are loosely packed, and their 
molecular arrangement changes continuously, leading to increased 
fluorescence intensity and a hypsochromic (blue) shift in emission 
spectra. This structural change stabilizes when the space size 
reduces to 2 μm, where the aggregates adopt a more consistent 
arrangement.  

As the liquid phase shrinks further to submicrometer dimensions 
(below 0.5 μm), a second structural transition occurs, where the 
aggregates are compressed into a more compact molecular 
arrangement. This densification is driven by enhanced solubility in 
the confined phase, which exhibits properties akin to low-density 
liquid water, as well as the structured configuration of water 
molecules at the ice-liquid interface. These structural transitions 
significantly impact fluorescence properties, highlighting the role of 
confinement effects in influencing aggregate behavior.

Question:
Do tetraphenylethylene carboxylate aggregates undergo a 
densification transition due to enhanced solubility in 
submicrometer liquid phases?
Binary-answer Response:
YES

Figure 1: Example question-answer pairs from MSQA.
The long-answer response (top) demonstrates multi-step
reasoning with explanations, while the binary-answer
response (bottom) shows a concise yes/no determination
on a related concept.

2022b), and relation extraction (RE) (Cheung et al., 043

2023; Song et al., 2023a). Although valuable, these 044

datasets do not sufficiently assess models’ mate- 045

rials science knowledge grounded reasoning and 046

question-answering abilities. Recent efforts (Zaki 047

et al., 2023) have introduced benchmarks featuring 048

questions derived from graduate admission exams; 049

however, the short-answer format (e.g., multiple 050

choice) limits the assessment of complex reasoning 051

and in-depth explanatory capabilities essential for 052

real-world applications in materials science, such 053

as multistep synthesis planning and detailed prop- 054

erty evaluations. 055
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To bridge this critical gap, we introduce MSQA,056

a graduate-level materials science benchmark057

specifically crafted to evaluate both factual knowl-058

edge and complex reasoning capabilities of LLMs.059

MSQA includes two complementary evaluation060

modes: long-answer and binary-answer (Figure061

1). The long-answer questions demand detailed,062

multi-step explanations spanning seven challeng-063

ing subfields, including structure-property relation-064

ships, polymer synthesis, and computational ma-065

terial modeling. In contrast, the binary-answer066

questions offer balanced True/False queries that067

require LLMs to assess complex domain-specific068

judgments on material properties, applications, and069

technical claims. Together, MSQA comprehen-070

sively test the depth of factual understanding and071

advanced reasoning skills.072

To ensure high-quality and domain-grounded073

questions and answers, we employ advanced074

LLMs, including gpt-4o (Hurst et al., 2024),075

gemini-2.0-pro (Team et al., 2023), and076

Deepseek-v3 (DeepSeek-AI, 2025), guided by077

expert-curated materials science literature. The078

dataset generation process incorporates rigor-079

ous three-stage quality assurance: (1) regular080

expression-based filtering, (2) LLM-driven refine-081

ment, and (3) expert annotation.082

In our experiments, we systematically bench-083

mark seven leading open-source and black-box084

LLMs alongside three domain-specific fine-tuned085

models. Our results reveal that commercial black-086

box LLMs consistently outperform open-source087

alternatives, achieving accuracy as high as 84.5%.088

Incorporating retrieved contextual data notably en-089

hances model performance, showing retrieval aug-090

mentation as a crucial adaptation strategy. Con-091

versely, domain-specific fine-tuned models under-092

perform relative to general-purpose models, likely093

due to distribution shifts and overfitting, underscor-094

ing critical limitations in current domain-adaptation095

approaches. We summarize our main contributions096

as follows:097

• We present MSQA, one of the first materials098

science benchmarks explicitly designed to rig-099

orously test complex reasoning and explanatory100

abilities of LLMs beyond factual knowledge;101

• We provide a thorough empirical evaluation of102

leading general-purpose and domain-specific103

LLMs. We conduct detailed analyses of chal-104

lenging scenarios to catalyze the development105

of more reasoning-intensive, domain-adapted 106

LLMs for the materials science community. 107

• We open-source our curated dataset and bench- 108

mark code to foster community-driven inno- 109

vation towards LLM-driven advanced mate- 110

rial science discovery: https://anonymous. 111

4open.science/r/MSQA-C6C5/MSQA/. 112

2 Related Works 113

Materials Science Datasets for LLMs. Prior re- 114

search in materials science NLP primarily targets 115

structured extraction tasks such as NER and RE. 116

Expert-curated datasets, such as Wang et al. (2021) 117

and Weston et al. (2019), focus explicitly on identi- 118

fying and extracting material names, properties, 119

and their interrelations. Additional specialized 120

datasets emphasize tasks like property prediction; 121

for instance, Friedrich et al. (2020) annotated a cor- 122

pus of scholarly articles related to solid oxide fuel 123

cells, tagging entities such as materials, values, 124

and devices, while Panapitiya et al. (2021) pro- 125

vided annotations on chemical entities (CHEM), nu- 126

merical values (VALUE), and measurement units 127

(UNIT) from studies on soluble materials. More 128

recent datasets aimed at evaluating LLMs include 129

question-answer (QA) pairs to test domain knowl- 130

edge. Zaki et al. (2023) created a dataset with 650 131

questions derived from graduate-level admissions 132

exams in India, while Song et al. (2023a) aggre- 133

gated multiple previously published datasets into 134

a meta-dataset. However, they primarily utilize 135

short-answer formats such as multiple-choice or 136

numerical values, which inadequately capture the 137

nuanced reasoning and explanatory capabilities re- 138

quired in real-world materials science applications. 139

Synthetic Data Generation for Benchmarks. 140

LLMs increasingly serve as tools for creating eval- 141

uation benchmarks, especially when manual cura- 142

tion requires domain expertise or is prohibitively 143

expensive. For example, SciBench (Wang et al., 144

2024c) and BioGPTQA (Sarwal et al., 2025) em- 145

ploy LLM-generated content subsequently vali- 146

dated through expert reviews and structured fil- 147

tering mechanisms. Other benchmarks, including 148

MT-Bench (Zheng et al., 2023) and HELM (Liang 149

et al., 2023), similarly rely on synthetically gen- 150

erated data to evaluate model performance across 151

diverse tasks. Synthetic data generation markedly 152

decreases annotation expenses; however, it is im- 153

portant to ensure the validity and reliability of gen- 154

erated benchmarks. Researchers employ quality 155
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control measures such as expert validation, statisti-156

cal filtering, and alignment with reference materi-157

als to minimize factual inaccuracies and reasoning158

shortcuts.159

3 MSQA: A Graduate-Level Materials160

Science QA Dataset161

We present MSQA, a comprehensive materials sci-162

ence benchmark for evaluating LLMs (Figure 2).163

We begin by describing our scientific literature col-164

lection process in section 3.1. We then detail the165

procedures for generating long-answer questions166

and their corresponding answers in section 3.2167

and section 3.3, respectively. Next, we outline168

our three-stage quality assurance process in sec-169

tion 3.4. We then describe the generation process170

for binary-answer questions in section 3.5. Finally,171

we summarize key dataset statistics for MSQA in172

section 3.6.173

3.1 Data Collection174

Previous research has highlighted the inherent limi-175

tations of LLMs in effectively addressing questions176

grounded in specialized materials science knowl-177

edge (Miret and Krishnan, 2024; Zaki et al., 2023;178

Wang et al., 2024a). To overcome this limitation,179

we curate a comprehensive collection of materials180

science literature to serve as a context for generat-181

ing high-quality QA pairs. Specifically, we source182

3,000 diverse articles from the extensive dataset183

compiled by Shetty et al. (2023), encompassing184

2.4 million publications from seven primary ma-185

terials science publishers spanning from 2000 to186

2021. We employ sentence transformers (Reimers187

and Gurevych, 2019) to generate embeddings for188

abstracts from 50,000 randomly selected articles to189

ensure diversity and representativeness. These em-190

beddings are subsequently clustered using K-means191

to achieve the highest silhouette score (Shahapure192

and Nicholas, 2020), resulting in 10 distinct clus-193

ters, each with 5000 papers on average. From each194

cluster, we randomly sample 300 articles, culminat-195

ing in our final set of 3,000 context articles.196

Instead of using PDF documents, we collected197

papers in XML format and parsed them using a pub-198

licly available chemistry-paper-parser tool.1199

This allows accurate information extraction from200

these papers by preserving the integrity of mathe-201

matical formulas and chemical representations.202

1https://github.com/Yinghao-Li/
ChemistryHTMLPaperParser

3.2 Candidate Question Generation 203

To ensure that the generated questions accurately 204

reflect the complexity and depth of real-world ma- 205

terials science research, we utilize the abstracts 206

of selected articles, as they succinctly encapsu- 207

late research objectives, methodologies, and signif- 208

icant findings. Following Zhong et al. (2024), we 209

first prompt gpt-4o to generate concise summaries 210

highlighting key findings from each abstract. This 211

initial summarization step reduces the influence of 212

specialized scholarly language, thereby facilitat- 213

ing more precise and targeted question generation. 214

Subsequently, each article is categorized based on 215

its primary objective: introducing a new synthesis 216

method (“method”) or presenting novel experimen- 217

tal observations (“result”). Guided by this cate- 218

gorization, gpt-4o is then prompted to formulate 219

candidate questions specifically aligned with the 220

focus identified in the article. 221

3.3 Question Selection and Candidate Answer 222

Generation 223

Previous studies have shown that context relevance 224

(Wang et al., 2024b) and factual precision (Ram 225

et al., 2023) are crucial factors for response qual- 226

ity. To enhance alignment between questions and 227

provided context, we employ a backward selec- 228

tion approach, where we use gpt-4o to select the 229

candidate questions based on the provided context. 230

Specifically, for articles categorized under “meth- 231

ods”, we provide the Experimental Method sec- 232

tions containing detailed descriptions of research 233

protocols and materials synthesis procedures. For 234

articles categorized as “results”, we supply the 235

Results sections, which include comprehensive 236

interpretations of experimental outcomes. 237

Candidate answers were then generated using 238

gpt-4o, gemini-2.0-pro, and deepseek-v3. Ini- 239

tial assessments highlight that LLM-generated an- 240

swers frequently included ambiguous references 241

such as “the K0 Samples and the SCAs Units”, 242

diminishing clarity and self-contained informa- 243

tiveness. To address these issues, we refine the 244

prompts by explicitly discouraging the use of defi- 245

nite articles, significantly enhancing answer clarity. 246

This adjustment results in more precise and con- 247

textually anchored responses, explicitly referenc- 248

ing chemical entities (e.g., hexamethyldisilane, 249

copper phthalocyanine) and specific method- 250

ologies (e.g., CryoTEM Imaging, dynamic light 251

scattering) from the original studies. 252
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Material Science 
LiteraturesCandidate Research Questions:

1. How does the incorporation of POSS molecules 
influence the structural and electronic properties of the 
active sites in Ziegler-Natta catalysts?
2. How does the dilution and isolation of active sites 
affect the polymerization kinetics and molecular weight 
distribution 

Summary of Purpose: 
The paper aims to develop and investigate a novel 
Ziegler-Natta catalyst system modified with polyhedral 
oligomeric silsesquioxane (POSS) to improve ethylene 
polymerization performance. Through structural 
characterization … 
Classification of Purpose à experimental / result: 
e.g.,: The paper emphasizes <result>.

Cluster abstracts sections with sentence transformer

Answ
er 1

A
ns

w
er

 2 Answer 3

Stage I: Merge LLM answers

Stage II: Keywords filtering

Stage III: Human annotation

Question: What role does polyhedral oligomeric silsesquioxane play in 
facilitating the crystallization of magnesium chloride and influencing 
active site formation in Ziegler-Natta catalysts?

Final Answer: Polyhedral oligomeric silsesquioxane (POSS) plays a 
crucial role in enhancing the performance of Ziegler-Natta catalysts by 
influencing both the crystallization of magnesium chloride and active 
site formation. First, POSS acts as a nucleator for MgCl2 aggregation … 

Experimental or Result Sections 

Abstract Sections

Figure 2: Overview of data generation and quality evaluation in MSQA.

3.4 Three-Stage Quality Assurance253

Prior research (Wang et al., 2022; Huang et al.,254

2022) indicates that self-consistency among LLMs255

significantly enhances answer accuracy and co-256

herence. Extending this idea, Li et al. (2025)257

applies self-consistency to handle open-ended258

tasks effectively. Inspired by these findings, we259

adopt a multi-model self-consistency approach260

to enhance answer quality. Specifically, candi-261

date answers produced by gpt-4o (Hurst et al.,262

2024), gemini-2.0-pro (Team et al., 2023), and263

deepseek-v3 (DeepSeek-AI, 2025) (section 3.3)264

are aggregated using gpt-4o. This aggregation ex-265

plicitly accounts for inter-model agreement, lever-266

aging consensus among multiple sophisticated267

models.268

To ensure question clarity and relevance, we first269

employ automated filtering methods, using regular270

expressions and keyword matching to remove am-271

biguous and overly context-dependent questions.272

Subsequently, materials science domain experts273

manually review the remaining questions to ex-274

clude unclear, incorrect, or irrelevant queries.275

We recruit two materials science PhD students276

to rigorously evaluate the quality of a representa-277

tive subset of the generated answers. Specifically,278

we randomly select 50 question-answer pairs for279

assessment. Each evaluator independently applied280

their expert domain knowledge to assess whether281

the provided answers are: (1) factually correct, (2)282

directly relevant and precisely addressed the ques-283

tions, and (3) logically coherent. The evaluators 284

show that 92.86% of answers fulfilled all three 285

quality criteria. 286

3.5 Binary Question Generation 287

Given the computational expense associated with 288

evaluating detailed long-form answers using ad- 289

vanced LLMs such as gpt-4o, we develop a set 290

of 1,757 binary True/False questions derived from 291

previously generated question-answer pairs. Ini- 292

tial efforts to directly convert existing pairs into 293

binary format reveal several issues: (1) questions 294

frequently included overly detailed clues revealing 295

the correct answer; (2) LLM-generated questions 296

demonstrated a pronounced bias towards “True” re- 297

sponses; and (3) the generated questions lacked 298

complexity, often omitting nuanced reasoning in- 299

volving approximations or comparative thresholds 300

(e.g., “exact value” versus “around” a value). 301

To tackle these issues, we instruct gpt-4o to (1) 302

explicitly generate questions with a predefined True 303

or False label, yielding 878 “True” and 879 “False” 304

labeled questions; (2) favor approximations (e.g., 305

“around”, “more or less than”) for rigid details that 306

are not essential; and (3) avoid unnecessary detail 307

without adding challenge. Detailed prompts are 308

included in appendix B. 309

3.6 Dataset Statistics 310

Table 1 summarizes the basic statistics of MSQA. 311

Question Types. We manually annotate a sub- 312

set of questions to identify and categorize various 313
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Question & Answer Pairs Counts

Long-answer Q&A pairs 1,757
Binary-answer Q&A pairs 1,757

- # w/ “True” label 878
- # w/ “False” label 879

Avg. question length (in words) 19
Avg. long answer length (in words) 150

Table 1: Data statistics of MSQA.

Question Types Counts

Structure-property relationships 818
Synthesis and processing 257
Computational 216
Material analysis techniques 187
Material modeling 125
Failure analysis and degradation 93
Material properties 61

Table 2: Question composition in MSQA.

question types pertinent to general materials sci-314

ence tasks. Using gpt-4o (Hurst et al., 2024), we315

then classify the remaining questions into these pre-316

defined categories. For questions with ambiguous317

types, gpt-4o is prompted to label them as “Other”,318

which are subsequently manually reviewed and cat-319

egorized by domain experts. In total, we identify320

seven distinct question categories (Table 2) that321

comprehensively assess LLM capabilities within322

the materials science domain.323

Question Semantics. To examine question seman-324

tics, we analyze their verb-noun structures follow-325

ing the methodology of Wang et al. (2023). We326

employ the Berkeley Neural Parser2 to parse each327

question, extracting the primary verb (closest to the328

root) and its direct noun object. The most frequent329

root verbs, along with their associated direct noun330

objects, are visualized in Figure 3. This analysis331

highlights the broad topical coverage and complex332

conceptual nature of questions in MSQA, particu-333

larly emphasizing relationships between material334

designs, their properties, and relevant experimental335

methodologies.336

Answer Semantics. To further explore the diver-337

sity of the dataset, we analyze the semantic content338

of the long-form answers by identifying references339

to specific materials and chemical compounds us-340

ing ChemDataExtractor (Swain and Cole, 2016).341

Extracted chemical entities are embedded using342

MatSciBERT (Gupta et al., 2022a), a specialized343

language model trained on extensive materials sci-344

ence literature. These embeddings are then visual-345

2https://parser.kitaev.io/

Figure 3: The top 20 most common root verbs (inner
circle) and their top 4 direct noun objects (outer circle)
in the generated instructions.

ized through t-SNE clustering, presented in Figure 346

4. Upon examining the resulting clusters, we con- 347

firm that the answers encompass diverse material 348

categories, including Polymers & Copolymers 349

and Inorganic Complexes, illustrating the com- 350

prehensive topical diversity inherent in our dataset. 351

4 Experiments 352

4.1 Experimental Setup 353

Tasks. We evaluate the performance of open- 354

source and domain-specific LLMs on both the long- 355

answer and binary-answer variants of the MSQA 356

dataset using two distinct prompting strategies: di- 357

rect generation and retrieval-augmented generation. 358

In the direct-generation scenario, models are pre- 359

sented only with the question, without supplemen- 360

tary context. In contrast, in the retrieval-augmented 361

setting, we first build a contextual database by 362

segmenting the Methods and Results sections de- 363

scribed in section 3.2 into separate paragraphs. 364

We then use BM25 (Robertson et al., 2009) to re- 365

trieve the top five most relevant paragraphs, which 366

serve as additional context provided to the model. 367

For binary-answer questions, we also investigate if 368

chain-of-thought (Wei et al., 2022) improves model 369

performance. Black-box LLMs are evaluated ex- 370

clusively under the direct generation setting. Eval- 371

uation of the long-answer responses is conducted 372

through GPT-4o acting as an LLM judge, assessing 373

responses as either “correct” or “mostly correct”, 374

both categories counted as correct in our metrics. 375

For binary-answer evaluations, accuracy is deter- 376

mined by exact keyword matching for responses 377
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Figure 4: T-SNE visualization of material and chemical mentions from long-form answers, embedded using
MatSciBERT. Legend shows manually labeled categories with example compounds.

containing either “YES” or “NO”. Performance378

results are uniformly reported as accuracy percent-379

ages across all experiments.380

Evaluated LLM models. We com-381

prehensively evaluate several LLMs on382

MSQA. For black-box models, our analy-383

sis includes Claude-3.7-Sonnet (Claude),384

Gemini-2.0-Flash, and Grok-3 (Grok). Addi-385

tionally, we assess the performance of prominent386

open-source models, specifically Llama-3-8B387

(Grattafiori et al., 2024), Phi-4-mini (Abdin388

et al., 2024), Qwen-2.5-7B (Yang et al., 2024),389

and Deepseek-R1-distilled-Llama-3. Further-390

more, we benchmark several domain-specific391

LLMs specialized for materials science. These392

include Honeybee (Song et al., 2023b), an LLM393

fine-tuned iteratively on synthesized materials394

science data; Mol-Instructions-Molecule395

(Fang et al., 2023), a model fine-tuned explicitly on396

chemical reaction and molecular design datasets397

tailored for small molecules; and Llasmol (Yu398

et al., 2024), a specialized chemistry domain LLM399

instruction-tuned across 14 chemistry-specific400

tasks utilizing a dataset exceeding three million401

samples.402

LLM-as-Judge. Prior studies have consistently403

validated the effectiveness of employing LLMs for404

pairwise comparisons across diverse applications405

(Qin et al., 2023; Liu et al., 2024; Liusie et al.,406

2023). Moreover, Zeng et al. (2023) demonstrate407

that incorporating rule-based or self-generated408

evaluation criteria from LLMs further enhances409

the accuracy and reliability of these assessments.410

Given that our dataset involves comprehensive411

long-answer responses comprising detailed expla-412

nations of synthesis processes and materials mod-413

eling, we leverage gpt-4o as an evaluator with a 414

gold-standard reference answer, a model-generated 415

inference response, and a structured evaluation 416

rubric. gpt-4o then evaluates the inference re- 417

sponse as “correct”, “mostly correct”, or “incor- 418

rect”. We further verify the validity of gpt-4o’s 419

judgment by comparing it against human expert 420

evaluations detailed in section 4.3. 421

4.2 Main Results 422

Tables 3 and 4 present the results for open-source, 423

domain-specific, and black-box LLMs on MSQA, 424

respectively. 425

Long-Answer Questions. From Table 3, 426

we highlight several key observations: (1) 427

among the evaluated open-source models, 428

Deepseek-R1-distilled-Llama3 (DeepSeek-AI, 429

2025) achieves the highest accuracy (60.50%), 430

outperforming Qwen-2.5-7B (Yang et al., 431

2024) (51.28%) and Phi-4-mini (Abdin et al., 432

2024) (46.39%). The superior performance 433

of Deepseek-R1-distilled-Llama3 may be 434

attributed to the model’s inherent self-correction 435

nature in its thought process, allowing it to 436

review and refine its outputs; (2) retrieval- 437

augmented generation (RAG) notably improves 438

performance for Llama-3 and Qwen-2.5-7B. 439

However, Phi-4-mini exhibits only a marginal 440

improvement from 46.39% to 51.28%, likely 441

due to limited exposure to long-context and 442

retrieval-augmented training data in its alignment 443

corpus. This highlights the crucial role of post- 444

training model alignment; and (3) domain-specific 445

LLMs surprisingly underperform compared to 446

general-purpose models in producing coherent 447

long-form answers. This underperformance is 448
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Tasks (→) Long-answer Binary-answer

Baselines (↓) DP RAG DP COT RAG

Open-source LLMs

Llama-3-8B (Grattafiori et al., 2024) 39.39 (16/676/1065) 85.20 (330/1167/260) 63.97 57.37 73.71
Phi-4-mini (Abdin et al., 2024) 46.39 (15/800/942) 51.28 (207/694/856) 68.24 60.39 64.43
Qwen-2.5-7B (Yang et al., 2024) 51.28 (41/860/856) 87.48 (504/1033/220) 72.34 69.89 83.84
Deepseek-R1-distilled-Llama3 (DeepSeek-AI, 2025) 60.50 (37/1026/694) 85.71 (362/1144/251) 52.74 51.91 65.40

Domain-specific LLMs

Honeybee (Song et al., 2023b) 19.53 (0/343/1413) 2.73 (3/45/1708) 8.82 0.23 0.68
Mol-Instructions-Molecule (Fang et al., 2023) 0.23 (0/4/1753) 6.66 (16/101/1640) 22.82 0.11 11.84
Llasmol (Yu et al., 2024) 4.84 (0/85/1672) 6.26 (12/98/1647) 28.34 5.41 29.82

Table 3: Main results of open-source and domain-specific LLMs on MSQA. Long-answer results are presented
as “accuracy” in % (Correct/Mostly Correct/Incorrect). Binary-answer results are presented as “accuracy” in %.
Notations are consistent across tables. DP refers to “direct prompting”. COT refers to “direct prompting with chain
of thoughts”.

potentially due to distributional shifts between449

their specialized finetuning datasets and our more450

general domain-focused dataset, alongside evident451

overfitting. For instance, LlamaSmol (Yu et al.,452

2024) model frequently outputs chemical names453

encapsulated within <SMILE> tags, reflecting such454

training limitations.455

Binary-Answer Questions. As shown in456

Table 3, binary-answer questions present457

considerable difficulty, with two out of four458

general-purpose models (Llama-3-8B and459

Deepseek-R1-distilled-Llama3) performing460

only slightly above random guessing levels at461

63.97% and 52.74%, respectively. Interestingly,462

chain-of-thought (Wei et al., 2022) decreases per-463

formance for all open-source and domain-specific464

LLMs. Our analysis reveals that this decline465

is due to LLMs generating factually incorrect466

intermediate steps, likely stemming from their467

limited materials science knowledge, as confirmed468

by Wang et al. (2024a). Domain-specific models469

again perform worse than general-purpose models,470

with the best domain-specific model, Llasmol,471

achieving only 28.34% accuracy. We attribute472

this performance gap to two causes: 1) the473

domain-specific models likely overfitted on the474

finetuning data, decreasing their ability to output475

"True" and "False" answers; 2) the distribution476

shift between our dataset and their finetuning477

corpus.478

Black-Box LLMs. Results presented in Table 4479

clearly demonstrate that black-box LLMs substan-480

tially outperform open-source models in answering481

Model Long-ans Binary-ans Binary-cot

Claude 66.35 (136/840/495) 68.58 70.18
Grok 84.84 (363/885/223) 65.05 71.37
Gemini 77.63 (254/888/329) 72.85 71.54

Table 4: Experimental results of black-box LLMs on
MSQA with direct prompting.

long-form questions. Specifically, Grok-3 (Grok) 482

achieves an impressive accuracy of 84.46% without 483

supplementary contextual data. However, perfor- 484

mance on binary-answer tasks remains comparable 485

between black-box and open-source models, with 486

slight improvement after chain-of-thought (Wei 487

et al., 2022) prompting. 488

4.3 LLM as Judge 489

We investigate the reliability of using an LLM as 490

a judge by comparing its annotation decisions di- 491

rectly against those made by human annotators. 492

Considering human annotations as the gold stan- 493

dard, we quantified agreement using a confusion 494

matrix, as illustrated in Figure 5. Results indicate 495

that gpt-4o’s evaluations align with human judg- 496

ments in approximately 77.38% of cases, demon- 497

strating particularly high consistency for answers 498

rated as “correct”. 499

GPT-4o-mini as Judge. Due to the computational 500

expense associated with GPT-4o, we explore the 501

viability of using GPT-4o-mini as an alternative 502

judge for assessing long-answer responses gener- 503

ated by open-source LLMs (Table 5). We observe 504

that GPT-4o-mini demonstrates several distinct bi- 505
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Figure 5: Confusion matrix between human and GPT-4o
judgments.

Model Accuracy (%)

Llama-3-8B 77.18
Phi-4-mini 92.26
Qwen-2.5-7B 95.11
Deepseek-R1-distilled-Llama3 96.07

Table 5: Results on long-answer questions with GPT-
4o-mini as judge.

ases compared to GPT-4o. Notably, GPT-4o-mini506

exhibits a pronounced verbosity bias (Saito et al.,507

2023), often incorrectly rating longer responses508

as accurate, particularly evident in evaluations in-509

volving Deepseek-distilled-r1-llama3. Addition-510

ally, GPT-4o-mini frequently accepts vague or511

irrelevant explanations as correct. For instance,512

when asked "How does the presence of an SH-OC513

hydrogen bond influence the geometry and stabil-514

ity of the global minimum conformer of methyl515

3-mercaptopropionate?", GPT-4o-mini deemed a516

general explanation related to hydrogen bonding517

sufficient. Moreover, GPT-4o-mini fails to consis-518

tently identify scientific inaccuracies. Specifically,519

it incorrectly classified an inference answer that520

labeled Li4SnS4 as an anode material rather than521

correctly as a solid electrolyte, a mistake accurately522

detected by GPT-4o.523

4.4 Question Type Difficulties524

We conducted a case study to evaluate the perfor-525

mance of Qwen-2.5-7B (Yang et al., 2024) across526

various categories of materials science questions,527

as summarized in Table 6. The model exhibited the528

lowest accuracy (36.07%) on questions related to529

material properties, likely attributable to the lack of530

symbolic understanding of numerical values. This531

finding aligns with prior research by Miret and Kr-532

Question Type Accuracy (%)

structure-property relationships 49.27
synthesis and processing 40.86
computational 49.07
material analysis techniques 45.45
material modeling 45.6
failure analysis and degradation 39.78
material properties 36.07

Table 6: Results of Qwen-2.5-7B on each question type.

ishnan (2024), which similarly underscores the dif- 533

ficulties LLMs encounter with materials science nu- 534

merical tasks. The failure analysis and degradation 535

category emerged as the second most challenging, 536

probably due to the sparse representation of these 537

topics within its pre-training dataset. Conversely, 538

Qwen-2.5-7B demonstrated superior performance 539

on questions involving structure-property relation- 540

ships, indicating stronger foundational knowledge 541

likely driven by the broader availability of material 542

structure data in textbooks and journal articles. 543

4.5 Error Analysis 544

We conduct a detailed manual analysis of infer- 545

ence errors made by LLMs on the MSQA dataset 546

and identify several recurrent failure patterns: (1) 547

LLMs explicitly recognize their own limitations in 548

domain-specific knowledge and thus fail to provide 549

complete answers; (2) LLMs deliver partially ac- 550

curate responses, neglecting critical sub-questions 551

or necessary qualifying statements; and (3) LLMs 552

generate scientifically incorrect or misleading facts 553

due to hallucination. We include specific examples 554

illustrating each of these error types in appendix D. 555

5 Conclusion 556

In this study, we introduce MSQA, a comprehen- 557

sive benchmark explicitly designed to assess LLMs 558

on complex, domain-specific reasoning and ex- 559

planatory capabilities in materials science. Com- 560

prising 1,757 rigorously crafted long-answer and 561

binary-answer questions, MSQA addresses a sig- 562

nificant gap in current evaluation resources by sim- 563

ulating realistic scientific inquiry scenarios. Our 564

extensive evaluation of ten advanced LLMs high- 565

lights substantial performance gaps, particularly 566

revealing limitations in accurately generating co- 567

herent, nuanced responses to complex materials sci- 568

ence queries. MSQA serves as a robust platform 569

for benchmarking and advancing the development 570

of specialized LLMs tailored to the demanding con- 571

text of materials science research. 572
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Limitations573

We rely on GPT-4 as a judge for evaluating long-574

answer responses. However, this approach intro-575

duces evaluation costs for future researchers wish-576

ing to replicate or extend our work. Due to con-577

straints on annotation resources, we performed578

manual annotations on a randomly sampled subset579

of the questions. This process, while necessary,580

may result in the inclusion of a small number of581

low-quality question pairs due to the inherent vari-582

ability in LLM-generated content. Third, our com-583

putational limitations restricted us from evaluating584

open-source LLMs exceeding 8 billion parameters.585

We acknowledge that this may limit the general-586

izability of our findings. We encourage future re-587

search to overcome these limitations by assessing588

larger-scale LLMs.589
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Grok. Grok 3 Beta âĂŤ The Age of Reasoning Agents 627
| xAI — x.ai. https://x.ai/news/grok-3. [Ac- 628
cessed 03-05-2025]. 629

Tanishq Gupta, Mohd Zaki, N. M. Anoop Krishnan, 630
and Mausam. 2022a. MatSciBERT: A materials do- 631
main language model for text mining and information 632
extraction. npj Computational Materials, 8(1):102. 633

Tanishq Gupta, Mohd Zaki, NM Anoop Krishnan, and 634
Mausam. 2022b. Matscibert: A materials domain 635
language model for text mining and information ex- 636
traction. npj Computational Materials, 8(1):102. 637

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, 638
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022. 639
Large language models can self-improve. arXiv 640
preprint arXiv:2210.11610. 641

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 642
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, 643
Akila Welihinda, Alan Hayes, Alec Radford, and 1 644
others. 2024. Gpt-4o system card. arXiv preprint 645
arXiv:2410.21276. 646

Kevin Maik Jablonka, Qianxiang Ai, Alexander Al- 647
Feghali, Shruti Badhwar, Joshua D Bocarsly, An- 648
dres M Bran, Stefan Bringuier, L Catherine Brinson, 649
Kamal Choudhary, Defne Circi, and 1 others. 2023. 650
14 examples of how llms can transform materials sci- 651
ence and chemistry: a reflection on a large language 652
model hackathon. Digital discovery, 2(5):1233– 653
1250. 654

Zichong Li, Xinyu Feng, Yuheng Cai, Zixuan Zhang, 655
Tianyi Liu, Chen Liang, Weizhu Chen, Haoyu Wang, 656
and Tuo Zhao. 2025. Llms can generate a better 657
answer by aggregating their own responses. arXiv 658
preprint arXiv:2503.04104. 659

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris 660
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian 661
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya 662
Kumar, Benjamin Newman, Binhang Yuan, Bobby 663
Yan, Ce Zhang, Christian Cosgrove, Christopher D. 664
Manning, Christopher RÃl’, Diana Acosta-Navas, 665
Drew A. Hudson, and 31 others. 2023. Holis- 666
tic evaluation of language models. Preprint, 667
arXiv:2211.09110. 668

Yinhong Liu, Han Zhou, Zhijiang Guo, Ehsan Shareghi, 669
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This dataset is licensed under the MIT License.837

Future works are free to use, modify, and distribute838
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MIT License.840

B Prompt Details841

Prompt for generating candidate questions:842

Here is the "abstract" of a materials science
paper. Please complete the following tasks:

1. Summarize the purpose of the paper in clear
and concise terms.
2. Classify the purpose as emphasizing
"<method>" or "<result>".
3. Identify research questions relevant to the
abstract's themes and materials science
interests.

"Abstract": {paper[key_abstract]}

Prompt for generating candidate answers: 843

I will provide the purpose of a materials
science paper, related research questions, and
a detailed section of the paper.

Your tasks:
1. Select the Most Relevant Question:

Choose the research question that is most
specific, clearly phrased, and directly
related to the provided section.

2. Refine the Question: Modify the selected
question to ensure it is:

- Grounded on information from the
provided section, but answerable even
without using the provided section.

- Standalone and unambiguous. Do not
use definite articles when referring to
compounds.

- Clearly phrased for precision.
3. Generate a Direct Answer: Provide a

concise and well-structured response that:
- Directly answers the question.
- Is based on the provided section but

remains meaningful out of context.
- Avoids vague references such as

"this study" or "this paragraph."
- Clearly conveys the information

without requiring the reader to see the
original section.

Present the output as a JSON shown below:
{{

"question": "A clear and specific
question.",

"answer": "A concise and relevant answer
that remains meaningful without additional
context."
}}

Input data:
- "Purpose and related questions":

{llm_curate_abstract}
- "Detailed section":

{paper[key_detail]}

Prompt for merging candidate answers: 844

### Instructions:
1. Review the above solutions.
2. Generate an improved and refined solution by
aggregating the strengths from the provided
solutions. Enclose the solution within
<SOLUTION> and </SOLUTION> tag.
3. Provide a brief explanation of your
reasoning.
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4. Ensure your answer is clear, concise, and
structured logically.

### Here is the problem:
"question": {question},

### Reference Solutions:
Solution 1: {answer1}

Solution 2: {answer2}

Solution 3: {answer3}

Prompt for LLM-as-Judge:845

Your task is to evaluate the accuracy of
LLM-generated answers to materials science
questions by comparing them to expert-validated
"gold" answers.

For each evaluation, you will receive:
- A materials science question
- A gold answer, based on authoritative

domain knowledge
- An LLM-generated inference answer,

which you must assess

Your goal is to evaluate how well the inference
answer aligns with the gold answer in terms of
factual accuracy, conceptual completeness, and
relevance.

Use the following evaluation rubric:
- Correct: The inference answer fully

captures all essential concepts from the gold
answer, with no significant omissions or
factual errors.

- Mostly Correct: The inference answer
conveys the main idea or correct conclusion,
even if minor details are missing or slight
inaccuracies are present. Additional
non-conflicting information is acceptable.

- Incorrect: The inference answer
demonstrates substantial misunderstanding,
includes major factual errors, or omits core
concepts present in the gold answer.

Provide a short justification for your rating,
highlighting key similarities or discrepancies
between the inference and gold answers. Output
your response in the following JSON format:
{{

"reasoning": "A concise explanation
supporting your judgment.",

"judgment":
"correct|mostly correct|incorrect"
}}

C Keywords for candidate question846

filtering847

We use the following keywords to filter vague can-848

didate questions that make direct reference to the849

context:850

["this", "article", "paper", "study", "abstract", "ex-851

perimen", "studied", "investigat", "discuss", "de-852

scrib", "example", "document", "section", "the find- 853

ing","the sample"]. 854

D Error Analysis 855

D.1 Cases where LLM admits that it does not 856

have knowledge about the question 857

Question: How does destruction of Mn4CaO5 858

cluster affect conformational flexibility of CP43 859

lumenal domain? 860

LLM Answer: 861

I’m not aware of any information regarding how 862

the destruction of the Mn4CaO5 cluster affects the 863

conformational flexibility of the CP43 lumenal do- 864

main. The Mn4CaO5 cluster is a critical compo- 865

nent of the photosynthetic water-oxidizing com- 866

plex (WOC) in photosystem II, a complex protein 867

in photosynthetic organisms. The CP43 lumenal 868

domain is part of this WOC. 869

The Mn4CaO5 cluster is essential for the water- 870

oxidation reaction during photosynthesis, where 871

light energy is used to split water into oxygen, 872

protons, and electrons. The destruction of the 873

Mn4CaO5 cluster can be caused by various fac- 874

tors, such as oxidative stress, mutations, or chem- 875

ical modifications, and it can disrupt the water- 876

oxidation process. 877

However, I am unable to provide any detailed 878

information regarding how this affects the confor- 879

mational flexibility of the CP43 lumenal domain. 880

To answer this question, I would need to look into 881

more specific research related to this topic. 882

D.2 Case where LLM only partially address 883

the question (Unaddressed part is bolded) 884

Question: How does the band structure of methy- 885

lammonium lead iodide influence its intrinsic semi- 886

conductor behavior despite the presence of de- 887

fects and impurities? 888

LLM Answer: 889

The band structure of methylammonium lead io- 890

dide (MAPbI3), a widely studied perovskite ma- 891

terial, is characterized by a direct band gap at 892

the Brillouin zone center (τ -point), with the va- 893

lence band maximum primarily derived from the 894

iodine 5p orbitals and the conduction band mini- 895

mum from the lead 6p orbitals. This direct band 896

gap enables efficient light absorption and emission, 897

making MAPbI3 an excellent absorber for photo- 898

voltaic applications. The relatively small band gap 899

( 1.55 eV) allows absorption across the visible spec- 900

trum, while strong spin-orbit coupling due to lead 901
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further influences the band structure, enhancing902

carrier mobility. The presence of organic cations903

(methylammonium) has minimal direct impact on904

the electronic states near the band edges but con-905

tributes to structural stability, allowing for flexible906

tuning of the material’s optoelectronic properties.907

D.3 Case where LLM introduces incorrect908

scientific facts (Incorrect facts are bolded)909

Question: How do variations in polysarcosine910

block length affect protein adsorption and surface911

passivation in block copolymers?912

LLM Answer:913

Polysarcosine (PSA) is a water-soluble, biocom-914

patible, and biodegradable polymer that has been915

studied extensively in the context of biomedical ap-916

plications, including drug delivery, tissue engineer-917

ing, and surface modification. Block copolymers918

comprising polysarcosine and another polymer (of-919

ten referred to as PSA-based block copolymers)920

are of particular interest due to their ability to self-921

assemble into nanostructures with unique proper-922

ties.923

Variations in polysarcosine block length in PSA-924

based block copolymers can significantly affect925

protein adsorption and surface passivation. Here’s926

a general overview of how different block lengths927

can impact these properties:928

1. **Protein Adsorption:**929

* Shorter PSA blocks: When the PSA block930

is relatively short (e.g., 4-10 monomers), the931

block copolymer tends to adsorb more proteins932

from the surrounding environment due to the rel-933

atively hydrophobic nature of the core block (of-934

ten a hydrophobic polymer like poly(L-lysine) or935

poly(ethylene oxide)). This is because the hy-936

drophobic core can interact more strongly with937

hydrophobic parts of proteins, leading to enhanced938

protein adsorption.939

* Longer PSA blocks: Conversely, when the940

PSA block is longer (e.g., 20-50 monomers), the941

block copolymer tends to exhibit reduced pro-942

tein adsorption. This is because the increased hy-943

drophilicity of the PSA block dominates the sur-944

face, creating a more hydrophilic interface that re-945

pels proteins.946

2. **Surface Passivation:**947

* Shorter PSA blocks: Short PSA blocks can948

lead to poor surface passivation due to the under-949

lying hydrophobic core being more accessible to950

the environment, resulting in a higher likelihood of951

protein adsorption and biofouling.952

Figure 6: Confusion matrix between two material sci-
ence expert annotators.

* Longer PSA blocks: Longer PSA blocks are 953

more effective at surface passivation. They create 954

a more stable and hydrophilic surface that reduces 955

protein adsorption, minimizing the risk of biofoul- 956

ing and promoting a more stable interface with the 957

surrounding environment. 958

In summary, the length of the polysarcosine 959

block in PSA-based block copolymers plays a sig- 960

nificant role in determining protein adsorption and 961

surface passivation properties. Shorter PSA blocks 962

tend to facilitate protein adsorption, while longer 963

PSA blocks enhance surface passivation. 964

E Annotation Details 965

E.1 Annotation Guideline 966

The annotation guideline is shown in Figure 7. We 967

detail the criteria for the annotation of QA pairs in 968

MSQA. 969

E.2 Annotation Format 970

Screenshot of the annotation survey is shown in 971

Figure 8. For question quality, we ask the anno- 972

tator to annotate whether the question is a “Good 973

Question” or “Bad Question”. For answer quality, 974

we ask them to identify whether the answers are 975

“Correct”, “Mostly Correct”, or “Incorrect”, match- 976

ing the judgment choices of LLM judge. If the 977

annotator selected “Mostly Correct” or “Incorrect”, 978

they are required to specify their reasoning. 979

E.3 Annotation Agreement 980

Confusion matrix for annotation agreement be- 981

tween two PhD students on the "gold" generated 982

data for MSQA is shown in Figure 6. 983
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Thank you for helping us annotate the Material Science Q&A database!

  Deadline: Please aim to finish the annotation between April 14 and May 3rd.

Annotating the Question instruction:
Select "Good Question" or "Bad Question".
 
A Good Question appears reasonable at first glance and does not exhibit any of the following issues.
A Bad Question has one or more of the following problems:

Unclear: Lacks necessary context (e.g., mentions “this study” or uses undefined labels for
compounds).
Irrelevant: Not related to material science.
Too Broad / Oversimplified: Lacks specificity or depth (e.g., “What is metal?”).
Factually Incorrect: Contains factual inaccuracies (e.g., “Why does copper melt at 10°C?”).
Other: If the question is flawed but doesn't fall into the categories above, please also mark it as Bad
Question.

Annotating the Answer instruction:
Select "Correct", "Mostly Correct", "Incorrect". If you select "Incorrect" or "Mostly Correct", please check
all the reasons why the answer is not correct. 
 
A Correct Answer: Clearly and directly answers the question and has no factual errors.
A Mostly Correct or Incorrect Answer may include following problems:
(Note: “Mostly correct answer” may have problems during explanation but doesn't affect the final answer
correctness)

Irrelevant Response: Does not address the question (e.g., Question: “What is Young’s modulus?”
Answer: “Steel is strong.”)
Factual Errors: Contains incorrect scientific information (e.g., wrong values, misstated principles).
Unclear Logic: Reasoning is confusing or disjointed.
Misses Key Details: Omits critical information needed for a full explanation.
Other: Specify any additional issues in the “Other” field.

 

Enter your GT email

 ok

Figure 7: Annotation Survey Guideline
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Instruction (click to expand)

Question:
"What are the energetic and structural differences between the C3v and Oh conformers of xenon
hexafluoride, and how does the transition state facilitate interconversion?"

Answer:
"The C₃ᵥ conformer of xenon hexafluoride (XeF₆) is the global minimum structure, lying 186 cm⁻¹ lower in
energy than the Oₕ conformer when zero-point vibrational energy is included. Structurally, the Oₕ
conformer exhibits equivalent Xe-F bond lengths of 1.922 Å, whereas the C₃ᵥ conformer distorts these
bonds, with three elongating to 1.9548 Å and the opposite three shortening to 1.8512 Å. The
interconversion between these conformers occurs via a low-lying transition state with a barrier of only 36
cm⁻¹, making XeF₆ highly fluxional and rapidly interconverting between the eight degenerate C₃ᵥ
structures through the Oₕ minimum even at low temperatures.The Oₕ conformer is typically absent in
noble gas matrices at low temperatures (e.g., 5 K) due to matrix interactions stabilizing the C₃ᵥ structure
and the inability to overcome the low interconversion barrier. Vibrational spectroscopy further supports
the dominance of the C₃ᵥ conformer, as the absence of the Oₕ t₁ᵤ band near 590 cm⁻¹ indicates its
instability under these conditions. Overall, the low energy barrier and fluxional nature of XeF₆ contribute
to its dynamic behavior and structural variability."

If you selected "Mostly Correct" or "Incorrect" above, please check all reasons why the answer is not
correct.

Good Question

Bad Question

Correct

Mostly Correct

Incorrect

Irrelevant Response

Factual Errors

Unclear Logic

Miss Key Details

Other

Figure 8: Annotation Survey Format
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