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Abstract

Despite recent advances in large language mod-
els (LLMs) for materials science, there is a
lack of benchmarks for evaluating their domain-
specific knowledge and complex reasoning
abilities. To bridge this gap, we introduce
MSQA, a comprehensive evaluation bench-
mark of 1,757 graduate-level materials science
questions in two formats: detailed explana-
tory responses and binary True/False assess-
ments. MSQA distinctively challenges LLMs
by requiring both precise factual knowledge
and multi-step reasoning across seven materials
science sub-fields, such as structure-property
relationships, synthesis processes, and compu-
tational modeling. Through experiments with
10 state-of-the-art LLMs, we identify signifi-
cant gaps in current LLM performance. While
API-based proprietary LLMs achieve up to
84.5% accuracy, open-source (OSS) LLMs
peak around 60.5%, and domain-specific LLMs
often underperform significantly due to over-
fitting and distributional shifts. MSQA repre-
sents the first benchmark to jointly evaluate the
factual and reasoning capabilities of LLMs cru-
cial for LLMs in advanced materials science.

1 Introduction

Recent advances in large language models (LLMs)
hold considerable promise for accelerating materi-
als research by automating complex analysis (Miret
and Krishnan, 2024), prediction (Rubungo et al.,
2024), and design tasks (Jablonka et al., 2023).
However, progress in applying LL.Ms to materi-
als science has been constrained by the scarcity
of high-quality domain-specific annotated datasets
(Miret and Krishnan, 2024) and robust evaluation
benchmarks (Zaki et al., 2023).

Existing datasets for materials science primarily
focus on conventional natural language process-
ing (NLP) tasks, such as named entity recognition
(NER) (Weston et al., 2019; Shetty et al., 2023),
classification (Venugopal et al., 2021; Gupta et al.,

Question:

What structural transitions occur in tetraphenylethylene carboxylate
aggregates as the size of the liquid phase decreases from micro to
submicro dimensions?

Long-answer Response:

Tetraphenylethylene carboxylate (TPEC) aggregates undergo a
two-step structural transition as the size of the liquid phase
decreases from micro- to submicrometer dimensions due to ice
confinement. Initially, in relatively large confined spaces (greater
than 2 pm), TPEC aggregates are loosely packed, and their
molecular arrangement changes continuously, leading to increased
fluorescence intensity and a hypsochromic (blue) shift in emission
spectra. This structural change stabilizes when the space size
reduces to 2 um, where the aggregates adopt a more consistent
arrangement.

As the liquid phase shrinks further to submicrometer dimensions
(below 0.5 um), a second structural transition occurs, where the
aggregates are compressed into a more compact molecular
arrangement. This densification is driven by enhanced solubility in
the confined phase, which exhibits properties akin to low-density
liquid water, as well as the structured configuration of water
molecules at the ice-liquid interface. These structural transitions
significantly impact fluorescence properties, highlighting the role of
confinement effects in influencing aggregate behavior.

Question:

Do tetraphenylethylene carboxylate aggregates undergo a
densification transition due to enhanced solubility in
submicrometer liquid phases?

Binary-answer Response:

YES

Figure 1: Example question-answer pairs from MSQA.
The long-answer response (top) demonstrates multi-step
reasoning with explanations, while the binary-answer
response (bottom) shows a concise yes/no determination
on a related concept.

2022b), and relation extraction (RE) (Cheung et al.,
2023; Song et al., 2023a). Although valuable, these
datasets do not sufficiently assess models’ mate-
rials science knowledge grounded reasoning and
question-answering abilities. Recent efforts (Zaki
et al., 2023) have introduced benchmarks featuring
questions derived from graduate admission exams;
however, the short-answer format (e.g., multiple
choice) limits the assessment of complex reasoning
and in-depth explanatory capabilities essential for
real-world applications in materials science, such
as multistep synthesis planning and detailed prop-
erty evaluations.



To bridge this critical gap, we introduce MSQA,
a graduate-level materials science benchmark
specifically crafted to evaluate both factual knowl-
edge and complex reasoning capabilities of LLMs.
MSQA includes two complementary evaluation
modes: long-answer and binary-answer (Figure
1). The long-answer questions demand detailed,
multi-step explanations spanning seven challeng-
ing subfields, including structure-property relation-
ships, polymer synthesis, and computational ma-
terial modeling. In contrast, the binary-answer
questions offer balanced True/False queries that
require LLMs to assess complex domain-specific
judgments on material properties, applications, and
technical claims. Together, MSQA comprehen-
sively test the depth of factual understanding and
advanced reasoning skills.

To ensure high-quality and domain-grounded
questions and answers, we employ advanced
LLMs, including gpt-4o0 (Hurst et al., 2024),
gemini-2.0-pro (Team et al.,, 2023), and
Deepseek-v3 (DeepSeek-Al, 2025), guided by
expert-curated materials science literature. The
dataset generation process incorporates rigor-
ous three-stage quality assurance: (1) regular
expression-based filtering, (2) LLM-driven refine-
ment, and (3) expert annotation.

In our experiments, we systematically bench-
mark seven leading open-source and black-box
LLM:s alongside three domain-specific fine-tuned
models. Our results reveal that commercial black-
box LLMs consistently outperform open-source
alternatives, achieving accuracy as high as 84.5%.
Incorporating retrieved contextual data notably en-
hances model performance, showing retrieval aug-
mentation as a crucial adaptation strategy. Con-
versely, domain-specific fine-tuned models under-
perform relative to general-purpose models, likely
due to distribution shifts and overfitting, underscor-
ing critical limitations in current domain-adaptation
approaches. We summarize our main contributions
as follows:

* We present MSQA, one of the first materials
science benchmarks explicitly designed to rig-
orously test complex reasoning and explanatory
abilities of LL.Ms beyond factual knowledge;

* We provide a thorough empirical evaluation of
leading general-purpose and domain-specific
LLMs. We conduct detailed analyses of chal-
lenging scenarios to catalyze the development

of more reasoning-intensive, domain-adapted
LLMs for the materials science community.

* We open-source our curated dataset and bench-
mark code to foster community-driven inno-
vation towards LLM-driven advanced mate-
rial science discovery: https://anonymous.
4open.science/r/MSQA-C6C5/MSQA/.

2 Related Works

Materials Science Datasets for LL.Ms. Prior re-
search in materials science NLP primarily targets
structured extraction tasks such as NER and RE.
Expert-curated datasets, such as Wang et al. (2021)
and Weston et al. (2019), focus explicitly on identi-
fying and extracting material names, properties,
and their interrelations. Additional specialized
datasets emphasize tasks like property prediction;
for instance, Friedrich et al. (2020) annotated a cor-
pus of scholarly articles related to solid oxide fuel
cells, tagging entities such as materials, values,
and devices, while Panapitiya et al. (2021) pro-
vided annotations on chemical entities (CHEM), nu-
merical values (VALUE), and measurement units
(UNIT) from studies on soluble materials. More
recent datasets aimed at evaluating LLMs include
question-answer (QA) pairs to test domain knowl-
edge. Zaki et al. (2023) created a dataset with 650
questions derived from graduate-level admissions
exams in India, while Song et al. (2023a) aggre-
gated multiple previously published datasets into
a meta-dataset. However, they primarily utilize
short-answer formats such as multiple-choice or
numerical values, which inadequately capture the
nuanced reasoning and explanatory capabilities re-
quired in real-world materials science applications.
Synthetic Data Generation for Benchmarks.
LLMs increasingly serve as tools for creating eval-
uation benchmarks, especially when manual cura-
tion requires domain expertise or is prohibitively
expensive. For example, SciBench (Wang et al.,
2024c) and BioGPTQA (Sarwal et al., 2025) em-
ploy LLM-generated content subsequently vali-
dated through expert reviews and structured fil-
tering mechanisms. Other benchmarks, including
MT-Bench (Zheng et al., 2023) and HELM (Liang
et al., 2023), similarly rely on synthetically gen-
erated data to evaluate model performance across
diverse tasks. Synthetic data generation markedly
decreases annotation expenses; however, it is im-
portant to ensure the validity and reliability of gen-
erated benchmarks. Researchers employ quality
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control measures such as expert validation, statisti-
cal filtering, and alignment with reference materi-
als to minimize factual inaccuracies and reasoning
shortcuts.

3 MSQA: A Graduate-Level Materials
Science QA Dataset

We present MSQA, a comprehensive materials sci-
ence benchmark for evaluating LLMs (Figure 2).
We begin by describing our scientific literature col-
lection process in section 3.1. We then detail the
procedures for generating long-answer questions
and their corresponding answers in section 3.2
and section 3.3, respectively. Next, we outline
our three-stage quality assurance process in sec-
tion 3.4. We then describe the generation process
for binary-answer questions in section 3.5. Finally,
we summarize key dataset statistics for MSQA in
section 3.6.

3.1 Data Collection

Previous research has highlighted the inherent limi-
tations of LLMs in effectively addressing questions
grounded in specialized materials science knowl-
edge (Miret and Krishnan, 2024; Zaki et al., 2023;
Wang et al., 2024a). To overcome this limitation,
we curate a comprehensive collection of materials
science literature to serve as a context for generat-
ing high-quality QA pairs. Specifically, we source
3,000 diverse articles from the extensive dataset
compiled by Shetty et al. (2023), encompassing
2.4 million publications from seven primary ma-
terials science publishers spanning from 2000 to
2021. We employ sentence transformers (Reimers
and Gurevych, 2019) to generate embeddings for
abstracts from 50,000 randomly selected articles to
ensure diversity and representativeness. These em-
beddings are subsequently clustered using K-means
to achieve the highest silhouette score (Shahapure
and Nicholas, 2020), resulting in 10 distinct clus-
ters, each with 5000 papers on average. From each
cluster, we randomly sample 300 articles, culminat-
ing in our final set of 3,000 context articles.
Instead of using PDF documents, we collected
papers in XML format and parsed them using a pub-
licly available chemistry-paper-parser tool.!
This allows accurate information extraction from
these papers by preserving the integrity of mathe-
matical formulas and chemical representations.

1h'ctps ://github.com/Yinghao-Li/
ChemistryHTMLPaperParser

3.2 Candidate Question Generation

To ensure that the generated questions accurately
reflect the complexity and depth of real-world ma-
terials science research, we utilize the abstracts
of selected articles, as they succinctly encapsu-
late research objectives, methodologies, and signif-
icant findings. Following Zhong et al. (2024), we
first prompt gpt-4o to generate concise summaries
highlighting key findings from each abstract. This
initial summarization step reduces the influence of
specialized scholarly language, thereby facilitat-
ing more precise and targeted question generation.
Subsequently, each article is categorized based on
its primary objective: introducing a new synthesis
method (“method”) or presenting novel experimen-
tal observations (“result”). Guided by this cate-
gorization, gpt-4o is then prompted to formulate
candidate questions specifically aligned with the
focus identified in the article.

3.3 Question Selection and Candidate Answer
Generation

Previous studies have shown that context relevance
(Wang et al., 2024b) and factual precision (Ram
et al., 2023) are crucial factors for response qual-
ity. To enhance alignment between questions and
provided context, we employ a backward selec-
tion approach, where we use gpt-4o0 to select the
candidate questions based on the provided context.
Specifically, for articles categorized under “meth-
ods”, we provide the Experimental Method sec-
tions containing detailed descriptions of research
protocols and materials synthesis procedures. For
articles categorized as “results”, we supply the
Results sections, which include comprehensive
interpretations of experimental outcomes.
Candidate answers were then generated using
gpt-40, gemini-2.0-pro, and deepseek-v3. Ini-
tial assessments highlight that LLM-generated an-
swers frequently included ambiguous references
such as “the K@ Samples and the SCAs Units”,
diminishing clarity and self-contained informa-
tiveness. To address these issues, we refine the
prompts by explicitly discouraging the use of defi-
nite articles, significantly enhancing answer clarity.
This adjustment results in more precise and con-
textually anchored responses, explicitly referenc-
ing chemical entities (e.g., hexamethyldisilane,
copper phthalocyanine) and specific method-
ologies (e.g., CryoTEM Imaging, dynamic light
scattering) from the original studies.
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Abstract Sections

Cluster abstracts sections with sentence transformer

Question: What role does polyhedral oligomeric silsesquioxane play in
facilitating the crystallization of magnesium chloride and influencing
active site formation in Ziegler-Natta catalysts?

Final Answer: Polyhedral oligomeric silsesquioxane (POSS) plays a
crucial role in enhancing the performance of Ziegler-Natta catalysts by
influencing both the crystallization of magnesium chloride and active
site formation. First, POSS acts as a nucleator for MgCl, aggregation ...

. (23]
Stage III: Human annotation @A

Summary of Purpose:

The paper aims to develop and investigate a novel
Ziegler-Natta catalyst system modified with polyhedral
oligomeric silsesquioxane (POSS) to improve ethylene
polymerization performance. Through structural
characterization ...

Stage II: Keywords filtering

Classification of Purpose = experimental / result:

e.g.,- The paper emphasizes <result>. Material Science 4‘4@‘ g "o%
. ¥ 3 QS
2
Candidate Research Questions: Literatures < vs
1. How does the incorporation of POSS molecules @ Gemi ni

influence the structural and electronic properties of the
active sites in Ziegler-Natta catalysts?

2. How does the dilution and isolation of active sites
affect the polymerization kinetics and molecular weight
distribution

Experimental or Result Sections

Figure 2: Overview of data generation and quality evaluation in MSQA.

3.4 Three-Stage Quality Assurance

Prior research (Wang et al., 2022; Huang et al.,
2022) indicates that self-consistency among LL.Ms
significantly enhances answer accuracy and co-
herence. Extending this idea, Li et al. (2025)
applies self-consistency to handle open-ended
tasks effectively. Inspired by these findings, we
adopt a multi-model self-consistency approach
to enhance answer quality. Specifically, candi-
date answers produced by gpt-4o (Hurst et al.,
2024), gemini-2.0-pro (Team et al., 2023), and
deepseek-v3 (DeepSeek-Al, 2025) (section 3.3)
are aggregated using gpt-4o. This aggregation ex-
plicitly accounts for inter-model agreement, lever-
aging consensus among multiple sophisticated
models.

To ensure question clarity and relevance, we first
employ automated filtering methods, using regular
expressions and keyword matching to remove am-
biguous and overly context-dependent questions.
Subsequently, materials science domain experts
manually review the remaining questions to ex-
clude unclear, incorrect, or irrelevant queries.

We recruit two materials science PhD students
to rigorously evaluate the quality of a representa-
tive subset of the generated answers. Specifically,
we randomly select 50 question-answer pairs for
assessment. Each evaluator independently applied
their expert domain knowledge to assess whether
the provided answers are: (1) factually correct, (2)
directly relevant and precisely addressed the ques-

tions, and (3) logically coherent. The evaluators
show that 92.86% of answers fulfilled all three
quality criteria.

3.5 Binary Question Generation

Given the computational expense associated with
evaluating detailed long-form answers using ad-
vanced LLMs such as gpt-40, we develop a set
of 1,757 binary True/False questions derived from
previously generated question-answer pairs. Ini-
tial efforts to directly convert existing pairs into
binary format reveal several issues: (1) questions
frequently included overly detailed clues revealing
the correct answer; (2) LLM-generated questions
demonstrated a pronounced bias towards “True” re-
sponses; and (3) the generated questions lacked
complexity, often omitting nuanced reasoning in-
volving approximations or comparative thresholds
(e.g., “exact value” versus “around” a value).

To tackle these issues, we instruct gpt-4o to (1)
explicitly generate questions with a predefined True
or False label, yielding 878 “True” and 879 “False”
labeled questions; (2) favor approximations (e.g.,
“around”, “more or less than”) for rigid details that
are not essential; and (3) avoid unnecessary detail
without adding challenge. Detailed prompts are
included in appendix B.

3.6 Dataset Statistics

Table 1 summarizes the basic statistics of MSQA.
Question Types. We manually annotate a sub-
set of questions to identify and categorize various



Question & Answer Pairs Counts

Long-answer Q&A pairs 1,757
Binary-answer Q&A pairs 1,757
- # w/ “True” label 878
- # w/ “False” label 879

Avg. question length (in words) 19

Avg. long answer length (in words) 150

Table 1: Data statistics of MSQA.

Question Types Counts
Structure-property relationships 818
Synthesis and processing 257
Computational 216
Material analysis techniques 187
Material modeling 125
Failure analysis and degradation 93
Material properties 61

Table 2: Question composition in MSQA.

question types pertinent to general materials sci-
ence tasks. Using gpt-4o (Hurst et al., 2024), we
then classify the remaining questions into these pre-
defined categories. For questions with ambiguous
types, gpt-4o0 is prompted to label them as “Other”,
which are subsequently manually reviewed and cat-
egorized by domain experts. In total, we identify
seven distinct question categories (Table 2) that
comprehensively assess LLLM capabilities within
the materials science domain.

Question Semantics. To examine question seman-
tics, we analyze their verb-noun structures follow-
ing the methodology of Wang et al. (2023). We
employ the Berkeley Neural Parser? to parse each
question, extracting the primary verb (closest to the
root) and its direct noun object. The most frequent
root verbs, along with their associated direct noun
objects, are visualized in Figure 3. This analysis
highlights the broad topical coverage and complex
conceptual nature of questions in MSQA, particu-
larly emphasizing relationships between material
designs, their properties, and relevant experimental
methodologies.

Answer Semantics. To further explore the diver-
sity of the dataset, we analyze the semantic content
of the long-form answers by identifying references
to specific materials and chemical compounds us-
ing ChemDataExtractor (Swain and Cole, 2016).
Extracted chemical entities are embedded using
MatSciBERT (Gupta et al., 2022a), a specialized
language model trained on extensive materials sci-
ence literature. These embeddings are then visual-
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Figure 3: The top 20 most common root verbs (inner
circle) and their top 4 direct noun objects (outer circle)
in the generated instructions.

ized through t-SNE clustering, presented in Figure
4. Upon examining the resulting clusters, we con-
firm that the answers encompass diverse material
categories, including Polymers & Copolymers
and Inorganic Complexes, illustrating the com-
prehensive topical diversity inherent in our dataset.

4 Experiments

4.1 Experimental Setup

Tasks. We evaluate the performance of open-
source and domain-specific LLMs on both the long-
answer and binary-answer variants of the MSQA
dataset using two distinct prompting strategies: di-
rect generation and retrieval-augmented generation.
In the direct-generation scenario, models are pre-
sented only with the question, without supplemen-
tary context. In contrast, in the retrieval-augmented
setting, we first build a contextual database by
segmenting the Methods and Results sections de-
scribed in section 3.2 into separate paragraphs.
We then use BM25 (Robertson et al., 2009) to re-
trieve the top five most relevant paragraphs, which
serve as additional context provided to the model.
For binary-answer questions, we also investigate if
chain-of-thought (Wei et al., 2022) improves model
performance. Black-box LLMs are evaluated ex-
clusively under the direct generation setting. Eval-
uation of the long-answer responses is conducted
through GPT-40 acting as an LLM judge, assessing
responses as either “correct” or “mostly correct”,
both categories counted as correct in our metrics.
For binary-answer evaluations, accuracy is deter-
mined by exact keyword matching for responses
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Chemical Categories

Metal Ions & Simple Oxides
Marked Points: [MgMnO , Zn?]
Metal-Metal Bonds
Marked Points: [Co-Mo, Mo-Mo]
Biochemical & Coordination Complexes
Marked Points: [sulfonamide, Htta-TOPO-[C4mim ][ Tf2N]]
Advanced Organic Polymers
Marked Points: [poly(butylene 2,5-furan-dicarboxylate)?, poly(3-hexylthiophene-2,5-diyl)]
Catalytic Metals & Hydrocarbons
Marked Points: [Au, hydrocarbons]

2 Metal Oxide Precursors

Marked Points: [IrOx, TEOS]

Transition Metal & Organic Groups
Marked Points: [ferrous, methyl ester?]

Boron & Functional Electrolytes

< Marked Points: [ammonium bis(biureto)borate, tris(pentafluorophenyl)borane]

Figure 4: T-SNE visualization of material and chemical mentions from long-form answers, embedded using
MatSciBERT. Legend shows manually labeled categories with example compounds.

containing either “YES” or “NO”. Performance
results are uniformly reported as accuracy percent-
ages across all experiments.

Evaluated LLM models. We com-
prehensively evaluate several LLMs on
MSQA. For black-box models, our analy-
sis includes Claude-3.7-Sonnet (Claude),

Gemini-2.0-Flash, and Grok-3 (Grok). Addi-
tionally, we assess the performance of prominent
open-source models, specifically Llama-3-8B
(Grattafiori et al., 2024), Phi-4-mini (Abdin
et al., 2024), Qwen-2.5-7B (Yang et al., 2024),
and Deepseek-R1-distilled-L1lama-3. Further-
more, we benchmark several domain-specific
LLMs specialized for materials science. These
include Honeybee (Song et al., 2023b), an LLM
fine-tuned iteratively on synthesized materials
science data; Mol-Instructions-Molecule
(Fang et al., 2023), a model fine-tuned explicitly on
chemical reaction and molecular design datasets
tailored for small molecules; and Llasmol (Yu
et al., 2024), a specialized chemistry domain LLM
instruction-tuned across 14 chemistry-specific
tasks utilizing a dataset exceeding three million
samples.

LLM-as-Judge. Prior studies have consistently
validated the effectiveness of employing LLMs for
pairwise comparisons across diverse applications
(Qin et al., 2023; Liu et al., 2024; Liusie et al.,
2023). Moreover, Zeng et al. (2023) demonstrate
that incorporating rule-based or self-generated
evaluation criteria from LLMs further enhances
the accuracy and reliability of these assessments.
Given that our dataset involves comprehensive
long-answer responses comprising detailed expla-
nations of synthesis processes and materials mod-

eling, we leverage gpt-4o0 as an evaluator with a
gold-standard reference answer, a model-generated
inference response, and a structured evaluation
rubric. gpt-4o0 then evaluates the inference re-
sponse as “correct”, “mostly correct”, or “incor-
rect”. We further verify the validity of gpt-40’s
judgment by comparing it against human expert

evaluations detailed in section 4.3.

4.2 Main Results

Tables 3 and 4 present the results for open-source,
domain-specific, and black-box LLMs on MSQA,
respectively.

Long-Answer Questions. From Table 3,
we highlight several key observations: (1)
among the evaluated open-source models,
Deepseek-R1-distilled-L1lama3 (DeepSeek-Al,
2025) achieves the highest accuracy (60.50%),
outperforming Qwen-2.5-7B (Yang et al.,
2024) (51.28%) and Phi-4-mini (Abdin et al.,
2024) (46.39%). The superior performance
of Deepseek-R1-distilled-Llama3 may be
attributed to the model’s inherent self-correction
nature in its thought process, allowing it to
review and refine its outputs; (2) retrieval-
augmented generation (RAG) notably improves
performance for Llama-3 and Qwen-2.5-7B.
However, Phi-4-mini exhibits only a marginal
improvement from 46.39% to 51.28%, likely
due to limited exposure to long-context and
retrieval-augmented training data in its alignment
corpus. This highlights the crucial role of post-
training model alignment; and (3) domain-specific
LLMs surprisingly underperform compared to
general-purpose models in producing coherent
long-form answers. This underperformance is



Tasks (—)

Long-answer Binary-answer

Baselines (].)

DP RAG DP COT RAG

Open-source LLMs

Llama-3-8B (Grattafiori et al., 2024)
Phi-4-mini (Abdin et al., 2024)
Qwen-2.5-7B (Yang et al., 2024)

39.39 (16/676/1065) 85.20 (330/1167/260) 63.97 57.37 73.71
46.39 (15/800/942)  51.28 (207/694/856)
51.28 (41/860/856) 87.48 (504/1033/220) 72.34 69.89 83.84

68.24 60.39 64.43

Deepseek-R1-distilled-Llama3 (DeepSeek-Al, 2025) 60.50 (37/1026/694) 85.71 (362/1144/251) 52.74 51.91 65.40

Domain-specific LLMs

Honeybee (Song et al., 2023b)
Mol-Instructions-Molecule (Fang et al., 2023)
Llasmol (Yu et al., 2024)

19.53 (0/343/1413) 2.73 (3/45/1708) 882 023 0.68
0.23 (0/4/1753) 6.66 (16/101/1640) 22.82 0.11 11.84
4.84 (0/85/1672) 6.26 (12/98/1647) 28.34 5.41 29.82

Table 3: Main results of open-source and domain-specific LLMs on MSQA. Long-answer results are presented
as “accuracy” in % (Correct/Mostly Correct/Incorrect). Binary-answer results are presented as “accuracy” in %.
Notations are consistent across tables. DP refers to “direct prompting”. COT refers to “direct prompting with chain

of thoughts”.

potentially due to distributional shifts between
their specialized finetuning datasets and our more
general domain-focused dataset, alongside evident
overfitting. For instance, L1lamaSmol (Yu et al.,
2024) model frequently outputs chemical names
encapsulated within <SMILE> tags, reflecting such
training limitations.

Binary-Answer Questions. As shown in
Table 3, binary-answer questions present
considerable difficulty, with two out of four
general-purpose  models (Llama-3-8B and
Deepseek-R1-distilled-Llama3) performing
only slightly above random guessing levels at
63.97% and 52.74%, respectively. Interestingly,
chain-of-thought (Wei et al., 2022) decreases per-
formance for all open-source and domain-specific
LLMs. Our analysis reveals that this decline
is due to LLMs generating factually incorrect
intermediate steps, likely stemming from their
limited materials science knowledge, as confirmed
by Wang et al. (2024a). Domain-specific models
again perform worse than general-purpose models,
with the best domain-specific model, Llasmol,
achieving only 28.34% accuracy. We attribute
this performance gap to two causes: 1) the
domain-specific models likely overfitted on the
finetuning data, decreasing their ability to output
"True" and "False" answers; 2) the distribution
shift between our dataset and their finetuning
corpus.

Black-Box LLMs. Results presented in Table 4
clearly demonstrate that black-box LL.Ms substan-
tially outperform open-source models in answering

Model Long-ans Binary-ans  Binary-cot
Claude  66.35 (136/840/495) 68.58 70.18
Grok 84.84 (363/885/223) 65.05 71.37
Gemini  77.63 (254/888/329) 72.85 71.54

Table 4: Experimental results of black-box LLMs on
MSQA with direct prompting.

long-form questions. Specifically, Grok-3 (Grok)
achieves an impressive accuracy of 84.46% without
supplementary contextual data. However, perfor-
mance on binary-answer tasks remains comparable
between black-box and open-source models, with
slight improvement after chain-of-thought (Wei
et al., 2022) prompting.

4.3 LLM as Judge

We investigate the reliability of using an LLM as
a judge by comparing its annotation decisions di-
rectly against those made by human annotators.
Considering human annotations as the gold stan-
dard, we quantified agreement using a confusion
matrix, as illustrated in Figure 5. Results indicate
that gpt-40’s evaluations align with human judg-
ments in approximately 77.38% of cases, demon-
strating particularly high consistency for answers
rated as “correct”.

GPT-40-mini as Judge. Due to the computational
expense associated with GPT-40, we explore the
viability of using GPT-40-mini as an alternative
judge for assessing long-answer responses gener-
ated by open-source LLMs (Table 5). We observe
that GPT-40-mini demonstrates several distinct bi-
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Figure 5: Confusion matrix between human and GPT-40
judgments.

Model Accuracy (%)
Llama-3-8B 77.18
Phi-4-mini 92.26
Qwen-2.5-7B 95.11
Deepseek-R1-distilled-Llama3 96.07

Table 5: Results on long-answer questions with GPT-
4o0-mini as judge.

ases compared to GPT-40. Notably, GPT-40-mini
exhibits a pronounced verbosity bias (Saito et al.,
2023), often incorrectly rating longer responses
as accurate, particularly evident in evaluations in-
volving Deepseek-distilled-r1-llama3. Addition-
ally, GPT-40-mini frequently accepts vague or
irrelevant explanations as correct. For instance,
when asked "How does the presence of an SH-OC
hydrogen bond influence the geometry and stabil-
ity of the global minimum conformer of methyl
3-mercaptopropionate?”, GPT-40-mini deemed a
general explanation related to hydrogen bonding
sufficient. Moreover, GPT-4o0-mini fails to consis-
tently identify scientific inaccuracies. Specifically,
it incorrectly classified an inference answer that
labeled LisSnS4 as an anode material rather than
correctly as a solid electrolyte, a mistake accurately
detected by GPT-4o.

4.4 Question Type Difficulties

We conducted a case study to evaluate the perfor-
mance of Qwen-2.5-7B (Yang et al., 2024) across
various categories of materials science questions,
as summarized in Table 6. The model exhibited the
lowest accuracy (36.07%) on questions related to
material properties, likely attributable to the lack of
symbolic understanding of numerical values. This
finding aligns with prior research by Miret and Kr-

Question Type Accuracy (%)
structure-property relationships 49.27
synthesis and processing 40.86
computational 49.07
material analysis techniques 45.45
material modeling 45.6
failure analysis and degradation 39.78
material properties 36.07

Table 6: Results of Qwen-2.5-7B on each question type.

ishnan (2024), which similarly underscores the dif-
ficulties LLMs encounter with materials science nu-
merical tasks. The failure analysis and degradation
category emerged as the second most challenging,
probably due to the sparse representation of these
topics within its pre-training dataset. Conversely,
Qwen-2.5-7B demonstrated superior performance
on questions involving structure-property relation-
ships, indicating stronger foundational knowledge
likely driven by the broader availability of material
structure data in textbooks and journal articles.

4.5 Error Analysis

We conduct a detailed manual analysis of infer-
ence errors made by LLMs on the MSQA dataset
and identify several recurrent failure patterns: (1)
LLMs explicitly recognize their own limitations in
domain-specific knowledge and thus fail to provide
complete answers; (2) LLMs deliver partially ac-
curate responses, neglecting critical sub-questions
or necessary qualifying statements; and (3) LLMs
generate scientifically incorrect or misleading facts
due to hallucination. We include specific examples
illustrating each of these error types in appendix D.

5 Conclusion

In this study, we introduce MSQA, a comprehen-
sive benchmark explicitly designed to assess LLMs
on complex, domain-specific reasoning and ex-
planatory capabilities in materials science. Com-
prising 1,757 rigorously crafted long-answer and
binary-answer questions, MSQA addresses a sig-
nificant gap in current evaluation resources by sim-
ulating realistic scientific inquiry scenarios. Our
extensive evaluation of ten advanced LLMs high-
lights substantial performance gaps, particularly
revealing limitations in accurately generating co-
herent, nuanced responses to complex materials sci-
ence queries. MSQA serves as a robust platform
for benchmarking and advancing the development
of specialized LLMs tailored to the demanding con-
text of materials science research.



Limitations

We rely on GPT-4 as a judge for evaluating long-
answer responses. However, this approach intro-
duces evaluation costs for future researchers wish-
ing to replicate or extend our work. Due to con-
straints on annotation resources, we performed
manual annotations on a randomly sampled subset
of the questions. This process, while necessary,
may result in the inclusion of a small number of
low-quality question pairs due to the inherent vari-
ability in LLM-generated content. Third, our com-
putational limitations restricted us from evaluating
open-source LLMs exceeding 8 billion parameters.
We acknowledge that this may limit the general-
izability of our findings. We encourage future re-
search to overcome these limitations by assessing
larger-scale LLMs.
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A License

This dataset is licensed under the MIT License.
Future works are free to use, modify, and distribute
this dataset in accordance with the terms of the
MIT License.

B Prompt Details

Prompt for generating candidate questions:

Here is the "abstract"” of a materials science
paper. Please complete the following tasks:

11

1. Summarize the purpose of the paper in clear
and concise terms.

2. Classify the purpose as emphasizing
"<method>" or "<result>".

3. Identify research questions relevant to the
abstract's themes and materials science
interests.

"Abstract”: {paperl[key_abstract]}

Prompt for generating candidate answers:

I will provide the purpose of a materials
science paper, related research questions, and
a detailed section of the paper.

Your tasks:

1. Select the Most Relevant Question:
Choose the research question that is most
specific, clearly phrased, and directly
related to the provided section.

2. Refine the Question: Modify the selected
question to ensure it is:

- Grounded on information from the
provided section, but answerable even
without using the provided section.

- Standalone and unambiguous. Do not
use definite articles when referring to
compounds.

- Clearly phrased for precision.

3. Generate a Direct Answer: Provide a
concise and well-structured response that:

- Directly answers the question.

- Is based on the provided section but
remains meaningful out of context.

- Avoids vague references such as
"this study” or "this paragraph.”

- Clearly conveys the information
without requiring the reader to see the
original section.

Present the output as a JSON shown below:
{{

"question”: "A clear and specific
question.”,

"answer”: "A concise and relevant answer
that remains meaningful without additional
context."”

33

Input data:

- "Purpose and related questions”:
{1lm_curate_abstract}

- "Detailed section”:
{paper[key_detaill}

Prompt for merging candidate answers:

### Instructions:

1. Review the above solutions.

2. Generate an improved and refined solution by
aggregating the strengths from the provided
solutions. Enclose the solution within
<SOLUTION> and </SOLUTION> tag.

3. Provide a brief explanation of your
reasoning.
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4. Ensure your answer is clear, concise, and
structured logically.

### Here is the problem:
"question”: {question},

### Reference Solutions:
Solution 1: {answeri1}

Solution 2: {answer2}

Solution 3: {answer3}

Prompt for LL.M-as-Judge:

Your task is to evaluate the accuracy of
LLM-generated answers to materials science
questions by comparing them to expert-validated
"gold" answers.

For each evaluation, you will receive:

- A materials science question

- A gold answer, based on authoritative
domain knowledge

- An LLM-generated inference answer,
which you must assess

Your goal is to evaluate how well the inference
answer aligns with the gold answer in terms of
factual accuracy, conceptual completeness, and
relevance.

Use the following evaluation rubric:

- Correct: The inference answer fully
captures all essential concepts from the gold
answer, with no significant omissions or
factual errors.

- Mostly Correct: The inference answer
conveys the main idea or correct conclusion,
even if minor details are missing or slight
inaccuracies are present. Additional
non-conflicting information is acceptable.

- Incorrect: The inference answer
demonstrates substantial misunderstanding,
includes major factual errors, or omits core
concepts present in the gold answer.

Provide a short justification for your rating,
highlighting key similarities or discrepancies
between the inference and gold answers. Output
your response in the following JSON format:
{{

"reasoning”: "A concise explanation
supporting your judgment.”,

"judgment":
"correct|mostly correct|incorrect”

33

C Keywords for candidate question
filtering

We use the following keywords to filter vague can-
didate questions that make direct reference to the
context:

["this", "article", "paper", "study", "abstract", "ex-
perimen", "studied", "investigat", "discuss", "de-
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non

scrib”, "example", "document",

ing","the sample"].

section", "the find-

D Error Analysis

D.1 Cases where LLM admits that it does not
have knowledge about the question

Question: How does destruction of Mn4CaO5
cluster affect conformational flexibility of CP43
lumenal domain?

LLM Answer:

I’'m not aware of any information regarding how
the destruction of the Mn4CaO5 cluster affects the
conformational flexibility of the CP43 lumenal do-
main. The Mn4CaO5 cluster is a critical compo-
nent of the photosynthetic water-oxidizing com-
plex (WOC) in photosystem II, a complex protein
in photosynthetic organisms. The CP43 lumenal
domain is part of this WOC.

The Mn4CaOS5 cluster is essential for the water-
oxidation reaction during photosynthesis, where
light energy is used to split water into oxygen,
protons, and electrons. The destruction of the
Mn4CaOS5 cluster can be caused by various fac-
tors, such as oxidative stress, mutations, or chem-
ical modifications, and it can disrupt the water-
oxidation process.

However, I am unable to provide any detailed
information regarding how this affects the confor-
mational flexibility of the CP43 lumenal domain.
To answer this question, I would need to look into
more specific research related to this topic.

D.2 Case where LLLM only partially address
the question (Unaddressed part is bolded)

Question: How does the band structure of methy-
lammonium lead iodide influence its intrinsic semi-
conductor behavior despite the presence of de-
fects and impurities?

LLM Answer:

The band structure of methylammonium lead io-
dide (MAPbDI3), a widely studied perovskite ma-
terial, is characterized by a direct band gap at
the Brillouin zone center (7-point), with the va-
lence band maximum primarily derived from the
iodine Sp orbitals and the conduction band mini-
mum from the lead 6p orbitals. This direct band
gap enables efficient light absorption and emission,
making MAPbI3 an excellent absorber for photo-
voltaic applications. The relatively small band gap
( 1.55 eV) allows absorption across the visible spec-
trum, while strong spin-orbit coupling due to lead



further influences the band structure, enhancing
carrier mobility. The presence of organic cations
(methylammonium) has minimal direct impact on
the electronic states near the band edges but con-
tributes to structural stability, allowing for flexible
tuning of the material’s optoelectronic properties.

D.3 Case where LLM introduces incorrect
scientific facts (Incorrect facts are bolded)

Question: How do variations in polysarcosine
block length affect protein adsorption and surface
passivation in block copolymers?

LLM Answer:

Polysarcosine (PSA) is a water-soluble, biocom-
patible, and biodegradable polymer that has been
studied extensively in the context of biomedical ap-
plications, including drug delivery, tissue engineer-
ing, and surface modification. Block copolymers
comprising polysarcosine and another polymer (of-
ten referred to as PSA-based block copolymers)
are of particular interest due to their ability to self-
assemble into nanostructures with unique proper-
ties.

Variations in polysarcosine block length in PSA-
based block copolymers can significantly affect
protein adsorption and surface passivation. Here’s
a general overview of how different block lengths
can impact these properties:

1. **Protein Adsorption:**

* Shorter PSA blocks: When the PSA block
is relatively short (e.g., 4-10 monomers), the
block copolymer tends to adsorb more proteins
from the surrounding environment due to the rel-
atively hydrophobic nature of the core block (of-
ten a hydrophobic polymer like poly(L-lysine) or
poly(ethylene oxide)). This is because the hy-
drophobic core can interact more strongly with
hydrophobic parts of proteins, leading to enhanced
protein adsorption.

* Longer PSA blocks: Conversely, when the
PSA block is longer (e.g., 20-50 monomers), the
block copolymer tends to exhibit reduced pro-
tein adsorption. This is because the increased hy-
drophilicity of the PSA block dominates the sur-
face, creating a more hydrophilic interface that re-
pels proteins.

2. **Surface Passivation:**

* Shorter PSA blocks: Short PSA blocks can
lead to poor surface passivation due to the under-
lying hydrophobic core being more accessible to
the environment, resulting in a higher likelihood of
protein adsorption and biofouling.
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Figure 6: Confusion matrix between two material sci-
ence expert annotators.

* Longer PSA blocks: Longer PSA blocks are
more effective at surface passivation. They create
a more stable and hydrophilic surface that reduces
protein adsorption, minimizing the risk of biofoul-
ing and promoting a more stable interface with the
surrounding environment.

In summary, the length of the polysarcosine
block in PSA-based block copolymers plays a sig-
nificant role in determining protein adsorption and
surface passivation properties. Shorter PSA blocks
tend to facilitate protein adsorption, while longer
PSA blocks enhance surface passivation.

E Annotation Details

E.1 Annotation Guideline

The annotation guideline is shown in Figure 7. We
detail the criteria for the annotation of QA pairs in
MSQA.

E.2 Annotation Format

Screenshot of the annotation survey is shown in
Figure 8. For question quality, we ask the anno-
tator to annotate whether the question is a “Good
Question” or “Bad Question”. For answer quality,
we ask them to identify whether the answers are
“Correct”, “Mostly Correct”, or “Incorrect”, match-
ing the judgment choices of LLM judge. If the
annotator selected “Mostly Correct” or “Incorrect”,
they are required to specify their reasoning.

E.3 Annotation Agreement

Confusion matrix for annotation agreement be-
tween two PhD students on the "gold" generated
data for MSQA is shown in Figure 6.



Annotating the Question instruction:
Select "Good Question" or "Bad Question".

A Good Question appears reasonable at first glance and does not exhibit any of the following issues.
A Bad Question has one or more of the following problems:

e Unclear: Lacks necessary context (e.g., mentions “this study” or uses undefined labels for
compounds).

Irrelevant: Not related to material science.

» Too Broad / Oversimplified: Lacks specificity or depth (e.g., “What is metal?”).

Factually Incorrect: Contains factual inaccuracies (e.g., “Why does copper melt at 10°C?”).

Other: If the question is flawed but doesn't fall into the categories above, please also mark it as Bad
Question.

L]

Annotating the Answer instruction:
Select "Correct", "Mostly Correct", "Incorrect". If you select "Incorrect” or "Mostly Correct", please check
all the reasons why the answer is not correct.

A Correct Answer: Clearly and directly answers the question and has no factual errors.
A Mostly Correct or Incorrect Answer may include following problems:

(Note: “Mostly correct answer” may have problems during explanation but doesn't affect the final answer
correctness)

« Irrelevant Response: Does not address the question (e.g., Question: “What is Young’s modulus?”
Answer: “Steel is strong.”)

Factual Errors: Contains incorrect scientific information (e.g., wrong values, misstated principles).
Unclear Logic: Reasoning is confusing or disjointed.

Misses Key Details: Omits critical information needed for a full explanation.

Other: Specify any additional issues in the “Other” field.

Figure 7: Annotation Survey Guideline
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Question:
"What are the energetic and structural differences between the C3v and Oh conformers of xenon
hexafluoride, and how does the transition state facilitate interconversion?"

(O Good Question
(O Bad Question

Answer:

"The C, conformer of xenon hexafluoride (XeF ) is the global minimum structure, lying 186 cm™ lower in
energy than the O, conformer when zero-point vibrational energy is included. Structurally, the Oy,
conformer exhibits equivalent Xe-F bond lengths of 1.922 A, whereas the C,v conformer distorts these
bonds, with three elongating to 1.9548 A and the opposite three shortening to 1.8512 A. The
interconversion between these conformers occurs via a low-lying transition state with a barrier of only 36
cm™, making XeF highly fluxional and rapidly interconverting between the eight degenerate C
structures through the O, minimum even at low temperatures.The Oy conformer is typically absent in
noble gas matrices at low temperatures (e.g., 5 K) due to matrix interactions stabilizing the C v structure
and the inability to overcome the low interconversion barrier. Vibrational spectroscopy further supports
the dominance of the C v conformer, as the absence of the On t,u band near 590 cm™ indicates its
instability under these conditions. Overall, the low energy barrier and fluxional nature of XeF, contribute
to its dynamic behavior and structural variability."

() Correct
(O Mostly Correct

O Incorrect

If you selected "Mostly Correct" or "Incorrect" above, please check all reasons why the answer is not
correct.

[] Irrelevant Response
["] Factual Errors

[] Unclear Logic

[] Miss Key Details
[] Other

Figure 8: Annotation Survey Format
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