A Cramér Distance perspective on Non-crossing Quantile Regression in Distributional Reinforcement Learning

Anonymous Author(s) Affiliation Address email

Abstract

Distributional reinforcement learning (DRL) extends the value-based approach 1 2 by using a deep convolutional network to approximate the full distribution over future returns instead of the mean only, providing a richer signal that leads to 3 improved performances. Quantile-based methods like QR-DQN project arbitrary 4 distributions onto a parametric subset of staircase distributions by minimizing 5 the 1-Wasserstein distance, however, due to biases in the gradients, the quantile 6 regression loss is used instead for training, guaranteeing the same minimizer and 7 enjoying unbiased gradients. Recently, monotonicity constraints on the quantiles 8 have been shown to improve the performance of QR-DQN for uncertainty-based 9 exploration strategies. The contribution of this work is in the setting of fixed 10 quantile levels and is twofold. First, we prove that the Cramér distance yields a 11 projection that coincides with the 1-Wasserstein one and that, under monotonicity 12 13 constraints, the squared Cramér and the quantile regression losses yield collinear 14 gradients, shedding light on the connection between these important elements of DRL. Second, we propose a novel non-crossing neural architecture that allows a 15 good training performance using a novel algorithm to compute the Cramér distance, 16 yielding significant improvements over QR-DQN in a number of games of the 17 standard Atari 2600 benchmark. 18

19 1 Introduction

Distributional Reinforcement Learning (DRL) extends the value-based approach of DQN [21] by 20 considering the full distribution of returns as a learning signal allowing to take into account all the 21 complexity of the randomness coming from the rewards, the transitions and the policy, which is 22 hidden when considering the mean only. Even when a policy aims at maximizing the expected return, 23 considering the full distribution provides an advantage in the presence of approximations, allowing to 24 learn better representations and helping to reduce state aliasing [1]. With this new approach comes a 25 generalization of the *Bellman operator*—the *distributional* Bellman operator—, whose contraction 26 properties are key for guaranteeing the stability of DRL algorithms. 27

How distributions are represented and learned is also a key point in DRL, since some choices can
break the contraction property (see, e.g., [25, Lemma 2]). Some approaches use staircase parametric
representations whose steps correspond to fixed quantile values like in C51 [1] or to fixed quantile
levels like in QR-DQN [10]. Alternatively, FQN [30] fully parameterize the staircase distributions.
IQN [9] follows a different approach by approximating the quantile function with a neural network

that takes the quantile level as input and must therefore be sampled during training.

DRL methods resort to different notions of distance or divergences between distributions in order 34 to practically learn the distributions but also to analyze the effect on the contraction property of the 35 distributional Bellman operator. In [25], a Hilbert space endowed with the ℓ_2 norm on cumulative 36 distribution functions has been shown to be a natural framework to analyze the effect of the fixed 37 quantile value representation of C51. In [2], the squared ℓ_2 distance, called *Cramér distance* in that 38 work,¹ has been proposed for Generative Adversarial Networks but also for machine learning in 39 general due its unbiased gradients. However, attempts to use the Cramér distance as loss function in 40 DRL, yielded results that are inferior to those obtained with the heuristic Kullback-Leibler divergence 41 loss used in C51, as reported in [3]. In [10], the Wasserstein distance has been used for defining how 42 a general distribution should be represented with fixed quantile levels and also to analyze the effect on 43 the contraction property of the distributional Bellman operator. However, due to the biased gradients 44 of the Wasserstein distance, the quantile regression loss is used to train the network, guaranteeing the 45 same minimizer as the 1-Wasserstein distance and enjoying unbiased gradients. 46 When estimating multiple quantiles, one faces the issue of crossing quantiles, i.e., a violation of the

47 monotonicity of the quantile function. In DRL, crossing quantiles make the learning signal noisy, 48 affecting disambiguation of states as shown in [31]. This issue has been addressed in the statistical 49 literature of quantile regression (see, e.g. [17, 14, 19, 13, 11, 7]) but also, more generally, in the 50 machine learning literature on how to represent and learn monotonic functions (see, e.g., [12, Table 51 1]), with different approaches like including penalties in the loss function or enforcing monotonicity 52 by design. Methods that take sampled quantile levels as input during training like [27] or [9], have 53 been shown to alleviate the problem. In the DRL literature, [31] enforces monotonicity with a 54 special neural network design obtaining improved results with respect to QR-DQN, in the setting of 55 uncertainty-based exploration. 56

In this work, we analyze the theoretical properties of the Cramér distance for learning staircase 57 distributions with fixed quantile levels and we propose a practical algorithmic solution for DRL with 58 the standard ε -greedy exploration strategy. In Section 2, we expose the necessary background and 59 definitions. In Section 3, we present the connections between the Cramér distance, the 1-Wasserstein 60 distance and the Quantile Regression loss, leading to a contraction guarantee. In Section 4, we propose 61 a low-complexity algorithm to compute the Cramér distance. In Section 5, we introduce a novel neural 62 network architecture enforcing non-crossing quantiles. In Section 6, we report experimental results 63 on the Atari 2600 benchmark using the Cramér distance algorithm and the proposed architecture. 64 Finally, in Section 7, we give some concluding remarks. Due to space constraints, complete proofs 65 are presented in the supplementary material. 66

67 2 Background

We consider the classical model of agent-environment interactions [23], i.e., a Markov Decision Process (MDP) $(S, A, \mathbb{R}, p, \gamma)$, with S and A being the state and action space, $R : S \times A \to \mathbb{R}$ being the reward function, $P(s'|s, a) : S \times A \times S \to [0, 1]$ being the probability of transitioning from state s to state s' after taking action a and $\gamma \in [0, 1)$ the discount factor. A stochastic policy $\pi(\cdot|x) : S \times A \to [0, 1]$ maps a state s to a distribution over A.

73 2.1 Q-Learning

For a fixed policy π , the *return* $Z^{\pi}(s, a)$ is a random variable representing cumulative rewards the agent gains from (s, a) by following the policy π , e.g. $Z^{\pi}(s, a) \equiv \sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t})$ with $s_{0} = s, a_{0} = a$ and $s_{t+1} \sim p(\cdot | s_{t}, a_{t}), a_{t} \sim \pi(\cdot | s_{t})$. The usual goal in reinforcement learning (RL) is to find an optimal π^{*} maximizing the expectation of Z^{π} , i.e. the state-action value function $Q^{\pi}(x, a) \equiv \mathbb{E} Z^{\pi}(s, a)$. *Q-Learning* [29] is an off-policy reinforcement learning algorithm that directly learns the optimal action-value function using the *Bellman optimality operator*

$$(\mathcal{T}Q)(x,a) \equiv \mathbb{E}R(x,a) + \gamma \mathbb{E}_{P} \max_{a' \in \mathcal{A}} Q(x',a')$$
(1)

⁸⁰ In the evaluation case, the *Bellman operator* \mathcal{T}^{π} [5, 29] is defined as

$$(\mathcal{T}^{\pi}Q)(x,a) \equiv \mathbb{E}R(x,a) + \gamma \mathop{\mathbb{E}}_{P,\pi} Q(x',a').$$
⁽²⁾

¹In this work, we follow [25] and use the term Cramér distance for the ℓ_2 distance.

They are contraction mappings and their repeated application to some initial Q_0 converges expo-81 nentially to Q^{π} or Q^* , respectively [6]. However, when Q is represented by a neural network that 82 is trained on batches of sampled transitions (s, a, r, s') as in most deep learning studies, a gradient 83 update is preferred since it allows for the dissipation of noise introduced in the target by stochastic 84

approximation [6, 18]. DQN [21] iteratively trains the network by minimizing the squared temporal 85

difference (TD) error $\frac{1}{2} [r + \gamma \max_{a'} Q_{\omega^-}(s', a') - Q_{\omega}(s, a)]^2$ over samples (s, a, r, s'), where ω^- is the target network, which is a copy of ω , synchronized with it periodically. When using an ε -greedy 86

87

policy, the samples are obtained while the agent interacts with the environment choosing actions 88

uniformly at random with probability ε and otherwise according to $\arg \max_a Q_{\omega}(s, a)$. 89

2.2 Distributional reinforcement learning 90

In order to extend the previous concepts to distributional reinforcement learning, the distributional 91 92 Bellman operator and optimality operator [1] are defined as

$$(\mathcal{T}^{\pi}Z)(x,a) \stackrel{D}{\equiv} R(x,a) + \gamma Z(x',a'), \qquad (3)$$

$$(\mathcal{T}Z)(s,a) \stackrel{D}{\equiv} R(s,a) + \gamma Z\left(s', \underset{a' \in \mathcal{A}}{\operatorname{arg\,max}} \mathbb{E}_p Z\left(s',a'\right)\right), s' \sim p(\cdot \mid s,a), a' \sim \pi\left(\cdot \mid x'\right), \quad (4)$$

where $Y \stackrel{D}{\equiv} U$ denotes equality of probability laws, that is the random variable Y is distributed according to the same law as U. In order to characterize the contraction properties of these operators, some notion of distance between indexed collections of distributions is necessary. The *p*-Wasserstein *distance* between distributions U and Y is defined as the ℓ_p metric on inverse cumulative distribution functions (inverse CDFs) [22] i.e.

$$d_p(U,Y) = \left(\int_0^1 \left|F_Y^{-1}(\omega) - F_U^{-1}(\omega)\right|^p d\omega\right)^{1/p}$$

where for a random variable Y, the *inverse CDF* F_Y^{-1} of Y is defined by

$$F_Y^{-1}(\omega) := \inf \left\{ y \in \mathbb{R} : \omega \le F_Y(y) \right\}$$

where $F_Y(y) = \Pr(Y \le y)$ is the CDF of Y^2 . Then the maximal Wasserstein metric be-tween two indexed collections of distributions Z_1 and Z_2 is defined as $\bar{d}_p(Z_1, Z_2) :=$ 93 94 $\sup_{x,a} d_p(Z_1(x,a), Z_2(x,a))$. [1, Lemma 3] shows that \mathcal{T}^{π} is a contraction in \bar{d}_p , i.e., 95

$$\bar{d}_p\left(\mathcal{T}^{\pi}Z_1, \mathcal{T}^{\pi}Z_2\right) \le \gamma \bar{d}_p\left(Z_1, Z_2\right).$$
(5)

The case of the distributional optimality operator \mathcal{T} is more involved. In general, it is not a contraction 96 [1]. However, based on the fact that \mathcal{T}^{π} is a contraction, [1] proves that, if the optimal policy is 97

unique, then the iterates $Z_{k+1} \leftarrow \mathcal{T}Z_k$ converge to Z^{π^*} (in *p*-Wasserstein metric, $\forall s, a$) and, under some conditions, \mathcal{T} has a unique fixed point corresponding to an optimal value distribution. 98 99

2.3 Projecting distributions onto a finite support 100

Previous approaches of distributional reinforcement learning project return distributions Z(x, a) onto 101 a space of distributions of finite support, by modeling it with a mixture of Diracs over N support 102 points $\theta_i(x, a), i = 1..N$ 103

$$Z_{\theta}(x,a) := \sum_{i=1}^{N} p_i(x,a) \delta_{\theta_i(x,a)}$$
(6)

which yields a staircase CDF $F_{x,a}(z) \equiv \sum_{i=1}^{N} p_i(x, a) \mathbb{1}_{z \ge \theta_i(x, a)}$. Different approaches have been followed to parameterize these distributions depending on whether p_i and θ_i are learned or fixed. In 104 105 this work, we consider p_i fixed and θ_i a learned parameter. 106

In order to analyze how arbitrary distributions are mapped into these finite representations, different 107 projection operators are defined as minimizers of some distance between distribution. For instance, 108

²For
$$p = \infty$$
, $d_{\infty}(Y, U) = \sup_{\omega \in [0,1]} \left| F_Y^{-1}(\omega) - F_U^{-1}(\omega) \right|$.

Figure 1: Midpoint minimizer. a) The curve is approximated by one Dirac (green curve) located at inverse of the mid-point. The rectangles represent an approximation of ℓ_p distance. b) If we move the Dirac in one direction or the other, the blue rectangle will be replaced by a larger one (in red here).

in [10], the 1-Wasserstein projection Π_{W_1} is used and it is shown that the resulting projected Bellman 109 operator remains a contraction, i.e., 110

$$\bar{d}_{\infty}\left(\Pi_{W_{1}}\mathcal{T}^{\pi}Z_{1},\Pi_{W_{1}}\mathcal{T}^{\pi}Z_{2}\right) \leq \gamma \bar{d}_{\infty}\left(Z_{1},Z_{2}\right).$$
 (7)

However, since Wasserstein distances suffer from biased gradients [2, 1], the quantile regression 111

112

(QR) loss is used in practice, guaranteeing the same minimizer and enjoying unbiased gradients [10]. The QR loss for learning the parameters $\{\theta_1, \ldots, \theta_N\}$ of $F(z) \equiv \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{z \ge \theta_i}$ given a target \bar{F} is 113

$$\mathcal{L}_{\text{QR}}(F,\bar{F}) \equiv \sum_{i=1}^{N} \frac{1}{N} \mathbb{E}_{Z \sim \bar{F}} \left[\rho_{\hat{\tau}_i}(Z - \theta_i) \right] \text{ with } \rho_{\theta}(u) \equiv u(\tau - \mathbb{1}_{u < 0}) \tag{8}$$

where $\hat{\tau}_i$ are the midpoints of a uniform grid of N quantile levels, i.e. $\hat{\tau}_i \equiv \frac{2i-1}{2N}$. Note that this definition makes θ_i an estimate of the $\hat{\tau}_i$ -quantile. As we shall see, this correspondence will not be 114 115 enforced by the Cramér projection we consider next. 116

Theoretical results for the Cramér projection 3 117

Motivated by the practical interest of the unbiased gradients of the squared Cramér distance³ [2] 118 $\int_{-\infty}^{\infty} (F(z) - \bar{F}(z))^2 dz$, we now analyse theoretical properties related to minimizing this quantity in 119 order to define the Cramér projection and highlight the connections with the 1-Wassertein projection 120 and the QR loss. 121

3.1 Equivalence with the 1-Wasserstein projection 122

We now show that, given an arbitrary distribution and a grid of quantile levels, there is a staircase 123 representation that minimizes the ℓ_p distance, which puts the quantile values at the inverse of the 124 quantile level midpoints. 125

Theorem 1. Given $p_i \ge 0, i = 1..N$ such that $\sum_i p_i = 1$, the ℓ_p distance between F and a mixture 126 127

of Heaviside step functions $F_N(z) = \sum_{i=1}^N p_i \mathbb{1}_{z \ge \theta_i}$ is minimized with $\theta_i = F^{-1}((\tau_i + \tau_{i-1})/2)$ where τ_i are the quantile levels $\tau_i = \sum_{j=1}^i p_j$. 128

Proof sketch. The proof is based on the observation illustrated in Fig. 1. See Appendix for details. \Box 129

Remark 1. For simplicity, we chose $\theta_i = F^{-1}((\tau_i + \tau_{i-1})/2)$, however any permutation σ in the 130 symmetric group of size N makes $\tilde{\theta}_i \equiv \theta_{\sigma(i)}$ a minimizer too. 131

We define the ℓ_p projection of an arbitrary CDF F with inverse F^{-1} onto a grid of quantile levels as 132

$$\Pi_{\ell_p} F \equiv F_N^{\star}(z) = \sum_{i=1}^N p_i \mathbb{1}_{z \ge \theta_i^{\star}} \text{ with } \theta_i^{\star} = F^{-1}((\tau_i + \tau_{i-1})/2).$$
(9)

Therefore, it is equivalent to the 1-Wasserstein projection (see [10, Lemma 2]). This directly implies 133 that the Cramér projected Bellman operator is also a contraction. 134

³As in [25], we call Cramér distance the ℓ_2 distance and Cramér loss its square.

Corollary 1. The Cramér projected distributional Bellman operator is a contraction in \bar{d}_{∞} i.e. 135 $\bar{d}_{\infty}\left(\Pi_{\ell_n}\mathcal{T}^{\pi}Z_1, \Pi_{\ell_n}\mathcal{T}^{\pi}Z_2\right) \leq \gamma \bar{d}_{\infty}\left(Z_1, Z_2\right).$ (10)

Proof. It follows directly from (7) [1, Lemma 3] and Lemma 1. 136

$$\square$$

3.2 Collinearity of QR loss and Cramér gradients under non-crossing constraints 137

In order to put in evidence the relationship betweem the gradients of the QR and Cramér loss, we 138 first present an alternative formula for the Cramér loss. 139

140

Lemma 1. Given two staircase distributions $F(z) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{z \ge \theta_i}$ and $\overline{F}(z) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{z \ge \overline{\theta}_i}$ such that $\theta_1 < \cdots < \theta_N$ and $\overline{\theta}_1 < \cdots < \overline{\theta}_N$. Let $u_{ij} \equiv \overline{\theta}_j - \theta_i$ and $\delta_{ij} \equiv \mathbb{1}_{u_{ij} < 0}$. The squared Cramér distance between the distributions can be expressed as 141 142

$$\int_{-\infty}^{\infty} (F(z) - \bar{F}(z))^2 dz = \frac{1}{N^2} \sum_{i=1}^{N} |u_{ii}| + 2\left(\sum_{j=i+1}^{N} \delta_{ij} |u_{ij}| + \sum_{j=1}^{i-1} (1 - \delta_{ij}) |u_{ij}|\right).$$
(11)

Proof sketch. We resort to a tiling operator to break the integral into pieces. Our demonstration 143 unfold through these steps; First, we prove formally that our operator is well built: the sum of the 144 tiling measured with the operator ρ is equal to the Cramér distance between the two curves. Secondly, 145 we derive Eq. (11) by using that tiling operator. See Appendix for full details. 146

Corollary 2. For $F(z) \equiv \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{z \ge \theta_i}$ and $\bar{F}(z) \equiv \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{z > \bar{\theta}_i}$ we have 147

$$\frac{\partial \mathcal{L}_{QR}(F,\bar{F})}{\partial \theta_i} = \frac{1}{N} \left(\frac{1-2i}{2} + \sum_{j=1}^N \delta_{ij} \right) \text{ and } \frac{\partial \ell_2^2(F,\bar{F})}{\partial \theta_i} = \frac{1}{N^2} \left(1 - 2i + 2\sum_{j=1}^N \delta_{ij} \right)$$
(12)

where $\delta_{ij} \equiv \mathbb{1}_{u_{ij} < 0}$. Therefore, their gradients are collinear, i.e. 148

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text{QR}} = \frac{N}{2} \nabla_{\boldsymbol{\theta}} \ell_2^2. \tag{13}$$

Proof sketch. The results are obtained by differentiating (8) and (11). See Appendix. 149

Remark 2. Therefore, gradient descent methods whose parameter updates are invariant to rescaling 150

- of the gradient like ADAM [16], yield the same optimization path with both losses. 151
- **Remark 3.** Huberization of the QR loss (see [10]) breaks the equivalence with the Cramér loss. 152

4 A low-complexity algorithm for computing the Cramér distance 153

The formula (11) allows to compute the squared Cramér distance—which we refer to as *Cramér loss*—between two staircase distributions $F(z) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{z \ge \theta_i}$, and $\bar{F}(z) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{z \ge \bar{\theta}_i}$ assuming 154 155 the quantiles are ordered, i.e., $\theta_1 < \cdots < \theta_N$ and $\overline{\theta_1} < \cdots < \overline{\theta_N}$. That formula involves two nested 156 sums making it of quadratic complexity in N as the quantile regression loss. Alternatively, if we 157 consider the sorted sequence of merged quantiles $\theta' \equiv \text{sort}(\{\theta_i\}_{i=1..N} \bigcup \{\bar{\theta}_i\}_{i=1..N})$, we have that 158 $F(z) - \bar{F}(z)$ is constant between any two consecutive quantile values of θ' and the difference can 159 be obtained by accumulating the increments from F and the decrements from \overline{F} , see Fig. 2 for an 160 illustration.⁴ Therefore, we can express the Cramér loss between two staircase distributions as follows 161 162 . 9

$$\int_{-\infty}^{\infty} (F(z) - \bar{F}(z))^2 dz = \sum_{i=1}^{2N-1} \left(\theta'_{i+1} - \theta'_i \right) \left(\sum_{j \text{ s.t. } \theta_j \le \theta'_i} \frac{1}{N} - \sum_{j \text{ s.t. } \bar{\theta}_j \le \theta'_i} \frac{1}{N} \right)^2.$$
(14)

In Fig. 2, we propose an algorithm that implements this formula based on sorting the merged quantiles 163 of both distributions, yielding an $O(N \log N)$ complexity. Note that this algorithm does not require 164 the input vectors θ and $\overline{\theta}$ to be ordered. 165

⁴See Appendix for details.

Figure 2: Cramér loss algorithm. The operators [1 :] and [: -1] remove, respectively, the first and the last elements of the array. $\mathbf{1}_N$ denotes an array of N ones and * denotes elementwise multiplication.

Figure 3: Symmetry in the Cramér loss (left) in comparison to QR loss (right). The loss landscape correspond to estimating the return distribution of a state s_0 with transitions to states s_1 and s_2 with probability 1/3 and 2/3, respectively, whose return distributions are Diracs located at -0.5 and 0.6 respectively, with N = 3. The plots are for a fixed $\theta_0 = -0.5$. Notice that when $\theta_0 < \theta_1 < \theta_2$, the two losses have collinear gradients as shown in Corollary 2.

¹⁶⁶ 5 A centered non-crossing architecture enforcing ordered quantiles

167 5.1 Motivation

When using Algorithm 1, θ_i is just a location where a mass of 1/N is assigned in the estimated 168 distribution, not necessarily corresponding to the $\hat{\tau}_i$ -quantile. Therefore, Cramér distance makes 169 the problem of crossing quantiles as usually described vanish, since equivalent distributions can be 170 obtained with $\bar{\theta}_i \equiv \theta_{\sigma(i)}$, with any permutation σ in symmetric group of size N. Since the order of 171 quantiles is not constrained using this algorithm, we remove an important constraint on the values 172 that the neural network parameters can take: the domain of parameters that lead to a valid distribution 173 is not reduced. We could therefore expect to be able to reach better results than when using OR loss 174 (QR-DQN) with a same number of parameters. However another problem arises, this permutation 175 equivalence creates symmetries in the loss landscape as illustrated in Fig. 3. These symmetries can 176 hinder the learning process if jumps between symmetric regions occur. In Fig. 5, we show examples 177 of the performance of the QR-DQN network trained with the Cramér loss, denoted as CR-DQN. In 178 particular, in the games of Breakout and Seaquest, CR-DQN shows a slow learning curve. 179

For this reason, neural architectures enforcing non-crossing quantiles are also of interest when using the Cramér loss since they drastically reduce the search space by removing the symmetries. The non-crossing architecture of NC-QR-DQN [31] is composed of two subnetworks: one network to estimate extreme quantile for $\tau = 0$ and the scale of the distribution, which is essentially equivalent to estimating the quantile $\tau = 1$, and another network to estimate a grid of quantiles between these extremes using a softmax. As shown by the classical theory of extreme values, extreme quantiles

Figure 4: Centered Non-Crossing (CNC) architecture.

require more samples to be properly estimated. We hypothesize that this can strongly affect the first stages of the training process where a high error in the estimates for these extreme quantiles propagates to the more centered and easier to estimate quantiles. In the training curves of Fig. 5, we observe indeed a slower training, and no training at all in the case of the game Seaquest.

190 5.2 Network description

The previous reasons motivate our novel architecture consisting of two parts: one is dedicated to the median whose estimation is easier and robust and the other estimates the rest of the quantiles by accumulating increments/decrements from the median instead of accumulating from the extreme quantile $\tau = 0$ like in NC-QR-DQN.

Now we formally describe our architecture illustrated in Fig. 4. The first part consists, as in QR-DQN and NC-QR-DQN, of a multi-layer convolutional operator C (a series of convolutional layers each one followed by a ReLU activation) that is applied to the input state *s* to obtain the embedded state $e \equiv C(s) \in \mathbb{R}^d$ given as input to the two subnetworks \mathcal{M} and \mathcal{D} defined next. Let $\mathcal{F}_{\lambda,\eta,D}$ denote a multi-layer fully connected operator with λ hidden layers with η nodes each one followed by a ReLU activation and a final linear layer of dimension D, then the vector of quantiles $\theta(e)$ is obtained as follows

$$\mathcal{M}(e) \equiv \mathcal{F}_{\lambda,\eta,1\times|\mathcal{A}|}(e) \in \mathbb{R}^{1\times|\mathcal{A}|}$$
$$\Delta(e) \equiv \operatorname{ReLU}(\mathcal{F}_{\lambda,\eta,(N-1)\times|\mathcal{A}|}(e)) \in \mathbb{R}^{(N-1)\times|\mathcal{A}|}$$
$$\Delta^{-}(e) \equiv \Delta(e)[1..(\lceil N/2 \rceil - 1)] \in \mathbb{R}^{(\lceil N/2 \rceil - 1)\times|\mathcal{A}|}$$
$$\Delta^{+}(e) \equiv \Delta(e)[(\lceil N/2 \rceil ..N] \in \mathbb{R}^{(N-\lceil N/2 \rceil)\times|\mathcal{A}|}$$
$$\boldsymbol{\theta}(e) \equiv \operatorname{concat}(\operatorname{flip}(\mathcal{M}(e) - \operatorname{cumsum}(\Delta^{-}(e))), \mathcal{M}(e), \mathcal{M}(e) + \operatorname{cumsum}(\Delta^{+}(e))) \in \mathbb{R}^{N\times|\mathcal{A}|}$$

where the operators concat, flip and cumsum operate along the dimension 1 (i.e. corresponding to the quantile index) as well as the operator [·] that extracts the values for the given indices. As in QR-DQN, the mean used to select the best action in an ε -greedy policy is computed as $\frac{1}{N} \sum_{i=1}^{N} \theta_i$.

²⁰⁵ Fig. 5 shows the improvement achieved by our network on three Atari games.

206 6 Experiments

DQN_Z00 and Atari 2600 benchmark. We implemented our algorithm on top of the DQN_Z00 [24] framework, which integrates reference implementations of RL algorithms with the gym/atari-py RL environment [8]. DQN_Z00 provides pre-computed simulation results for each of these algorithms, each of them being run on 5 seeds and on the full set of 57 Atari 2600 games. It was necessary to copy, within atari-py package, a few settings from the Atari Learning Environment [4], in order to make atari-py able to handle the game Surround, and to replace a ROM for Defender.

Figure 5: Comparison to NC-QR-DQN and QR-DQN architectures. QR-DQN and CR-DQN have exactly the same number of parameters. We denote the NC-QR-DQN architecture with Cramér loss and the standard epsilon-greedy exploration as NC-CR-DQN to avoid confusion with the results reported in [31] that corresponds to the uncertainty-based exploration strategy. Note that given the results of Section 3, it is equivalent to using the QR loss. NC-CR-DQN and CNC-CR-DQN have a number of parameters within 0.1%. ADAM optimizer was used with learning rate 5×10^{-5} for all.

Figure 6: Online training performance, in terms of median human-normalized scores

Software-hardware setup. g4dn.2xlarge AWS machines were used to run some of the experiments. 213 By carefully selecting the pairs of games, it is possible to run two simultaneous experiments, taking 214 around 22 minutes on those machines for two simultaneous iterations. Therefore, for two seeds, 57 215 games take around 4180 hours of computation. When possible to fit in RAM, three simultaneous 216 runs can be performed, taking around 24 minutes per simultaneous iterations. These times were 217 achieved by restricting each process to one cpu only (processor affinity), otherwise we experienced 218 cpu-gpu communication inefficiencies. These inefficiencies were also experienced when running 219 more simultaneous processes on larger machines. Code and full output of the experiments is available 220 at https://github.com/NB5234123/cnc-cr-dqn. 221

Hyperparameters for CNC-CR-DQN For model training, we set our hyperparameters with the 222 values used in [10] (epsilon decay, ADAM's ϵ parameter, experience replay settings). Each experiment 223 consists in 200 iterations. Each iteration is made of a learning phase (1 million frames), followed by 224 an evaluation phase, on 500 thousands frames. We thus use the same experiment procedure, and the 225 same epsilon hyperparameter than the one used for the experiments provided with DQN_ZOO; also, our 226 neural network architecture uses the same convolution layers than the other algorithms implemented 227 within DQN_Z00. The experiment settings being the same, our experiment performance can therefore 228 be compared to the experiment data provided with DQN_ZOO for the other algorithms. Finally, each of 229 the two heads of our neural network is made of $\lambda = 1$ layer of $\eta = 512$ neurons, with N = 201. We 230 obtained the best results with the learning rate set to 5×10^{-5} . See Appendix for more details. 231

Contenders Our algorithm is compared to other pure DRL algorithms: C51 [1], QR-DQN [10] and IQN [9]. QR-DQN corresponds to QR-DQN-1, as named in [10], i.e., it is trained via the Huber quantile loss: a quantile loss with a non-linear smoothing approximation when close to 0 parameterized by $\kappa = 1$. We also consider for reference DQN [21], Double Q [28], Prioritized Experience Replay [26] and Rainbow [15]. The latter bases itself on C51 and add many orthogonal improvements like prioritized experience replay. While it is interesting to show their scores beside the ones of pure DRL algorithms, they cannot be used to assess the performance of our algorithm.

Figure 7: **Training performance.** Curves show average score and standard deviation over three seeds.

Online training performance Performance during training protocol: this protocol, described in 239 [20], puts the emphasis on the learning quality. It consists in using normalized training scores to 240 evaluate the algorithms. Fig. 6 shows the median over the 57 games of the human-normalized training 241 scores for each algorithm. The performance curve for an algorithm is obtained as follows: we first 242 measure, for each run of the algorithm and each iteration, the median of human-normalized score; we 243 then calculate the mean score value over the runs, apply a moving average of 5 iterations in order to 244 smooth the curve. On Fig. 6, the shadow areas denote the standard deviation of the scores over the 245 runs. It should be noted that DQN_ZOO provides data for 5 different seeds, for all algorithms and games; 246 while we only did runs with two different seeds using the CRC-CR-DQN algorithm, for each of the 247 games. Human-normalization of score is given by [28]: normalized_score = $\frac{\text{agent_score-random}}{\text{burger}}$ 248 where random and human are baseline scores, given for each game. Fig. 7 show some remarkable 249 cases, although these must be taken with caution since the number of seeds is not high enough to 250 draw statistical conclusions. See Appendix for detailed results on the full set of 57 games. 251

252 7 Conclusion

In this work, we focused on learning staircase distributions on a uniform grid of quantile levels. We 253 showed that learning distributions with the quantile regression loss under non-crossing constraints 254 is essentially equivalent to learning with the Cramér loss. In prior work, crossing quantiles have 255 been studied as a problem for interpretability and state disambiguation. However, when using the 256 257 Cramér loss on a uniform grid of quantile levels, the problem of crossing quantiles does not exist 258 anymore since quantiles are not identified, representing locations where 1/N of the mass is assigned. However, this lack of order generates a permutation equivalence generating symmetries in the loss 259 landscape that hinder the learning process making important the use of non-crossing architectures. On 260 the practical side, we proposed a combination of the Cramér loss and a centered neural architecture 261 enforcing ordered quantiles, yielding significant improvements over QR-DQN in a number of games, 262 sometimes beating all the state-of-the-art pure DRL methods. 263

264 **References**

- [1] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement learning. In International Conference on Machine Learning, pages 449–458. PMLR, 2017.
- [2] M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer, and R. Munos.
 The cramer distance as a solution to biased wasserstein gradients. *arXiv preprint arXiv:1705.10743*, 2017.
- [3] M. G. Bellemare, N. Le Roux, P. S. Castro, and S. Moitra. Distributional reinforcement learning with linear
 function approximation. In *The 22nd International Conference on Artificial Intelligence and Statistics*,
 pages 2203–2211. PMLR, 2019.
- [4] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation platform for general agents. *Journal of Artificial Intelligence Research*, 47:253–279, jun 2013.
- [5] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1 edition, 1957.
- [6] D. P. Bertsekas and J. N. Tsitsiklis. *Neuro-dynamic programming*. Athena Scientific, 1996.
- [7] H. D. Bondell, B. J. Reich, and H. Wang. Noncrossing quantile regression curve estimation. *Biometrika*, 97(4):825–838, 2010.
- [8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai gym.
 arXiv preprint arXiv:1606.01540, 2016.
- [9] W. Dabney, G. Ostrovski, D. Silver, and R. Munos. Implicit quantile networks for distributional reinforce ment learning. In *International conference on machine learning*, pages 1096–1105. PMLR, 2018.
- [10] W. Dabney, M. Rowland, M. Bellemare, and R. Munos. Distributional reinforcement learning with quantile
 regression. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018.
- [11] H. Dette and S. Volgushev. Non-crossing non-parametric estimates of quantile curves. *Journal of the Royal* Statistical Society: Series B (Statistical Methodology), 70(3):609–627, 2008.
- [12] M. Gupta, A. Cotter, J. Pfeifer, K. Voevodski, K. Canini, A. Mangylov, W. Moczydlowski, and A. Van Esbroeck. Monotonic calibrated interpolated look-up tables. *The Journal of Machine Learning Research*, 17(1):3790–3836, 2016.
- [13] P. Hall, R. C. Wolff, and Q. Yao. Methods for estimating a conditional distribution function. *Journal of the American Statistical association*, 94(445):154–163, 1999.
- [14] X. He. Quantile curves without crossing. *The American Statistician*, 51(2):186–192, 1997.
- [15] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot, M. G. Azar,
 and D. Silver. Rainbow: Combining improvements in deep reinforcement learning. *CoRR*, abs/1710.02298,
 2017.
- [16] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In *International Conference on Learning Representations (ICLR)*, 2015.
- [17] R. Koenker, P. Ng, and S. Portnoy. Quantile smoothing splines. *Biometrika*, 81(4):673–680, 1994.
- [18] H. Kushner and G. G. Yin. *Stochastic approximation and recursive algorithms and applications*, volume 35.
 Springer Science & Business Media, 2003.
- [19] Y. Liu and Y. Wu. Stepwise multiple quantile regression estimation using non-crossing constraints.
 Statistics and its Interface, 2(3):299–310, 2009.
- [20] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. J. Hausknecht, and M. Bowling. Revisiting
 the arcade learning environment: Evaluation protocols and open problems for general agents. *Journal of Artificial Intelligence Research*, 61:523–562, 2018.
- [21] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
 A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. *nature*,
 518(7540):529–533, 2015.
- [22] A. Müller. Integral probability metrics and their generating classes of functions. *Advances in Applied Probability*, pages 429–443, 1997.

- [23] M. L. Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John Wiley &
 Sons, 2014.
- 312 [24] J. Quan and G. Ostrovski. DQN Zoo: Reference implementations of DQN-based agents, 2020.
- [25] M. Rowland, M. Bellemare, W. Dabney, R. Munos, and Y. W. Teh. An analysis of categorical distributional reinforcement learning. In *International Conference on Artificial Intelligence and Statistics*, pages 29–37.
 PMLR, 2018.
- [26] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv preprint
 arXiv:1511.05952, 2015.
- [27] N. Tagasovska and D. Lopez-Paz. Single-model uncertainties for deep learning. In *Advances in Neural Information Processing Systems*, pages 6417–6428, 2019.
- [28] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. *CoRR*, abs/1509.06461, 2015.
- 222 [29] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279-292, 1992.
- [30] D. Yang, L. Zhao, Z. Lin, T. Qin, J. Bian, and T.-Y. Liu. Fully parameterized quantile function for
 distributional reinforcement learning. *Advances in Neural Information Processing Systems*, 32:6193–6202,
 2019.
- [31] F. Zhou, J. Wang, and X. Feng. Non-crossing quantile regression for distributional reinforcement learning.
 Advances in Neural Information Processing Systems, 33:15909–15919, 2020.

328 Checklist

332

333

334

338

339

340

341

342

343

344

345

346

347

348

349

351

352

353

354

329 1. For all authors...

- (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes]
 - (b) Did you describe the limitations of your work? [Yes] Experimental limitations regarding the number of seeds were discussed in Section 6
 - (c) Did you discuss any potential negative societal impacts of your work? [No]
- (d) Have you read the ethics review guidelines and ensured that your paper conforms to
 them? [Yes]
- 2. If you are including theoretical results...
 - (a) Did you state the full set of assumptions of all theoretical results? [Yes]
 - (b) Did you include complete proofs of all theoretical results? [Yes] in the Appendix.
 - 3. If you ran experiments...
 - (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [No] But it will be published if the paper is accepted
 - (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes]
 - (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes]
 - (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes]
- 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 - (a) If your work uses existing assets, did you cite the creators? [Yes]
 - (b) Did you mention the license of the assets? [No] Data comes from a standard simulation framework of Atari games.
 - (c) Did you include any new assets either in the supplemental material or as a URL? [No]
- (d) Did you discuss whether and how consent was obtained from people whose data you're
 using/curating? [No] Data comes from a standard simulation framework of Atari
 games.

358	(e) Did you discuss whether the data you are using/curating contains personally identifi-
359	able information or offensive content? [No] Data comes from a standard simulation
360	framework of Atari games.
361	5. If you used crowdsourcing or conducted research with human subjects
362	(a) Did you include the full text of instructions given to participants and screenshots, if
363	applicable? [N/A]
364 365	(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
366	(c) Did you include the estimated hourly wage paid to participants and the total amount
367	spent on participant compensation? [N/A]