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Abstract

Distributional reinforcement learning (DRL) extends the value-based approach1

by using a deep convolutional network to approximate the full distribution over2

future returns instead of the mean only, providing a richer signal that leads to3

improved performances. Quantile-based methods like QR-DQN project arbitrary4

distributions onto a parametric subset of staircase distributions by minimizing5

the 1-Wasserstein distance, however, due to biases in the gradients, the quantile6

regression loss is used instead for training, guaranteeing the same minimizer and7

enjoying unbiased gradients. Recently, monotonicity constraints on the quantiles8

have been shown to improve the performance of QR-DQN for uncertainty-based9

exploration strategies. The contribution of this work is in the setting of fixed10

quantile levels and is twofold. First, we prove that the Cramér distance yields a11

projection that coincides with the 1-Wasserstein one and that, under monotonicity12

constraints, the squared Cramér and the quantile regression losses yield collinear13

gradients, shedding light on the connection between these important elements of14

DRL. Second, we propose a novel non-crossing neural architecture that allows a15

good training performance using a novel algorithm to compute the Cramér distance,16

yielding significant improvements over QR-DQN in a number of games of the17

standard Atari 2600 benchmark.18

1 Introduction19

Distributional Reinforcement Learning (DRL) extends the value-based approach of DQN [21] by20

considering the full distribution of returns as a learning signal allowing to take into account all the21

complexity of the randomness coming from the rewards, the transitions and the policy, which is22

hidden when considering the mean only. Even when a policy aims at maximizing the expected return,23

considering the full distribution provides an advantage in the presence of approximations, allowing to24

learn better representations and helping to reduce state aliasing [1]. With this new approach comes a25

generalization of the Bellman operator—the distributional Bellman operator—, whose contraction26

properties are key for guaranteeing the stability of DRL algorithms.27

How distributions are represented and learned is also a key point in DRL, since some choices can28

break the contraction property (see, e.g., [25, Lemma 2]). Some approaches use staircase parametric29

representations whose steps correspond to fixed quantile values like in C51 [1] or to fixed quantile30

levels like in QR-DQN [10]. Alternatively, FQN [30] fully parameterize the staircase distributions.31

IQN [9] follows a different approach by approximating the quantile function with a neural network32

that takes the quantile level as input and must therefore be sampled during training.33

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



DRL methods resort to different notions of distance or divergences between distributions in order34

to practically learn the distributions but also to analyze the effect on the contraction property of the35

distributional Bellman operator. In [25], a Hilbert space endowed with the `2 norm on cumulative36

distribution functions has been shown to be a natural framework to analyze the effect of the fixed37

quantile value representation of C51. In [2], the squared `2 distance, called Cramér distance in that38

work,1 has been proposed for Generative Adversarial Networks but also for machine learning in39

general due its unbiased gradients. However, attempts to use the Cramér distance as loss function in40

DRL, yielded results that are inferior to those obtained with the heuristic Kullback-Leibler divergence41

loss used in C51, as reported in [3]. In [10], the Wasserstein distance has been used for defining how42

a general distribution should be represented with fixed quantile levels and also to analyze the effect on43

the contraction property of the distributional Bellman operator. However, due to the biased gradients44

of the Wasserstein distance, the quantile regression loss is used to train the network, guaranteeing the45

same minimizer as the 1-Wasserstein distance and enjoying unbiased gradients.46

When estimating multiple quantiles, one faces the issue of crossing quantiles, i.e., a violation of the47

monotonicity of the quantile function. In DRL, crossing quantiles make the learning signal noisy,48

affecting disambiguation of states as shown in [31]. This issue has been addressed in the statistical49

literature of quantile regression (see, e.g. [17, 14, 19, 13, 11, 7]) but also, more generally, in the50

machine learning literature on how to represent and learn monotonic functions (see, e.g., [12, Table51

1]), with different approaches like including penalties in the loss function or enforcing monotonicity52

by design. Methods that take sampled quantile levels as input during training like [27] or [9], have53

been shown to alleviate the problem. In the DRL literature, [31] enforces monotonicity with a54

special neural network design obtaining improved results with respect to QR-DQN, in the setting of55

uncertainty-based exploration.56

In this work, we analyze the theoretical properties of the Cramér distance for learning staircase57

distributions with fixed quantile levels and we propose a practical algorithmic solution for DRL with58

the standard ε-greedy exploration strategy. In Section 2, we expose the necessary background and59

definitions. In Section 3, we present the connections between the Cramér distance, the 1-Wasserstein60

distance and the Quantile Regression loss, leading to a contraction guarantee. In Section 4, we propose61

a low-complexity algorithm to compute the Cramér distance. In Section 5, we introduce a novel neural62

network architecture enforcing non-crossing quantiles. In Section 6, we report experimental results63

on the Atari 2600 benchmark using the Cramér distance algorithm and the proposed architecture.64

Finally, in Section 7, we give some concluding remarks. Due to space constraints, complete proofs65

are presented in the supplementary material.66

2 Background67

We consider the classical model of agent-environment interactions [23], i.e., a Markov Decision68

Process (MDP) (S,A,R, p, γ), with S and A being the state and action space, R : S × A → R69

being the reward function, P (s′|s, a) : S × A × S → [0, 1] being the probability of transitioning70

from state s to state s′ after taking action a and γ ∈ [0, 1) the discount factor. A stochastic policy71

π(·|x) : S ×A → [0, 1] maps a state s to a distribution over A.72

2.1 Q-Learning73

For a fixed policy π, the return Zπ(s, a) is a random variable representing cumulative rewards74

the agent gains from (s, a) by following the policy π, e.g. Zπ(s, a) ≡
∑∞
t=0 γ

tR (st, at) with75

s0 = s, a0 = a and st+1 ∼ p (· | st, at) , at ∼ π (· | st). The usual goal in reinforcement learning76

(RL) is to find an optimal π∗ maximizing the expectation of Zπ, i.e. the state-action value function77

Qπ(x, a) ≡ EZπ(s, a). Q-Learning [29] is an off-policy reinforcement learning algorithm that78

directly learns the optimal action-value function using the Bellman optimality operator79

(T Q)(x, a) ≡ ER(x, a) + γEP max
a′∈A

Q (x′, a′) (1)

In the evaluation case, the Bellman operator T π [5, 29] is defined as80

(T πQ)(x, a) ≡ ER(x, a) + γ E
P,π
Q (x′, a′) . (2)

1In this work, we follow [25] and use the term Cramér distance for the `2 distance.
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They are contraction mappings and their repeated application to some initial Q0 converges expo-81

nentially to Qπ or Q∗, respectively [6]. However, when Q is represented by a neural network that82

is trained on batches of sampled transitions (s, a, r, s′) as in most deep learning studies, a gradient83

update is preferred since it allows for the dissipation of noise introduced in the target by stochastic84

approximation [6, 18]. DQN [21] iteratively trains the network by minimizing the squared temporal85

difference (TD) error 1
2 [r + γmaxa′ Qω− (s′, a′)−Qω(s, a)]

2 over samples (s, a, r, s′), where ω−86

is the target network, which is a copy of ω, synchronized with it periodically. When using an ε-greedy87

policy, the samples are obtained while the agent interacts with the environment choosing actions88

uniformly at random with probability ε and otherwise according to arg maxaQω(s, a).89

2.2 Distributional reinforcement learning90

In order to extend the previous concepts to distributional reinforcement learning, the distributional91

Bellman operator and optimality operator [1] are defined as92

(T πZ)(x, a)
D≡ R(x, a) + γZ (x′, a′) , (3)

(T Z)(s, a)
D≡ R(s, a) + γZ

(
s′, arg max

a′∈A
EpZ (s′, a′)

)
, s′ ∼ p(· | s, a), a′ ∼ π (· | x′) , (4)

where Y
D≡ U denotes equality of probability laws, that is the random variable Y is distributed

according to the same law as U . In order to characterize the contraction properties of these operators,
some notion of distance between indexed collections of distributions is necessary. The p-Wasserstein
distance between distributions U and Y is defined as the `p metric on inverse cumulative distribution
functions (inverse CDFs) [22] i.e.

dp(U, Y ) =

(∫ 1

0

∣∣F−1
Y (ω)− F−1

U (ω)
∣∣p dω)1/p

where for a random variable Y , the inverse CDF F−1
Y of Y is defined by

F−1
Y (ω) := inf {y ∈ R : ω ≤ FY (y)}

where FY (y) = Pr(Y ≤ y) is the CDF of Y .2 Then the maximal Wasserstein metric be-93

tween two indexed collections of distributions Z1 and Z2 is defined as d̄p (Z1, Z2) :=94

supx,a dp (Z1(x, a), Z2(x, a)). [1, Lemma 3] shows that T π is a contraction in d̄p, i.e.,95

d̄p (T πZ1, T πZ2) ≤ γd̄p (Z1, Z2) . (5)

The case of the distributional optimality operator T is more involved. In general, it is not a contraction96

[1]. However, based on the fact that T π is a contraction, [1] proves that, if the optimal policy is97

unique, then the iterates Zk+1 ← T Zk converge to Zπ
∗

(in p-Wasserstein metric, ∀s, a) and, under98

some conditions, T has a unique fixed point corresponding to an optimal value distribution.99

2.3 Projecting distributions onto a finite support100

Previous approaches of distributional reinforcement learning project return distributions Z(x, a) onto101

a space of distributions of finite support, by modeling it with a mixture of Diracs over N support102

points θi(x, a), i = 1..N103

Zθ(x, a) :=

N∑
i=1

pi(x, a)δθi(x,a) (6)

which yields a staircase CDF Fx,a(z) ≡
∑N
i=1 pi(x, a)1z≥θi(x,a). Different approaches have been104

followed to parameterize these distributions depending on whether pi and θi are learned or fixed. In105

this work, we consider pi fixed and θi a learned parameter.106

In order to analyze how arbitrary distributions are mapped into these finite representations, different107

projection operators are defined as minimizers of some distance between distribution. For instance,108

2For p =∞, d∞(Y,U) = supω∈[0,1]
∣∣F−1

Y (ω)− F−1
U (ω)

∣∣.
3



a) b)

Figure 1: Midpoint minimizer. a) The curve is approximated by one Dirac (green curve) located at
inverse of the mid-point. The rectangles represent an approximation of `p distance. b) If we move the
Dirac in one direction or the other, the blue rectangle will be replaced by a larger one (in red here).

in [10], the 1-Wasserstein projection ΠW1 is used and it is shown that the resulting projected Bellman109

operator remains a contraction, i.e.,110

d̄∞ (ΠW1
T πZ1,ΠW1

T πZ2) ≤ γd̄∞ (Z1, Z2) . (7)

However, since Wasserstein distances suffer from biased gradients [2, 1], the quantile regression111

(QR) loss is used in practice, guaranteeing the same minimizer and enjoying unbiased gradients [10].112

The QR loss for learning the parameters {θ1, . . . , θN} of F (z) ≡ 1
N

∑N
i=1 1z≥θi given a target F̄ is113

LQR(F, F̄ ) ≡
N∑
i=1

1

N
EZ∼F̄ [ρτ̂i(Z − θi)] with ρθ(u) ≡ u(τ − 1u<0) (8)

where τ̂i are the midpoints of a uniform grid of N quantile levels, i.e. τ̂i ≡ 2i−1
2N . Note that this114

definition makes θi an estimate of the τ̂i-quantile. As we shall see, this correspondence will not be115

enforced by the Cramér projection we consider next.116

3 Theoretical results for the Cramér projection117

Motivated by the practical interest of the unbiased gradients of the squared Cramér distance3 [2]118 ∫∞
−∞(F (z)− F̄ (z))2dz, we now analyse theoretical properties related to minimizing this quantity in119

order to define the Cramér projection and highlight the connections with the 1-Wassertein projection120

and the QR loss.121

3.1 Equivalence with the 1-Wasserstein projection122

We now show that, given an arbitrary distribution and a grid of quantile levels, there is a staircase123

representation that minimizes the `p distance, which puts the quantile values at the inverse of the124

quantile level midpoints.125

Theorem 1. Given pi ≥ 0, i = 1..N such that
∑
i pi = 1, the `p distance between F and a mixture126

of Heaviside step functions FN (z) =
∑N
i=1 pi1z≥θi is minimized with θi = F−1((τi + τi−1)/2)127

where τi are the quantile levels τi =
∑i
j=1 pj .128

Proof sketch. The proof is based on the observation illustrated in Fig. 1. See Appendix for details.129

Remark 1. For simplicity, we chose θi = F−1((τi + τi−1)/2), however any permutation σ in the130

symmetric group of size N makes θ̃i ≡ θσ(i) a minimizer too.131

We define the `p projection of an arbitrary CDF F with inverse F−1 onto a grid of quantile levels as132

Π`pF ≡ F ?N (z) =

N∑
i=1

pi1z≥θ?i with θ?i = F−1((τi + τi−1)/2). (9)

Therefore, it is equivalent to the 1-Wasserstein projection (see [10, Lemma 2]). This directly implies133

that the Cramér projected Bellman operator is also a contraction.134

3As in [25], we call Cramér distance the `2 distance and Cramér loss its square.
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Corollary 1. The Cramér projected distributional Bellman operator is a contraction in d̄∞ i.e.135

d̄∞
(
Π`pT πZ1,Π`pT πZ2

)
≤ γd̄∞ (Z1, Z2) . (10)

Proof. It follows directly from (7) [1, Lemma 3] and Lemma 1.136

3.2 Collinearity of QR loss and Cramér gradients under non-crossing constraints137

In order to put in evidence the relationship betweem the gradients of the QR and Cramér loss, we138

first present an alternative formula for the Cramér loss.139

Lemma 1. Given two staircase distributions F (z) = 1
N

∑N
i=1 1z≥θi and F̄ (z) = 1

N

∑N
i=1 1z≥θ̄i140

such that θ1 < · · · < θN and θ̄1 < · · · < θ̄N . Let uij ≡ θ̄j − θi and δij ≡ 1uij<0. The squared141

Cramér distance between the distributions can be expressed as142 ∫ ∞
−∞

(F (z)− F̄ (z))2dz =
1

N2

N∑
i=1

|uii|+ 2

 N∑
j=i+1

δij |uij |+
i−1∑
j=1

(1− δij)|uij |

 . (11)

Proof sketch. We resort to a tiling operator to break the integral into pieces. Our demonstration143

unfold through these steps; First, we prove formally that our operator is well built: the sum of the144

tiling measured with the operator ρ is equal to the Cramér distance between the two curves. Secondly,145

we derive Eq. (11) by using that tiling operator. See Appendix for full details.146

Corollary 2. For F (z) ≡ 1
N

∑N
i=1 1z≥θi and F̄ (z) ≡ 1

N

∑N
i=1 1z≥θ̄i we have147

∂ LQR(F, F̄ )

∂θi
=

1

N

1− 2i

2
+

N∑
j=1

δij

 and
∂`22(F, F̄ )

∂θi
=

1

N2

1− 2i+ 2

N∑
j=1

δij

 (12)

where δij ≡ 1uij<0. Therefore, their gradients are collinear, i.e.148

∇θ LQR =
N

2
∇θ`

2
2. (13)

Proof sketch. The results are obtained by differentiating (8) and (11). See Appendix.149

Remark 2. Therefore, gradient descent methods whose parameter updates are invariant to rescaling150

of the gradient like ADAM [16], yield the same optimization path with both losses.151

Remark 3. Huberization of the QR loss (see [10]) breaks the equivalence with the Cramér loss.152

4 A low-complexity algorithm for computing the Cramér distance153

The formula (11) allows to compute the squared Cramér distance—which we refer to as Cramér loss—154

between two staircase distributions F (z) = 1
N

∑N
i=1 1z≥θi , and F̄ (z) = 1

N

∑N
i=1 1z≥θ̄i assuming155

the quantiles are ordered, i.e., θ1 < · · · < θN and θ̄1 < · · · < θ̄N . That formula involves two nested156

sums making it of quadratic complexity in N as the quantile regression loss. Alternatively, if we157

consider the sorted sequence of merged quantiles θ′ ≡ sort
(
{θi}i=1..N

⋃
{θ̄i}i=1..N

)
, we have that158

F (z)− F̄ (z) is constant between any two consecutive quantile values of θ′ and the difference can159

be obtained by accumulating the increments from F and the decrements from F̄ , see Fig. 2 for an160

illustration.4 Therefore, we can express the Cramér loss between two staircase distributions as follows161

162 ∫ ∞
−∞

(F (z)− F̄ (z))2dz =

2N−1∑
i=1

(
θ′i+1 − θ′i

) ∑
j s.t. θj≤θ′i

1

N
−

∑
j s.t. θ̄j≤θ′i

1

N

2

. (14)

In Fig. 2, we propose an algorithm that implements this formula based on sorting the merged quantiles163

of both distributions, yielding an O(N logN) complexity. Note that this algorithm does not require164

the input vectors θ and θ̄ to be ordered.165

4See Appendix for details.
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Algorithm 1: Cramér loss.
Input: θ ≡ [θ1, . . . , θN ],

θ̄ ≡ [θ̄1, . . . , θ̄N ]: array
Output:

∫∞
−∞(F (z)− F̄ (z))2dz

θ′ ← concat(θ, θ̄)

i1, . . . , iN ← argsort(θ′)

θ′ ← θ′[i1, . . . , iN ]

∆z ← θ′[1 :]− θ′[: -1]

∆τ ← concat
(
− 1
N 1N ,

1
N 1N

)
∆τ ← ∆τ [i1, . . . , iN ]
∆τ ← cumsum (∆τ ) [: -1]
I ← ∆τ ∗∆τ ∗∆z

return sum(I)

Figure 2: Cramér loss algorithm. The operators [1 :] and [: -1] remove, respectively, the first and the
last elements of the array. 1N denotes an array of N ones and ∗ denotes elementwise multiplication.

0.4 0.2 0.0 0.2 0.4 0.6 0.8

0.40.20.00.20.40.60.8

0.25

0.30

0.35

0.40

0.45

0.50

(a) Cramér loss.
0.4 0.2 0.0 0.2 0.4 0.6 0.8

0.40.20.00.20.40.60.8

0.4

0.5

0.6

0.7

0.8

(b) Quantile regression loss.

Figure 3: Symmetry in the Cramér loss (left) in comparison to QR loss (right). The loss land-
scape correspond to estimating the return distribution of a state s0 with transitions to states s1 and s2

with probability 1/3 and 2/3, respectively, whose return distributions are Diracs located at −0.5 and
0.6 respectively, with N = 3. The plots are for a fixed θ0 = −0.5. Notice that when θ0 < θ1 < θ2,
the two losses have collinear gradients as shown in Corollary 2.

5 A centered non-crossing architecture enforcing ordered quantiles166

5.1 Motivation167

When using Algorithm 1, θi is just a location where a mass of 1/N is assigned in the estimated168

distribution, not necessarily corresponding to the τ̂i-quantile. Therefore, Cramér distance makes169

the problem of crossing quantiles as usually described vanish, since equivalent distributions can be170

obtained with θ̃i ≡ θσ(i), with any permutation σ in symmetric group of size N . Since the order of171

quantiles is not constrained using this algorithm, we remove an important constraint on the values172

that the neural network parameters can take: the domain of parameters that lead to a valid distribution173

is not reduced. We could therefore expect to be able to reach better results than when using QR loss174

(QR-DQN) with a same number of parameters. However another problem arises, this permutation175

equivalence creates symmetries in the loss landscape as illustrated in Fig. 3. These symmetries can176

hinder the learning process if jumps between symmetric regions occur. In Fig. 5, we show examples177

of the performance of the QR-DQN network trained with the Cramér loss, denoted as CR-DQN. In178

particular, in the games of Breakout and Seaquest, CR-DQN shows a slow learning curve.179

For this reason, neural architectures enforcing non-crossing quantiles are also of interest when using180

the Cramér loss since they drastically reduce the search space by removing the symmetries. The181

non-crossing architecture of NC-QR-DQN [31] is composed of two subnetworks: one network to182

estimate extreme quantile for τ = 0 and the scale of the distribution, which is essentially equivalent183

to estimating the quantile τ = 1, and another network to estimate a grid of quantiles between these184

extremes using a softmax. As shown by the classical theory of extreme values, extreme quantiles185

6



Figure 4: Centered Non-Crossing (CNC) architecture.

require more samples to be properly estimated. We hypothesize that this can strongly affect the186

first stages of the training process where a high error in the estimates for these extreme quantiles187

propagates to the more centered and easier to estimate quantiles. In the training curves of Fig. 5, we188

observe indeed a slower training, and no training at all in the case of the game Seaquest.189

5.2 Network description190

The previous reasons motivate our novel architecture consisting of two parts: one is dedicated to191

the median whose estimation is easier and robust and the other estimates the rest of the quantiles192

by accumulating increments/decrements from the median instead of accumulating from the extreme193

quantile τ = 0 like in NC-QR-DQN.194

Now we formally describe our architecture illustrated in Fig. 4. The first part consists, as in QR-DQN195

and NC-QR-DQN, of a multi-layer convolutional operator C (a series of convolutional layers each196

one followed by a ReLU activation) that is applied to the input state s to obtain the embedded state197

e ≡ C(s) ∈ Rd given as input to the two subnetworksM and D defined next. Let Fλ,η,D denote a198

multi-layer fully connected operator with λ hidden layers with η nodes each one followed by a ReLU199

activation and a final linear layer of dimension D, then the vector of quantiles θ(e) is obtained as200

follows201

M(e) ≡ Fλ,η,1×|A|(e) ∈ R1×|A|

∆(e) ≡ ReLU(Fλ,η,(N−1)×|A|(e)) ∈ R(N−1)×|A|

∆−(e) ≡ ∆(e)[1..(dN/2e − 1)] ∈ R(dN/2e−1)×|A|

∆+(e) ≡ ∆(e)[(dN/2e..N ] ∈ R(N−dN/2e)×|A|

θ(e) ≡ concat(flip(M(e)− cumsum(∆−(e))),M(e),M(e) + cumsum(∆+(e))) ∈ RN×|A|

where the operators concat, flip and cumsum operate along the dimension 1 (i.e. corresponding to202

the quantile index) as well as the operator [·] that extracts the values for the given indices. As in203

QR-DQN, the mean used to select the best action in an ε-greedy policy is computed as 1
N

∑N
i=1 θi.204

Fig. 5 shows the improvement achieved by our network on three Atari games.205

6 Experiments206

DQN_ZOO and Atari 2600 benchmark. We implemented our algorithm on top of the DQN_ZOO [24]207

framework, which integrates reference implementations of RL algorithms with the gym/atari-py RL208

environment [8]. DQN_ZOO provides pre-computed simulation results for each of these algorithms,209

each of them being run on 5 seeds and on the full set of 57 Atari 2600 games. It was necessary to210

copy, within atari-py package, a few settings from the Atari Learning Environment [4], in order to211

make atari-py able to handle the game Surround, and to replace a ROM for Defender.212
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Figure 5: Comparison to NC-QR-DQN and QR-DQN architectures. QR-DQN and CR-DQN
have exactly the same number of parameters. We denote the NC-QR-DQN architecture with Cramér
loss and the standard epsilon-greedy exploration as NC-CR-DQN to avoid confusion with the results
reported in [31] that corresponds to the uncertainty-based exploration strategy. Note that given the
results of Section 3, it is equivalent to using the QR loss. NC-CR-DQN and CNC-CR-DQN have a
number of parameters within 0.1%. ADAM optimizer was used with learning rate 5× 10−5 for all.
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Figure 6: Online training performance, in terms of median human-normalized scores

Software-hardware setup. g4dn.2xlarge AWS machines were used to run some of the experiments.213

By carefully selecting the pairs of games, it is possible to run two simultaneous experiments, taking214

around 22 minutes on those machines for two simultaneous iterations. Therefore, for two seeds, 57215

games take around 4180 hours of computation. When possible to fit in RAM, three simultaneous216

runs can be performed, taking around 24 minutes per simultaneous iterations. These times were217

achieved by restricting each process to one cpu only (processor affinity), otherwise we experienced218

cpu-gpu communication inefficiencies. These inefficiencies were also experienced when running219

more simultaneous processes on larger machines. Code and full output of the experiments is available220

at https://github.com/NB5234123/cnc-cr-dqn.221

Hyperparameters for CNC-CR-DQN For model training, we set our hyperparameters with the222

values used in [10] (epsilon decay, ADAM’s ε parameter, experience replay settings). Each experiment223

consists in 200 iterations. Each iteration is made of a learning phase (1 million frames), followed by224

an evaluation phase, on 500 thousands frames. We thus use the same experiment procedure, and the225

same epsilon hyperparameter than the one used for the experiments provided with DQN_ZOO; also, our226

neural network architecture uses the same convolution layers than the other algorithms implemented227

within DQN_ZOO. The experiment settings being the same, our experiment performance can therefore228

be compared to the experiment data provided with DQN_ZOO for the other algorithms. Finally, each of229

the two heads of our neural network is made of λ = 1 layer of η = 512 neurons, with N = 201. We230

obtained the best results with the learning rate set to 5× 10−5. See Appendix for more details.231

Contenders Our algorithm is compared to other pure DRL algorithms: C51 [1], QR-DQN [10]232

and IQN [9]. QR-DQN corresponds to QR-DQN-1, as named in [10], i.e., it is trained via the233

Huber quantile loss: a quantile loss with a non-linear smoothing approximation when close to 0234

parameterized by κ = 1. We also consider for reference DQN [21], Double Q [28], Prioritized235

Experience Replay [26] and Rainbow [15]. The latter bases itself on C51 and add many orthogonal236

improvements like prioritized experience replay. While it is interesting to show their scores beside237

the ones of pure DRL algorithms, they cannot be used to assess the performance of our algorithm.238
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Figure 7: Training performance. Curves show average score and standard deviation over three
seeds.

Online training performance Performance during training protocol: this protocol, described in239

[20], puts the emphasis on the learning quality. It consists in using normalized training scores to240

evaluate the algorithms. Fig. 6 shows the median over the 57 games of the human-normalized training241

scores for each algorithm. The performance curve for an algorithm is obtained as follows: we first242

measure, for each run of the algorithm and each iteration, the median of human-normalized score; we243

then calculate the mean score value over the runs, apply a moving average of 5 iterations in order to244

smooth the curve. On Fig. 6, the shadow areas denote the standard deviation of the scores over the245

runs. It should be noted that DQN_ZOO provides data for 5 different seeds, for all algorithms and games;246

while we only did runs with two different seeds using the CRC-CR-DQN algorithm, for each of the247

games. Human-normalization of score is given by [28]: normalized_score = agent_score−random
human−random248

where random and human are baseline scores, given for each game. Fig. 7 show some remarkable249

cases, although these must be taken with caution since the number of seeds is not high enough to250

draw statistical conclusions. See Appendix for detailed results on the full set of 57 games.251

7 Conclusion252

In this work, we focused on learning staircase distributions on a uniform grid of quantile levels. We253

showed that learning distributions with the quantile regression loss under non-crossing constraints254

is essentially equivalent to learning with the Cramér loss. In prior work, crossing quantiles have255

been studied as a problem for interpretability and state disambiguation. However, when using the256

Cramér loss on a uniform grid of quantile levels, the problem of crossing quantiles does not exist257

anymore since quantiles are not identified, representing locations where 1/N of the mass is assigned.258

However, this lack of order generates a permutation equivalence generating symmetries in the loss259

landscape that hinder the learning process making important the use of non-crossing architectures. On260

the practical side, we proposed a combination of the Cramér loss and a centered neural architecture261

enforcing ordered quantiles, yielding significant improvements over QR-DQN in a number of games,262

sometimes beating all the state-of-the-art pure DRL methods.263
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