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Abstract

We find coset and approximate coset circuits play a key role in how multilayer perceptrons
learn dihedral group multiplication, consistent with recent findings on modular addition.

1. Introduction

Do deep neural networks (DNNs) reuse the same algorithmic primitives to learn non-
commutative group multiplications? For modular addition, McCracken et al. (2025) describe
network representations as (approzimate) cosets, proving O(logn) such representations im-
plement a divide-and-conquer algorithm that is a generalization of the Chinese Remainder
Theorem. We examine DNNs trained on dihedral group multiplication, finding representa-
tions are exact cosets or approximate cosets. We study the activation-geometry of clusters
of neurons, revealing manifolds aligned with (approximate) coset structure. We also study
1000 random seeds, quantitatively finding models prefer precise coset representations. These
findings extend the modular-addition account to a non-commutative setting.

©
2. Background 0‘.0

The dihedral group D, is the symmetries of a regular n-gon, con-
taining 2n elements: n rotations r* for k € {0,...n — 1} that rotate ‘\@

the n-gon by 27 /n radians, and n reflections sr* reflecting about n
distinct axes. The rotation 7° is the identity element, denoted e, for
which ex = ze = x for any « € D,,. These operations form a non-
commutative group multiplication when n > 3, meaning the order
in which operations are multiplied matters—for instance, sr # rs.
Group multiplication, a - b = C, a,b € D, involves composing

two symmetries in sequence (from right to left): 7@ .0 = p(a+b) modn a.PIf'ly ' left  mul-
(rotation), sr®-r? = sp(ett) medn (yeflection), re - syb = sp(b—a)modn tiplication b}.] L
rotation) Non-commutativity

(reflection), sr® - syt = p(b—a) modn (

Cayley graphs geometrically encode a groups structure. The appears 1 - s # s 7.
Cayley graph of D,, may be expressed via a generating set {r, s}, where nodes are group
elements and (directed elements) are labeled by {r,s}. Particularly, an edge labeled x €
{r, s} between nodes a,b exists if b = xa. A Cayley graph for D3 is in Fig. 1. Note: six
D3 Cayley graphs compose Dig, each one corresponding to a coset. The Group Fourier
Transform (GFT) generalizes the Discrete Fourier Transform and outputs a scalar on the
Fourier bases of the group, see Appendix B.2.

Experimental setup. We train multilayer perceptrons (MLPs) to 100% test accuracy
with 512 ReLLU neurons per layer, with two different embedding matrices, one for a and one

Figure 1: A Dsg
Cayley Graph. Solid
arrows apply left
multiplication by
T dashed lines
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for b, on all pairs (a,b) € D1g x Di1g. Dig is chosen because it has more cosets compared
to a prime or odd dihedral group, which allows clearer contrast of preferences for exact
cosets vs. approximate cosets. Let elements 0-17 be the rotation class elements r* and

18-35 the reflection class elements sr®. For readability, neuron preactivation plots insert

a visual break between elements 17 and 18 to distinguish the two classes. On the Cayley
graph under the sign character, 7* elements lie in the +1 region, sr* in the —1.
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Figure 2: (A) a neuron learning frequency 6, corresponding to learning precise cosets.
Remapping collapses the points in row 1 onto six cosets of Dig in row 2; three are in
rotation class (z < 18): z = 0,1,2 (mod 3), and three are in reflection class (z > 18):

= 18,19,20 (mod 3), z € {a,b}. (B) The same plots are shown for a neuron learning
frequency 5, corresponding to learning approximate cosets—there are no precise equivalence
classes. (C) Plots for a neuron learning the sign +1 coset are shown. This neuron effectively
acts as an indicator for whether the answer C' is in the sign +1 part of the graph.

3. Results

We investigate the dihedral group on 36 elements, Dig. With this in mind, see Figure
2, showing the preactivations of neurons and their group Fourier transforms (GFT). The
preactivations are split into the contribution to the neurons’ preactivation coming from
just a (a-contrib), and just b (b-contrib). This split is done to emphasize that neurons
activate on the cosets of @ and b. The GFTs tell us which Fourier basis the preactivations
concentrate on. See e.g. the neuron learning frequency 6 in Fig. 2 (A), concentrating on
the 2D_6 Fourier basis. For k € {0,1,2}, let coset Ry = {r3tk}p_ | S = {sr®+k}2_,
Here, for x € {a,b}, the neuron is constant on Ry U S, () with value Ay € {2,0,-2},
where 04(k) =k — 1, op(k) = —k (mod 3). After remapping to frequency 1, each coset Ry
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2 Projecting the data onto the first three principal components reveals networks learn cosets as clean geometric structure
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Figure 3: (A) PCAs of the preactivations of the neuron cluster with frequency 6 shows
how the network has organized each of the six D3 cosets. Coloring by a, or b shows 6
hexagrams, and coloring by C doesn’t reveal clean structure until we plot a PCA of the
cluster’s contributions to the logits, revealing 6 cosets—3 for answers in sign +1, and 3
for answers in sign -1. (B) PCAs of an approximate coset cluster’s contributions to the
logits, with frequency 1, reveal that the network stores information in sign +1 ((B) row 1)
orthogonally to information in sign -1 ((B) row 2); look at points of constant color in row
1 vs row 2.

and S collapses to a single representative. E.g., k = 1,2 = a = 0,(1) = 0: the neuron
is constant on Ry U Sy = {r!,r4 ... 716} U {s,sr3, ..., sr!?}; after remapping, R and Sy
each collapses to a single representative. Compare this to the neuron learning frequency
5 in (B): when normalized to frequency 1 it has no collapse. This occurs because the
neuron’s frequency has ged(5,18) = 1 and thus, the neuron can not divide Dig evenly into
substructures. This is the definition of an approximate coset, which occur when frequency
f has ged(f,n) = 1. Thus, it could be hypothesized that such a neuron has learned an
Cayley graph representation for Dig involving 36 unique elements. This comes from the
fact that cosets would collapse the Cayley graph to a substructure. The final column of
Fig. 2 shows a neuron that learned the sign +1 coset—this neuron only activates when the
sign of @ and b is 1, i.e. a and b are both in the rotations part of the Cayley graph. This
acts as an indicator for the half of the Cayley graph the answer C is in.

We cluster neurons by identifying all units that activate on the same Fourier basis with
the GFT; for each neuron in the cluster we build a 2n x 2n matrix whose entry (a, b) is the
neuron’s preactivation on datum (a, b), flatten each matrix, and stack the resulting vectors
to form a |cluster f| x (2n)? “cluster of preactivations” matrix. We then perform principal



component analysis (PCA) on this matrix of neuron preactivations and project all (2n)?
data (a,b) onto the principal components (PCs). When true cosets are learned, data in
the same joint equivalence class—e.g., all points with (¢ = 0 (mod 3), b = 0 (mod 3))
collapse to the same coordinate. For example, in Dig there are 362 = 1296 points, but for
neurons learning frequency 6 (since ged(6,18) = 6 # 1) only 36 points are plotted (Figure
3 (A)). These 36 points correspond to the 36 joint equivalence classes. For each fixed a,
there are 6 points determined by b: three with b < 18 (rotations) and b = 0,1,2 (mod 3)
and three with b > 18 (reflections) and b = 18,19,20 (mod 3); e.g., for a = 0 (mod 3) one
may take b € {0,1,2} and b € {18,19,20} as representatives. By contrast, when frequency
1 is learned (Figure 3 (B)), ged(1,18) = 1 and each of the 1296 data points projects to
its own coordinate. Figure 3 only shows cluster contributions to the logits for frequency 1
to emphasize that networks store the answer C' orthogonally, depending on the sign of the

location of the answer. Counts of the cayley graph learned by neurons

Our final result is that we train 1000 neural net- 1000 over 1000 seeds; p=18

works and record the frequency that particular cosets 879

784 800
are learned. We see that the network has a strong
preference for exact cosets, learning D3, D1, D2,,,
Ds,,, in most runs, and less frequently learning ap- € 551 N
proximate cosets denoted D18_f. This makes sense, S _ el %l 470 304 §| 396
. . 351364 344

as learning precise cosets naturally fits the group -%l Ny " o
structure better, and it’s likely that there’s more ways = o N Tl NS

. . pas & o
for stochastic gradient descent to find them (because Sl EE g a)

(o]

they’re smaller graphs and thus there’s more of them). 0 &)

This should be studied in future work investigating .~ ©@vley graphleamed by a neuron
training dynamics Figure 4: Histogram for how often

different Cayley graphs are learned
by neurons over 1000 training runs.
Networks learn cosets much more
frequently than approximate cosets,
4. Discussion e.g. D3, Do, and Dy  all corre-
spond to cosets.

We take a step toward empirically validating Mc-

Cracken et al. (2025)’s conjecture that neural networks utilize approximate coset structure
when learning group multiplication. We provide preliminary evidence that approximate
cosets generalize to other groups, finding them to be fundamental components of the repre-
sentations learned for non-commutative group multiplication. Thus, we show that approx-
imate cosets are neither unique to modular addition (a cyclic group) nor to commutative
multiplication.

Finally, while we have identified emergent approximate coset structures in representa-
tions learned for dihedral group multiplication, this is only one piece of the puzzle. To
prove McCracken et al. (2025)’s conjecture, one must demonstrate that similar phenomena
occur across group operations. A promising direction is to examine representation learning
on elementary p-group multiplication. Our primary limitation is that we did not test trans-
formers. Secondarily, we only present results on Dig. Future work should address both
limitations, testing transformers and dihedral groups of prime and odd composite order.
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Appendix A. Related work

Group multiplication tasks have become standard benchmarks for both the mechanistic
interpretability Nanda et al. (2023); Chughtai et al. (2023b,a); He et al. (2024); Tao et al.
(2025); Doshi et al. (2023); Stander et al. (2024) and theoretical deep learning Gromov
(2023); Morwani et al. (2024); Mohamadi et al. (2023); McCracken et al. (2025) commu-
nities. In fact, they’ve given both empiricists and theoreticians a common ground for
proving scientific hypotheses. Notably, group multiplication plays a prominent role in vali-
dating the Universality Hypothesis (Li et al., 2015; Olah et al., 2020; Chughtai et al., 2023a;
Huh et al., 2024), which posits that deep neural networks learning related tasks will con-
verge to similar internal circuits. Particularly, the hypothesis implies that shared principles
will underlie the representations learned by DNNs regardless of architecture, initialization,
or training hyperparameters.

On the empirical side, it’s the case that the viral phenomenon of grokking was first
identified while training networks on modular addition, which is a group multiplication task
Power et al. (2022). This led to Nanda et al.’s seminal paper Nanda et al. (2023), which
provided surprisingly deep interpretations of transformer architectures to explain grokking.
Subsequently, an empirical investigation into the Universality Hypothesis was conducted,
generalizing the algorithm from Nanda et al. (2023) by studying cyclic and permutation
group multiplications Chughtai et al. (2023a). They claimed that networks universally
learned matrix representations of the group and used them to compute answers via matrix
multiplication. Later, it was revealed that this wasn’t the case for the permutation group:
Stander et al. (2024) showed that coset circuits, not matrix multiplications, were utilized.
Additionally, Zhong et al. (2023) claimed that two entirely different circuits were being
learned by different transformer architectures.

Both of these counterexamples to the universality hypothesis were since resolved by one
work. McCracken et al. McCracken et al. (2025) rigorously proved and showed empirically
that deep neural networks were implementing a divide-and-conquer algorithm based on
approximate cosets universally, ultimately learning a generalization of the Chinese Remain-
der Theorem. This unified all findings on modular addition with those of the permutation
group—coset circuits were learned in both groups. Secondly, the result that all networks are
implementing one abstract divide-and-conquer algorithm demonstrates that the differences
claimed by Zhong et al. (2023) were artifacts of their analyses and metrics. Resultantly,
the universality hypothesis was re-opened: all interpretations on group multiplications were
unified under the idea of networks utilizing generalized (i.e., approximate) cosets.

Meanwhile, the theoretical community made breakthroughs using cyclic group multi-
plication as well. Gromov Gromov (2023) provided an exact analytical solution to what
networks with quadratic activations learn to solve modular addition. Lyu et al. (2023)
argued that smoothness was an inductive bias that could provably induce grokking. This
was followed by Morwani et al. (2024), who rigorously proved O(n) features were required
in 1-layer networks. Furthermore, Morwani et al. (2024) argued the reason sinusoidal fre-
quencies emerged during training was due to the theory that deep neural networks seek to
maximize the margin, utilizing smoothness norms in their arguments, which was simulta-
neously, proposed by Mohamadi et al. (2023), who argued the same. McCracken et al.
came next, motivated primarily by the interpretability community’s empirical claims that
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Figure 5: Cayley table for D3 (= S3).

networks could learn algorithms. They utilized cyclic group multiplication to provide the
first rigorous proof that neural networks can and do learn divide-and-conquer algorithms,
proving in expectation O (log(n)) feature efficiency—as would be expected by a divide-and-
conquer strategy—and empirically showed the bound tightly matched practical results.

Appendix B. Extra background

B.1. Dihedral group multiplication table
See Table 5.

B.2. Group Fourier Transform

Just like the classical Fourier transform decomposes a time signal into sine and cosine
components, the group Fourier transform (GFT) decomposes a function on a group into
“frequency-like” building blocks that reflect the group’s symmetry structure. These com-
ponents correspond to the group’s irreducible representations and capture how the function
varies across different symmetry modes—such as rotations or reflections in the case of D,,.

Applying the GFT is equivalent to projecting the function onto these natural symmetry
modes. Once transformed, operations like group convolution or composition act indepen-
dently on each mode, making the structure easier to interpret and analyze.

In this paper we name the GFT channels by the standard irreducible representations:
triv, sign, rp, srp, and 2Dy.

triv is the DC mode (unchanged by all symmetries), i.e., r — +1, s — +1. sign
flips under reflections but not rotations, i.e., r — +1, s — —1. For even n, rp flips
under rotations while remaining mirror-even (r — —1, s — +1); srp adds a reflection flip
(r— —1, s— —1). Each 2Dy is a cosine—sine pair around the n-gon at angular frequency
27k /n: rotations rotate this pair, reflections swap/flip it. (We use k =1,...,[(n —1)/2];
k and n — k are equivalent.)

B.3. Approximate cosets

Approximate cosets are intuitively, the generalization of cosets to “almost a coset”. They
arise when neurons in a network learn to divide a group using a structure that doesn’t
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Figure 6: PCAs of the preactivations, filtered to only include data where the answer ¢ €
{0, 15, 18, 33}.This plot shows that the sign of ¢ results in the embedding for ¢ being reflected.
For example, consider ¢ = 0 vs ¢ = 18, which are the same element, but one is the mirror
reflection of the other: the two corresponding circles are reflected across a plane that exists
in the middle between them. The same is true for C' = 15 vs ¢ = 33.

actually divide the group. For example, Dig has 36 elements, 18 of which are arranged in
a circle in the front, and 18 are “in the back” as a mirror reflection. Thus, it’s the case
that we could choose to divide the 36 elements by 6, giving us 6 sets, and since there are 18
elements in the front and 18 in the mirror reflection, we also divide 18 by 6 = 3. This tells
us that our division of the group into 6 sets, will give us smaller sets, where 3 elements are
in the front and three are in the back.

Suppose alternatively that we were trying to divide Djg by 5. Since the ged(5,18) =1,
5 doesn’t factorize 18 into anything smaller. Thus, there are no cosets, and resultantly, a
neuron learning frequency 5 has learned the full group structure of Djg. Such a neuron
has 5 peaks (maximum values), and if a peak is located at a, the next peaks are located
a*+ % = 3.6. Naturally, because the problem is discrete, this results in every point having
a different activation value and can be seen in Figure 77 in the first panel, and contrasted
with Figure 2’s first panel that has every point at one of three levels.

We offer the reader the following intuition: approximate cosets are simply when a neuron
has learned something that doesn’t allow it to cleanly divide the Cayley graph into smaller
pieces. A natural response is to think “perhaps neurons would prefer to learn things that
cleanly divide the group?” and indeed, this is observed later in the main extended abstract
in Figure 4. For the mathematical definition, please see Section 3 and 4 in McCracken et al.
(2025).

Appendix C. More Figures

We have some other neurons here, with the goal being to show how different Fourier basis
correspond to different cosets. These are displayed in Figures 7, 8, 9, 10. Notably, Figs.
9 and 10 learn much simpler structure—they effectively partition the group in different
quarters.
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corresponding to learning precise cosets.
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Figure 10: GFT reveals neuron pre-activations concentrated in the 1D srp representation,
corresponding to learning precise cosets.
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Figure 11: PCAs of preactivations under 2Dg shows how the network has organized each
of the eighteen Dg cosets. Here g = 9.
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Figure 12: PCAs of a coset cluster’s contributions to the logits, with frequency 8, reveal
that the network stores information in the rotation class orthogonally to information in the
reflection class. Here g = 9.
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Appendix D. How were the plots made

We use an 80%, 20% train, test split, and train with Adam Kingma and Ba (2014), cross-
entropy loss, with learning rate 0.001 and batch size 36 for 5000 epochs.

The remapping definition that is used to normalize sinusoidal functions with frequency
f so that they can be plotted with frequency 1 is provided below.

Definition 1 (Step size) d := (m)*l(modm), where the modular inverse is
used.

Definition 2 (Remapping: frequency normalization) Consider the function h(x) =
cos(2m fx/n) with frequency f. We define a new function g, allowing us to perform some-
thing analogous to a change of variables using the step size d: g(d-x) = h(z) < g(x) =
h(d~! - x).
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