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Abstract

Large language models perform well on tasks001
that have undergone fine-tuning of instructions,002
but their performance to completely unseen003
tasks is often less than ideal. To overcome004
the challenge of cross-task generalization, task-005
level LoRA combination is proposed, which006
does not require training a model for new007
tasks. Instead, it learns the LoRA combination008
weights based on a small number of samples009
to form the task model. However, task-level010
LoRA combination only utilize a few task mod-011
ules due to its reliance on the weight enumer-012
ation method, and it also overlooks the speci-013
ficity between different instances. Therefore,014
we proposed an instance-level LoRA composi-015
tion for cross-task generalization, which selects016
appropriate multiple task LoRAs for each input017
instance and dynamically determines the com-018
position weights. Our experiments on publicly019
available datasets show that our method outper-020
forms the typical method, LoraHub, in 16 out of021
27 tasks. We release the source code at https:022
//github.com/noname822/iLoraComp.git023

1 Introduction024

Currently, large language models (LLMs) demon-025

strate remarkable zero-shot learning capabilities026

on tasks that have undergone instruction tuning027

(Chung et al., 2022; Achiam et al., 2023; Touvron028

et al., 2023; AI@Meta, 2024). However, numerous029

studies have revealed that when encountering novel030

tasks outside their training distribution, these mod-031

els often fail to exhibit satisfactory performance032

(Ovadia et al., 2024; Huang et al., 2024). Explor-033

ing strategies to enhance the cross-task general-034

ization abilities of these massive language models,035

enabling them to adapt swiftly and accurately to036

diverse new tasks, has emerged as a pressing chal-037

lenge that demands attention.038

Addressing the challenge of cross-task general-039

ization has traditionally involved fine-tuning mod-040

els for each task and in-context learning. However,041
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Figure 1: Previous task-level composition constructs
a shared task model for all instances. The proposed
instance-level composition constructs a unique task
module for each instance.

these conventional approaches come with inherent 042

limitations. Fine-tuning for every new task can 043

be resource-intensive, demanding extensive data, 044

storage, and computing power, which compromises 045

flexibility. Although methods such as LoRA (Hu 046

et al., 2021), falling under the delta tuning (Ding 047

et al., 2022) approach, aim to adapt to specific tasks 048

or domains by introducing smaller parameter up- 049

dates while minimizing computation and storage 050

costs, thus mitigating storage issues and enhanc- 051

ing flexibility, they still require backpropagation 052

for precise output tuning, rendering them less cost- 053

effective for multiple tasks. In-context learning 054

(Dong et al., 2022), on the other hand, necessi- 055

tates more input than zero-shot to fully leverage 056

the model’s capabilities, indirectly increasing the 057

computational resources needed for inference. 058

To address the shortcomings of these methods 059

and achieve efficiency and sustainability in multi- 060

task, few-shot, and high-volume scenarios, inno- 061

vative approaches such as LoraHub (Huang et al., 062

2024) have emerged. LoraHub rapidly adapts to 063

unseen tasks by intelligently combining pre-trained 064

low-rank adapters from other relevant tasks. This 065

method enhances model performance across di- 066
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verse tasks without increasing input requirements,067

striking a balance between performance and energy068

consumption.069

However, LoraHub also has room for improve-070

ment in terms of its effectiveness. Firstly, when071

selecting Lora modules from a trained Lora library072

for task adaptation composition, LoraHub’s current073

strategy is to randomly select modules from the074

library. This random selection may result in the075

inclusion of tasks that are either overly similar or076

completely unrelated, leading to significant perfor-077

mance variations under different random seeds for078

the same task, thus exhibiting poor stability. Sec-079

ondly, when training on instances, LoraHub does080

not consider the subtle nuances between individual081

instances, preventing the full utilization of the lim-082

ited instance data to capture the potential specificity083

of inputs, which in turn limits LoraHub’s perfor-084

mance. To address these two issues, we propose085

the following solutions:086

• To address the issue with the Lora module se-087

lection strategy, we adopt a selection method088

based on task similarity. By calculating the se-089

mantic similarity between the target task and090

the training sets of the available Lora mod-091

ules, we prioritize the combination of Lora092

modules that are most closely related to the093

current task, thereby enhancing the stability094

and effectiveness of the task-level adaptation.095

• To fully account for the unique characteris-096

tics of each input instance, we propose tai-097

loring a dedicated Lora module combination098

for each instance. By calculating the seman-099

tic similarity between the input instance and100

the training instances used to create the avail-101

able Lora modules, we select the most fitting102

instance-specific Lora combination as the pro-103

cessing strategy for that input. This approach104

effectively leverages the subtle nuances across105

different input instances.106

By employing the aforementioned improvements,107

our method has achieved a significant enhancement108

in inference stability. Additionally, compared to the109

original LoraHub, our approach has demonstrated110

a noticeable performance advantage. In our experi-111

ments, a total of 27 tasks were tested, and in these,112

our proposed method outperformed LoraHub on 16113

of them.114

2 Related work 115

Instance-Based Generation for LLMs refers to 116

a method that leverages dataset analysis to extract 117

valuable instance, thereby enhancing the perfor- 118

mance of a task. The introduction of large lan- 119

guage models has since inspired numerous works, 120

including Wiki-Chat (Semnani et al., 2023), which 121

have sought to augment language model capabil- 122

ities through retrieval-based knowledge enhance- 123

ment. This trend originated with RAG (Lewis et al., 124

2020), which incorporates knowledge as prompts 125

for in-context learning in LLM. Additionally, there 126

are works that do not retrieve text as prompts, 127

but instead retrieve delta-tuning modules, using 128

these modules to generate prompts for answering 129

questions, such as Knowledge Card (Feng et al., 130

2023). In this paper, we retrieval delta-tuning mod- 131

ule by calculating the semantic similarity between 132

instance and question using the method of DPR 133

(Karpukhin et al., 2020a). 134

Module Composition represents an endeavor to 135

integrate diverse models, Consequently, tasks that 136

retrieve model modules for composition have nat- 137

urally emerged, such as MAC(Tack et al., 2024), 138

SLM (Peng et al., 2024), Arrow(Ostapenko et al., 139

2024), LoraRetriever (Zhao et al., 2024), and Lora- 140

Flow (Wang et al., 2024). While most methods 141

adopt a simplistic processing approach for mod- 142

els. These approaches strive to leverage retrieval 143

methods by employing retrieval scores as weights 144

during composition, thereby obviating the need for 145

manual parameter tuning and facilitating immedi- 146

ate usage. Concurrently, methods such as Moelora 147

(Liu et al., 2023) exist that directly assign weights 148

through backpropagation. LoraHub occupies an 149

intermediary position which used a gradient-free 150

optimization. In comparison to previous work, our 151

approach places a stronger emphasis on utilizing in- 152

stances to get model modules that are more relevant 153

to the given question. 154

3 Method 155

In this section, we will provide an overview of 156

the process, followed by an explanation of how to 157

identify appropriate task Lora modules based on 158

Lora training data. Finally, we will offer a detailed 159

account of how to integrate the selected LoRA com- 160

binations with the input data. 161
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3.1 Overview162

We first train the upstream tasks T on the large163

model Mθ using the training set T i ∈ T to get164

LoRA module Li and collect them into Lora li-165

brary L. Next, We specify the hyperparameter166

N as the number of LoRA modules to be com-167

posed. Each new task T ′ /∈ T has their in-168

stance set I ′. For each instance ej ∈ I ′, we find169

the closest N LoRA library from L, denoted as170

Lej = {L1, . . . , LN}, and optimize a weight com-171

bination ŵej = {w1, . . . , wN} using a gradient-172

free method (Sun et al., 2022) as ng. For a new173

question Q belonging to new task T ′, we select the174

most suitable weight combination ŵej based on the175

semantic similarity between Q and ej then make176

new LoRA module L̂j . Finally, we combine these177

to form the model Mϕ = LoRA(Mθ, L̂) and use178

it for reasoning on Q.179

3.2 LoRA module Retrieval180

To select the most suitable LoRA modules from181

L for composition, we identify the corresponding182

training set Ti = {(x1, y1), . . . , (xn, yn)} for each183

Li ∈ L. We then derive the task embedding vector184

embT i =
1
n

∑n
k=1Ms(xk+yk) using the sentence185

vectorization model Ms. Similarly, for the instance186

ej = (xej , yej ), we can obtain its embedding vec-187

tor embej = Ms(xej+yej ). Consequently, Follow-188

ing the approach of Mussmann and Ermon, 2016189

and Karpukhin et al., 2020b in using cosine similar-190

ity as a measure of task similarity, we can identify191

the top N most similar tasks to ej . The formula for192

cosine similarity is as follows:193

similarity(ej , T i) =
embej · embT i

∥embej∥ · ∥embT i∥
(1)194

Where embTi represents the embedding vector of195

the i-th task, and ∥ · ∥ denotes the Euclidean norm196

of a vector. By calculating the cosine similarity197

between each task T i and the instance ej , we can198

select the top N tasks with the highest similarity199

as the candidate set of similar tasks for ej , which200

is denoted as Lej , and then collect all Lej as a set201

called SL.202

3.3 Instruct based Module Composition and203

Inference204

To fine-tune the model Mθ to the state that best205

aligns with the instance ej = (xj , yj), we employ206

the non-gradient optimization method ng to refine207

the weights. We perform a broad adjustment of208

the init weights winit using all the instances for T i 209

donated as Ii = {e1, . . . , en}. Then, we conduct a 210

targeted adjustment using the instruct-level LoRA 211

set Lej corresponding to the specific instance ej . 212

The optimization process is encapsulated in the 213

following formula: 214

ŵej = ng(Ii,Lej , winit) (2) 215

Having aggregated the adjusted weights ŵej 216

for all e into the set Sŵ, we proceed to identify 217

the ej that shares the most affinity with the input 218

x. This is accomplished by calculating the co- 219

sine similarity between the input embedding vector 220

embeix = Ms(xj) for ej and the embedding vec- 221

tor embx = Ms(x) for the input x. This analysis 222

allows us to select the most suitable LoRA library 223

from SL, denoted as Lsuit, and its corresponding 224

weights from Sŵ, denoted as ŵsuit. Utilizing these 225

components, we construct the optimal LoRA mod- 226

ule L̂ = ŵsuitLsuit. As a result, we obtain the 227

model Mϕ = LoRA(Mθ, L̂) that is specifically 228

tailored to the given input. This model is then em- 229

ployed for inference, with the output expressed as 230

y = Mϕ(x). 231

4 Experimental Setup 232

LLM. We utilized the Flan-T5-Large (Chung 233

et al., 2022) model as our foundational large 234

language model Mθ for experimentation pur- 235

poses. Concurrently, we employed the compact 236

all_datasets_v4_MiniLM-L6 (flax sentence embed- 237

dings, 2021; Wang et al., 2020) model as our Ms, 238

which was trained on a dataset comprising one bil- 239

lion sentence pairs, excluding the BBH and flanv2 240

datasets that we utilized. This compact model effec- 241

tively supported our sentence vectorization efforts. 242

Dataset and Evaluation. We utilize the flanv2 243

dataset (Longpre et al., 2023), which incorporates 244

data from four mixed sources, as the training set 245

for upstream tasks. It encompasses 264 distinct 246

datasets, out of which we selected 97 for our pur- 247

poses. We then employed the Lora modules trained 248

on these datasets by Huang et al. (2024) as our 249

repository of Lora models for potential selection. 250

The Big-Bench Hard benchmark (Suzgun et al., 251

2022), with 27 tasks, offers a valid test for Mθ as 252

it was not trained on these datasets. We sampled 253

5 instances per task, used 20 LoRA modules for 254

adaptation, and initiated with 40 steps of global 255

optimization, followed by EM-based evaluation on 256

the remaining data. 257
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Baseline Setup. To ensure our method’s credibility,258

we used our LoRA library to test LoraHub (Huang259

et al., 2024) refined parameters for 40 steps as a260

baseline, averaging three runs for the final score261

(LoraHubavg). We compared scores using zero-262

shot, full fine-tuning (FFT), and in-context learning263

(ICL). For LoRA module selection, we conducted264

ablation experiments using the average embedding265

vector of five instances per task (BatchComp). In266

FFT, we maintained consistency by training with267

the same random seeds and 5 instances. We trained268

the model over 40 epochs with a learning rate of269

3e-5 and batch size of 5.270

5 Result And Discussion271

Method average average-3
FFT∗ 39.8 44.3
0-shot 24.4 27.4
ICL 30.9 34.8

LoraHubavg 34.0 38.1
BatchComp 34.7 39.0

Ours 35.6 40.0

Table 1: Experimental results on 27 tasks of BBH, the
"average-3" has excluded three tasks with an accuracy
of less than 10%, (*) represents the upper limit.

Method FFT ICL 0-shot LoraHub
BatchComp 7/18 18/3 16/8 13/12

Ours 11/16 19/2 18/7 16/8

Table 2: A/B vs. the baseline, "A" represents the num-
ber of tasks where our proposed method performed bet-
ter than the baseline method, while "B" represents the
number of tasks where our proposed method performed
worse than the baseline method.

5.1 Result272

The primary results are presented in Table 1 and273

Table 2, with detailed task scores in Appendix A.274

Our method significantly outperforms the zero-shot275

approach on 19 out of 27 tasks and the in-context276

learning (ICL) method on 18 tasks in terms of aver-277

age performance. Compared to ICL, our approach278

is more computationally efficient, requiring fewer279

tokens. Our modifications to LoraHub are also280

notably successful, with our method outperform-281

ing LoraHub’s random selection approach on 16282

tasks. Crucially, our instance-level method exhibits283

a 0.9% performance enhancement over our task-284

level method in the ablation study, underscoring285

the efficacy of capturing input nuances through286

instance-specific adaptation. 287

However, our method still cannot compete with 288

full fine-tuning (FFT), which holds a significant 289

performance advantage over other methods on cer- 290

tain highly structured tasks, such as "date under- 291

standing" and "dyck language". The results suggest 292

that only FFT enables the model to adequately learn 293

the underlying structure and patterns required for 294

these more complex and specialized tasks. 295

5.2 Discussion 296

Ablition study. Our instance-level approach sig- 297

nificantly outperforms the task-level BatchComp, 298

which directly selects Lora modules without pair- 299

ing questions to instances. BatchComp’s 0.7% im- 300

provement over random LoraHub selection pales 301

in comparison to our approach’s doubling of per- 302

formance in the "disambiguation qa" task, likely 303

due to our method’s superior ability to highlight 304

the importance of key instances for task success. 305

Retrieval method average
BM25 25.6

DPR L2 Distance 34.3
DPR Cosine Similarity 35.6

Table 3: Result of different retrieval strategy

Retrieval strategy. Our approach is closely tied 306

to retrieval performance. If accurate retrieval is 307

not achieved, properly aligning suitable instances 308

with corresponding questions and matching them 309

with the appropriate LoRA modules, the overall 310

effectiveness will be reduced, as demonstrated in 311

Table 3 like bm25(Robertson et al., 1995). The 312

results obtained from the DPR’s L2 distance (Ram 313

and Gray, 2012) and Cosine Similarity(Mussmann 314

and Ermon, 2016) confirm the efficacy of DPR in 315

instance-level fusion. 316

6 Conclusion 317

Our work introduces two key enhancements to the 318

LoraHub framework. The first is the incorporation 319

of a method that indexes models trained on datasets 320

using their semantic centroids, which improves Lo- 321

raHub’s precision at the task level. The second is 322

the introduction of instance-level adaptation, which 323

leverages the distinctive features of individual in- 324

stances to elevate the performance ceiling of the Lo- 325

raHub approach. These complementary strategies 326

work in synergy to bolster the model’s cross-task 327

generalization capabilities. 328
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7 Limitation329

Increased Computational Cost. Our method in-330

curs a higher computational cost than LoraHub,331

mainly because we train weights for each individ-332

ual instance during the Lora group weights train-333

ing phase. This means that our approach will re-334

quire computational resources proportional to the335

number of instances, multiplied by the cost of Lo-336

raHub’s training.337

Application Scenario Limitation. Our method338

is not universally cost-effective. In scenarios where339

a task involves a limited number of questions, em-340

ploying our method may not be the most economi-341

cal choice. For tasks without any instances, zero-342

shot learning would be a more appropriate and343

efficient approach.344

Additional Preliminary Preparations Re-345

quired. When utilizing LoRA for composition,346

our method not only requires identifying the appro-347

priate LoRA modules within the library but also348

necessitates access to the data used during the train-349

ing of those LoRA modules. Consequently, our350

approach incurs greater initial preparation costs351

compared to methods that do not rely on such spe-352

cific training data.353

Requirement for Higher-Quality Instances.354

Instance-level methods, such as ours, are more sen-355

sitive to the quality of the instances used. Lower-356

quality instances, including those that are flawed357

or not closely related to the task, can potentially358

lead to misleading answers for associated questions.359

This underscores the importance of careful instance360

selection and curation to ensure the method’s effec-361

tiveness.362
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method zero-shot ICL FFT LoraHubavg BatchComp Ours
boolean expressions 35.9 25.7 53.5 48.2 46.1 49.8
causal judgement 58.8 58.2 58.8 58.8 57.7 59.9
date understanding 0.81 0.0 73.5 32.0 34.7 31.8
disambiguation qa 0.0 65.7 69.4 24.4 22.0 46.9
dyck languages 0.0 0.0 8.6 1.6 0.0 0.0
formal fallacies 55.1 52.7 52.2 53.1 52.2 53.5
geometric shapes 0.81 13.5 18.4 14.5 17.6 18.8
hyperbaton 26.5 0.41 48.2 68.6 69.8 71.8
logical deduction 5 objects 33.1 41.2 43.3 42.6 42.0 43.4
logical deduction 7 objects 33.5 38.0 47.4 44.4 41.2 40.8
logical deduction 3 objects 16.3 51.0 55.5 45.9 51.0 51.0
movie recommendation 49.8 42.4 64.5 53.1 52.7 50.2
multistep arithmetic two 0.0 0.0 0.0 0.5 0.0 0.4
navigate 56.3 59.6 57.1 53.5 58.8 56.3
object counting 26.5 26.9 34.7 27.9 28.6 31.4
penguins in a table 16.3 28.4 32.6 37.1 40.4 36.9
reasoning about colored objects 20.0 37.1 37.1 37.4 42.0 38.0
ruin names 22.0 26.1 57.1 21.9 22.4 22.0
salient translation error detection 29.0 42.0 20.0 31.6 30.2 31.0
snarks 48.6 43.9 48.0 52.2 58.4 58.4
sports understanding 4.1 53.5 45.3 50.1 50.2 46.5
temporal sequences 22.4 25.7 33.4 24.5 25.3 24.9
tracking shuffled objects 5 objects 11.0 10.6 16.7 11.0 11.0 11.0
tracking shuffled objects 7 objects 8.6 8.2 13.9 8.6 8.6 8.6
tracking shuffled objects 3 objects 31.0 31.8 34.3 31.0 32.2 32.2
web of lies 52.6 51.8 48.2 43.4 40.4 44.1
word sorting 0.81 0.0 3.7 0.95 0.81 0.81
average 24.4 30.9 39.8 34.0 34.7 35.6

Table 4: The results for the 27 tasks of BBH simulations have been obtained.
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