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ABSTRACT

With the introduction of video diffusion model, audio-conditioned human video
generation has recently achieved significant breakthroughs in both the naturalness
of motion and the synthesis of portrait details. Due to the limited control of au-
dio signals in driving human motion, existing methods often add auxiliary spatial
signals such as movement regions to stabilize movements, which compromise the
naturalness and freedom of motion. To address this issue, we propose an end-
to-end audio-only conditioned video diffusion model named Loopy. Specifically,
we designed two key modules, an inter- and intra-clip temporal module and an
audio-to-latents module. These enable the model to better utilize long-term mo-
tion dependencies and establish a stronger audio-portrait movement correlation.
Consequently, the model can generate more natural and stable portrait videos with
subtle facial expressions, without the need for manually setting movement con-
straints. Extensive experiments show that Loopy outperforms recent audio-driven
portrait diffusion models, delivering more lifelike and high-quality results across
various scenarios. Video samples are available at this URL.

1 INTRODUCTION

Due to the rapid advancements GAN and diffusion models in the field of video synthesis (Bar-Tal
et al., 2024; Blattmann et al., 2023a;b; Guo et al., 2023; Zhou et al., 2022; Gupta et al., 2023; Wang
et al., 2023; Ho et al., 2022; Brooks et al., 2022; Wang et al., 2020; Singer et al., 2022; Li et al.,
2018; Villegas et al., 2022), human video synthesis (Siarohin et al., 2019; 2021; Xu et al., 2024b; Hu,
2024; Corona et al., 2024) has gradually approached the threshold of practical usability in terms of
quality, attracting significant attention in recent years. Among these, zero-shot audio-driven portrait
synthesis has seen an explosion of research (He et al., 2023; Tian et al., 2024; Xu et al., 2024a; Wang
et al., 2024; Chen et al., 2024; Xu et al., 2024b; Stypulkowski et al., 2024) since around 2020, due
to its ability to generate portrait videos with with a low barrier to entry. Recently, diffusion model
techniques have been introduced, with end-to-end audio-driven models (Tian et al., 2024; Xu et al.,
2024a; Chen et al., 2024) demonstrating more vivid synthesis results compared to existing methods.

However, due to the weak correlation between audio and portrait motion, end-to-end audio-driven
methods typically introduce additional spatial conditions to restrict movement areas and ensure tem-
poral stability in the synthesized videos. While the introduction of preset motion templates for
spatial conditions may mitigate this issue, it also introduces several problems related to template
selection, audio-template synchronization and repetitive movements. These spatial conditions, or
auxiliary designs, such as face locators and speed layers (Tian et al., 2024; Xu et al., 2024a; Chen
et al., 2024), restrict the range and velocity of portrait movements while also hindering the full po-
tential of video diffusion models in generating vivid motion. This is because the model tends to
follow given movement information during training rather than learning to generate natural move-
ments from audio. We can observe from the Figure 1 that the overall richness of portrait motion
in existing methods is limited. This paper aims to address this issue by proposing an audio-only
conditioned portrait diffusion model, enabling the model to learn natural motion patterns entirely
from data without the need for spatial constraints.

Without spatial conditions, the input information is insufficient to accurately infer portrait move-
ment trends, resulting in inconsistent and frequently changing motion patterns. We found that using
the CFG technique (Ho & Salimans, 2022) can stabilize videos by making them relatively static
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Figure 1: Visual comparisons with existing methods. Existing methods struggle to generate natural move-
ments. Compared to reference images, their motion, posture and expressions often resemble the reference or
remain nearly static due to the auxiliary spatial conditions. In contrast, Loopy effectively generates natural
movements solely from audio, including detailed head movements and facial expressions. Video samples are
provided in the supplementary materials.

compared to the reference image, but this is suboptimal as it doesn’t teach the model natural motion
generation. It merely copies expressions and poses from the reference image, ultimately leading
to a decline in overall quality. In diffusion-based frameworks, motion is influenced by both audio
and frames from preceding clips, also known as motion frames. Motion frames provide appear-
ance information from preceding clips, strongly influencing motion generation. However, current
methods usually use fewer than 5 motion frames, covering only about 0.2 seconds at 25 FPS. This
short duration causes the model to extract appearance information rather than temporal information,
such as motion style. For example, 0.2s of preceding information is insufficient for the model to
determine whether eye blinking should occur, making it a random event rather than a naturally gen-
erated expression. When motion style is hard to determine by audio and motion frames, it exhibits
randomness, necessitating additional guidance from spatial conditions like face box and movement
speed. We tried directly increasing the length of motion frames and found that this can generate
more dynamic facial movement details, although it is not stable. This suggests that increasing the
temporal receptive field appropriately may help capture motion patterns more effectively and aid in
generating natural motion.

In addition to limited expressiveness due to restricted movement, current methods lack dynamic de-
tail in facial movements, presenting as stiff and unnatural facial movements beyond the mouth area,
as shown in Figure 1. This may be due to the weak correlation between audio and portrait motion,
causing the model to focus more on modeling the relationship between audio and video pixels, in-
cluding a large amount of irrelevant background motion, rather than the relationship between audio
and portrait motion. This phenomenon is also mentioned in some works (Xu et al., 2024a).

Based on the above observations and considerations, we propose an end-to-end audio-conditioned
diffusion model for portrait video generation, Loopy, leveraging long-term motion dependency to
generate vivid portrait videos. Specifically, for temporal aspect, we designed inter- and intra-clip
temporal modules. Motion frames are modeled with a separate temporal layer to capture inter-
clip relationships, while the original temporal module focuses on intra-clip modeling. Additionally,
inter-clip temporal layers are equipped with a temporal segment module to extend the receptive field
to over 100 frames (approximately 5 seconds at 25 fps, 30 times the original). These modules help
the model better leverage long-term motion dependency information to learn natural and stable mo-
tion patterns from data without the need for movement constraints. Furthermore, for audio aspect,
we introduced the audio-to-latents module, which transforms audio and facial motion-related fea-
tures (head movement variance, expression variance) into motion latents in a shared feature space.
These latents are inserted into the denoising net as conditions. During testing, motion latents are
generated using only audio. This approach allows weakly correlated audio to leverage strongly
correlated motion conditions, enhancing the relationship between audio and portrait motion and
improving subtle facial expressions. Extensive experiments validate that our design effectively im-
proves the naturalness of motion and the robustness of video synthesis across various types of input
images and audio combinations. In summary, our contributions include:
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(1) We propose Loopy, an audio-driven diffusion model for portrait video generation. It features two
key designs: inter- and intra-clip temporal modules to learn natural motion patterns from long-term
dependencies, and an audio-to-latents module to enhance audio-portrait motion correlation using
strongly correlated conditions during training. Loopy can generate vivid talking portrait videos with
subtle facial details without motion constraints or templates.

(2) We validated the effectiveness of our method on public datasets and evaluated the model’s ca-
pabilities across various scenarios, including multiple types of input images and audio. The results
demonstrate that Loopy achieves more lifelike and stable synthesis compared to existing methods.

2 RELATED WORKS

Audio-driven portrait video generation has attracted significant attention in recent years, with nu-
merous works advancing the field. Most of these methods can be categorized into GAN-based and
diffusion-based approaches based on their video synthesis techniques.

GAN-based methods (Zhou et al., 2020; Prajwal et al., 2020; Zhang et al., 2023b; Liang et al., 2022)
typically consist of two key components, an audio-to-motion model and a motion-to-video model.
These models are usually implemented independently. For example, MakeItTalk (Zhou et al., 2020)
uses an LSTM module to predict landmarks based on the input audio, and then a warp-based GAN
model converts the landmarks into video. SadTalker (Zhang et al., 2023b) utilizes the existing Face-
Vid2Vid (Wang et al., 2021) method as the image synthesizer, employing ExpNet and PoseVAE to
transform audio features into the inputs required by FaceVid2Vid, thereby completing the audio-to-
video generation. With the introduction of diffusion techniques, some methods have implemented
the audio-to-motion module using diffusion models while retaining the independent implementation
of the motion-to-video module. For instance, GAIA (He et al., 2023) uses a VAE to represent mo-
tion as motion latents and implements a motion latents-to-video generation model. Furthermore, it
designs a diffusion model to achieve audio-to-motion latents generation, thereby enabling audio-to-
video generation. DreamTalk (Ma et al., 2023), Dream-Talk (Zhang et al., 2023a), and VASA-1 (Xu
et al., 2024b) propose similar ideas, using PIRender (Ren et al., 2021), FaceVid2Vid (Wang et al.,
2021), and MegaPortrait (Drobyshev et al., 2022) as their motion-to-video models, respectively,
and designing audio-to-motion diffusion models to complete the audio-to-portrait video generation
process. Additionally, some methods Ye et al. (2024) also incorporate NeRF for video rendering,
combined with an audio-to-motion model to achieve audio-driven portrait video generation.

Apart from the above types, DiffusedHead (Stypulkowski et al., 2024) and EMO (Tian et al., 2024)
achieves audio-to-portrait video generation using a single diffusion model, replacing the two-stage
independent design of the audio-to-motion module and the motion-to-video model. Recent meth-
ods, such as Hallo (Xu et al., 2024a), EchoMimic (Chen et al., 2024) and VExpress (Wang et al.,
2024), improve the audio-to-video modeling capabilities by introducing techniques like attention
reweighting and spatial loss based on the end-to-end audio-to-video diffusion framework but still
retain motion constraint conditions. Although these end-to-end methods can generate decent por-
trait videos, they need to introduce spatial condition module, like face locator and speed layer, to
constrain portrait movements for stability, limiting the model’s ability to generate diverse motions
in practical applications and hindering the full potential of diffusion models.

3 METHOD

In this section, we introduce our method, Loopy. First, we provide an overview of the framework,
including the input, output, and key designs of Loopy. Second, we will focus on the design of
the inter/intra- temporal modules, including the temporal segment module. Third, we detail the
implementation of the audio condition module. Finally, we describe the implementation details
during the training and testing of Loopy.

3.1 FRAMEWORK

Our method is built upon Stable Diffusion (SD) and uses pretrained weights for initialization. SD
is a text-to-image diffusion model based on the Latent Diffusion Model (LDM) (Rombach et al.,
2022). It employs a pretrained VQ-VAE (Kingma, 2013; Van Den Oord et al., 2017) E to transform
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Figure 2: The framework of Loopy. it removes the commonly used face locator and speed layer modules in
existing methods. Instead, it achieves flexible and natural motion generation through the proposed inter/intra-
clip temporal layers, temporal segment module (TSM) and audio-to-latents modules.

images from pixel space to latent space. During training, images are first converted to latents, i.e.,
z0 = E(I). Gaussian noise ϵ is then added to the latents in the latent space based on the Denoising
Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) for t steps, resulting in a noisy latent zt.
The denoising net takes zt as input to predict ϵ. The training objective can be formulated as follows.

L = Ezt,c,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, c)∥22

]
, (1)

where ϵθ represents the denoising net, including condition-related modules, which is the main part
Loopy aims to improve. c represents the text condition embedding in SD, and in Loopy, it is replaced
by audio, motion frames, and other additional information influencing the final generation. During
testing, the final image is obtained by sampling from gaussian noise and removing the noise based
on DDIM (Song et al., 2020) or DDPM.

As demonstrated in Figure 2, in the Loopy, the inputs to the denoising net include noisy latents zt.
Unlike original SD, where the input is a single image, here it is a sequence of images representing
a video. The inputs also include reference latents cref (encoded reference image via VQ-VAE),
audio embedding caudio (audio features of the current clip), motion frames cmf (image latents of
the frames from the preceding clips), and timestep t. During training, additional facial movement-
related features are involved, the head movement variance cmov and the expression variance cexp of
the current clip. The output is the predicted noise ϵ. The denoising network employs a dual U-Net
architecture (Hu, 2024; Zhu et al., 2023). This architecture includes an additional reference network,
which replicates the original SD U-Net structure but utilizes reference latents cref as input. The
reference network operates concurrently with the denoising U-Net. During the spatial attention layer
computation in the denoising U-Net, the key and value features from corresponding positions in the
reference network are concatenated with the denoising U-Net’s features along the spatial dimension
before proceeding with the attention module computation. This design enables the denoising U-Net
to effectively incorporate reference image features from the reference network. Additionally, the
reference network also takes motion frames latents cmf as input for feature extraction, allowing
these features to be utilized in subsequent temporal attention computations.
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3.2 INTER/INTRA- CLIP TEMPORAL MODULE

Here, we introduce the design of the proposed inter/intra- clip temporal modules. Unlike exist-
ing methods (Tian et al., 2024; Xu et al., 2024a; Chen et al., 2024; Wang et al., 2024) that pro-
cess motion frame latents and noisy latents features simultaneously through a single temporal layer,
Loopy employs two temporal attention layers, the inter-clip temporal layer and the intra-clip tem-
poral layer. The inter-clip temporal layer first handles the cross-clip temporal relationships between
motion frame latents and noisy latents, while the intra-clip temporal layer focuses on the temporal
relationships within the noisy latents of the current clip.

Inter/Intra- Temporal Lyaers. First, we introduce the inter-clip temporal layer, initially ignoring
the temporal segment module in Figure 2. As shown in Figure 3, we first collect the image latents
from the preceding clip, referred to as motion frames latents. Similar to cref , these latents are
processed frame-by-frame through the reference network for feature extraction. Within each residual
block, the motion frames latent features obtained from the reference network are concatenated with
the noise latent features from the denoising U-Net along the temporal dimension. To distinguish the
types of latents, we add learnable temporal embeddings. Subsequently, self-attention is computed
on the concatenated tokens along the temporal dimension, i.e., temporal attention. The intra-clip
temporal layer differs in that its input does not include features from motion frames latents, it only
processes features from the noisy latents of the current clip. By using inter/intra-clip temporal
modules, the model better handles the aggregation of semantic temporal features across clips.

Figure 3: The illustration of the temporal segment mod-
ule and the inter/intra- clip temporal layers. The former
allows us to expand the motion frame to cover over 100
frames, while the later enables the modeling of long-term
motion dependency.

Temporal Segment Module. Due to the
design of the inter-clip temporal layer,
Loopy can better model the motion rela-
tionships among clips. To further enhance
this capability, we introduce the temporal
segment module before cmf enters the ref-
erence network. This module not only ex-
tends the temporal range covered by the
inter-clip temporal layer but also extracts
temporal information at different granular-
ities based on the distance of each pre-
ceding clip from the current clip, as illus-
trated in Figure 3. The temporal segment
module divides the original motion frame
into multiple segments and extracts rep-
resentative motion frames from each seg-
ment to abstract the segment. Based on
these abstracted motion frames, we recom-
bine them to obtain new motion frame la-
tents, comf , for subsequent inter-clip tem-
poral module computations. For the seg-
mentation process, we define two hyperparameters, stride s and expand ratio r. The stride s rep-
resents the number of abstract motion frames in each segment, while the expand ratio r is used to
calculate the number of original motion frames covered in each segment. The number of frames
in the i-th segment, ordered from closest to farthest from the current clip, is given by s × r(i−1).
For example, with a stride s = 4 and an expand ratio r = 2 (also our default setting, and the total
segment number is set to 5), the first segment would contain 4 frames, the second segment would
contain 8 frames, and the third segment would contain 16 frames. For the abstraction process after
segmentation, we default to uniform sampling within each segment. In the experimental section, we
investigate different segmentation parameters and abstraction methods. Different approaches signif-
icantly impact the results, as segmentation and abstraction directly affect the learning of long-term
motion dependencies. The output of the temporal segment module, comf , can be defined as:

comf,i = cmf,[
∑k−1

j=0 rj ·s+rk·(i mod s)] (2)

where k =
⌊
i
s

⌋
. comf,i is the i-th element of the output and represents the (i mod s)-th abstracted

appearance information of the k-th segment.
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The temporal segment module rapidly expands the temporal coverage of the motion frames input
to the inter-clip temporal layer while maintaining acceptable computational complexity. For closer
frames, a lower expansion rate retains more details, while for distant frames, a higher expansion rate
covers a longer duration. This approach helps the model better capture motion style from long-term
motion information and generate temporally natural motion without spatial constraints.

3.3 AUDIO CONDITION MODULE

For the audio condition, we first use wav2vec (Baevski et al., 2020; Schneider et al., 2019) for audio
feature extraction. Following the approach in EMO (Tian et al., 2024), we concatenate the hidden
states from each layer of the wav2vec network to obtain multi-scale audio features. For each video
frame, we concatenate the audio features of the two preceding and two succeeding frames, resulting
in a 5-frame audio feature as audio embeddings caudio for the current frame. Firstly, in each resid-
ual block, we use the commonly adopted cross-attention with noisy latents as the query and audio
embedding caudio as the key and value to compute an attended audio feature. This attended audio
feature is then added to the noisy latents feature obtained from inter-clip temporal layer, resulting in
a new noisy latents feature. This provides a preliminary audio condition for the model.

Figure 4: The audio-to-latents module.

Audio-to-Latents Module. Additionally, as il-
lustrated in Figure 4, we introduce audio-to-
latents module to enhance the influence of au-
dio on portrait motion. This module receives
various inputs during training, including head
movement and expression variances (strongly
correlated with portrait motion, details are pro-
vided in the appendix) and audio (weakly cor-
related). The module maps these conditions to
a shared motion latents space, which replaces
the original conditions in subsequent computa-
tions. This method allows audio to more accurately influence motion by leveraging the shared
motion latents learned from strong conditions, also avoiding focus on irrelevant areas. Specifically,
we maintain a set of learnable embeddings. For each input condition, we map it to query features
using a fully connected (FC) layer, while the learnable embeddings serve as key and value features
for attention computation to obtain a new feature based on the learnable embeddings. This attention
computation is conducted on the token dimension. Audio and variance features are transformed into
a query feature via different FC layers (token count is 1). For key and value features, the token count
corresponds to the number of learnable embedding vectors, which we have set to 128. The FC layers
also unify the QKV features to 256 channels for attention computation. The obtained value features,
i.e., motion latents, are transformed to 1280 channels via an FC layer and added to the timestep em-
bedding. During training, we sample an input condition for the audio-to-latents module with equal
probability from audio embeddings, head absolute movement variance and face expression variance.
During testing, we only input audio to generate motion latents. In fact, expressions and movements
can also influence motion generation through motion latents, as demonstrated on the project page.

3.4 TRAINING STRATEGIES

Conditions Mask and Dropout. In the Loopy framework, various conditions are involved, includ-
ing the reference image cref , audio features caudio, preceding frame motion frames cmf , and motion
latents representing audio and facial movement conditions. To better learn the unique information
specific to each condition, we used distinct masking strategies for the conditions during the train-
ing process. During training, caudio and motion latents are masked to all-zero features with a 10%
probability. For cref and cmf , we design specific dropout and mask strategies due to their highly
overlapping information. cmf also provides appearance information and is closer to the current clip
compared to cref , leading the model to heavily rely on motion frames rather than the reference
image. To address this, cref has a 15% probability of being dropped, meaning the denoising U-
Net will not concatenate features from the reference network during spatial-attention computation.
When cref is dropped, motion frames are also dropped, meaning the denoising U-Net will not con-
catenate features from the reference network during temporal attention computation. Additionally,
motion frames have an independent 40% probability of being masked to all-zero features.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Multistage Training. Following AnimateAnyone (Hu, 2024) and EMO (Tian et al., 2024), we
employ a 2-stage training process. In the first stage, the model is trained without temporal layers
and the audio condition module. The inputs to the model are the noisy latents of the target single-
frame image and reference image latents, focusing the model on an image-level pose variations task.
After completing the first stage, we proceed to the second stage, where the model is initialized with
the reference network and denoising U-Net from the first stage. We then add the inter/intra- clip
temporal modules and the audio condition module for full training to obtain the final model.

Inference. During Inference, we perform class-free guidance (Ho & Salimans, 2022) using multiple
conditions. Specifically, we conduct three inference runs, differing in whether certain conditions are
dropped. The final noise efinal is computed as:

efinal = audio ratio × (eaudio − eref ) + ref ratio × (eref − ebase) + ebase

where eaudio includes all conditions, eref drops the caudio condition, and ebase further drops the
cref . The audio ratio is set to 5 and the reference ratio to 3. We use DDIM with 25 denoising steps
for inference. Ungenerated parts of motion frames are masked to all-zero features until generated.

3.5 EXPERIMENTS

Datasets. For training data, We collected talking head video data from the internet, excluding videos
with low lipsync scores (Chung & Zisserman, 2017), excessive head movement and ratation. This
resulted in 160 hours of cleaned training data. Additionally, we supplemented the training data with
public datasets such as HDTF (Zhang et al., 2021), randomly excluding 100 videos to form the
HDTF test set. For other test sets, we randomly sampled 100 videos from CelebV-HQ (Zhu et al.,
2022) (a public high-quality celebrity video dataset with mixed scenes) and RAVDESS (Kaggle) (a
public high-definition indoor talking scene dataset with rich emotions). To test the generalization
ability of diffusion-based models, we also collected 20 portrait test images, including real people,
anime, side face, and humanoid crafts of different materials, along with 20 audio clips, including
speeches, singing, rap and emotionally rich speech. We refer to this test set as the openset test set.

Implementation Details. We trained our model using 24 Nvidia A100 GPUs with a batch size of
24, using the AdamW (Loshchilov & Hutter, 2017) optimizer with a learning rate of 1e-5 to train
the model for two stages, each lasting 4 days. The generated video length was set to 12 frames,
and the motion frame was set to 124 frames, representing the preceding 124 frames of the current
12-frame video. After temporal segment module, this was abstracted to 20 motion frame latents.
During training, the reference image was randomly selected from frames within the video. For the
facial motion information required to train audo-to-motion module, we used DWPose (Yang et al.,
2023) to detect facial keypoints for the current 12 frames. The variance of the absolute position of
the nose tip across these 12 frames was used as the absolute head movement variance. The variance
of the displacement of the upper half of the facial keypoints (37 keypoints) relative to the nose tip
across these 12 frames was used as the expression variance. The training videos were uniformly
processed at 25 FPS and cropped to 512×512 portrait videos.

Metrics and Compared Baselines. We assess image quality using the IQA metric (Wu et al., 2023),
video motion stability with VBench’s smooth metric (Huang et al., 2024), and audio-visual synchro-
nization with SyncC and SyncD (Chung & Zisserman, 2017). For the CelebvHQ and RAVDESS
test sets, which have corresponding ground truth videos, we also compute FVD (Unterthiner et al.,
2019), E-FID (Tian et al., 2024), and FID metrics for comparison. To demonstrate lifelike por-
trait movement beyond just lip movement, we provide global motion metrics (Glo) and dynamic
expression metrics (Exp). DGlo and DExp represent the absolute differences from the ground truth,
calculated based on the variance of key points of the nose and upper face, excluding the mouth
area. More details are provided in the appendix. For the openset test set, which lacks ground truth
video references, we conducted subjective evaluations. Ten experienced users assessed six key di-
mensions: identity consistency, video synthesis quality, audio-emotion matching, motion diversity,
naturalness of motion, and lip-sync accuracy. Participants identified the top-performing method in
each dimension. For baseline methods, We compared recent state-of-the-art audio-driven portrait
methods based on diffusion models, including Hallo (Xu et al., 2024a), VExpress (Wang et al.,
2024) and EchoMimic (Chen et al., 2024), and also included the competitive GAN-based method,
SadTalker Zhang et al. (2023b), as a reference.
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Table 1: Comparisons with existing methods on the CelebV-HQ test set.
Method IQA↑ Sync-C↑ Sync-D↓ FVD-R↓ FVD-I↓ FID↓ Glo Exp DGlo↓ DExp↓ E-FID↓

SadTalker 2.953 3.843 8.765 171.848 1746.038 36.648 0.554 0.270 0.291 0.368 2.248
Hallo 3.505 4.130 9.079 53.992 742.974 35.961 0.499 0.255 0.301 0.329 2.426

VExpress 2.946 3.547 9.415 117.868 1356.510 65.098 0.020 0.166 0.339 0.464 2.414
EchoMimic 3.307 3.136 10.378 54.715 828.966 35.373 2.259 0.640 0.260 0.442 3.018

Loopy 3.780 4.849 8.196 49.153 680.634 33.204 2.233 0.452 0.279 0.309 2.307

Table 2: Comparisons with existing methods on the RAVDESS test set.
Method IQA↑ Sync-C↑ Sync-D↓ FVD-R↓ FVD-I↓ FID↓ Glo Exp DGlo↓ DExp↓ E-FID↓

SadTalker 3.840 4.304 7.621 22.516 487.924 32.343 0.604 0.120 0.271 0.213 3.270
Hallo 4.393 4.062 8.552 38.471 537.478 19.826 0.194 0.080 0.299 0.243 3.785

VExpress 3.690 5.001 7.710 62.388 982.810 26.736 0.007 0.039 0.329 0.283 3.901
EchoMimic 4.504 3.292 9.096 54.115 688.675 21.058 0.641 0.184 0.263 0.182 3.350

Loopy 4.506 4.814 7.798 16.134 394.288 17.017 2.962 0.343 0.260 0.197 3.132

3.5.1 RESULTS AND ANALYSIS

Performance in Complex Scenarios. CelebV-HQ features videos of celebrities speaking in diverse
scenarios, both indoors and outdoors, with various portrait poses. This makes testing on this dataset
effectively simulate real-world usage conditions. As shown in Table 1, our method significantly
outperforms the compared methods in most metrics, as evidenced by the comparison videos provided
in the supplementary materials. Regarding motion-related metrics, in the dynamic expression metric
(Exp), our method closely matches GT, outperforming other methods. For global motion (Glo), our
performance is similar to EchoMimic. However, our method distinctly excels in video synthesis
quality and lip-sync accuracy.

Performance in Emotional Expression. RAVDESS is a high-definition talking scene dataset con-
taining videos with varying emotional intensities. It effectively evaluates the method’s performance
in emotional expression. The experimental results are listed in Table 2. As shown by the E-FID (Tian
et al., 2024) metric, our method outperforms the compared methods. This is corroborated in the mo-
tion dynamics metrics Glo and Exp, where our results are close to the ground truth. Although our
lip-sync accuracy is slightly inferior to VExpress, it is important to note that the results generated
by VExpress generally lack dynamic motion, as indicated by the Glo, Exp, and E-FID metrics. This
static nature can provide an advantage when measured with SyncNet for lip-sync accuracy.

Performance in Openset Scenarios. Compared to objective metrics, subjective evaluations more
directly reflect the overall performance of the methods. We compared different input styles (real
people, anime, humanoid crafts, and side faces) and various types of audio (speech, singing, rap,
and emotional audio) to evaluate the performance of the methods. As shown in Figure 5, Loopy
consistently and significantly outperforms the compared methods across these diverse scenarios.

3.5.2 ABLATION STUDIES

Analysis of Key Components. In this part, we conducted experiments on two datasets, openset
and HDTF. The former includes complex and challenging inputs, while the latter features relatively
simple scenes. We analyzed the impact of the two key components of Loopy, the inter/intra- clip
temporal module and the audio-to-latents module. For the former, we conducted two experiments:
(1) Using a single temporal layer for both the last and current clips, similar to previous methods.
(2) Removing the temporal segment module and retaining 4 motion frames as in other methods. For
the latter, we removed the audio-to-latents module and used only cross-attention for audio feature
injection. The results, listed in Table 3, indicate that removing the dual temporal layer design, the
temporal segment module and the audio-to-latents module all lead to a decline in overall synthesis
quality, with the impact being particularly significant when the dual temporal layer design is re-
moved. These results substantiate the efficacy of our proposed modules. The Table 3 also includes
experimental results of comparison methods on these two datasets and Loopy’s performance on the
HDTF test set when trained without self-collected data for reference. It can be observed that Loopy
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(a) Real Human (b) Anime (d) Side Face(c) Humanoid Crafts

(e) Speech (f) Rap (g) Sing (h) Emotionally Rich Speech

Figure 5: User voting comparisons on the openset test set. The first row presents results for
different categories of input images, while the second row shows results for input audio.

Table 3: Comparisons and ablation studies on the openset and HDTF test sets.

Method Openset Test HDTF Test

IQA↑ Sync-C↑ Sync-D↓ Smo. IQA↑ Sync-C↑ Sync-D↓ FVD-R↓ FID↓ E-FID↓
Loopy (Full) 4.507 6.303 7.749 0.9932 4.017 8.576 6.805 10.443 18.021 1.359

Loopy (HDTF) - - - - 3.894 8.176 7.097 12.742 21.733 1.476
SadTalker 3.749 5.390 9.586 0.9947 3.435 7.320 7.870 24.939 25.353 1.559

EchoMimic 4.447 3.674 10.494 0.9896 3.994 5.546 9.391 18.718 19.015 1.328
Hallo 4.412 5.483 8.798 0.9924 3.922 7.263 7.917 21.717 20.159 1.337

VExpress 3.941 4.828 9.572 0.9961 3.482 8.186 7.382 48.038 30.916 1.506

w/o inter-clip temp. 4.335 6.104 8.129 0.9942 3.769 8.355 6.899 11.595 19.277 1.486
w/o TSM 4.386 6.054 8.235 0.9922 3.908 7.920 7.461 11.552 19.023 1.401
w/o A2L 4.428 5.999 8.351 0.9922 3.918 8.127 7.188 10.837 18.153 1.383

1 temp.+ 20 MF 4.072 6.201 8.309 0.9752 3.765 8.494 6.795 11.817 19.819 1.380
s = 1, r = 2 4.461 5.919 8.245 0.9940 3.945 7.848 7.388 14.814 19.665 1.392
s = 2, r = 2 4.453 5.855 8.326 0.9930 3.946 8.172 7.038 13.310 18.690 1.398
s = 3, r = 2 4.443 6.083 8.161 0.9930 3.941 7.985 7.263 11.260 18.655 1.322
s = 4, r = 1 4.424 6.219 8.004 0.9931 3.937 8.419 6.877 10.672 18.210 1.299
mean sample 4.452 5.907 8.199 0.9931 3.865 7.851 7.570 10.506 19.475 1.535

random sample 4.438 6.098 8.144 0.9932 3.865 7.866 7.588 10.824 18.229 1.440

still achieves satisfactory performance. Even without self-collected data, image quality decreases
somewhat, but on HDTF, key metrics like FVD, SyncC, and SyncD still outperform some methods
trained on large-scale datasets (dataset details are provided in the appendix).

Impact of Long-Term Temporal Dependency. We further investigated the impact of long-term
motion dependency on the model and listed the results in Table 3. Initially, we compared the effects
of extending the motion frame length to 20 under a single temporal layer setting. We observed
that while this approach enhances the dynamics of the model’s output, it significantly degrades the
overall quality (evidenced by a too low smooth value). In contrast, in the full model with 20 motion
frames (i.e., s=4, r=1), the addition of inter/intra- clip temporal layers indeed improved the overall
results, yielding more stable outcomes, which is particularly evident on the openset test set. This
indicates that when the motion frame length exceeds the current clip, the dual temporal layer design
can better utilize long-term motion information. However, without proper handling, it may even have
negative effects. Regarding the coverage of long-term motion, We fixed r=2 and found that smaller
values of s tend to perform worse. Combined with other ablation results in the table, we think this is
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due to a lower proportion of motion frames containing less motion information, leading the network
to extract more appearance information instead. This validates the effectiveness of long-term motion
information in enhancing the final synthesis results. Additionally, we compared different abstraction
strategies for motion frames within the temporal segment module, such as average pooling and
random sampling. The default uniform sampling approach proved more effective, likely because it
provides more stable and clearer interval information, aiding the inter-clip temporal layer in learning
long-term motion information.

Reference Generated

Figure 6: Visualization of videos generated by Loopy in different scenarios.

3.5.3 VISUAL RESULTS ANALYSIS

We provide visual analysis for the openset scenarios in Figure 6. Loopy demonstrates satisfactory
synthesis results in ID preservation, motion amplitude, and image quality and also performs well
with various styles of images. More video samples are available in the supplementary materials.

4 CONCLUSION

In this paper, we propose Loopy, an end-to-end audio-driven portrait video generation framework
that can generate vivid talking portrait videos without requiring any motion constraints. Specifically,
we propose the inter/intra-clip temporal module and the audio-to-latents module, which better utilize
and model long-term motion information and the correlation between audio and portrait motion from
temporal and audio perspectives, respectively. Extensive experiments validate the effectiveness of
our method, demonstrating significant improvements in temporal stability, motion diversity, and
overall video synthesis quality over existing methods.
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A DATASET STATISTICS

Our training set consists of the public dataset HDTF Zhang et al. (2021) and an internet-collected
dataset. The overview of the dataset statistics for Loopy and recent related works is demonstrated
in the Table 4. Notably, for public datasets like HDTF and CelebV-HQ, we use the publicly men-
tioned video durations for the statistics. For VFHQ, we estimate the total duration by assuming an
average of 10 seconds per video. This statistics indicates that Loopy, even when trained without
self-collected data, achieves satisfactory results, which validates the effectiveness of the proposed
method. For the data processing, we first used face landmark detection to filter out videos where
the face center point movement was too large (considered as camera cuts) and removed videos with
multiple people. Videos longer than 20 seconds were split into multiple segments, while segments
shorter than 2 seconds were discarded. We also filtered out videos where any head pose rotation
angle exceeded 45 degrees (including side profiles). After the initial filtering, we removed videos
with a SyncNet video-level sync confidence below 2.5. Finally, videos smaller than 150KB were
discarded. Regarding the composition of the original training data, 23% of the videos had a maxi-
mum edge length below 512 pixels, 63% were between 512 and 1024 pixels, and 14% were above
1024 pixels. In terms of data types, 76% were talking or interview formats, 19% were singing, and
5% were direct-to-camera speeches or talk show formats.

Table 4: Statistics of dataset scale of different methods.
Method Hours (Total) Hours (Private) Hours (Public)

EMO (Tian et al., 2024) 300 250 50
Hallo (Xu et al., 2024a) 109 102 7

EchoMimic (Chen et al., 2024) 540 459 81
VExpress (Wang et al., 2024) 300 284 16

Loopy 174 160 14

B ADDITIONAL EXPERIMENTS DETAILS

B.1 METRICS CALCULATION

We emoloy several objective metircs to access our Loopy. In this section, we describe their detailed
calculation processes.

IQA. We employ Q-Align (Wu et al., 2023) to assess the visual quality of generated videos. It
teaches LLMs with text-defined rating levels and achieves state-of-the-art performance on image
quality assessment.

Smo. To assess video motion stability, we employ the smooth metric from the widely used video
generation evaluation tool VBench (Huang et al., 2024). Given an input video, it returns a smooth
score with value less than 1. In general, the higher the value, the smoother the motion of the video.
It should be noted that for nearly static videos, smooth score still assigns a relatively high score (as
shown in Tab 3, Vexpress), so we mainly use this metric for reference. A low smooth score can still
indicates poor video generation stability.

Glo. Smooth metric identifies videos with discontinuous motion but fails to assess the motion diver-
siety, which is an important concren in talking head videos. Hence, we propose Glo to evaluate the
extent of head movement in facial videos. It calculates the variance of the nose landmark positions
detected by DWPose (Yang et al., 2023) over the video sequence to reflect the intensity of head
movements.

Glo =
Σ(xn

i − x̂n)
2 +Σ(yni − ŷn)2

t
× s, i = 1, 2, ..., t (3)

where t is the frames number, and xn, yn ∈ [0, 1] denote the coordinates of the nose landmark in the
horizontal and vertical directions, respectively. x̂n and ŷn represent the average coordinates of the
nose landmark within the clip in the horizontal and vertical directions, respectively. s is a scaling
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factor, which is set to 1000 here. The final Exp metric is obtained by averaging the Exp values across
all videos.

Exp. In addition to the absolute displacement of head, the richness of facial expressions also plays a
crucial role in generation quality. An excellent talking head generation method produces expressive
talking videos with diverse facial expressions and micro-expressions, rather than just lip movements.
To assess this, We introduced the Exp metric. Given nose landmark as base, we first compute the
expression representation for each frame.

ei = (xo
i − xn

i ) + (yoi − yni ) (4)

where the superscript n, o denote the nose and other facial landmarks (excluding keypoints below the
nose that are strongly related to lip movements). We then calculate Exp to represent the frequency
of expression changes.

Exp =
Σ(dei − d̂ei)

2

t
× s, t = 1, 2, ..., t− 1 (5)

where dei is ei+i − ei.

The calculations for Glo and Exp are also used to obtain the head movement variance and
facial expression variance in the audio-to-latents module. Notably, we use these variance features
solely as auxiliary conditions during training and do not treat them as supervision signals.

DGlo and DExp. For the test set with ground truth, we also report DGlo (Diff-Glo) and DExp (Diff-
Exp) to analyze the differences in Glo and Exp between each generated (subscript g) video and the
ground truth (subscript gt) video. The final metric is the average value across all videos.

DGlo = Glog −Glogt (6)

DExp = Expg − Expgt (7)

FVD. We calculated the Fréchet Video Distance (FVD) (Unterthiner et al., 2019) to evaluate the
quality of generated videos. FVD-R represents the evaluation with ResNet50 as the feature ex-
traction network, and FVD-I represents the evaluation with Inception3D as the feature extraction
network.

E-FID. We also employ E-FID following recent methods (Tian et al., 2024; Xu et al., 2024a) to
evaluate the generated facial expressions. First, we extract expression parameters using face recon-
struction network, and then we compute the FID of these expression parameters to quantitatively
measure the divergence between the generated expressions and the ground truth.

FID. We employ the widely used FID to assess the generated image quality. InceptionV3 is choosed
as the backbone to extract features.

Sync-C and Sync-D. We report the widely used Sync-C (confidence) and Sync-D (distance) (pro-
posed in SyncNet (Chung & Zisserman, 2017)) to assess the lip-sync performance.

B.2 OPENSET TEST SET DEMONSTRATION

To comprehensively evaluate our proposed Loopy, we introduce an open set in Sec 3.5.1. It con-
sists of four categories of openset test images, real people, anime, humanoid crafts, and side faces.
And Figure 7 shows several samples from it. The openset test set poses significant challenges
to the model’s generalization ability, yet Loopy handles them well, producing stable results and
demonstrating significant advantages in the user study. Some images are from the project pages of
EchoMimic (Chen et al., 2024) and Follow-Your-Emoji (Ma et al., 2024).
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Figure 7: Visualization of test images in the openset test set

B.3 COMPARISONS IN INFERENCE SPEED.

We also evaluated the inference speed of recent methods, testing the time taken per timestep on an
unloaded A100 GPU. As shown in Table 5, most models have similar times since they are all based
on the stable diffusion model, suggesting that implementation differences have a greater impact on
current speeds. Notably, although Loopy uses longer motion frames and additional temporal layers,
the former only needs to be computed once and can reuse features across different timesteps, while
the latter operates only in the temporal dimension, minimizing the impact on inference overhead.
Additionally, Loopy requires only 25 denoising steps, compared to 40 and 30 steps in the official
implementations of Hallo and Echomimic, respectively. This provides a significant speed advantage.

Table 5: Comparisions of the infernece speed.
Method EchoMimic Hallo VExpress Loopy

Time(s) 0.501 0.642 0.380 0.758
RTF 30.8 40.5 33.4 43.1

Table 6: Comparison of denoising and video generation costs.
Method Denoising Cost 15s-Video Cost RTF

w.o.TSM 18s 628s 41.8
Full Model 19s 647s 43.1 (+3%)

About the impact of TSM on overall computational efficiency. The introduction of TSM may
result in increased time consumption in two areas: (1) The VAE computation before the denoising
network increases from 4 frames to 20 frames. However, this time can be omitted because the first
segment uses zero-initialized motion frames, and subsequent segments use VAE latents predicted by
the previous denoising net, resulting in no additional computation compared to the baseline. (2) In
the denoising network, the temporal attention increases from 12+4 to 12+20.

In Table 6, we present the time comparison for generating 12 frames in 25 denoising steps, as well
as the time consumption and corresponding RTF (real-time factor) for generating a 15-second video.
The experiments were conducted on an unloaded A100. The introduction of TSM only increases the
RTF by 3%, which we believe is acceptable given the improvement.

Discussion on the Potential for Real-Time Inference. Loopy takes 18 seconds to complete 25 steps
of denoising to generate 12 frames on an A100 GPU, resulting in a real-time factor (RTF) of 43.1 for
a 25 FPS output. By leveraging computational parallelism, we can offload audio and reference CFG
inference, as well as VAE, to other GPUs for an estimated 3x speedup. Additionally, using few-step
distillation methods to reduce the steps to within 4 (estimated 6x speedup), we could potentially
achieve a computation speed of around 2 seconds. Combining this with acceleration techniques like
TensorRT and caching mechanisms, or using advanced GPUs like the H100 or slightly lowering the
frame rate, real-time performance might be achievable. Although feasible, actual implementation
may not be smooth and poses many challenges that we aim to address in future work.
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C ADDITIONAL SUPPLEMENTARY EXPERIMENTS AND IMPLEMENTATION
DETAILS

Comparison with the Simple Baseline. To further validate our method’s effectiveness, we trained a
simple baseline on the collected dataset using our pre-trained stage-1 weights. This baseline removes
components like audio-to-latents, inter/intra- clip temporal layers, and temporal segment module,
making it similar to EchoMimic, except for spatial condition modules like the landmark encoder
and weighted loss. As shown in the Table 8, the simple baseline performs significantly worse than
the full model, with substantial declines in most metrics. This, combined with the comparative
experiments, clearly demonstrates that the improvements in our method primarily stem from the
proposed modules.

About the motion frame during inference. During inference, if motion frames need to be filled,
this is accomplished by duplicating the reference image multiple times. However, during training,
motion frames are almost never identical. Therefore, for the first generated segment, we found that
if zero initialization is not used, there is approximately a 20% chance (based on rough estimates)
that the generated result will exhibit varying degrees of color difference compared to the original
image.

Table 7: Comparison of different ref-CFG and audio-CFG settings.
Ref-CFG Audio-CFG Sync-C Sync-D FVD-R

1.0 1.0 7.072 8.154 18.662

2.0 5.0 8.500 6.981 16.012
2.5 5.0 8.499 6.976 14.788
3.0 5.0 8.501 6.983 14.439
3.5 5.0 8.369 7.254 14.652

3.0 3.0 8.063 7.337 14.906
3.0 4.0 8.334 7.193 14.431
3.0 5.0 8.501 6.983 14.439
3.0 6.0 8.524 6.957 15.169

Table 8: Comparison with the simple baseline. The metrics marked with * indicate results on the
openset test set (the first 3 columns), while the others are results on the HDTF test set.

Method IQA* Sync-C* Sync-D* IQA Sync-C Sync-D FVD-R FID EFID

Simple Baseline 4.33 5.75 8.17 3.88 7.95 7.38 16.86 21.15 1.68
Full Model 4.51 6.30 7.75 4.01 8.57 6.81 10.44 18.02 1.36

D LIMITATION OF CURRENT MODEL

We provided videos where Loopy performs poorly, along with an analysis, in the videos provided
on our project homepage. Regarding input images, Loopy struggles with images containing large
proportions of upper limbs, blurry or occluded human figures, animals, and multiple people, often
resulting in incongruous or uncanny valley effects. Regarding input audio, Loopy performs poorly
with long periods of silence, chaotic background noise, and extended high-pitched sounds. Overall,
Loopy’s synthesis quality suffers from long-tail effects, showing robustness issues and awkward
movements for uncommon input types.

E ETHICAL RISKS DISCUSSION

Loopy possesses realistic portrait video generation capabilities, and the current experimental results
are intended solely for academic research. To prevent illegal misuse if this technology is made
publicly available, we think the following measures can be taken: (1) Add prominent watermarks to
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all generated results to indicate they are produced by AIGC algorithms; (2) Use filtering algorithms
to review and intercept inappropriate, vulgar, or malicious input audio and generated video content;
(3) Embed watermarks for traceability.
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