

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PODEVAL: A MULTIMODAL EVALUATION FRAMEWORK FOR PODCAST AUDIO GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Recently, an increasing number of multimodal (text and audio) benchmarks have emerged, primarily focusing on evaluating models' understanding capability. However, exploration into assessing generative capabilities remains limited, especially for open-ended long-form content generation. Significant challenges lie in no reference standard answer, no unified evaluation metrics and uncontrollable human judgments. In this work, we take podcast-like audio generation as a starting point and propose PodEval, a comprehensive and well-designed open-source evaluation framework. In this framework: 1) We construct a real-world podcast dataset spanning diverse topics, serving as a reference for human-level creative quality. 2) We introduce a multimodal evaluation strategy and decompose the complex task into three dimensions: text, speech and audio, with different evaluation emphasis on "Content" and "Format". 3) For each modality, we design corresponding evaluation methods, involving both objective metrics and subjective listening test. We leverage representative podcast generation systems (including open-source, close-source, and human-made) in our experiments. The results offer in-depth analysis and insights into podcast generation, demonstrating the effectiveness of PodEval in evaluating open-ended long-form audio. This project is open-source to facilitate public use: <https://anonymous.4open.science/r/PodEval-iclr>.

1 INTRODUCTION

With the rapid development of AIGC (AI-Generated Content) in recent years, many innovative applications have emerged. AI Podcast represents a key application scenario for audio-based generative models (Google, 2023; ByteDance, 2025). However, evaluating podcast-like audio is challenging due to: 1) it is an open-ended task, which means there is no reference standard answer; 2) the evaluation of long-form speech/audio is particularly difficult, as longer formats introduce more variability. Objective metrics often fail to capture human perceptions accurately, while subjective listening tests face issues like user inattention, which reduces the validity of results; and 3) podcasts often incorporate additional elements, like music and sound effects, making the evaluation more complicated.

To address these challenges and establish a clear evaluation framework, we decompose podcast-like audio into three dimensions: **text** (conversation transcripts), **speech** (spoken dialogue), and **audio** (speech, music, sound effects, and their interaction). While these dimensions inherently overlap, they offer a structured framework for evaluation focus. Specifically, the conversation transcripts in podcasts are primarily used for **content** (the message being conveyed) evaluation, whereas speech, music and sound effects primarily contribute to **format** (how the message is presented) evaluation.

Different modalities have their own commonly used evaluation methods. For text, metrics such as BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), and METEOR (Banerjee & Lavie, 2005) focus on fluency and relevance, while newer approaches like BERTScore (Zhang et al., 2019) utilize pre-trained language models to capture semantic alignment. For speech, objective metrics like Mel Cepstral Distortion (MCD) and Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001) are widely used, alongside subjective evaluations like Mean Opinion Score (MOS) (Sector, 1996). For audio, metrics like Frechet Audio Distance (FAD) (Kilgour et al., 2018) and Kullback-Leibler Divergence (KL) are employed to evaluate audio quality, while listener surveys provide subjective insights. However, these evaluation methods are not directly applicable to podcast evaluation since:

- Most content-related objective metrics rely on reference scripts to measure quality and relevance. However, podcast generation lacks standardized references as it is an open-ended generation task. Moreover, relying on such references limits the diversity and creativity of the generated content.

054

- General speech evaluation focuses on individual sentences, while podcasts require natural and
- 055 interactive dialogue, emphasizing dialogue-level naturalness. Additionally, voice presentation in
- 056 multi-speaker scenarios is critical to ensuring role distinction and overall listener engagement.
- 057
- While music and sound effects are not essential to every podcast, their evaluation, when present,
- 058 should go beyond the quality of individual audio events. Instead, it should focus on their overall
- 059 harmony and seamless integration with the speech content to enhance the listener’s experience.
- 060
- Subjective tests are essential for open-ended generative tasks, but crowdsourced data often faces
- 061 reliability issues, as it is difficult to control or determine whether users are attentive. Especially
- 062 for long-form content, users may lose focus or respond randomly, which affects the result validity.

063 In this work, we introduce **PodEval**, a comprehensive multimodal evaluation framework designed
064 for podcast-like long-form audio generation. The contributions can be summarized as:

065

- We construct a real-world podcast dataset spanning a wide range of podcast categories and topics,
066 serving as a reference for human-level creative quality. Model-based samples are also provided.
- We decompose podcast-like audio evaluation from a multimodal viewpoint—text, speech, and au-
067 dio—to establish a clear evaluation framework, with distinct focuses on “Content” and “Format”.
- For each modality, we design tailored metrics to address diversity considerations. For text, we
068 combine quantitative metrics with LLM-based evaluations to assess conversation scripts. For
069 speech and audio, we design objective metrics and subjective listening tests to evaluate spoken
070 dialogue and overall audio performance. All evaluation methods are organized into open-source
071 tools for ease of use. Subjective tests are enhanced by spammer detection to improve data validity.
- We utilize representative podcast generation systems in our experiments, including open-source,
072 closed-source, and human-made ones. The results offer detailed analyses of these systems, pro-
073 vide insights for podcast generation, and validate the effectiveness of our evaluation framework.

074 2 RELATED WORK

075 2.1 PODCAST GENERATION

076 Podcasts are a popular audio format, with platforms like Apple Podcasts and Spotify leading the
077 way. The rise of the AI podcast began with Google’s NotebookLM (Google, 2023), which gained
078 popularity in late 2024 for its “Audio Overviews” feature. This feature converts materials into con-
079 versational, two-person podcasts, praised for its highly natural dialogue speech. Similarly, most
080 open-source podcast generation systems focus on dialogue speech synthesis, like Dia (Nari Labs,
081 2025), Muyan-TTS (Li et al., 2025), MoonCast (Ju et al., 2025) and MOSS-TTSD (OpenMOSS
082 Team, 2025). These systems function primarily as dialogue Text-to-Speech (TTS) engines for text-
083 given scenarios. Another type of podcast generation system takes a more holistic approach, incor-
084 porating elements beyond speech, such as text and music/sound. For example, WavJourney (Liu
085 et al., 2023) leverages LLMs to connect components like TTS and Text-to-Audio (TTA), generating
086 element-rich audio programs. Upon this, PodAgent (Xiao et al., 2025) introduces a “Host-Guest-
087 Writer” multi-agent system to create informative conversation scripts and builds a voice pool for
088 appropriate voice selection. Table 1 compares the systems leveraged in subsequent experiments.

089 Table 1: Comparison of podcast generation systems.

090 System	091 Open-Source?	092 # Speaker	093 Support Voice Selection?	094 Is Dialogue TTS?	095 Support Music/Sound?
NotebookLM	✗	2	✗	-	✗
Dia	✓	2	Preset	✓	✗
Muyan-TTS	✓	1	Preset	✗	✗
MoonCast	✓	2	Preset	✓	✗
MOSS-TTSD	✓	2	Preset	✓	✗
PodAgent*	✓	N	Auto	✗	✓

100 * PodAgent uses CosyVoice2(Du et al., 2024) as its backend TTS model, which is a single-sentence TTS system.

101 2.2 EVALUATION ON GENERATIVE MODELS

102 Various evaluation works have emerged along with the development of LLMs and multimodal gener-
103 ative models. **Text-related Evaluation**, such as SuperGLUE, MMLU, and BIG-bench (Wang et al.,
104 2019; Hendrycks et al., 2020; Srivastava et al., 2022), assesses the capabilities of LLMs across di-
105 verse tasks with preset ground truth. Subsequently, MT-Bench (Zheng et al., 2023) explores the po-
106 tential of LLMs as evaluators, and Chatbot Arena (Chiang et al., 2024) provides an open platform for

108 assessing LLMs based on human preferences. **Speech-related Evaluation**, such as SUPERB (Yang
 109 et al., 2021), is designed for discriminative tasks like speech recognition and speaker identification.
 110 However, evaluations for generative tasks are scarce due to their inherent diversity and subjectivity,
 111 making subjective evaluation essential for speech generation tasks. For instance, VOCBENCH
 112 (AlBadawy et al., 2022) incorporates both subjective and objective evaluations to assess vocoder
 113 performance in speech synthesis. Similarly, numerous **Audio-related Evaluation** work, such as
 114 AIR-Bench, Audiobench, MMAU, and MMAR (Yang et al., 2024; Wang et al., 2024; Sakshi et al.,
 115 2024; Ma et al., 2025), focus on audio understanding and reasoning. Subjective evaluation remains
 116 crucial for assessing audio generation systems and is typically tailored to specific generation tasks.
 117 Unlike existing evaluation works, **PodEval** introduces a comprehensive framework specifically de-
 118 signed for podcast-like audio generation. It emphasizes both subjective and objective evaluations
 119 across text, speech, and audio, with all metrics closely aligned with real-world user experience.
 120

3 REAL-POD: REAL-WORLD PODCAST DATASET

134 Figure 1: The workflow for constructing the Real-Pod dataset.
 135

136 There is no unified standard for defining “what makes a good podcast episode.” Unlike textbooks or
 137 official TV programs, podcasts can be created by anyone to share their unique ideas or insights. We
 138 do not make direct comparisons between generated podcasts and real podcasts—such comparisons
 139 are inherently unfeasible, especially when they approach topics from entirely different perspectives.
 140 Instead, we construct a real-world podcast dataset, called **Real-Pod** dataset, to serve as a reference
 141 for human-level creative quality. It is important to note that this dataset acts as a “reference” rather
 142 than an absolute “answer”. The design principles of the Real-Pod dataset are **real** (consists of
 143 human-made podcasts), **broad** (diverse topic coverage) and **rich** (varied formats, like multi-speaker,
 144 music and sound). The workflow for constructing the Real-Pod dataset is illustrated in Figure 1:

- **Podcast Category.** We began by compiling a comprehensive list of podcast categories based on the taxonomy from Apple Podcast (Apple Inc.). The 17 categories are shown in Figure 1-left.
- **Podcast Topic.** Next, we established relevant topics for each category through a two-step process: (1) using GPT-4 (Achiam et al., 2023) to generate 5 popular and distinct topics per category, reflecting current trends and listener interests; and (2) manually reviewing and refining these topics to ensure their uniqueness and relevance with real-world podcasts, selecting 3 representative topics for each category, resulting in a final collection of 51 topics (17 categories \times 3 topics).
- **Podcast Episode.** After finalizing the topic collection, we manually searched and screened podcast episodes to identify those most relevant to the selected topics. The selection process was guided by: (1) Topic Relevance: Episodes were selected based on their alignment with the pre-defined topics. (2) Rich Format: Preference was given to episodes that featured multi-speaker conversations, included background music and sound effects, and exhibited high audio quality.

4 TEXT-BASED EVALUATION

159 The dialogue content in podcasts is extracted in text format for evaluation, representing the core mes-
 160 sage the podcast aims to convey. Podcast dialogues often center around specific topics, showcasing
 161 participants’ unique perspectives and insights, which makes reference-correlation-based methods
 162 infeasible. Instead, the richness of perspectives conveyed (to provide informative takeaways for the

162 listener) and the presentation style of the dialogue (to enhance listener comprehension) should be
 163 the primary focus of evaluation. Therefore, we follow the dialogue script-based evaluation methods
 164 proposed in PodAgent (Xiao et al., 2025), which adopt a two-fold approach: (1) **Quantitative Metrics**
 165 such as Distinct-N, Semantic-Div, MATTR, and Info-Dens to assess lexical diversity, semantic
 166 richness, vocabulary richness, and information density, respectively. These metrics operate indepen-
 167 dently of reference texts and focus on intrinsic text characteristics; (2) **LLM-as-a-Judge**, leveraging
 168 GPT-4 to replace human evaluators for complex and comprehensive assessments. Evaluation criteria
 169 include coherence, engagingness, diversity, informativeness and speaker diversity. It incorporates
 170 comparative evaluations to reduce bias and evidence-based scoring for robust and reliable results.

171 5 SPEECH-BASED EVALUATION

173 Speech is the core component of a podcast, serving as the medium for content delivery, and how the
 174 message delivered plays a crucial role in shaping the listening experience. To ensure a multidimen-
 175 sional evaluation, we first integrate the following **Objective Metrics**:

- 176 • **WER** (Word Error Rate) measures pronunciation accuracy, a critical indicator of the robustness of
 177 TTS-based podcast generation systems, powered by Whisper (Radford et al., 2022) in our toolkit.
- 178 • **DNSMOS** (Reddy et al., 2022) evaluate the speech quality (SIG), background noise quality
 179 (BAK), and overall quality (OVRL, P808_MOS) of speech. SIG, BAK, and OVRL are trained
 180 according to P.835 (ITU-T, 2003), while P808_MOS is trained based on P.808 (ITU-T, 2018).
- 181 • **SIM** stands for Speaker Similarity. In podcast generation systems, zero-shot TTS is often em-
 182 ployed to replicate the voice of a preset speaker. The SIM between the synthesized voice and the
 183 reference voice serves as a crucial metric about vocal fidelity. In PodEval, SIM is quantified using
 184 the cosine similarity of extracted speaker embeddings (Plaquet & Bredin, 2023; Bredin, 2023).
- 185 • **SPTD** is a brand new metric we proposed, standing for Speaker Timbre Difference. As audio
 186 programs, podcasts are accessible only through listening. In multi-speaker conversations, voices
 187 with greater timbre differences enhance clarity and make the information easier to follow. SPTD
 188 is to assess the overall timbre variation across speakers. Equation 1 calculates the SPTD among
 189 N distinct speakers.

$$190 \text{SPTD} = 1 - \frac{2}{N(N-1)} \sum_{i=1}^N \sum_{j=i+1}^N \text{sim}(\mathbf{e}_i, \mathbf{e}_j) \quad (1)$$

192 Objective metrics can be calculated efficiently at a low cost without human involvement. However,
 193 the **Subjective Listening Test** remains a necessary indicator of human perception. Unlike general
 194 speech synthesis, which emphasizes sentence-level pronunciation accuracy and naturalness, pod-
 195 cast speech focuses on achieving human-like natural dialogue. Subjective tests for such long-form
 196 speech present several key **challenges**: 1) the length of dialogue in podcasts ranges from a few min-
 197 utes to over an hour, making it impractical to evaluate the entire speech directly; 2) the difficulty of
 198 comparing more than two systems simultaneously; 3) guiding user focus toward dialogue natural-
 199 ness, rather than on factors like content; 4) balancing topic diversity within a fixed testing capacity;
 200 and 5) ensuring that crowdsourced evaluators remain focused and provide reliable feedback.

201 In PodEval, we design the **Dialogue Naturalness Evaluation** based on the MUSHRA framework
 202 (Schoeffler et al., 2018). The key insight from this framework, *incorporating both high-quality and*
 203 *low-quality anchors*, helps evaluators establish a reliable reference of quality range. For researchers,
 204 analyzing scores for these anchors helps identify inattentive evaluators, enabling the *filtering of*
 205 *invalid submissions* and improving the data validity. In our task, we use real podcast segments from
 206 the *Real-Pod dataset as the high-quality anchor* and synthesized dialogue segments from *eSpeak*
 207 *Contributors as the low-quality anchor*. For podcast samples from different systems, we provide an
 208 automatic toolkit to extract dialogue segments featuring *turn-taking* between speakers, representing
 209 a typical dialogue flow. Each dialogue segment is extracted with a *preset length* (e.g. 15–25 seconds)
 210 to ensure the speech samples are of similar duration. We select dialogue segments from *all 17*
 211 *categories* in the Real-Pod dataset to ensure content diversity while keeping the total listening test
 212 duration *within 30 minutes*. In each test group, samples from different systems are presented *on the*
 213 *same page*, along with a *reference Real-Pod sample* to guide evaluators on what a natural dialogue
 214 sounds like. The scoring is adjusted using a slider ranging from 0 to 100, divided into *five stages*
 215 *with a clear definition*. Detailed instructions and website design can be found in Appendix A.3. ¹

¹The demo website is hosted at <https://podeval.github.io/PodEval-Subjective/?config=dialogue.yaml>. Everyone is welcome to try it out and view the results at the end.

216 6 AUDIO-BASED EVALUATION

218 In this section, we introduce the audio-based evaluation for podcasts, which treats speech as one
 219 component and assesses the overall audio performance, including speech, music and sound effects
 220 (MSE), and their interactions. Similarly, we first introduce the following **Objective metrics**:

- 221 • **Loudness**: Loudness ensures audio falls within an acceptable volume range. The ITU-R
 222 BS.1770-4 standard (BS Series, 2011) is widely recognized for measuring audio loudness and
 223 true-peak levels. Based on this, the (EBU R128, 2011) standard has been broadly adopted by
 224 broadcast and streaming platforms, recommend a target Integrated Loudness (LOUD-IT) of -
 225 23 LUFS (± 1 LUFS), True Peak (LOUD-TP) ≤ -1 dBTP and Loudness Range (LOUD-RA)
 226 < 20 LU. For podcast-like streaming, adjustments are made for typical listening environments,
 227 such as mobile devices where headphones are commonly used. In these cases, the LOUD-IT is
 228 recommended as -18, -16 (± 1) or -14 LUFS (AES, 2021; Apple, 2023; Spotify, 2023). Netflix
 229 recommends keeping LOUD-RA between 4 and 18 LU (Netflix, 2024). There is no “absolute
 230 right” reference for loudness metrics. We propose the following reference standards considering
 231 all above guidelines: **LOUD-IT**: -18 to -14 LUFS; **LOUD-TP**: ≤ -1 dBTP; **LOUD-RA**: 4 to
 232 18 LU. Based on this “relatively correct” reference, we can analyze the distribution of loudness
 233 metrics across different systems. We also provide a quantitative scoring strategy in Appendix A.4.
- 234 • **SMR** (Speech-to-Music Ratio): MSE are typically integrated into podcast audio to enhance the
 235 overall listening experience. Since speech is the primary focus in podcasts, it is essential to
 236 ensure that MSE dose not overpower or mask the speech, maintaining clarity and intelligibility of
 237 the dialogue. SMR measures the balance between speech and MSE, with a minimum requirement
 238 of being greater than 0. **SMR_SCORE** is the proportion of cases where SMR exceeds 0.
- 239 • **CASP** (MSE-Speech Harmony): Harmony between speech and MSE is an advanced requirement.
 240 Appropriate MSE can enhance audio engagement, while discordant MSE distracts and negatively
 241 impacts the experience. The DualScore, calculated by the CASP framework proposed in Tian
 242 et al. (2025), measures the correlation between audio and speech. In PodEval, we employ the
 243 CASP model, pretrained on $\sim 1,000$ hours of podcast data, to assess MSE-Speech Harmony.

244 **Subjective Listening Test** is primarily designed based on the perceptions of real users. A key
 245 challenge lies in how to evaluate extra-long audios. As we mentioned above, podcasts in the real
 246 world range from a few minutes to over an hour in length. Conducting listening tests on full-length
 247 podcast episodes is impractical due to the time, effort, and financial resources required. Moreover, it
 248 is hard to judge podcasts of vastly different lengths in a fair and consistent manner. Research on long-
 249 form audio evaluation is limited. Clark et al. (2019) did investigation on long-form speech evaluation
 250 and found that multiple evaluations are necessary due to the low correlation observed across different
 251 experimental settings. Cambre et al. (2020) conducted a comprehensive evaluation of voice selection
 252 for long-form content; however, the minimum required listening time was only 10 seconds. A
 253 podcast-related evaluation study (Austria, 2007) designed a questionnaire with carefully crafted
 254 questions in terms of both content and presentation to assess domain-specific podcasts. Different
 255 from that, PodEval does not constrain the domain of podcasts, and open-ended content evaluation is
 256 separately conducted in the text-based evaluation section. In this audio-based evaluation, we focus
 257 on assessing the overall performance of the audios. The design approach is as follows:

- 258 • We design it as a **MOS test**, where evaluators listen to one audio sample at a time and provide
 259 judgments based on predefined criteria. Compared to comparative methods, this approach is more
 260 suitable for long-form content by avoiding attention overload and consistency compromising.
- 261 • The test data are preprocessed by extracting **the first / middle / final minute**. These segments are
 262 concatenated into a single audio, separated by a beep signal. This method unifies podcast length,
 263 captures overall performance from diverse positions, and minimizes content-related biases.
- 264 • The judgment session consists of a **questionnaire** with 8 questions covering multiple dimensions,
 265 integrating both perceptual (e.g., “Information Delivery Effectiveness”) and preference-
 266 based (e.g., “Speaker Expression Preference”) questions. This distinction helps clarify whether
 267 the ratings are rooted in objective perception or subjective preference. Users are also asked about
 268 their willingness to listen to the full episode and the perceived human likelihood, offering insights
 269 into interest levels and audio naturalness. The detailed content can be found in Appendix A.5.2.
- We implement two strategies to enhance the validity of the collected data. **1) Attention-check**
 270 **questions**: These include questions like *Q1. How many speakers are there in the podcast?* and

270 *Q7. If music or sound effects... (Select Neutral if none are present).* These questions have standard
 271 answers, allowing us to determine whether users are actively listening to the audio. **2) Justification for answers:** Users have to provide justifications for their responses to each question, which
 272 can be short but are required. This requirement significantly increases users' focus and we can
 273 collect more detailed information from their justification. By employing these two strategies, data
 274 validity is enhanced by promoting attentiveness and filtering out unreliable responses.
 275

277 7 EXPERIMENTS

279 7.1 TEXT-BASED EVALUATION

281 The text-based evaluation is conducted among GPT-4, PodAgent, MoonCast, and Real-Pod. Other
 282 systems in Table 1 are excluded as they do not provide conversation scripts. PodAgent, with its Host-
 283 Guest-Writer multi-agent system, can directly generate podcast scripts based on a given topic. While
 284 MoonCast functions similarly to NotebookLM, requiring external knowledge sources but providing
 285 prompt template for spontaneous script generation. For this evaluation, the MoonCast system uses
 286 the podcast scripts generated by PodAgent as input and transforms them into a spontaneous version.

287 **Quantitative Metrics.** Detailed scores calculated across 17 podcast categories for each system
 288 are presented in Appendix A.2.1. For a concise and clearer comparison, we present the overall
 289 performance (averaged across all 17 categories) in Figure 2, where we can observe that: **1)** For
 290 each quantitative metric, PodAgent outperforms directly prompting GPT-4; **2)** When comparing
 291 LLM-based methods (GPT-4, PodAgent) with human-created podcasts (Real-Pod), Real-Pod scores
 292 lower on lexical diversity (Distinct-2 and MATTR) but higher on information density and semantic
 293 diversity (Info-Dens and Sem-Div). This is reasonable for: i) real human interactions often include
 294 filler words and use simpler language; ii) most real podcasts are significantly longer (30 minutes to
 295 an hour), leading to higher information richness compared to generated podcasts, which are usually
 296 only a few minutes long; **3)** As a spontaneous version of PodAgent, MoonCast shows reduced lexical
 297 diversity and information density. While its semantic diversity remains comparable to PodAgent.

304 Figure 2: **Quantitative metrics:** comparison among GPT-4, PodAgent and Real-Pod.

306 **LLM-as-a-Judge.** This evaluation compares PodAgent (scored from -3 to 3) with GPT-4 (reference
 307 score as 0), both of which generate conversation scripts without external knowledge resources. De-
 308 tailed scores for each category are provided in Appendix A.2.2. We present the overall performance
 309 and results for five specific categories in Table 2 for analysis. We can see that scores across all met-
 310 rics and all categories are positive, demonstrating that PodAgent significantly outperforms directly
 311 prompting GPT-4 in generating podcast scripts across all evaluated dimensions.

313 Table 2: **LLM-as-a-Judge:** comparison between GPT-4 and PodAgent (overall performance and 5
 314 specific categories). Scores range from -3 to 3, where positive values favor PodAgent.

Metrics	Overall	Fiction	Education	Business	TrueCrime	Health & Fitness
Coherence	0.7059	0.5000	0.8333	1.0000	1.0000	0.6667
Engagingness	1.0294	1.1667	1.0000	1.1667	0.6667	1.1667
Diversity	1.1765	1.3333	1.0000	1.3333	0.8333	1.5000
Informativeness	1.6078	1.5000	1.6667	2.0000	1.1667	1.6667
Speaker Difference	1.0637	0.9167	1.0000	1.1667	0.6667	1.0000
Overall	1.3064	1.2500	1.3333	1.6667	0.8333	1.2500

324 7.2 SPEECH-BASED EVALUATION
325

326 To ensure fairness, all open-source TTS systems use the same PodAgent-generated scripts. Sub-
327 jective tests use a spontaneous version from MoonCast, while objective evaluations use the original
328 PodAgent scripts, as filler words in the spontaneous version challenge metrics like WER.

337 Figure 3: **Speech-based evaluation:** objective metrics (WER, SPTD, SIM, DNSMOS).
338

339 **WER.** Figure 3-(1) shows the WER results calculated for the entire conversation script. All systems,
340 except MuyanTTS, achieve WER scores below 20%. Analysis of sampled MuyanTTS outputs re-
341 veals robustness issues like repeated sentences and the insertion of unknown content.

342 **SIM.** The SIM metric evaluates zero-shot TTS systems’ ability to replicate the timbre of a reference
343 voice. PodAgent, MoonCast, MuyanTTS, Dia, and MOSS-TTSD—are assessed as shown in Figure
344 3-(2). Each system uses the reference voice selected by PodAgent for the topic. The performance
345 rankings are: MuyanTTS, MOSS-TTSD, Dia, MoonCast, and PodAgent. PodAgent’s relatively low
346 score in this metric likely stems from its instruction-following style control strategy. While this
347 approach enhances overall conversational expressiveness, it can reduce speaker similarity.

348 **SPTD.** Figure 3-(3) shows timbre variation across speakers in the conversation for three systems:
349 Real-Pod, PodAgent, and NotebookLM. Real-Pod reflects real-world podcasts, PodAgent uses a
350 voice selection mechanism for distinct voices, and NotebookLM fixed voices (one male, one fe-
351 male). The SPTD scores rank as follows: PodAgent, NotebookLM, and Real-Pod. This likely
352 reflects that real-world podcasts prioritize guest expertise and availability over timbre differences.
353 PodAgent demonstrates an effective automated voice selection process for podcast creation.

354 **DNSMOS.** The DNSMOS metric was applied to all systems to evaluate speech quality as in Figure
355 3-(4). PodAgent, MoonCast, MuyanTTS, MOSS-TTSD, and NotebookLM achieve similar scores,
356 while Real-Pod and Dia show noticeable declines in speech quality. For Real-Pod, the lower scores
357 are due to: (1) real podcasts often use MSE for enhancement, requiring speech-MSE separation
358 before evaluation, which may leave residual MSE artifacts, and (2) human-created podcasts involve
359 recording, editing, or post-processing that introduce noise or instability. Dia struggles with long-
360 form speech synthesis. Its outputs for lengthy podcast scripts frequently feature overly fast speaking
361 speeds and occasional sentence truncations, leading to its relatively low DNSMOS performance.

363 Table 3: Dialogue Naturalness Evaluation - statistical information for filtering.

Judger	1	2	3	4	5	6	7	8	9	10
LQ Last (%)	94.12	100	100	100	100	100	100	100	100	100
HQ Top2 (%)	88.24	88.24	58.82	58.82	94.12	64.71	17.65	58.82	64.71	94.12
Judger	11	12	13	14	15	16	17	18	19	20
LQ Last (%)	94.12	100	100	100	100	100	100	76.47	100	100
HQ Top2 (%)	94.12	82.35	64.71	82.35	88.24	58.82	64.71	47.06	52.94	35.29

373 **Dialogue Naturalness Evaluation.** We released the task on Prolific², requesting 20 native English-
374 speaking participants from the US/UK. We set the filter rules as: 1) Over 90% of LQ samples must
375 be marked as the worst, as the synthesized samples from eSpeak are obviously robotic and unnatural.
376 2) Over 50% of HQ samples must rank in the top-2 best. While it is possible for other systems to

377 ²<https://www.prolific.com/>

achieve a better score than the real podcast, the evaluation of the real podcast should also remain above average. Table 3 presents the two statistical metrics for the submission results. Based on these rules, Judger-7, 18 and 20 can be excluded. We also provide the box plot for each Judger in Figure 9 in the appendix for more advanced analysis. For instance, apart from the LQ samples, Judger-20 assigns similar scores to all other systems, further confirming the invalidity of this submission.

Figure 4: Dialogue Naturalness Evaluation - overall result.

Result Analysis. After excluding unqualified submissions, we analyzed system performance based on the remaining 17 valid submissions. Figure 4 presents the final results. We can observe that dialogue segments from real podcasts (HQ) achieved the highest scores, which aligns with expectations. NotebookLM, a closed-source product, ranked second, reflecting the high naturalness of its synthesized dialogue speech. Among the three open-source podcast generation systems, PodAgent scored the lowest, which is reasonable since its backend TTS system, CosyVoice2, is limited to single-sentence synthesis. In contrast, MoonCast and MOSS-TTSD, which support direct dialogue synthesis, performed better in dialogue naturalness evaluations. Overall, the evaluation results align with expectations, validating the rationality and effectiveness of our evaluation method design.

7.3 AUDIO-BASED EVALUATION

Figure 5: Density distributions of audio-based objective metrics.

Loudness. Figure 5 presents the density distribution of loudness-related metrics, enabling a comparative analysis with the reference range. All seven systems are included. For **LOUD_IT**, Dia and MoonCast align well with the reference range, while NotebookLM's loudness centers around -25. Real-Pod, as manually produced audio, shows a highly scattered loudness distribution. For **LOUD_TP**, Muyan-TTS performs best, with all samples maintaining a true peak loudness below -1. In contrast, MoonCast, Dia and MOSS-TTSD perform poorly, while Real-Pod continues to exhibit scattered results. For **LOUD_RA**, MoonCast has a relatively narrow loudness variation range, while PodAgent and MOSS-TTSD display richer variance. Quantitative scores are detailed in Table 9.

SMR and CASP. PodAgent and Real-Pod are evaluated for these MSE-related metrics. From the density distribution in Figure 5, PodAgent exhibits a more concentrated distribution compared to Real-Pod. For **SMR**, the SMR_SCORE in Table 9 shows that all PodAgent samples achieve an SMR greater than 0, whereas some Real-Pod cases fail to meet this requirement. For **CASP**, a higher score indicates better MSE-Speech harmony. Real-Pod demonstrates a higher upper limit, which is expected as exceptional human artistic creations naturally surpass AI-generated outputs. However, PodAgent delivers more consistent performance, and the overall gap between the two systems is not significant, making it an alternative way to enhance creative efficiency.

Questionnaire-based MOS Test. We recruited native English speakers from Prolific for this test. Section 6 describes our final test design. Prior to this, we conducted a *Pilot Test* using the questionnaire design in Figure 10. Based on feedback, we made the following improvements: 1) Reduced the scoring scale from 10 to 5 with clear definitions to reduce ambiguity and improve consistency. 2) Refined the questions to introduce perceptual and preference-based considerations. 3) Added a justification requirement for each question. These changes increased the pass rate from 75% to 90%.

In addition to direct scores, we also derive a corresponding score based on users' justifications. Specifically, given justification texts from multiple systems for the same question, GPT-4 uses the following prompt to score: *"For each system, summarize the corresponding comments into one sentence and assign a score between 1 and 5."* A detailed experiment setup is provided in Appendix A.5.2, and separate scores are listed in Table 10. Figure 6 shows the final results, averaging the direct score and the justification-based score. From the result, we can observe that:

- *Speech (naturalness and authenticity) is the most dominant factor affecting the listener's experience.* In Section 7.2, PodAgent scored low in dialogue naturalness due to using a single-sentence synthesis TTS system, leading to consistently poor results in this MOS test. This outcome is expected, as dialogue speech is the core component of podcast-like audio programs. Although PodAgent's Music/Sound (harmony) score is below Real-Pod (consistent with the results of objective metric - CASP), it is significantly higher than its scores in other metrics, indicating that *the gap between PodAgent and Real-Pod in music harmony is smaller than in speech naturalness*.
- *Real podcasts perform best in most metrics (5/7).* Real-Pod significantly outperforms other systems on holistic metrics like Engagement Level (EL) and Human Likelihood (HL). However, Full Episode Willingness (FEW) scores are low across all systems, with NotebookLM and Real-Pod scoring similarly. *This highlights the value of perceptual and preference-based question design in the test.* FEW, a preference-based question, garnered justifications like "the topic is not of interest to me" for lower scores. In contrast, higher scores for EL and HL indicate that users tend to exclude subjective factors (e.g., personal topic interest) when rating audio performance. A similar pattern is observed in Information Delivery (effectiveness) and Speaker Expression (preference).
- In the Audio Quality metric, while PodAgent and MOSS-TTSD score lower than Real-Pod, PodAgent performs better here than in other metrics, and NotebookLM slightly surpasses Real-Pod. As noted, human-made podcasts often exhibit inconsistent audio quality due to complex production. User feedback, like "Little bit of mic hiss/bloom but otherwise fine," supports this observation. This highlights that *when conversational realism approaches that of real speech, AI-based methods offers an advantage in their controllability and consistency in producing high-quality audio*.

Figure 6: Questionnaire-based MOS test

8 CONCLUSION

PodEval is the first comprehensive evaluation framework for podcast-like audio generation, tackling the challenges of assessing open-ended, long-form content. We constructed a real-world podcast dataset as a benchmark for human-level creative quality across diverse topics and formats. By decomposing evaluation into text, speech, and audio, PodEval introduced multidimensional methods combining objective metrics and well-designed subjective listening tests. Experiments with various podcast generation systems, including open-source, closed-source, and human-made examples, validated the framework's effectiveness. The results offer insights into the strengths and weaknesses of different systems (e.g. Figure 14), highlighting PodEval's role in advancing podcast generation research and inspiring future work on evaluating open-ended, long-form content generation task.

486 **9 ETHICS STATEMENT**
 487

488 This work introduces PodEval, a comprehensive framework for evaluating podcast-like audio gener-
 489 ation, with careful consideration of ethical implications. The *Real-Pod dataset* was constructed us-
 490 ing publicly available podcasts in alignment with fair use, avoiding sensitive or private data. Instead
 491 of directly providing audio files, the dataset offers publicly accessible download links and down-
 492 load toolkit to reduce the risk of misuse and ensure proper attribution. *Subjective evaluations* were
 493 conducted using crowdsourced workers recruited through the Prolific platform, with compensation
 494 exceeding the platform’s minimum wage requirements. Reliability was ensured through attention-
 495 check questions and clear instructions for participants. To mitigate bias, the framework incorporates
 496 *diverse topics and evaluators*, promoting inclusivity and fairness. While PodEval aims to advance
 497 AI-assisted podcast generation, we emphasize its role as a tool to enhance, not replace, human
 498 creativity. PodEval is designed to foster innovation while adhering to principles of transparency,
 499 fairness, and ethical AI development.

500 **10 REPRODUCIBILITY STATEMENT**
 501

502 To ensure the reproducibility of our work, the PodEval framework is fully open-source and accessi-
 503 ble at <https://anonymous.4open.science/r/PodEval-iclr> (an anonymized version
 504 to comply with conference requirements). The repository contains all necessary datasets, scripts, and
 505 tools to replicate the experiments described in this paper.

506 **HOW TO USE THE REPOSITORY**
 507

- 509 1. Clone the Repository.
- 510 2. Set Up the Environment according to the README.
- 512 3. Process dataset or Run Evaluations following the corresponding instructions.

514 **REPOSITORY STRUCTURE**
 515

516 The repository is organized into the following directories:

- 517 • **Real_Pod/**
 - 519 – Provides the *Real-Pod dataset*, a curated collection of real-world podcast episodes. Includes
 520 51 topics across 17 categories, representing diverse podcast scenarios.
 - 521 – See *Real_Pod/README.md* for dataset preparation and usage instructions.
- 522 • **Text_Eval/**
 - 524 – Tools for *text-based evaluation* of dialogue scripts. Includes both *Quantitative Metrics* and
 525 *LLM-as-a-Judge* methods.
 - 526 – See *Text_Eval/README.md* for instructions on running text evaluations.
- 527 • **Speech_Audio_Objective_Evaluation/**
 - 529 – Toolkit for *objective evaluation* of podcast audio and speech quality. Includes DNSMOS,
 530 WER, SIM, SPTD, Loudness, SMR, and CASP.
 - 531 – See *Speech_Audio_Obj_Eval/README.md* for metric calculations and usage.
- 532 • **Subjective_Listening_Tests/**
 - 533 – Framework for *subjective human evaluations* of podcast speech and audio. One is *Dialogue
 534 Naturalness Evaluation* and the other one is *Questionnaire-based MOS Test*.
 - 535 – See *Subjective_Listening_Tests/README.md* for test setup and implementation
 536 details. We also provide *website demo* link1 link2 that allow users to intuitively view the test
 537 design and participate it.

538 By following the provided instructions and leveraging the structured tools within each directory,
 539 users can reproduce all experiments and adapt **PodEval** for further research.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
543 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
544 report. *arXiv preprint arXiv:2303.08774*, 2023.

545 AES. Recommendations for loudness of internet audio streaming and on-demand distribution.
546 Technical report, Audio Engineering Society, New York, NY, USA, September 2021. URL
547 <https://www.aes.org/technical/documentDownloads.cfm?docID=731>. Pre-
548 pared by the Study Group on Streaming Audio Loudness of the Technical Committee for Broad-
549 cast & Online Delivery. Co-chairs: Bob Katz and David Bialik.

550 Ehab A AlBadawy, Andrew Gibiansky, Qing He, Jilong Wu, Ming-Ching Chang, and Siwei Lyu.
551 Vocbench: A neural vocoder benchmark for speech synthesis. In *ICASSP 2022-2022 IEEE Inter-
552 national Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 881–885. IEEE,
553 2022.

554 Apple. Audio requirements for apple podcasts, 2023. URL <https://podcasters.apple.com/support/893-audio-requirements>. Accessed: 2025-06-05.

555 Apple Inc. Apple podcasts. URL <https://podcasts.apple.com/>. Accessed: 2025-01-22.

556 Joy L Austria. Developing evaluation criteria for podcasts. 2007.

557 Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
558 correlation with human judgments. In *Proceedings of the acl workshop on intrinsic and extrinsic
559 evaluation measures for machine translation and/or summarization*, pp. 65–72, 2005.

560 Hervé Bredin. pyannote.audio 2.1 speaker diarization pipeline: principle, benchmark, and recipe.
561 In *Proc. INTERSPEECH 2023*, 2023.

562 BS Series. Algorithms to measure audio programme loudness and true-peak audio level. *Interna-
563 tional Telecommunication Union Radiocommunication Assembly*, 2011.

564 ByteDance. Doubao ai podcast model, 2025. URL <https://www.doubao.com/chat/>. Ac-
565 cessed: 2025-05-28.

566 Julia Cambre, Jessica Colnago, Jim Maddock, Janice Tsai, and Jofish Kaye. Choice of voices: A
567 large-scale evaluation of text-to-speech voice quality for long-form content. In *Proceedings of the
568 2020 CHI Conference on Human Factors in Computing Systems*, pp. 1–13, 2020.

569 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
570 Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot
571 arena: An open platform for evaluating llms by human preference. In *Forty-first International
572 Conference on Machine Learning*, 2024.

573 Rob Clark, Hanna Silen, Tom Kenter, and Ralph Leith. Evaluating long-form text-to-speech: Com-
574 paring the ratings of sentences and paragraphs. *arXiv preprint arXiv:1909.03965*, 2019.

575 Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang,
576 Changfeng Gao, Hui Wang, et al. Cosyvoice 2: Scalable streaming speech synthesis with large
577 language models. *arXiv preprint arXiv:2412.10117*, 2024.

578 EBU R128. Loudness normalisation and permitted maximum level of audio signals. *Eur. Broadcast.
579 Union*, 2011.

580 eSpeak Contributors. espeak text to speech. URL <http://espeak.sourceforge.net/>.
581 Accessed: 2025-06-03.

582 Google. Notebooklm: A new way to explore and summarize knowledge, 2023. URL <https://notebooklm.google/>. Accessed: 2025-05-28.

583 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
584 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
585 arXiv:2009.03300*, 2020.

594 ITU-T. Subjective test methodology for evaluating speech communication systems that include
 595 noise suppression algorithm. *ITU-T recommendation*, 835, 2003.
 596

597 ITU-T. Subjective evaluation of speech quality with a crowdsourcing approach. Technical report,
 598 International Telecommunication Union, Geneva, 2018. ITU-T Recommendation P.808.
 599

600 Zeqian Ju, Dongchao Yang, Jianwei Yu, Kai Shen, Yichong Leng, Zhengtao Wang, Xu Tan, Xinyu
 601 Zhou, Tao Qin, and Xiangyang Li. Mooncast: High-quality zero-shot podcast generation, 2025.
 602 URL <https://arxiv.org/abs/2503.14345>.
 603

604 Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Fr\echet audio distance:
 605 A metric for evaluating music enhancement algorithms. *arXiv preprint arXiv:1812.08466*, 2018.
 606

607 Xin Li, Kaikai Jia, Hao Sun, Jun Dai, and Ziyang Jiang. Muyan-tts: A trainable text-to-speech
 608 model optimized for podcast scenarios with a \$50k budget, 2025. URL <https://arxiv.org/abs/2504.19146>.
 609

610 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization
 branches out*, pp. 74–81, 2004.
 611

612 Xubo Liu, Zhongkai Zhu, Haohe Liu, Yi Yuan, Meng Cui, Qiushi Huang, Jinhua Liang, Yin Cao,
 613 Qiuqiang Kong, Mark D Plumbley, et al. Wavjourney: Compositional audio creation with large
 614 language models. *arXiv preprint arXiv:2307.14335*, 2023.
 615

616 Ziyang Ma, Yinghao Ma, Yanqiao Zhu, Chen Yang, Yi-Wen Chao, Ruiyang Xu, Wenxi Chen,
 617 Yuanzhe Chen, Zhuo Chen, Jian Cong, et al. Mmar: A challenging benchmark for deep rea-
 618 soning in speech, audio, music, and their mix. *arXiv preprint arXiv:2505.13032*, 2025.
 619

620 Nari Labs. Dia: A tts model capable of generating ultra-realistic dialogue in one pass. <https://github.com/nari-labs/dia>, 2025. Accessed: 2025-09-08.
 621

622 Netflix. Netflix sound mix specifications best practices v1.6, 2024. URL
 623 <https://partnerhelp.netflixstudios.com/hc/en-us/articles/360001794307-Netflix-Sound-Mix-Specifications-Best-Practices-v1-6>.
 624 Accessed: 2025-06-12.
 625

626 OpenMOSS Team. Text to spoken dialogue generation. 2025.
 627

628 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 629 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association
 630 for Computational Linguistics*, pp. 311–318, 2002.
 631

632 Alexis Plaquet and Hervé Bredin. Powerset multi-class cross entropy loss for neural speaker diariza-
 633 tion. In *Proc. INTERSPEECH 2023*, 2023.
 634

635 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 636 Robust speech recognition via large-scale weak supervision, 2022. URL <https://arxiv.org/abs/2212.04356>.
 637

638 Chandan KA Reddy, Vishak Gopal, and Ross Cutler. Dnsmos p. 835: A non-intrusive perceptual
 639 objective speech quality metric to evaluate noise suppressors. In *ICASSP 2022-2022 IEEE inter-
 640 national conference on acoustics, speech and signal processing (ICASSP)*, pp. 886–890. IEEE,
 641 2022.
 642

643 Antony W Rix, John G Beerends, Michael P Hollier, and Andries P Hekstra. Perceptual evaluation
 644 of speech quality (pesq)-a new method for speech quality assessment of telephone networks and
 645 codecs. In *2001 IEEE international conference on acoustics, speech, and signal processing.
 646 Proceedings (Cat. No. 01CH37221)*, volume 2, pp. 749–752. IEEE, 2001.
 647

S Sakshi, Utkarsh Tyagi, Sonal Kumar, Ashish Seth, Ramaseswaran Selvakumar, Oriol Nieto, Ra-
 mani Duraiswami, Sreyan Ghosh, and Dinesh Manocha. Mmau: A massive multi-task audio
 understanding and reasoning benchmark. *arXiv preprint arXiv:2410.19168*, 2024.

648 Michael Schoeffler, Sarah Bartoschek, Fabian-Robert Stöter, Marlene Roess, Susanne Westphal,
 649 Bernd Edler, and Jürgen Herre. webmushra—a comprehensive framework for web-based listening
 650 tests. *Journal of Open Research Software*, 6(1), 2018.

651

652 International Telecommunication Union. Telecommunication Standardization Sector. *Methods for*
 653 *subjective determination of transmission quality*. International Telecommunication Union, 1996.

654 Spotify for Podcasters Team Spotify. Guide to creating audio ads: Podcast ads
 655 minimum requirements, 2023. URL <https://ads.spotify.com/en-CA/guide-to-creating-audio-ads/podcast-ads-minimum-requirements/>.
 656 Accessed: 2025-06-05.

657

658 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 659 Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
 660 imitation game: Quantifying and extrapolating the capabilities of language models. *arXiv preprint*
 661 *arXiv:2206.04615*, 2022.

662

663 Wenjie Tian, Xinfa Zhu, Haohe Liu, Zhixian Zhao, Zihao Chen, Chaofan Ding, Xinhuan Di, Junjie
 664 Zheng, and Lei Xie. Dualdub: Video-to-soundtrack generation via joint speech and background
 665 audio synthesis. *arXiv preprint arXiv:2507.10109*, 2025.

666

667 Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
 668 Levy, and Samuel Bowman. Super glue: A stickier benchmark for general-purpose language
 669 understanding systems. *Advances in neural information processing systems*, 32, 2019.

670

671 Bin Wang, Xunlong Zou, Geyu Lin, Shuo Sun, Zhuohan Liu, Wenyu Zhang, Zhengyuan Liu, AiTi
 672 Aw, and Nancy F Chen. Audiobench: A universal benchmark for audio large language models.
arXiv preprint arXiv:2406.16020, 2024.

673

674 Yujia Xiao, Lei He, Haohan Guo, Fenglong Xie, and Tan Lee. Podagent: A comprehensive frame-
 675 work for podcast generation. *arXiv preprint arXiv:2503.00455*, 2025.

676

677 Qian Yang, Jin Xu, Wenrui Liu, Yunfei Chu, Ziyue Jiang, Xiaohuan Zhou, Yichong Leng, Yuanjun
 678 Lv, Zhou Zhao, Chang Zhou, et al. Air-bench: Benchmarking large audio-language models via
 generative comprehension. *arXiv preprint arXiv:2402.07729*, 2024.

679

680 Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y Lin,
 681 Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, et al. Superb: Speech processing
 682 universal performance benchmark. *arXiv preprint arXiv:2105.01051*, 2021.

683

684 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
 685 ing text generation with bert. *arXiv preprint arXiv:1904.09675*, 2019.

686

687 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 688 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703
A APPENDIX704
705
A.1 USE OF LARGE LANGUAGE MODELS706
707
708
709
Large Language Models (LLMs) utilized in this work are as follows:(1) *Topics Initiation* during data
processing of the Real-Pod dataset, which is elaborated in Section 3. (2) *LLM-as-a-Judge* method in
text-based evaluation, which is illustrated in Section 4. (3) *Summarized Users' Justifications* in the
Questionnaire-based MOS Test, which is described in Section 7.3 (Questionnaire-based MOS Test).710
711
A.2 TEXT-BASED EVALUATION712
713
A.2.1 QUANTITATIVE METRICS714
715
Table 4: GPT-4: Quantitative metrics in text-based evaluation.

Metrics	Overall	Fiction	Education	Business	True Crime	Health & Fitness
Distinct_2	0.9619	0.9643	0.9588	0.9567	0.9689	0.9638
Info-Dens	6.4507	6.5865	6.4569	6.3213	6.6541	6.3880
Sem-Div	0.1293	0.1204	0.1115	0.1214	0.1443	0.1106
MATTR	0.6914	0.7027	0.6989	0.6933	0.6831	0.6870
Metrics	Sports	Comedy	History	News	TV & Film	Society & Culture
Distinct_2	0.9536	0.9633	0.9471	0.9486	0.9678	0.9659
Info-Dens	6.4228	6.2256	6.3792	6.3225	6.7614	6.6473
Sem-Div	0.1248	0.1356	0.1451	0.1208	0.1553	0.1507
MATTR	0.6973	0.6922	0.6905	0.6756	0.6903	0.6901
Metrics	Arts	Leisure	Music	Kids	Mental Health	Science & Tech
Distinct_2	0.9675	0.9729	0.9555	0.9559	0.9699	0.9710
Info-Dens	6.5054	6.5233	6.4119	6.2310	6.4787	6.3454
Sem-Div	0.1374	0.1117	0.1320	0.1229	0.1247	0.1286
MATTR	0.6885	0.7136	0.6677	0.6884	0.6994	0.6960

756
757
758 Table 5: **PodAgent**: Quantitative metrics in text-based evaluation.
759
760

Metrics	Overall	Fiction	Education	Business	True Crime	Health & Fitness
Distinct_2	0.9741	0.9743	0.9730	0.9758	0.9796	0.9825
Info-Dens	7.1767	7.3791	7.2163	7.1126	7.1810	7.2927
Sem-Div	0.1372	0.1384	0.1210	0.1254	0.1514	0.1171
MATTR	0.7216	0.7399	0.7291	0.7258	0.7263	0.7386
Metrics	Sports	Comedy	History	News	TV & Film	Society & Culture
Distinct_2	0.9678	0.9808	0.9483	0.9735	0.9782	0.9744
Info-Dens	7.1239	7.1600	7.1004	7.1282	7.3311	6.9568
Sem-Div	0.1487	0.1236	0.1543	0.1379	0.1690	0.1344
MATTR	0.7183	0.7248	0.6752	0.7156	0.7274	0.7119
Metrics	Arts	Leisure	Music	Kids	Mental Health	Science & Tech
Distinct_2	0.9701	0.9790	0.9739	0.9747	0.9815	0.9725
Info-Dens	7.1977	7.3227	7.0558	7.0930	7.1822	7.1711
Sem-Div	0.1283	0.1445	0.1440	0.1353	0.1259	0.1331
MATTR	0.7101	0.7275	0.7114	0.7279	0.7328	0.7249

779
780 Table 6: **MoonCast**: Quantitative metrics in text-based evaluation.
781
782

Metrics	Overall	Fiction	Education	Business	True Crime	Health & Fitness
Distinct_2	0.9128	0.9219	0.8998	0.8952	0.9132	0.9478
Info-Dens	6.0935	6.3613	5.9779	5.9931	6.0388	6.4230
Sem-Div	0.1326	0.1515	0.1079	0.1326	0.1405	0.1324
MATTR	0.6323	0.6598	0.6237	0.6310	0.6391	0.6698
Metrics	Sports	Comedy	History	News	TV & Film	Society & Culture
Distinct_2	0.9159	0.9232	0.9169	0.9047	0.9408	0.8959
Info-Dens	6.1933	6.1729	6.2229	5.9672	6.2855	5.8031
Sem-Div	0.1451	0.1311	0.1460	0.1176	0.1318	0.1282
MATTR	0.6402	0.6435	0.6276	0.6111	0.6595	0.6121
Metrics	Arts	Leisure	Music	Kids	Mental Health	Science & Tech
Distinct_2	0.9252	0.8889	0.8957	0.9039	0.9222	0.9073
Info-Dens	6.2335	5.9713	5.9411	5.9291	6.0298	6.0459
Sem-Div	0.1444	0.1309	0.1227	0.1291	0.1187	0.1432
MATTR	0.6370	0.6124	0.6035	0.6183	0.6321	0.6277

803
804
805
806
807
808
809

Table 7: **Real-Pod**: Quantitative metrics in text-based evaluation.

Metrics	Overall	Fiction	Education	Business	True Crime	Health & Fitness
Distinct_2	0.9200	0.9292	0.9275	0.9049	0.9169	0.9273
Info-Dens	8.1168	8.2849	8.1160	7.7755	8.5675	7.9301
Sem-Div	0.1677	0.1776	0.1579	0.1433	0.1906	0.1646
MATTR	0.6251	0.6313	0.6346	0.6041	0.6261	0.6380
Metrics	Sports	Comedy	History	News	TV & Film	Society & Culture
Distinct_2	0.9244	0.8994	0.9272	0.9100	0.9201	0.8932
Info-Dens	8.0993	8.2755	8.8282	7.7886	8.4005	7.7375
Sem-Div	0.1919	0.1660	0.1845	0.1618	0.1784	0.1701
MATTR	0.6434	0.5999	0.6304	0.6102	0.6363	0.5823
Metrics	Arts	Leisure	Music	Kids	Mental Health	Science & Tech
Distinct_2	0.9111	0.9242	0.9420	0.9092	0.9298	0.9439
Info-Dens	8.1093	7.6949	8.0925	7.7708	8.2119	8.3031
Sem-Div	0.1653	0.1591	0.1761	0.1492	0.1668	0.1485
MATTR	0.6063	0.6176	0.6513	0.6200	0.6373	0.6582

A.2.2 LLM-AS-A-JUDGE

Table 8: **LLM-as-a-Judge: comparison between GPT-4 and PodAgent**. Scores range from -3 to 3. Positive values indicate that PodAgent outperforms GPT-4; Negative values suggest the opposite.

Metrics	Overall	Fiction	Education	Business	True Crime	Health & Fitness
Coherence	0.7059	0.5000	0.8333	1.0000	1.0000	0.6667
Engagingness	1.0294	1.1667	1.0000	1.1667	0.6667	1.1667
Diversity	1.1765	1.3333	1.0000	1.3333	0.8333	1.5000
Informativeness	1.6078	1.5000	1.6667	2.0000	1.1667	1.6667
Speaker Difference	1.0637	0.9167	1.0000	1.1667	0.6667	1.0000
Overall	1.3064	1.2500	1.3333	1.6667	0.8333	1.2500
Metrics	Sports	Comedy	History	News	TV & Film	Society & Culture
Coherence	0.5000	0.8333	1.1667	0.6667	0.8333	0.1667
Engagingness	1.1667	1.5000	1.5000	0.6667	0.1667	0.6667
Diversity	1.1667	1.8333	1.5000	1.3333	1.3333	0.8333
Informativeness	1.5000	2.1667	1.5000	2.0000	1.3333	0.8333
Speaker Difference	1.1667	1.5000	1.1667	1.3333	1.1667	1.3333
Overall	1.5000	1.8333	1.5000	1.5000	0.8333	0.5000
Metrics	Arts	Leisure	Music	Kids	Mental Health	Science & Tech
Coherence	0.6667	0.5000	0.6667	0.5000	0.3333	1.1667
Engagingness	1.1667	1.1667	1.1667	1.0000	0.8333	1.3333
Diversity	1.1667	1.1667	1.0000	1.0000	0.3333	1.3333
Informativeness	1.8333	2.0000	1.8333	1.3333	1.1667	1.8333
Speaker Difference	1.3333	1.1667	0.8333	0.8333	0.6667	0.8333
Overall	1.5000	1.6667	1.5000	1.1667	0.8333	1.5417

864 A.3 SPEECH-BASED EVALUATION (SUBJECTIVE)
865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Welcome to the podcast dialogue naturalness evaluation!

Task Description:

In this test, you will listen to podcast dialogue segments generated by different systems. Your task is to evaluate the **naturalness** of the dialogue in each segment on a scale from **0 to 100**.

Evaluation Criteria:

- **0 – 20 (Bad):** The dialogue is completely unnatural, robotic, or awkward. It does not resemble a real conversation.
- **20 – 40 (Poor):** The dialogue has significant unnaturalness, with multiple awkward phrases, robotic tones, or inconsistent flows.
- **40 – 60 (Fair):** The dialogue is somewhat natural but has noticeable issues. It may feel rehearsed or lack smooth transitions.
- **60 – 80 (Good):** The dialogue is mostly natural, with minor unnatural elements. It resembles a real conversation but could still be improved.
- **80 – 100 (Excellent):** The dialogue sounds completely natural, like a real, spontaneous conversation between people.

Important Notes:

- The content of the dialogues may differ across systems. Please focus on the **overall naturalness** of the dialogue rather than the specific content or details (e.g., timbre, accent, noise or cut-off effects)
- In other words, **how realistic and similar are these dialogue segments to real podcast conversations?**
- Each test group includes a **Reference** audio extracted from a real podcast episode, representing the "**Excellent**" level of naturalness. This reference is provided to help calibrate your scoring.
- You can replay the audio segments as many times as you wish before assigning a score.
- Use headphones in a quiet environment for the best experience.

Your feedback is valuable. Thank you for participating!

Figure 7: Dialogue Naturalness Evaluation - Instruction page.

Instructions:

1. Listen to all the audio segments provided on this page.
2. Drag the slider below each audio to assign a score based on how natural the dialogue sounds.
3. After scoring all segments, click "Next" to proceed to the next page.

Evaluation Criteria:

- **0 – 20 (Bad):** The dialogue is completely unnatural, robotic, or awkward. It does not resemble a real conversation.
- **20 – 40 (Poor):** The dialogue has significant unnaturalness, with multiple awkward phrases, robotic tones, or inconsistent flows.
- **40 – 60 (Fair):** The dialogue is somewhat natural but has noticeable issues. It may feel rehearsed or lack smooth transitions.
- **60 – 80 (Good):** The dialogue is mostly natural, with minor unnatural elements. It resembles a real conversation but could still be improved.
- **80 – 100 (Excellent):** The dialogue sounds completely natural, like a real, spontaneous conversation between people.

Figure 8: Dialogue Naturalness Evaluation - Test page.

Figure 9: Dialogue Naturalness Evaluation test results from each judges.

972 A.4 AUDIO-BASED EVALUATION (OBJECTIVE)
973974 IDL: LOUD-IT; TP: LOUD-TP; LRA: LOUD-RA.
975

976
977
$$S_{\text{IDL}} = \begin{cases} 1, & -18 \leq \text{IDL} \leq -14, \\ e^{-k_1 \cdot (-18 - \text{IDL})}, & \text{IDL} < -18, \\ e^{-k_2 \cdot (\text{IDL} + 14)}, & -14 < \text{IDL}, \end{cases} \quad (2)$$

978
979

980 where k_1 is set as 0.0858 to ensure S_{IDL} is around 0.6 when $\text{IDL} = -23$, and k_2 is set as 0.3291 to
981 make S_{IDL} close to 0 when $\text{IDL} = 0$.
982

983
984
$$S_{\text{TP}} = \begin{cases} 1, & \text{TP} \leq -1 \\ e^{-k_3 \cdot (\text{TP} + 1)}, & \text{TP} > -1 \end{cases} \quad (3)$$

985

986 where k_3 is set as 4.605 to ensure S_{TP} is close to 0 when TP approaches 0.
987

988
989
$$S_{\text{LRA}} = \begin{cases} 1, & 4 \leq \text{LRA} \leq 18, \\ e^{-k_4 \cdot (4 - \text{LRA})}, & \text{LRA} < 4, \\ e^{-k_5 \cdot (\text{LRA} - 18)}, & \text{LRA} > 18. \end{cases} \quad (4)$$

990
991

992 where k_4 is set as 1.1513 to ensure S_{LRA} approaches 0 when $\text{LRA} = 0$, and k_5 is set as 0.2554 to
993 ensure $S_{\text{LRA}} \approx 0.6$ when $\text{LRA} = 20$.
994995 Table 9: Audio-based objective metrics - Quantitative scores.
996997
998

System	LOUD_IT SCORE	LOUD_TP SCORE	LOUD_LRA SCORE	SMR_BASIC SCORE	CASP
Real-Pod	0.72	0.53	0.82	0.99	0.58
PodAgent	0.80	0.32	1.00	1.00	0.56
MoonCast	1.00	0.01	0.68	-	-
Muyan-TTS	0.88	1.00	0.83	-	-
Dia	0.98	0.01	0.95	-	-
MOSS-TTSD	0.88	0.02	0.99	-	-
NotebookLM	0.51	0.56	1.00	-	-

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 A 5 AUDIO-BASED EVALUATION (SUBJECTIVE)

1028 A. S. 1. By an order

Section 1: Quantitative Analysis (0-10 Scale)

0 = not met at all, 5 = moderately met, 10 = fully met. Comments are optional but encouraged.

1. How well does the tone of the host or guest suit the podcast content?

2. How clearly and effectively do the speakers deliver the podcast content?

3. Is the speaking pace appropriate and easy to follow?

4. How engaging and enjoyable is the podcast? (Does it sustain your attention throughout the episode?)

5. How satisfied are you with the podcast's audio quality? (e.g., clarity, background noise)

6. If background music or sound effects are present, how well do they enhance rather than interfere with the content? (Select 5 if there is no background music or sound effects)

7. How likely are you to want to listen to the full episode after hearing this excerpt?

Section 2: Qualitative Analysis (YES/NO/CAN'T TELL)

8. Does the podcast include a clear introduction and conclusion?

9. Are background music or sound effects present in the podcast?

10. Does the podcast sound like it was created by humans rather than AI? ("Yes" = more like humans, "No" more like AI)

Figure 10: Questionnaire-based MOS test - Pilot test version.

1080 A.5.2 QUESTIONNAIRE-BASED MOS TEST
1081

1082 **Experiment Settings:** Lengthy listening tests can be exhausting and may lead to inaccurate feed-
1083 back. It is essential to ensure the overall test duration does not exceed 30 minutes. In the
1084 Questionnaire-based MOS Test, each audio sample is around 3 minutes and requires answering 10
1085 questions with corresponding justifications. Based on the Dialogue Naturalness Test results shown
1086 in Figure 7.2, we selected 4 representative systems. Each test group included four podcast samples
1087 from different systems but within the same podcast category. According to actual test results, each
1088 group took an average of 24 minutes to complete. The 4 representative systems are:
1089

- 1090 • **PodAgent:** An open-source podcast generation framework incorporating conversation script gen-
1091 eration, automatic voice selection, speech synthesis, and BMSE enhancement.
- 1092 • **MOSS-TTSD:** Achieved the highest score among the open-source systems utilized in the Dia-
1093 logue Naturalness Evaluation (Figure 7.2).
- 1094 • **NotebookLM:** A pioneering podcast generation product, widely recognized for its exceptional
1095 performance, is nearly indistinguishable from real podcasts.
- 1096 • **Real-Pod:** A collection of podcasts sourced from the real world.

1097
1098 **Welcome to the Podcast Evaluation Questionnaire!**
10991100 **Study Description:**

1101 In this study, we aim to collect **authentic feedback** on podcast audio clips. You will listen to **4 different podcast audio files**, each
1102 discussing potentially different topics. The primary goal of this research is to evaluate the **overall production quality** of the
1103 podcast segments, rather than the specific content or themes being discussed.

1104 Each audio clip is approximately **3 minutes long** and is constructed by combining three key segments from a full podcast episode:

1105 <The **first** minute | The **middle** minute | The **final** minute>

1106 A brief notification sound will indicate the transitions between these segments.

1107 **About the questionnaire:**

1108 It consists of 8 questions, which are designed to assess the podcast audio across multiple dimensions, such as:

- 1109 • Speaker's expression / Information delivery
- 1110 • Audio quality / engagingness / music or sound effect harmony

1111 **Notice:**

- 1112 • We kindly ask you to **avoid** rating based on the **discussion** topic and instead focus on the requested dimension.
- 1113 • Please **listen to each audio carefully**, ideally using **headphones** for optimal clarity.
- 1114 • **Incomplete or insincere responses** may be subject to return. We kindly ask you to provide thoughtful and genuine
1115 feedback to ensure the effectiveness of this study.
- 1116 • Please enter your **Prolific ID** as the "**Username**" in the final submission page.

1117 Your feedback is **extremely valuable**. Thank you for your participation!

1118
1119
1120
1121
1122 **Figure 11: Questionnaire-based MOS test - Final version - Instruction page.**
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134

1135

1136

Q1. **How many speakers** are there in the podcast?

1137

1138

1139

Q2. How satisfied are you with the podcast's **audio quality** (e.g., clarity, volume levels, background noise)?

1140

- 1 = Very dissatisfied
- 2 = Dissatisfied
- 3 = Neutral
- 4 = Satisfied
- 5 = Very satisfied

1141

Why? (Required but can be simple. The same requirement for other "Why?" questions.)

1142

1143

Q3. Do you like the way the guests and hosts **express** themselves?

1144

- 1 = Strongly dislike it
- 2 = Dislike it
- 3 = Neutral
- 4 = Like it
- 5 = Love it

1145

Why?

1146

Q4. Do you think the speakers are **effectively** delivering the information?

1147

- 1 = Not at all effectively
- 2 = Not very effectively
- 3 = Neutral
- 4 = Somewhat effectively
- 5 = Very effectively

1148

Why?

1149

Q5. If **music or sound effects** are present, do they **enhance or interfere** with the content? (Select Neutral if none are present)

1150

- 1 = Greatly interfere
- 2 = Somewhat interfere
- 3 = Neutral
- 4 = Somewhat enhance
- 5 = Greatly enhance

1151

Why?

1152

1153

Figure 12: Questionnaire-based MOS test - Final version (Question 1-5).

1154

1155

1156

1157

1188
1189
1190
1191
1192
1193
1194
1195 Q6. How **engaging** is the podcast?
1196 1 = Not engaging at all
1197 2 = Slightly engaging
1198 3 = Neutral
1199 4 = Engaging
1200 5 = Extremely engaging
1201
1202 Why?
1203
1204
1205
1206 Q7. How likely are you to listen to the **full episode** after hearing this?
1207 1 = Not likely at all
1208 2 = Slightly likely
1209 3 = Neutral
1210 4 = Likely
1211 5 = Very likely
1212
1213 Why?
1214
1215
1216
1217 Q8. Does the podcast sound like it was created by **humans** rather than **AI**?
1218 1 = Definitely AI
1219 2 = More like AI
1220 3 = Neutral -- Could be either human or AI
1221 4 = More like humans
1222 5 = Definitely humans
1223
1224 Why?
1225
1226
1227
1228 Q9. (Optional) Any additional comments on this podcast audio?
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 13: Questionnaire-based MOS test - Final version (Question 6-9).

1242 Table 10: Questionnaire-based MOS test - (Q.) represents the average score from the direct scoring
 1243 answers, and (J.) represents the score derived from the justifications.

Metrics	Systems		MOSS-TTSD		NotebookLM		PodAgent		Real-Pod	
	Q.	J.	Q.	J.	Q.	J.	Q.	J.	Q.	J.
Information Delivery	4.0	3.0	4.2	4.0	1.6	1.0	4.2	4.0		
Music/Sound Effects	N/A	N/A	N/A	N/A	2.4	2.0	3.3	3.0		
Engagement Level	2.2	3.0	3.1	3.0	1.1	1.0	3.6	4.0		
Full Episode Likelihood	2.1	2.0	2.1	3.0	1.0	1.0	2.3	3.0		
Human Likelihood	3.0	3.0	3.3	3.5	1.1	1.0	4.2	4.0		
Audio Quality	3.5	3.0	4.2	4.0	3.0	2.0	3.9	4.0		
Speaker Expression	3.3	3.0	4.0	3.0	1.5	1.0	3.4	4.0		

1260 A.6 SYSTEM ANALYSIS REPORT

Figure 14: System analysis report based on PodEval - PodAgent.

1296 A.7 WSIM AMONG DIFFERENT SYSTEMS
12971314 Figure 15: WSIM among different systems.
1315
13161317 A.8 INTER RATER RELIABILITY
13181347 Figure 16: Pearson Correlation among Different Human Judges.
1348
1349