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ABSTRACT

Recently, an increasing number of multimodal (text and audio) benchmarks have
emerged, primarily focusing on evaluating models’ understanding capability.
However, exploration into assessing generative capabilities remains limited, es-
pecially for open-ended long-form content generation. Significant challenges lie
in no reference standard answer, no unified evaluation metrics and uncontrollable
human judgments. In this work, we take podcast-like audio generation as a starting
point and propose PodEval, a comprehensive and well-designed open-source eval-
uation framework. In this framework: 1) We construct a real-world podcast dataset
spanning diverse topics, serving as a reference for human-level creative quality. 2)
We introduce a multimodal evaluation strategy and decompose the complex task
into three dimensions: text, speech and audio, with different evaluation emphasis
on “Content” and “Format”. 3) For each modality, we design corresponding eval-
uation methods, involving both objective metrics and subjective listening test. We
leverage representative podcast generation systems (including open-source, close-
source, and human-made) in our experiments. The results offer in-depth analysis
and insights into podcast generation, demonstrating the effectiveness of PodEval
in evaluating open-ended long-form audio. This project is open-source to facilitate
public use: https://anonymous.4open.science/r/PodEval-iclr.

1 INTRODUCTION

With the rapid development of AIGC (AI-Generated Content) in recent years, many innovative appli-
cations have emerged. AI Podcast represents a key application scenario for audio-based generative
models (Google, 2023; ByteDance, 2025). However, evaluating podcast-like audio is challenging
due to: 1) it is an open-ended task, which means there is no reference standard answer; 2) the evalua-
tion of long-form speech/audio is particularly difficult, as longer formats introduce more variability.
Objective metrics often fail to capture human perceptions accurately, while subjective listening tests
face issues like user inattention, which reduces the validity of results; and 3) podcasts often incor-
porate additional elements, like music and sound effects, making the evaluation more complicated.

To address these challenges and establish a clear evaluation framework, we decompose podcast-like
audio into three dimensions: text (conversation transcripts), speech (spoken dialogue), and audio
(speech, music, sound effects, and their interaction). While these dimensions inherently overlap,
they offers a structured framework for evaluation focus. Specifically, the conversation transcripts in
podcasts are primarily used for content (the message being conveyed) evaluation, whereas speech,
music and sound effects primarily contribute to format (how the message is presented) evaluation.

Different modalities have their own commonly used evaluation methods. For text, metrics such
as BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), and METEOR (Banerjee & Lavie, 2005)
focus on fluency and relevance, while newer approaches like BERTScore (Zhang et al., 2019) utilize
pre-trained language models to capture semantic alignment. For speech, objective metrics like Mel
Cepstral Distortion (MCD) and Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001)
are widely used, alongside subjective evaluations like Mean Opinion Score (MOS) (Sector, 1996).
For audio, metrics like Frechet Audio Distance (FAD) (Kilgour et al., 2018) and Kullback-Leibler
Divergence (KL) are employed to evaluate audio quality, while listener surveys provide subjective
insights. However, these evaluation methods are not directly applicable to podcast evaluation since:
• Most content-related objective metrics rely on reference scripts to measure quality and relevance.

However, podcast generation lacks standardized references as it is an open-ended generation task.
Moreover, relying on such references limits the diversity and creativity of the generated content.
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• General speech evaluation focuses on individual sentences, while podcasts require natural and
interactive dialogue, emphasizing dialogue-level naturalness. Additionally, voice presentation in
multi-speaker scenarios is critical to ensuring role distinction and overall listener engagement.

• While music and sound effects are not essential to every podcast, their evaluation, when present,
should go beyond the quality of individual audio events. Instead, it should focus on their overall
harmony and seamless integration with the speech content to enhance the listener’s experience.

• Subjective tests are essential for open-ended generative tasks, but crowdsourced data often faces
reliability issues, as it is difficult to control or determine whether users are attentive. Especially
for long-form content, users may lose focus or respond randomly, which affects the result validity.

In this work, we introduce PodEval, a comprehensive multimodal evaluation framework designed
for podcast-like long-form audio generation. The contributions can be summarized as:

• We construct a real-world podcast dataset spanning a wide range of podcast categories and topics,
serving as a reference for human-level creative quality. Model-based samples are also provided.

• We decompose podcast-like audio evaluation from a multimodal viewpoint—text, speech, and au-
dio—to establish a clear evaluation framework, with distinct focuses on “Content” and “Format”.

• For each modality, we design tailored metrics to address diversity considerations. For text, we
combine quantitative metrics with LLM-based evaluations to assess conversation scripts. For
speech and audio, we design objective metrics and subjective listening tests to evaluate spoken
dialogue and overall audio performance. All evaluation methods are organized into open-source
tools for ease of use. Subjective tests are enhanced by spammer detection to improve data validity.

• We utilize representative podcast generation systems in our experiments, including open-source,
closed-source, and human-made ones. The results offer detailed analyses of these systems, pro-
vide insights for podcast generation, and validate the effectiveness of our evaluation framework.

2 RELATED WORK

2.1 PODCAST GENERATION

Podcasts are a popular audio format, with platforms like Apple Podcasts and Spotify leading the
way. The rise of the AI podcast began with Google’s NotebookLM (Google, 2023), which gained
popularity in late 2024 for its “Audio Overviews” feature. This feature converts materials into con-
versational, two-person podcasts, praised for its highly natural dialogue speech. Similarly, most
open-source podcast generation systems focus on dialogue speech synthesis, like Dia (Nari Labs,
2025), Muyan-TTS (Li et al., 2025), MoonCast (Ju et al., 2025) and MOSS-TTSD (OpenMOSS
Team, 2025). These systems function primarily as dialogue Text-to-Speech (TTS) engines for text-
given scenarios. Another type of podcast generation system takes a more holistic approach, incor-
porating elements beyond speech, such as text and music/sound. For example, WavJourney (Liu
et al., 2023) leverages LLMs to connect components like TTS and Text-to-Audio (TTA), generating
element-rich audio programs. Upon this, PodAgent (Xiao et al., 2025) introduces a “Host-Guest-
Writer” multi-agent system to create informative conversation scripts and builds a voice pool for
appropriate voice selection. Table 1 compares the systems leveraged in subsequent experiments.

Table 1: Comparison of podcast generation systems.

System Open-Source? # Speaker Support Voice Selection? Is Dialogue TTS? Support Music/Sound?
NotebookLM ✗ 2 ✗ - ✗
Dia ✓ 2 Preset ✓ ✗
Muyan-TTS ✓ 1 Preset ✗ ✗
MoonCast ✓ 2 Preset ✓ ✗
MOSS-TTSD ✓ 2 Preset ✓ ✗
PodAgent* ✓ N Auto ✗ ✓

* PodAgent uses CosyVoice2(Du et al., 2024) as its backend TTS model, which is a single-sentence TTS system.

2.2 EVALUATION ON GENERATIVE MODELS

Various evaluation works have emerged along with the development of LLMs and multimodal gener-
ative models. Text-related Evaluation, such as SuperGLUE, MMLU, and BIG-bench (Wang et al.,
2019; Hendrycks et al., 2020; Srivastava et al., 2022), assesses the capabilities of LLMs across di-
verse tasks with preset ground truth. Subsequently, MT-Bench (Zheng et al., 2023) explores the po-
tential of LLMs as evaluators, and Chatbot Arena (Chiang et al., 2024) provides an open platform for
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assessing LLMs based on human preferences. Speech-related Evaluation, such as SUPERB (Yang
et al., 2021), is designed for discriminative tasks like speech recognition and speaker identification.
However, evaluations for generative tasks are scarce due to their inherent diversity and subjectiv-
ity, making subjective evaluation essential for speech generation tasks. For instance, VOCBENCH
(AlBadawy et al., 2022) incorporates both subjective and objective evaluations to assess vocoder
performance in speech synthesis. Similarly, numerous Audio-related Evaluation work, such as
AIR-Bench, Audiobench, MMAU, and MMAR (Yang et al., 2024; Wang et al., 2024; Sakshi et al.,
2024; Ma et al., 2025), focus on audio understanding and reasoning. Subjective evaluation remains
crucial for assessing audio generation systems and is typically tailored to specific generation tasks.
Unlike existing evaluation works, PodEval introduces a comprehensive framework specifically de-
signed for podcast-like audio generation. It emphasizes both subjective and objective evaluations
across text, speech, and audio, with all metrics closely aligned with real-world user experience.

3 REAL-POD: REAL-WORLD PODCAST DATASET

Podcast Category Podcast Topic Podcast Episode

Real-Pod Dataset

Metadata Toolkit+

Relevance

Multi-Speaker

Audio Quality

Music and Sound

Selection Criteria

INITIAL TOPIC SUGGESTIONS
Education Business History Arts ...

...

HUMAN REVIEW AND REFINEMENT
Education History Education History...

...

...

...

Suggesting 5 popular and distinct topics for each category

Reviewing and refining the topics to select 3 representative topics per category

FINAL TOPICS COLLECTION

51 topics (17 categories x 3 topics)

( Reference: )

17 Categories

Figure 1: The workflow for constructing the Real-Pod dataset.

There is no unified standard for defining “what makes a good podcast episode.” Unlike textbooks or
official TV programs, podcasts can be created by anyone to share their unique ideas or insights. We
do not make direct comparisons between generated podcasts and real podcasts—such comparisons
are inherently unfeasible, especially when they approach topics from entirely different perspectives.
Instead, we construct a real-world podcast dataset, called Real-Pod dataset, to serve as a reference
for human-level creative quality. It is important to note that this dataset acts as a “reference” rather
than an absolute “answer”. The design principles of the Real-Pod dataset are real (consists of
human-made podcasts), broad (diverse topic coverage) and rich (varied formats, like multi-speaker,
music and sound). The workflow for constructing the Real-Pod dataset is illustrated in Figure 1:

• Podcast Category. We began by compiling a comprehensive list of podcast categories based on
the taxonomy from Apple Podcast (Apple Inc.). The 17 categories are shown in Figure 1-left.

• Podcast Topic. Next, we established relevant topics for each category through a two-step pro-
cess: (1) using GPT-4 (Achiam et al., 2023) to generate 5 popular and distinct topics per category,
reflecting current trends and listener interests; and (2) manually reviewing and refining these top-
ics to ensure their uniqueness and relevance with real-world podcasts, selecting 3 representative
topics for each category, resulting in a final collection of 51 topics (17 categories × 3 topics).

• Podcast Episode. After finalizing the topic collection, we manually searched and screened pod-
cast episodes to identify those most relevant to the selected topics. The selection process was
guided by: (1) Topic Relevance: Episodes were selected based on their alignment with the pre-
defined topics. (2) Rich Format: Preference was given to episodes that featured multi-speaker
conversations, included background music and sound effects, and exhibited high audio quality.

4 TEXT-BASED EVALUATION

The dialogue content in podcasts is extracted in text format for evaluation, representing the core mes-
sage the podcast aims to convey. Podcast dialogues often center around specific topics, showcasing
participants’ unique perspectives and insights, which makes reference-correlation-based methods
infeasible. Instead, the richness of perspectives conveyed (to provide informative takeaways for the
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listener) and the presentation style of the dialogue (to enhance listener comprehension) should be
the primary focus of evaluation. Therefore, we follow the dialogue script-based evaluation methods
proposed in PodAgent (Xiao et al., 2025), which adopt a two-fold approach: (1) Quantitative Met-
rics such as Distinct-N, Semantic-Div, MATTR, and Info-Dens to assess lexical diversity, semantic
richness, vocabulary richness, and information density, respectively. These metrics operate indepen-
dently of reference texts and focus on intrinsic text characteristics; (2) LLM-as-a-Judge, leveraging
GPT-4 to replace human evaluators for complex and comprehensive assessments. Evaluation criteria
include coherence, engagingness, diversity, informativeness and speaker diversity. It incorporates
comparative evaluations to reduce bias and evidence-based scoring for robust and reliable results.

5 SPEECH-BASED EVALUATION

Speech is the core component of a podcast, serving as the medium for content delivery, and how the
message delivered plays a crucial role in shaping the listening experience. To ensure a multidimen-
sional evaluation, we first integrate the following Objective Metrics:
• WER (Word Error Rate) measures pronunciation accuracy, a critical indicator of the robustness of

TTS-based podcast generation systems, powered by Whisper (Radford et al., 2022) in our toolkit.
• DNSMOS (Reddy et al., 2022) evaluate the speech quality (SIG), background noise quality

(BAK), and overall quality (OVRL, P808 MOS) of speech. SIG, BAK, and OVRL are trained
according to P.835 (ITU-T, 2003), while P808 MOS is trained based on P.808 (ITU-T, 2018).

• SIM stands for Speaker Similarity. In podcast generation systems, zero-shot TTS is often em-
ployed to replicate the voice of a preset speaker. The SIM between the synthesized voice and the
reference voice serves as a crucial metric about vocal fidelity. In PodEval, SIM is quantified using
the cosine similarity of extracted speaker embeddings (Plaquet & Bredin, 2023; Bredin, 2023).

• SPTD is a brand new metric we proposed, standing for Speaker Timbre Difference. As audio
programs, podcasts are accessible only through listening. In multi-speaker conversations, voices
with greater timbre differences enhance clarity and make the information easier to follow. SPTD
is to assess the overall timbre variation across speakers. Equation 1 calculates the SPTD among
N distinct speakers.

SPTD = 1− 2

N(N − 1)

N∑
i=1

N∑
j=i+1

sim(ei, ej) (1)

Objective metrics can be calculated efficiently at a low cost without human involvement. However,
the Subjective Listening Test remains a necessary indicator of human perception. Unlike general
speech synthesis, which emphasizes sentence-level pronunciation accuracy and naturalness, pod-
cast speech focuses on achieving human-like natural dialogue. Subjective tests for such long-form
speech present several key challenges: 1) the length of dialogue in podcasts ranges from a few min-
utes to over an hour, making it impractical to evaluate the entire speech directly; 2) the difficulty of
comparing more than two systems simultaneously; 3) guiding user focus toward dialogue natural-
ness, rather than on factors like content; 4) balancing topic diversity within a fixed testing capacity;
and 5) ensuring that crowdsourced evaluators remain focused and provide reliable feedback.

In PodEval, we design the Dialogue Naturalness Evaluation based on the MUSHRA framework
(Schoeffler et al., 2018). The key insight from this framework, incorporating both high-quality and
low-quality anchors, helps evaluators establish a reliable reference of quality range. For researchers,
analyzing scores for these anchors helps identify inattentive evaluators, enabling the filtering of
invalid submissions and improving the data vadility. In our task, we use real podcast segments from
the Real-Pod dataset as the high-quality anchor and synthesized dialogue segments from eSpeak
Contributors as the low-quality anchor. For podcast samples from different systems, we provide an
automatic toolkit to extract dialogue segments featuring turn-taking between speakers, representing
a typical dialogue flow. Each dialogue segment is extracted with a preset length (e.g. 15–25 seconds)
to ensure the speech samples are of similar duration. We select dialogue segments from all 17
categories in the Real-Pod dataset to ensure content diversity while keeping the total listening test
duration within 30 minutes. In each test group, samples from different systems are presented on the
same page, along with a reference Real-Pod sample to guide evaluators on what a natural dialogue
sounds like. The scoring is adjusted using a slider ranging from 0 to 100, divided into five stages
with a clear definition. Detailed instructions and website design can be found in Appendix A.3. 1

1The demo website is hosted at https://podeval.github.io/PodEval-Subjective/
?config=dialogue.yaml. Everyone is welcome to try it out and view the results at the end.
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6 AUDIO-BASED EVALUATION

In this section, we introduce the audio-based evaluation for podcasts, which treats speech as one
component and assesses the overall audio performance, including speech, music and sound effects
(MSE), and their interactions. Similarly, we first introduce the following Objective metrics:

• Loudness: Loudness ensures audio falls within an acceptable volume range. The ITU-R
BS.1770-4 standard (BS Series, 2011) is widely recognized for measuring audio loudness and
true-peak levels. Based on this, the (EBU R128, 2011) standard has been broadly adopted by
broadcast and streaming platforms, recommend a target Integrated Loudness (LOUD-IT) of -
23 LUFS (±1 LUFS), True Peak (LOUD-TP) ≤ −1 dBTP and Loudness Range (LOUD-RA)
< 20 LU. For podcast-like streaming, adjustments are made for typical listening environments,
such as mobile devices where headphones are commonly used. In these cases, the LOUD-IT is
recommended as -18, -16 (±1) or -14 LUFS (AES, 2021; Apple, 2023; Spotify, 2023). Netflix
recommends keeping LOUD-RA between 4 and 18 LU (Netflix, 2024). There is no “absolute
right” reference for loudness metrics. We propose the following reference standards considering
all above guidelines: LOUD-IT: −18 to −14 LUFS; LOUD-TP: ≤ −1 dBTP; LOUD-RA: 4 to
18 LU. Based on this “relatively correct” reference, we can analyze the distribution of loudness
metrics across different systems. We also provide a quantitative scoring strategy in Appendix A.4.

• SMR (Speech-to-Music Ratio): MSE are typically integrated into podcast audio to enhance the
overall listening experience. Since speech is the primary focus in podcasts, it is essential to
ensure that MSE dose not overpower or mask the speech, maintaining clarity and intelligibility of
the dialogue. SMR measures the balance between speech and MSE, with a minimum requirement
of being greater than 0. SMR SCORE is the proportion of cases where SMR exceeds 0.

• CASP (MSE-Speech Harmony): Harmony between speech and MSE is an advanced requirement.
Appropriate MSE can enhance audio engagement, while discordant MSE distracts and negatively
impacts the experience. The DualScore, calculated by the CASP framework proposed in Tian
et al. (2025), measures the correlation between audio and speech. In PodEval, we employ the
CASP model, pretrained on ∼1,000 hours of podcast data, to assess MSE-Speech Harmony.

Subjective Listening Test is primarily designed based on the perceptions of real users. A key
challenge lies in how to evaluate extra-long audios. As we mentioned above, podcasts in the real
world range from a few minutes to over an hour in length. Conducting listening tests on full-length
podcast episodes is impractical due to the time, effort, and financial resources required. Moreover, it
is hard to judge podcasts of vastly different lengths in a fair and consistent manner. Research on long-
form audio evaluation is limited. Clark et al. (2019) did investigation on long-form speech evaluation
and found that multiple evaluations are necessary due to the low correlation observed across different
experimental settings. Cambre et al. (2020) conducted a comprehensive evaluation of voice selection
for long-form content; however, the minimum required listening time was only 10 seconds. A
podcast-related evaluation study (Austria, 2007) designed a questionnaire with carefully crafted
questions in terms of both content and presentation to assess domain-specific podcasts. Different
from that, PodEval does not constrain the domain of podcasts, and open-ended content evaluation is
separately conducted in the text-based evaluation section. In this audio-based evaluation, we focus
on assessing the overall performance of the audios. The design approach is as follows:

• We design it as a MOS test, where evaluators listen to one audio sample at a time and provide
judgments based on predefined criteria. Compared to comparative methods, this approach is more
suitable for long-form content by avoiding attention overload and consistency compromising.

• The test data are preprocessed by extracting the first / middle / final minute. These segments are
concatenated into a single audio, separated by a beep signal. This method unifies podcast length,
captures overall performance from diverse positions, and minimizes content-related biases.

• The judgment session consists of a questionnaire with 8 questions covering multiple dimen-
sions, integrating both perceptual (e.g., “Information Delivery Effectiveness”) and preference-
based (e.g., “Speaker Expression Preference”) questions. This distinction helps clarify whether
the ratings are rooted in objective perception or subjective preference. Users are also asked about
their willingness to listen to the full episode and the perceived human likelihood, offering insights
into interest levels and audio naturalness. The detailed content can be found in Appendix A.5.2.

• We implement two strategies to enhance the validity of the collected data. 1) Attention-check
questions: These include questions like Q1. How many speakers are there in the podcast? and
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Q7. If music or sound effects... (Select Neutral if none are present). These questions have standard
answers, allowing us to determine whether users are actively listening to the audio. 2) Justifica-
tion for answers: Users have to provide justifications for their responses to each question, which
can be short but are required. This requirement significantly increases users’ focus and we can
collect more detailed information from their justification. By employing these two strategies, data
validity is enhanced by promoting attentiveness and filtering out unreliable responses.

7 EXPERIMENTS

7.1 TEXT-BASED EVALUATION

The text-based evaluation is conducted among GPT-4, PodAgent, MoonCast, and Real-Pod. Other
systems in Table 1 are excluded as they do not provide conversation scripts. PodAgent, with its Host-
Guest-Writer multi-agent system, can directly generate podcast scripts based on a given topic. While
MoonCast functions similarly to NotebookLM, requiring external knowledge sources but providing
prompt template for spontaneous script generation. For this evaluation, the MoonCast system uses
the podcast scripts generated by PodAgent as input and transforms them into a spontaneous version.

Quantitative Metrics. Detailed scores calculated across 17 podcast categories for each system
are presented in Appendix A.2.1. For a concise and clearer comparison, we present the overall
performance (averaged across all 17 categories) in Figure 2, where we can observe that: 1) For
each quantitative metric, PodAgent outperforms directly prompting GPT-4; 2) When comparing
LLM-based methods (GPT-4, PodAgent) with human-created podcasts (Real-Pod), Real-Pod scores
lower on lexical diversity (Distinct-2 and MATTR) but higher on information density and semantic
diversity (Info-Dens and Sem-Div). This is reasonable for: i) real human interactions often include
filler words and use simpler language; ii) most real podcasts are significantly longer (30 minutes to
an hour), leading to higher information richness compared to generated podcasts, which are usually
only a few minutes long; 3) As a spontaneous version of PodAgent, MoonCast shows reduced lexical
diversity and information density. While its semantic diversity remains comparable to PodAgent.

Figure 2: Quantitative metrics: comparison among GPT-4, PodAgent and Real-Pod.

LLM-as-a-Judge. This evaluation compares PodAgent (scored from -3 to 3) with GPT-4 (reference
score as 0), both of which generate conversation scripts without external knowledge resources. De-
tailed scores for each category are provided in Appendix A.2.2. We present the overall performance
and results for five specific categories in Table 2 for analysis. We can see that scores across all met-
rics and all categories are positive, demonstrating that PodAgent significantly outperforms directly
prompting GPT-4 in generating podcast scripts across all evaluated dimensions.

Table 2: LLM-as-a-Judge: comparison between GPT-4 and PodAgent (overall performance and 5
specific categories). Scores range from -3 to 3, where positive values favor PodAgent.

Metrics Overall Fiction Education Business TrueCrime Health & Fitness

Coherence 0.7059 0.5000 0.8333 1.0000 1.0000 0.6667
Engagingness 1.0294 1.1667 1.0000 1.1667 0.6667 1.1667
Diversity 1.1765 1.3333 1.0000 1.3333 0.8333 1.5000
Informativeness 1.6078 1.5000 1.6667 2.0000 1.1667 1.6667
Speaker Difference 1.0637 0.9167 1.0000 1.1667 0.6667 1.0000
Overall 1.3064 1.2500 1.3333 1.6667 0.8333 1.2500
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7.2 SPEECH-BASED EVALUATION

To ensure fairness, all open-source TTS systems use the same PodAgent-generated scripts. Sub-
jective tests use a spontaneous version from MoonCast, while objective evaluations use the original
PodAgent scripts, as filler words in the spontaneous version challenge metrics like WER.

Figure 3: Speech-based evaluation: objective metrics (WER, SPTD, SIM, DNSMOS).

WER. Figure 3-(1) shows the WER results calculated for the entire conversation script. All systems,
except MuyanTTS, achieve WER scores below 20%. Analysis of sampled MuyanTTS outputs re-
veals robustness issues like repeated sentences and the insertion of unknown content.

SIM. The SIM metric evaluates zero-shot TTS systems’ ability to replicate the timbre of a reference
voice. PodAgent, MoonCast, MuyanTTS, Dia, and MOSS-TTSD—are assessed as shown in Figure
3-(2). Each system uses the reference voice selected by PodAgent for the topic. The performance
rankings are: MuyanTTS, MOSS-TTSD, Dia, MoonCast, and PodAgent. PodAgent’s relatively low
score in this metric likely stems from its instruction-following style control strategy. While this
approach enhances overall conversational expressiveness, it can reduce speaker similarity.

SPTD. Figure 3-(3) shows timbre variation across speakers in the conversation for three systems:
Real-Pod, PodAgent, and NotebookLM. Real-Pod reflects real-world podcasts, PodAgent uses a
voice selection mechanism for distinct voices, and NotebookLM fixed voices (one male, one fe-
male). The SPTD scores rank as follows: PodAgent, NotebookLM, and Real-Pod. This likely
reflects that real-world podcasts prioritize guest expertise and availability over timbre differences.
PodAgent demonstrates an effective automated voice selection process for podcast creation.

DNSMOS. The DNSMOS metric was applied to all systems to evaluate speech quality as in Figure
3-(4). PodAgent, MoonCast, MuyanTTS, MOSS-TTSD, and NotebookLM achieve similar scores,
while Real-Pod and Dia show noticeable declines in speech quality. For Real-Pod, the lower scores
are due to: (1) real podcasts often use MSE for enhancement, requiring speech-MSE separation
before evaluation, which may leave residual MSE artifacts, and (2) human-created podcasts involve
recording, editing, or post-processing that introduce noise or instability. Dia struggles with long-
form speech synthesis. Its outputs for lengthy podcast scripts frequently feature overly fast speaking
speeds and occasional sentence truncations, leading to its relatively low DNSMOS performance.

Table 3: Dialogue Naturalness Evaluation - statistical information for filtering.

Judger 1 2 3 4 5 6 7 8 9 10

LQ Last (%) 94.12 100 100 100 100 100 100 100 100 100
HQ Top2 (%) 88.24 88.24 58.82 58.82 94.12 64.71 17.65 58.82 64.71 94.12

Judger 11 12 13 14 15 16 17 18 19 20

LQ Last (%) 94.12 100 100 100 100 100 100 76.47 100 100
HQ Top2 (%) 94.12 82.35 64.71 82.35 88.24 58.82 64.71 47.06 52.94 35.29

Dialogue Naturalness Evaluation. We released the task on Prolific2, requesting 20 native English-
speaking participants from the US/UK. We set the filter rules as: 1) Over 90% of LQ samples must
be marked as the worst, as the synthesized samples from eSpeak are obviously robotic and unnatural.
2) Over 50% of HQ samples must rank in the top-2 best. While it is possible for other systems to

2https://www.prolific.com/
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achieve a better score than the real podcast, the evaluation of the real podcast should also remain
above average. Table 3 presents the two statistical metrics for the submission results. Based on these
rules, Judger-7, 18 and 20 can be excluded. We also provide the box plot for each Judger in Figure
9 in the appendix for more advanced analysis. For instance, apart from the LQ samples, Judger-20
assigns similar scores to all other systems, further confirming the invalidity of this submission.

Figure 4: Dialogue Naturalness Evaluation - overall result.

Result Analysis. After excluding unqualified submissions, we analyzed system performance based
on the remaining 17 valid submissions. Figure 4 presents the final results. We can observe that
dialogue segments from real podcasts (HQ) achieved the highest scores, which aligns with expecta-
tions. NotebookLM, a closed-source product, ranked second, reflecting the high naturalness of its
synthesized dialogue speech. Among the three open-source podcast generation systems, PodAgent
scored the lowest, which is reasonable since its backend TTS system, CosyVoice2, is limited to
single-sentence synthesis. In contrast, MoonCast and MOSS-TTSD, which support direct dialogue
synthesis, performed better in dialogue naturalness evaluations. Overall, the evaluation results align
with expectations, validating the rationality and effectiveness of our evaluation method design.

7.3 AUDIO-BASED EVALUATION

Figure 5: Density distributions of audio-based objective metrics.

Loudness. Figure 5 presents the density distribution of loudness-related metrics, enabling a com-
parative analysis with the reference range. All seven systems are included. For LOUD IT, Dia
and MoonCast align well with the reference range, while NotebookLM’s loudness centers around
-25. Real-Pod, as manually produced audio, shows a highly scattered loudness distribution. For
LOUD TP, Muyan-TTS performs best, with all samples maintaining a true peak loudness below -1.
In contrast, MoonCast, Dia and MOSS-TTSD perform poorly, while Real-Pod continues to exhibit
scattered results. For LOUD RA, MoonCast has a relatively narrow loudness variation range, while
PodAgent and MOSS-TTSD display richer variance. Quantitative scores are detailed in Table 9.

SMR and CASP. PodAgent and Real-Pod are evaluated for these MSE-related metrics. From the
density distribution in Figure 5, PodAgent exhibits a more concentrated distribution compared to
Real-Pod. For SMR, the SMR SCORE in Table 9 shows that all PodAgent samples achieve an
SMR greater than 0, whereas some Real-Pod cases fail to meet this requirement. For CASP, a
higher score indicates better MSE-Speech harmony. Real-Pod demonstrates a higher upper limit,
which is expected as exceptional human artistic creations naturally surpass AI-generated outputs.
However, PodAgent delivers more consistent performance, and the overall gap between the two
systems is not significant, making it an alternative way to enhance creative efficiency.

8
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Questionnaire-based MOS Test. We recruited native English speakers from Prolific for this test.
Section 6 describes our final test design. Prior to this, we conducted a Pilot Test using the question-
naire design in Figure 10. Based on feedback, we made the following improvements: 1) Reduced
the scoring scale from 10 to 5 with clear definitions to reduce ambiguity and improve consistency.
2) Refined the questions to introduce perceptual and preference-based considerations. 3) Added a
justification requirement for each question. These changes increased the pass rate from 75% to 90%.

In addition to direct scores, we also derive a corresponding score based on users’ justifications.
Specifically, given justification texts from multiple systems for the same question, GPT-4 uses the
following prompt to score: ”For each system, summarize the corresponding comments into one
sentence and assign a score between 1 and 5.” A detailed experiment setup is provided in Appendix
A.5.2, and separate scores are listed in Table 10. Figure 6 shows the final results, averaging the
direct score and the justification-based score. From the result, we can observe that:

• Speech (naturalness and authenticity) is the most dominant factor affecting the listener’s experi-
ence. In Section 7.2, PodAgent scored low in dialogue naturalness due to using a single-sentence
synthesis TTS system, leading to consistently poor results in this MOS test. This outcome is
expected, as dialogue speech is the core component of podcast-like audio programs. Although
PodAgent’s Music/Sound (harmony) score is below Real-Pod (consistent with the results of ob-
jective metric - CASP), it is significantly higher than its scores in other metrics, indicating that
the gap between PodAgent and Real-Pod in music harmony is smaller than in speech naturalness.

• Real podcasts perform best in most metrics (5/7). Real-Pod significantly outperforms other sys-
tems on holistic metrics like Engagement Level (EL) and Human Likelihood (HL). However, Full
Episode Willingness (FEW) scores are low across all systems, with NotebookLM and Real-Pod
scoring similarly. This highlights the value of perceptual and preference-based question design in
the test. FEW, a preference-based question, garnered justifications like “the topic is not of interest
to me” for lower scores. In contrast, higher scores for EL and HL indicate that users tend to ex-
clude subjective factors (e.g., personal topic interest) when rating audio performance. A similar
pattern is observed in Information Delivery (effectiveness) and Speaker Expression (preference).

• In the Audio Quality metric, while PodAgent and MOSS-TTSD score lower than Real-Pod, PodA-
gent performs better here than in other metrics, and NotebookLM slightly surpasses Real-Pod. As
noted, human-made podcasts often exhibit inconsistent audio quality due to complex production.
User feedback, like “Little bit of mic hiss/bloom but otherwise fine,” supports this observation.
This highlights that when conversational realism approaches that of real speech, AI-based meth-
ods offers an advantage in their controllability and consistency in producing high-quality audio.

Figure 6: Questionnaire-based MOS test

8 CONCLUSION

PodEval is the first comprehensive evaluation framework for podcast-like audio generation, tackling
the challenges of assessing open-ended, long-form content. We constructed a real-world podcast
dataset as a benchmark for human-level creative quality across diverse topics and formats. By de-
composing evaluation into text, speech, and audio, PodEval introduced multidimensional methods
combining objective metrics and well-designed subjective listening tests. Experiments with various
podcast generation systems, including open-source, closed-source, and human-made examples, val-
idated the framework’s effectiveness. The results offer insights into the strengths and weaknesses
of different systems (e.g. Figure 14), highlighting PodEval’s role in advancing podcast generation
research and inspiring future work on evaluating open-ended, long-form content generation task.

9
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9 ETHICS STATEMENT

This work introduces PodEval, a comprehensive framework for evaluating podcast-like audio gener-
ation, with careful consideration of ethical implications. The Real-Pod dataset was constructed us-
ing publicly available podcasts in alignment with fair use, avoiding sensitive or private data. Instead
of directly providing audio files, the dataset offers publicly accessible download links and down-
load toolkit to reduce the risk of misuse and ensure proper attribution. Subjective evaluations were
conducted using crowdsourced workers recruited through the Prolific platform, with compensation
exceeding the platform’s minimum wage requirements. Reliability was ensured through attention-
check questions and clear instructions for participants. To mitigate bias, the framework incorporates
diverse topics and evaluators, promoting inclusivity and fairness. While PodEval aims to advance
AI-assisted podcast generation, we emphasize its role as a tool to enhance, not replace, human
creativity. PodEval is designed to foster innovation while adhering to principles of transparency,
fairness, and ethical AI development.

10 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, the PodEval framework is fully open-source and accessi-
ble at https://anonymous.4open.science/r/PodEval-iclr (an anonymized version
to comply with conference requirements). The repository contains all necessary datasets, scripts, and
tools to replicate the experiments described in this paper.

HOW TO USE THE REPOSITORY

1. Clone the Repository.

2. Set Up the Environment according to the README.

3. Proccess dataset or Run Evaluations following the corresponding instructions.

REPOSITORY STRUCTURE

The repository is organized into the following directories:

• Real Pod/

– Provides the Real-Pod dataset, a curated collection of real-world podcast episodes. Includes
51 topics across 17 categories, representing diverse podcast scenarios.

– See Real Pod/README.md for dataset preparation and usage instructions.

• Text Eval/

– Tools for text-based evaluation of dialogue scripts. Includes both Quantitative Metrics and
LLM-as-a-Judge methods.

– See Text Eval/README.md for instructions on running text evaluations.

• Speech Audio Objective Evaluation/

– Toolkit for objective evaluation of podcast audio and speech quality. Includes DNSMOS,
WER, SIM, SPTD, Loudness, SMR, and CASP.

– See Speech Audio Obj Eval/README.md for metric calculations and usage.

• Subjective Listening Tests/

– Framework for subjective human evaluations of podcast speech and audio. One is Dialogue
Naturalness Evaluation and the other one is Questionnaire-based MOS Test.

– See Subjective Listening Tests/README.md for test setup and implementation
details. We also provide website demo link1 link2 that allow users to intuitively view the test
design and participate it.

By following the provided instructions and leveraging the structured tools within each directory,
users can reproduce all experiments and adapt PodEval for further research.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) utilized in this work are as follows:(1) Topics Initiation during data
processing of the Real-Pod dataset, which is elaborated in Section 3. (2) LLM-as-a-Judge method in
text-based evaluation, which is illustrated in Section 4. (3) Summarized Users’ Justifications in the
Questionnaire-based MOS Test, which is described in Section 7.3 (Questionnaire-based MOS Test).

A.2 TEXT-BASED EVALUATION

A.2.1 QUANTITATIVE METRICS

Table 4: GPT-4: Quantitative metrics in text-based evaluation.

Metrics Overall Fiction Education Business True Crime Health & Fitness

Distinct 2 0.9619 0.9643 0.9588 0.9567 0.9689 0.9638
Info-Dens 6.4507 6.5865 6.4569 6.3213 6.6541 6.3880
Sem-Div 0.1293 0.1204 0.1115 0.1214 0.1443 0.1106
MATTR 0.6914 0.7027 0.6989 0.6933 0.6831 0.6870

Metrics Sports Comedy History News TV & Film Society & Culture

Distinct 2 0.9536 0.9633 0.9471 0.9486 0.9678 0.9659
Info-Dens 6.4228 6.2256 6.3792 6.3225 6.7614 6.6473
Sem-Div 0.1248 0.1356 0.1451 0.1208 0.1553 0.1507
MATTR 0.6973 0.6922 0.6905 0.6756 0.6903 0.6901

Metrics Arts Leisure Music Kids Mental Health Science & Tech

Distinct 2 0.9675 0.9729 0.9555 0.9559 0.9699 0.9710
Info-Dens 6.5054 6.5233 6.4119 6.2310 6.4787 6.3454
Sem-Div 0.1374 0.1117 0.1320 0.1229 0.1247 0.1286
MATTR 0.6885 0.7136 0.6677 0.6884 0.6994 0.6960
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Table 5: PodAgent: Quantitative metrics in text-based evaluation.

Metrics Overall Fiction Education Business True Crime Health & Fitness

Distinct 2 0.9741 0.9743 0.9730 0.9758 0.9796 0.9825
Info-Dens 7.1767 7.3791 7.2163 7.1126 7.1810 7.2927
Sem-Div 0.1372 0.1384 0.1210 0.1254 0.1514 0.1171
MATTR 0.7216 0.7399 0.7291 0.7258 0.7263 0.7386

Metrics Sports Comedy History News TV & Film Society & Culture

Distinct 2 0.9678 0.9808 0.9483 0.9735 0.9782 0.9744
Info-Dens 7.1239 7.1600 7.1004 7.1282 7.3311 6.9568
Sem-Div 0.1487 0.1236 0.1543 0.1379 0.1690 0.1344
MATTR 0.7183 0.7248 0.6752 0.7156 0.7274 0.7119

Metrics Arts Leisure Music Kids Mental Health Science & Tech

Distinct 2 0.9701 0.9790 0.9739 0.9747 0.9815 0.9725
Info-Dens 7.1977 7.3227 7.0558 7.0930 7.1822 7.1711
Sem-Div 0.1283 0.1445 0.1440 0.1353 0.1259 0.1331
MATTR 0.7101 0.7275 0.7114 0.7279 0.7328 0.7249

Table 6: MoonCast: Quantitative metrics in text-based evaluation.

Metrics Overall Fiction Education Business True Crime Health & Fitness

Distinct 2 0.9128 0.9219 0.8998 0.8952 0.9132 0.9478
Info-Dens 6.0935 6.3613 5.9779 5.9931 6.0388 6.4230
Sem-Div 0.1326 0.1515 0.1079 0.1326 0.1405 0.1324
MATTR 0.6323 0.6598 0.6237 0.6310 0.6391 0.6698

Metrics Sports Comedy History News TV & Film Society & Culture

Distinct 2 0.9159 0.9232 0.9169 0.9047 0.9408 0.8959
Info-Dens 6.1933 6.1729 6.2229 5.9672 6.2855 5.8031
Sem-Div 0.1451 0.1311 0.1460 0.1176 0.1318 0.1282
MATTR 0.6402 0.6435 0.6276 0.6111 0.6595 0.6121

Metrics Arts Leisure Music Kids Mental Health Science & Tech

Distinct 2 0.9252 0.8889 0.8957 0.9039 0.9222 0.9073
Info-Dens 6.2335 5.9713 5.9411 5.9291 6.0298 6.0459
Sem-Div 0.1444 0.1309 0.1227 0.1291 0.1187 0.1432
MATTR 0.6370 0.6124 0.6035 0.6183 0.6321 0.6277
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Table 7: Real-Pod: Quantitative metrics in text-based evaluation.

Metrics Overall Fiction Education Business True Crime Health & Fitness

Distinct 2 0.9200 0.9292 0.9275 0.9049 0.9169 0.9273
Info-Dens 8.1168 8.2849 8.1160 7.7755 8.5675 7.9301
Sem-Div 0.1677 0.1776 0.1579 0.1433 0.1906 0.1646
MATTR 0.6251 0.6313 0.6346 0.6041 0.6261 0.6380

Metrics Sports Comedy History News TV & Film Society & Culture

Distinct 2 0.9244 0.8994 0.9272 0.9100 0.9201 0.8932
Info-Dens 8.0993 8.2755 8.8282 7.7886 8.4005 7.7375
Sem-Div 0.1919 0.1660 0.1845 0.1618 0.1784 0.1701
MATTR 0.6434 0.5999 0.6304 0.6102 0.6363 0.5823

Metrics Arts Leisure Music Kids Mental Health Science & Tech

Distinct 2 0.9111 0.9242 0.9420 0.9092 0.9298 0.9439
Info-Dens 8.1093 7.6949 8.0925 7.7708 8.2119 8.3031
Sem-Div 0.1653 0.1591 0.1761 0.1492 0.1668 0.1485
MATTR 0.6063 0.6176 0.6513 0.6200 0.6373 0.6582

A.2.2 LLM-AS-A-JUDGE

Table 8: LLM-as-a-Judge: comparison between GPT-4 and PodAgent. Scores range from -3 to
3. Positive values indicate that PodAgent outperforms GPT-4; Negative values suggest the opposite.

Metrics Overall Fiction Education Business True Crime Health & Fitness

Coherence 0.7059 0.5000 0.8333 1.0000 1.0000 0.6667
Engagingness 1.0294 1.1667 1.0000 1.1667 0.6667 1.1667
Diversity 1.1765 1.3333 1.0000 1.3333 0.8333 1.5000
Informativeness 1.6078 1.5000 1.6667 2.0000 1.1667 1.6667
Speaker Difference 1.0637 0.9167 1.0000 1.1667 0.6667 1.0000
Overall 1.3064 1.2500 1.3333 1.6667 0.8333 1.2500

Metrics Sports Comedy History News TV & Film Society & Culture

Coherence 0.5000 0.8333 1.1667 0.6667 0.8333 0.1667
Engagingness 1.1667 1.5000 1.5000 0.6667 0.1667 0.6667
Diversity 1.1667 1.8333 1.5000 1.3333 1.3333 0.8333
Informativeness 1.5000 2.1667 1.5000 2.0000 1.3333 0.8333
Speaker Difference 1.1667 1.5000 1.1667 1.3333 1.1667 1.3333
Overall 1.5000 1.8333 1.5000 1.5000 0.8333 0.5000

Metrics Arts Leisure Music Kids Mental Health Science & Tech

Coherence 0.6667 0.5000 0.6667 0.5000 0.3333 1.1667
Engagingness 1.1667 1.1667 1.1667 1.0000 0.8333 1.3333
Diversity 1.1667 1.1667 1.0000 1.0000 0.3333 1.3333
Informativeness 1.8333 2.0000 1.8333 1.3333 1.1667 1.8333
Speaker Difference 1.3333 1.1667 0.8333 0.8333 0.6667 0.8333
Overall 1.5000 1.6667 1.5000 1.1667 0.8333 1.5417

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 SPEECH-BASED EVALUATION (SUBJECTIVE)

Figure 7: Dialogue Naturalness Evaluation - Instruction page.

Figure 8: Dialogue Naturalness Evaluation - Test page.
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Figure 9: Dialogue Naturalness Evaluation test results from each juders.
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A.4 AUDIO-BASED EVALUATION (OBJECTIVE)

IDL: LOUD-IT; TP: LOUD-TP; LRA: LOUD-RA.

SIDL =


1, −18 ≤ IDL ≤ −14,

e−k1·(−18−IDL), IDL < −18,

e−k2·(IDL+14), −14 < IDL,
(2)

where k1 is set as 0.0858 to ensure SIDL is around 0.6 when IDL = −23, and k2 is set as 0.3291 to
make SIDL close to 0 when IDL = 0.

STP =

{
1, TP ≤ −1

e−k3·(TP+1), TP > −1
(3)

where k3 is set as 4.605 to ensure STP is close to 0 when TP approaches 0.

SLRA =


1, 4 ≤ LRA ≤ 18,

e−k4·(4−LRA), LRA < 4,

e−k5·(LRA−18), LRA > 18.

(4)

where k4 is set as 1.1513 to ensure SLRA approaches 0 when LRA = 0, and k5 is set as 0.2554 to
ensure SLRA ≈ 0.6 when LRA = 20.

Table 9: Audio-based objective metrics - Quantitative scores.

System LOUD IT SCORE LOUD TP SCORE LOUD LRA SCORE SMR BASIC SCORE CASP

Real-Pod 0.72 0.53 0.82 0.99 0.58
PodAgent 0.80 0.32 1.00 1.00 0.56
MoonCast 1.00 0.01 0.68 - -
Muyan-TTS 0.88 1.00 0.83 - -
Dia 0.98 0.01 0.95 - -
MOSS-TTSD 0.88 0.02 0.99 - -
NotebookLM 0.51 0.56 1.00 - -
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A.5 AUDIO-BASED EVALUATION (SUBJECTIVE)

A.5.1 PILOT TEST

Figure 10: Questionnaire-based MOS test - Pilot test version.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.5.2 QUESTIONNAIRE-BASED MOS TEST

Experiment Settings: Lengthy listening tests can be exhausting and may lead to inaccurate feed-
back. It is essential to ensure the overall test duration does not exceed 30 minutes. In the
Questionnaire-based MOS Test, each audio sample is around 3 minutes and requires answering 10
questions with corresponding justifications. Based on the Dialogue Naturalness Test results shown
in Figure 7.2, we selected 4 representative systems. Each test group included four podcast samples
from different systems but within the same podcast category. According to actual test results, each
group took an average of 24 minutes to complete. The 4 representative systems are:

• PodAgent: An open-source podcast generation framework incorporating conversation script gen-
eration, automatic voice selection, speech synthesis, and BMSE enhancement.

• MOSS-TTSD: Achieved the highest score among the open-source systems utilized in the Dia-
logue Naturalness Evaluation (Figure 7.2).

• NotebookLM: A pioneering podcast generation product, widely recognized for its exceptional
performance, is nearly indistinguishable from real podcasts.

• Real-Pod: A collection of podcasts sourced from the real world.

Figure 11: Questionnaire-based MOS test - Final version - Instruction page.
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Figure 12: Questionnaire-based MOS test - Final version (Question 1-5).
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Figure 13: Questionnaire-based MOS test - Final version (Question 6-9).
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Table 10: Questionnaire-based MOS test - (Q.) represents the average score from the direct scoring
answers, and (J.) represents the score derived from the justifications.

Metrics
Systems

MOSS-TTSD NotebookLM PodAgent Real-Pod

Q. J. Q. J. Q. J. Q. J.

Information Delivery 4.0 3.0 4.2 4.0 1.6 1.0 4.2 4.0
Music/Sound Effects N/A N/A N/A N/A 2.4 2.0 3.3 3.0
Engagement Level 2.2 3.0 3.1 3.0 1.1 1.0 3.6 4.0
Full Episode Likelihood 2.1 2.0 2.1 3.0 1.0 1.0 2.3 3.0
Human Likelihood 3.0 3.0 3.3 3.5 1.1 1.0 4.2 4.0
Audio Quality 3.5 3.0 4.2 4.0 3.0 2.0 3.9 4.0
Speaker Expression 3.3 3.0 4.0 3.0 1.5 1.0 3.4 4.0

A.6 SYSTEM ANALYSIS REPORT

PodAgent
PodAgent is an open-source podcast generation framework that integrates 

conversation script generation, automatic voice selection, speech synthesis, and 
music/sound effects (MSE) enhancement.

• Comprehensive Automation
PodAgent supports a multi-agent system ("Host-
Guest-Writer") that generates informative 
conversation scripts and automates voice 
selection, making it a versatile tool for podcast 
creation.

• Music/Sound Effects Integration
PodAgent performs well in MSE-related metrics, 
such as Speech-to-Music Ratio (SMR) and CASP 
(MSE-Speech Harmony). While it does not match 
the upper limits of human-made podcasts, its 
results are consistent, making it a practical 
alternative for efficient audio program creation.

• Objective Speech Quality
PodAgent demonstrates competitive performance 
in objective metrics like DNSMOS (speech quality), 
showcasing its ability to produce clear and 
intelligible speech.

• Open-Source Advantage
Being open-source, PodAgent is accessible for 
public use and research, enabling further 
refinement and experimentation.

• Dialogue Naturalness
PodAgent scored poorly in subjective dialogue 
naturalness tests, attributed to its reliance on a 
single-sentence synthesis TTS system 
(CosyVoice2). 

• Speaker Similarity
In terms of Speaker Similarity (SIM), PodAgent 
underperformed compared to other systems. Its 
instruction-following style control strategy 
sacrifices vocal fidelity to enhance conversational 
expressiveness.

• Short Scripts
The evaluation shows that PodAgent-generated 
podcast scripts lack the richness and diversity of 
real-world podcasts, which are typically longer and 
more information-dense.

• Upgrade to Dialogue Synthesis TTS: Transitioning to a multi-sentence or dialogue-level TTS 
system could significantly improve naturalness and interactivity. 

• Enhance Speaker Similarity: Refining the instruction-following mechanism to improve speaker
similarity for better timbre consistency in the long-form podcast.

• Longer Script Generation: Developing methods to handle longer, richer scripts could close the 
gap with real podcasts in terms of content diversity and informativeness.

Strengths Weaknesses

Potential Improvements

Figure 14: System analysis report based on PodEval - PodAgent.
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A.7 WSIM AMONG DIFFERENT SYSTEMS

Figure 15: WSIM among different systems.

A.8 INTER RATER RELIABILITY

Figure 16: Pearson Correlation among Different Human Judgers.
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