
You Only Live Once: Single-Life Reinforcement
Learning via Learned Reward Shaping

Anonymous Author(s)
Affiliation
Address
email

Abstract

Reinforcement learning algorithms are typically designed to learn a performant1

policy that can repeatedly and autonomously complete a task, typically starting2

from scratch. However, many real-world situations operate under a different set of3

assumptions: the goal might not be to learn a policy that can do the task repeatedly,4

but simply to perform a new task successfully once, ideally as quickly as possible,5

and while leveraging some prior knowledge or experience. For example, imagine6

a robot that is exploring another planet, where it cannot get help or supervision7

from humans. If it needs to navigate to a crater that it has never seen before in8

search of water, it does not really need to acquire a policy for reaching craters9

reliably, it only needs to reach this particular crater once. It must do so without the10

benefit of episodic resets and tackle a new, unknown terrain, but it can leverage11

prior experience it acquired on Earth. We formalize this problem setting, which12

we call single-life reinforcement learning (SLRL), where an agent must complete13

a task once while contending with some form of novelty in a single trial without14

interventions, given some prior data. In this setting, we find that algorithms15

designed for standard episodic reinforcement learning can struggle, as they have16

trouble recovering from novel states especially when informative rewards are17

not provided. Motivated by this observation, we also propose an algorithm, Q-18

weighted adversarial learning (QWALE), that addresses the dearth of supervision19

by employing a distribution matching strategy that leverages the agent’s prior20

experience as guidance in novel situations. Our experiments on several single-21

life continuous control problems indicate that methods based on our distribution22

matching formulation are 20-60% more successful because they can more quickly23

recover from novel, out-of-distribution states.24

1 Introduction25

When building autonomous agents for the natural world, often the goal is not to learn a performant26

policy but rather to get something done, perhaps even suboptimally. For example, an agent exploring27

on Mars looking for water will only need to complete its mission a single time. As another example,28

a rescue robot will need to recover valuables from a particular burning building only once. While29

the agent may have access to prior data about its task, a challenge arises from the fact the agent is30

inevitably going to have to contend with some form of novelty. In the prior examples, the agent31

on Mars may have to contend with unknown terrain and environmental conditions, and the rescue32

agent may find certain paths in the building unpassable due to the fire. We formalize this setting as33

the single-life reinforcement learning (SLRL) setting, where the agent is evaluated on its ability to34

complete a task in a single trial autonomously without episodic resets. Importantly, the given online35

task contains an aspect of novelty not present in the prior data although the task objective remains the36

same. The agent’s objective is to complete the given task as quickly as possible, rather than learn a37

policy that can repeatedly complete the task.38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Figure 1: We study the single-life reinforcement learning (SLRL) problem, where given prior data, an agent
must complete a task autonomously in a single trial in a domain with a novel distribution shift.

We find that algorithms designed for episodic policy learning can struggle to complete single-life39

tasks, even when initialized with prior data. These algorithms empirically struggle to recover from40

novel states. In episodic RL, the agent can rely on a reset to recover from an unfamiliar state. In41

contrast, in SLRL, the agent will inevitably fall off the distribution of prior data and must find its way42

back to a good state distribution on its own. We find that fine-tuning a pre-trained value function via43

online RL will not explicitly encourage the agent to get back on distribution. We hypothesize that44

biasing exploration towards the known distribution represented in prior data and incentivizing the45

agent to stay there may be suboptimal from a policy learning perspective but may enable the agent to46

get the task done more quickly, which is what we care about in SLRL. While shaped rewards may47

help the agent find its way back and ultimately complete the desired task, the agent may often find48

itself in a sparse reward environment or with access to rewards that are not informative enough to be49

guided towards task completion.50

Adversarial imitation learning (AIL) approaches such as GAIL ([21]) can potentially provide the51

desired reward shaping via distribution matching. However, using existing AIL methods naively may52

not give the intended behavior in the SLRL setting due to two main shortcomings. First, such methods53

assume expert demonstrations are given as prior data, but in SLRL, we may be given suboptimal54

offline prior data. Second, AIL methods train the agent to match the entire distribution of prior55

data, which may be key to learning an optimal policy, but may be a drawback in our setting, as the56

agent might not be consistently guided towards task completion. To address these shortcomings, we57

propose a method in which different states in the prior data are weighted different amounts by their58

estimated Q-value. More concretely, we propose a Q-weighted AIL approach that incentivizes the59

agent to move towards states in the prior data with higher value than its current state, so that agent60

may be guided consistently towards states closer to task completion.61

Our contributions are as follows. First, we formalize the SLRL problem setting, which we believe to62

be a useful framework for modeling many situations in the real world. We next provide an intuitive63

argument and empirical analysis suggesting that learned reward shaping via distribution matching is64

better suited for this setting than finetuning without additional reward shaping. We identify challenges65

that uniquely arise in the SLRL setting with existing distribution matching approaches and propose66

a new approach, Q-weighted adversarial learning (QWALE), which is less sensitive to the quality67

of prior data available and provides the agent with a shaped reward towards completing the desired68

task a single time. Through our experiments, we explore the performance of different approaches in69

SLRL. We find that QWALE can meaningfully guide the agent to explore the state distribution in its70

prior data to complete the desired novel task 20-60% more successfully on four separate domains71

compared to existing distribution matching approaches and RL fine-tuning.72

2 Related Work73

Autonomous RL. In the context of deep RL, agents typically (but not always) are trained in episodic74

setting and are evaluated on the quality of the learned policy. Several recent works have developed75

algorithms that can learn without episodic resets [18, 6, 63, 42, 44, 15, 16, 24, 43]. Like our work,76

such methods aim to make it possible to learn without any episodic resets, but are typically still77

focused on acquiring an effective policy that can perform the task repeatedly, typically by training78

some auxiliary controller to enable the policy to “retry” the task multiple times without resets. In79

contrast, our aim is to develop an algorithm that can solve the task once, but as quickly as possible,80

which introduces a unique set of challenges as we discussed above.81

2

Continual RL. There is a rich literature on reinforcement learning in the continuing setting [29,82

41, 47, 60, 37, 28, 55] that considers maximizing the average reward accumulated over an infinite83

horizon without episodic resets. Such works often also consider regret minimization as the objective.84

SLRL is closely related, and can be viewed as a special case where the agent has access to a prior85

offline dataset and aims to solve a single task as quickly as possible in a new domain. While the focus86

in continual learning is on general “lifelong” methods or on exploration, our focus is on effectively87

leveraging prior data in a setting that is meant to be reflective of real-world tasks (for example, in88

robotics).89

Leveraging offline data in online RL. Learning expert policies given prior interaction data has been90

extensively studied in imitation learning [1, 38, 13], inverse RL [33, 8, 65, 66], RL for sparse reward91

settings [3, 32, 36, 20, 50] and offline RL [27, 26, 23, 56, 32]. Across all these diverse topics, the goal92

is to learn a competent policy that can solve the task efficiently whereas the objective in this work is93

to complete the task in a single trial as quickly as possible. To this end, we build on recent adversarial94

approaches to inverse RL [21, 11, 45, 49, 25, 64] to encourage agent’s state visitation towards expert95

prior data where the agent is likely to be successful. Prior methods have also studied adversarial96

inverse RL and imitation learning with non-expert data [51, 46, 57, 52, 54, 53, 5, 2]. However, as97

we discuss in Section 6, these approaches need to be adapted for the SLRL setting to be efficient at98

completing the task and to handle novelty, for example when the dynamics may have changed.99

Transfer and adaptation in RL. Many prior works have studied the problem of adapting in presence100

of shifts between train and test settings, often in a specific problem setting such as sim2real trans-101

fer [40, 48, 35, 30] or fast adaptation via meta-learning [9, 34, 31, 67, 10]. A common theme in these102

works is that the algorithm can often train in preparation for adaptation at test-time, thus affecting the103

prior experiences it may collect. In contrast, the SLRL setting lays algorithmic emphasis on online104

exploration and adaptation, as the agent has access to fixed prior dataset of experiences. Other transfer105

learning approaches adapt the weights of the policy to a new environment or task, either through rapid106

zero-shot adaptation [19, 61] or through extended episodic online training [22, 39, 7, 59, 58]. Unlike107

the latter, we focus on adaptation within a single episode, but, unlike the former, with a focus on108

extended exploration and learning over tens of thousands of timesteps. This problem setting leads to109

unique challenges, namely that the agent must autonomously recover from mistakes, hence requiring110

a distinct approach.111

3 Preliminaries112

In this section, we describe some preliminaries before formalizing our problem statement in the113

following section. We consider an agent that operates in a Markov decision process (MDP) consisting114

of the tuple M = (S,A, p,R, ρ, γ), where S is the state space, A is the agent’s action space,115

p(st+1|st, at) represents the environment’s transition dynamics, R : S → R indicates the reward116

function, ρ : S → R denotes the initial state distribution, and γ ∈ [0, 1) denotes the discount117

factor. In typical reinforcement learning, the objective is find a policy π that maximizes J(π) =118

Eτ∼π[
∑∞

t=0 γ
tR(st)].119

Although our method is a reward-driven RL algorithm, we utilize concepts from imitation learning120

to overcome sparse rewards, utilizing potentially suboptimal prior data. To this end, we build on121

adversarial imitation learning (AIL), which uses prior data Dprior in the form of expert demonstrations122

(we will relax this requirement) to recover the expert’s policy. One such method is GAIL [21], which123

finds a policy πθ that minimizes the Jensen-Shannon divergence between its stationary distribution124

and the expert data. It does so by training a discriminator network D : S ×A → (0, 1), alternating125

updates with updates to the policy π. Concretely, D and π are learned by optimizing the following:126

minπ maxD∈(0,1)S×A Eπ[log(D(s, a))]+EπE
[log(1−D(s, a))]−λH(π). In Section 5, we will see127

that AIL-style discriminator-based approaches can be adapted to the SLRL problem setting without128

demonstration data, and will therefore form the basis of our method.129

4 Single-Life Reinforcement Learning130

In this section, we formalize our problem setting, the single-life reinforcement learning (SLRL)131

problem. The defining characteristic of SLRL is that the agent is given a single “life”, i.e. trial, to132

complete a desired task, with the trial ending when the task is completed. The agent must complete133

the task autonomously, without access to any human interventions or resets.134

In the real world, when faced with situations where a task must be completed once, an agent typically135

has some prior knowledge. E.g., an agent tasked with finding water on Mars may have experience136

3

Figure 2: We visualize the online state visitation plots in the Tabletop and Pointmass environments of a
single-life trial using SAC finetuning. We plot the location of the mug throughout the agent’s single life for the
tabletop and the location of the agent for the pointmass, colored green to blue by timestep, along with expert
demo states (purple). In both environments, the agent fails to recover from novel states and complete the task.

looking for water in a desert on Earth. We will therefore assume access to offline prior data of some137

sort that the agent may use for pretraining and during its single life. In many cases such as the Mars138

example, we may not have expert prior data of the desired task in the desired environment. Hence, we139

emulate this setting by providing the agent with prior data from a related environment and deploying140

its single life on a domain with a distribution shift.141

We can formalize this setting as follows. We are given prior data Dprior, which consists of transitions142

from some source MDPMsource. The agent will then interact with a target MDP defined byMtarget =143

(S,A, p,R, ρ, γ). We assume that the the target MDP has an aspect of novelty not present in the144

source MDP, such as different dynamics p(st+1 | st, at) or a different initial state distribution ρ.145

Naturally, the more similar the domains are, the easier the problem becomes, and the effectiveness of146

any algorithm will be strongly dependent on the degree of similarity, though formalizing a precise147

assumption on similarity between the source and target domain is difficult. The reward between the148

two MDPs is the same, meaning the agent is still trying to accomplish the same task in the target149

domain as in the source. The problem setting may be extended to include multiple source MDPs or a150

series of target MDPs.151

The goal in SLRL is to accumulate as much reward as possible in a single trial inMtarget. Maintaining152

the same notation as the previous section, the SLRL problem aims to maximize J =
∑h

t=0 γ
tR(st),153

where h is the trial horizon, which may be∞. In general, we expect the task reward to be such that154

learning only from task rewards during the single life is difficult, for example because the reward is155

very sparse or even awarded only upon successful completion of the task (which can only happen156

once in the entire single life deployment). We assume that there are no sink states beyond a terminal157

success state, such that it is possible for the agent to autonomously recover from any mistake.158

Note that this setup is essentially the same as the widely studied regret minimization problem in159

exploration [29]. However, while regret minimization is typically studied in the context of RL160

exploration theory, our aim with SLRL is to study a particular special case of the more general regret161

minimization framework that is meant to reflect a realistic setting in real-world RL (e.g., robotics)162

where an agent with prior experience must solve a task in a single (potentially long) trial.163

As we analyze in Section 5, algorithms designed for episodic policy learning do not perform well164

in the SLRL problem setting, even when the policy and replay buffer are pre-trained and seeded165

with the prior data, because they do not quickly recover from mistakes to get back onto a good state166

distribution. In Section 6, we will discuss an approach based on distribution matching that attempts167

to address this issue.168

5 Single-Life Performance of Online RL169

Now that we have described the problem setting, we now empirically analyze online RL, which is170

designed for episodic learning, in the SLRL setting. Namely, we consider finetuning SAC [17], which171

pre-trains a policy and value function in the source setting and fine-tunes during the single trial in the172

target environment.173

4

As we will see in Section 7, finetuning SAC performs poorly in the SLRL setting. We save the174

details of the experimental setup until Section 7, but to first motivate the use of distribution-matching175

approaches in our problem setting, we analyze the state visitation of SAC finetuning in the online176

phase for the Tabletop and Pointmass domains (see Figure 2). A key challenge of SLRL (and also177

fully autonomous RL in general) is that if the agent falls off of the distribution, it cannot rely on178

resets to get back on track. Since there is a gap between the source and target domains, the agent179

will inevitably find itself in states that are out of distribution from the prior data. A value function180

pre-trained on the source data could in principle be used to evaluate states and guide the agent back181

towards good states, but it will be inaccurate on states outside of the prior data [12]; then, when the182

value of some of those out-of-distributions states is overestimated, the value function may misguide183

the policy away from good states. Hence, fine-tuning a pre-trained value function via online RL will184

not explicitly encourage the agent to get back on distribution, especially in sparse reward envs. As a185

result, the agent may spend a lot of time (perhaps infinite time) drifting once it falls out of distribution,186

which we see occurs in Figure 2.187

On the other hand, distribution-matching methods like GAIL [21] will explicitly encourage the188

agent to get back on distribution, by giving higher rewards on distribution than off distribution.189

However, existing adversarial imitation learning methods assume that the prior data consists of190

expert demonstrations, and they train the agent to match the entire demo distribution, which is not191

necessarily the ideal distribution to match. In the following section, we will discuss a method that192

aims to address these shortcomings.193

6 Q-weighted Adversarial Learning (QWALE)194

In this section, we will present our method for addressing SLRL, which we call QWALE. The key195

insight in QWALE is to utilize the prior data Dprior to handle the sparse and uninformative reward196

information in the target domain. Our first observation is that the framework of AIL already provides197

a reasonable starting point, though it is not sufficient by itself: rather than using only the task reward,198

which is too sparse to be useful in a single episode, we can bias the agent to seek out states that199

are similar to those seen in the prior data. However, since our goal is not to learn a policy that200

repeatedly performs the task, but rather to solve it as quickly as possible once, we do not actually201

want to learn to imitate prior data, but rather to seek out states that resemble the best states in the202

prior data, with better states being more preferred. This is especially important when the prior data is203

not actually optimal, but might consist of arbitrarily suboptimal states. We will discuss how this can204

be accomplished with a modification of AIL which, instead of treating prior data as equally desirable,205

preferentially drives the agent toward states that resemble the best states in the prior data.206

6.1 Algorithm Description207

In SLRL, we may have shifts in dynamics online, in which case matching state-action distributions as208

done in GAIL ([21]) may not be appropriate. GAIL with a state discriminator will help lead the agent209

back to the prior data distribution but by matching the entire demo state distribution, the discriminator210

does not necessarily incentivize the agent to go towards task completion. Our algorithm’s desired211

behavior is to lead the agent to nearby states within distribution of the prior data if it is out of212

distribution and to nearby states closer to task completion if in distribution. Our proposed method213

for shaping relies on the intuition that as states gradually get closer to task completion, even within214

expert data, they should have gradually higher values as well.215

We propose Q-weighted adversarial learning (QWALE), which trains a Q-weighted discriminator. In216

order to use the prior data effectively, we use a fixed Q-function Q(s, a) trained in the source MDP217

to distinguish between useful transitions and ones that may be less useful. This Q-function may be218

obtained through RL pretraining, which is what we use for our experiments, or a variety of other219

ways, such as offline RL or Monte Carlo estimation. We train the discriminator in a similar manner220

as GAIL, where the positives come from the offline data and negatives from online experience. To221

take into account the varied quality of the data, we use the intuition that the closer a state is to task222

completion, the higher its value should be. In particular, a state in the prior data should get smaller223

weight if it has worse value than the agent’s current state, so the agent is consistently incentivized224

to move towards states in the prior data with higher value than its current state. Therefore, when225

training the discriminator, we weight the positive states s by exp(Q(s, a)− b) and the negatives by226

exp(−Q(s, a) + b), where b is an implementation detail, which we discuss in the Appendix. We227

normalize the Q-values to be between 0 and 1 and train the Q-weighted discriminator in alternating228

5

updates with SAC updates that finetune the policy and critic in an AIL fashion. In this manner,229

QWALE extends AIL to the general setting with any prior data.230

The goal of our weighted discriminator training procedure is to obtain a discriminator that, when231

used as a reward, will drive the agent toward states that it believes would lead to better outcomes232

than its present state, based on the prior data. The Q-function quantifies the agent’s belief from the233

prior data that a particular state will lead to high reward, making this a natural choice for estimating234

how desirable a state is at any given time. Hence, using Q-values to weight the examples for the235

discriminator will cause the discriminator to prefer states that are closer to the goal over states that236

are further away. This is significantly different from the behavior we would expect to see if we were237

simply imitating the optimal policy, as this would give equal weight to all of the transitions along an238

optimal path. When the reward is more complex, using Q-values as weights generalizes this intuition.239

6.2 Practical Implementation240

Algorithm 1 Q-WEIGHTED ADVERSARIAL LEARNING (QWALE)

1: // Single Trial Deployment
2: Require: Dprior, test MDPMtest, pretrained critic Q(s, a), and (optionally) policy π;
3: Initialize: replay buffer for online transitionsDonline; parameters ϕ for discriminator qϕ(prior | st), timestep

t = 0
4: while task not complete do
5: Sample a ∼ π(· | st)
6: ϕ← ϕ− η∇ϕL(ϕ) // Update discriminator according to Eq. 1
7: r′(st) = r(st) + log qϕ(prior | st)
8: Q(s, a), π ← SAC(Q(s, a), π,Dprior ∪ Donline, r

′)
9: Increment t

We optimize our objective using maximum entropy off-policy RL with the SAC algorithm ([17]),241

modified in a similar manner as we did with GAIL in the previous section. In particular, we learn242

an additional discriminator qθ(prior | st), optimized using standard cross-entropy loss, which is243

weighted accordingly:244

L(ϕ) = −EDprior [exp(Q(s, a)− b) log qϕ(prior | s)]−EDonline [exp(−Q(s, a)+ b) log qϕ(online | s)].
(1)

The discriminator is used to modify the rewards when updating off-policy from all experience–prior245

and online. At single trial test time, the actor and critic are optionally initialized with the pretrained246

weights, and the replay buffer is initialized with the offline data. For details such as network247

architecture and hyperparameters, see Appendix A. We present the full algorithm in Algorithm 1.248

7 Experiments249

The goal of our experiments is to answer the following questions: (1) How does QWALE compare to250

prior reinforcement learning and distribution matching approaches in single-life RL settings? (2) Do251

distribution matching approaches help agents learn to recover from novel situations in single-life RL?252

(3) How does QWALE compare to different variants of adversarial imitation learning, with different253

prior datasets?254

7.1 Experimental Setup255

To answer the above questions, we construct four single-life RL domains with varying prior datasets256

and sources of novelty, and then measure performance both in terms of speed of task completion and257

overall single-life success. In this subsection, we describe this experimental set-up in detail.258

Environments. We consider the following four problem domains. First, in the Tabletop-Organization259

environment from the EARL benchmark [43], the agent is tasked with bringing a mug to one of four260

different locations designated by a goal coaster. The prior data always has the same starting position261

of the mug. In the target environment, the starting position is in a new location unseen in the prior262

data. Second, the Pointmass setting tasks an agent to move in 2D from its starting location at the263

origin (0, 0) to the point (100, 0). The target environment introduces a dynamics shift in the form of a264

strong “wind”, where the agent is involuntarily pushed upward in the y-direction each step. Third, we265

construct a modified HalfCheetah environment, in which it is difficult but feasible for the cheetah to266

recover when flipped over. The target environment includes hurdles that the cheetah must jump over,267

6

Figure 3: We evaluate in four different domains, including Tabletop-Organization, Pointmass, HalfCheetah, and
a Franka-Kitchen environment with a microwave and cabinet. At test time, an aspect of novelty is introduced in
each environment–new initial mug positions for Tabletop, wind for Pointmass, hurdles for the HalfCheetah, and
a new combination of tasks for the Franka-Kitchen.

as the prior data does not include these obstacles. Finally, we evaluate on a modified Franka-Kitchen268

environment, adapted from [14], where the task is to close a microwave and a hinged cabinet. The269

prior data only contains trajectories of closing the microwave and the hinged cabinet separately, so270

the agent must figure out online how to complete both tasks in a row. In other words, both objects are271

open at the start of single-life RL, and the agent has only previously seen instances where only one is272

open. For the latter two environments, dense rewards are given, and the discriminator-based reward is273

added to the extrinsic reward during single-life training. These environments are shown in Figure 3.274

Further details on the environments are given in Appendix A.275

Comparisons. To answer question (1), we compare QWALE to three alternative methods: (a) SAC276

fine-tuning, which pre-trains a policy and value function in the source setting and fine-tunes for277

a single, long episode in the target environment, (b) SAC-RND, which additionally includes an278

RND exploration bonus [4] during single-life fine-tuning, and (c) GAIL-s, which runs generative279

adversarial imitation learning [21, 25] where the discriminator only operates on the current state280

s. We choose for the discriminator to only look at s so that it is less susceptible to dynamics shift281

between the source data and target environment. We additionally compare to GAIL-sa, which passes282

both the current state and action to the discriminator. All methods use soft actor-critic (SAC) [17] as283

the base RL algorithm.284

Prior datasets. For all four environments, we evaluate SLRL using data collected through RL as our285

prior data. More specifically, we run SAC in the source MDP in the standard episodic RL setting for286

K steps and take the last 50,000 transitions as the prior data. K is chosen such that the prior data287

contains some good transitions but has not converged to an optimal policy yet. While we are able to288

run episodic RL in the source MDP, this is not a requirement for SLRL, as long as prior data in the289

source MDP is available. For all methods, including QWALE, GAIL variants, and SAC fine-tuning290

variants, the policy and value function are pretrained in this manner for the initialization of single-life291

RL. We note that AIL methods like GAIL typically assume that the prior data consists of expert292

demonstrations but we apply the algorithm only using mixed quality prior data, unless otherwise293

noted. In particular, Section 7.4 further evaluates AIL methods using demos as prior data, using 10294

demonstrations for the Tabletop environment and 3 demonstrations for the Pointmass domain. We295

include such experiments to answer question (3), i.e. to investigate how the quality of prior data may296

affect performance.297

Evaluation Metrics. To evaluate each method in each environment, we report the average and median298

number of steps taken before task completion across 10 seeds along with the standard error and299

success rate (out of 10). During single-life RL, for all environments, the agent is given a maximum of300

200,000 steps to complete the task. If it has not completed the task after 200k steps, then 200k is301

logged as the total number of steps, and the run is marked as unsuccessful.302

7.2 Results using mixed data as prior data303

In this subsection, we aim to answer our first experimental question and study how QWALE performs304

compared to prior reinforcement learning and distribution matching approaches in single-life RL305

settings. As seen in Figure 4 and Table 1, we find that QWALE achieves the lowest average and306

median number of steps as well as highest number of successes on three out of the four domains,307

and performs comparably to the other methods on the fourth environment, Franka-Kitchen. On the308

Tabletop and Pointmass environments, QWALE takes less than half of the number of steps on average309

as the next best performing method. It is possible that the method does not work as well on the310

Franka-Kitchen environment because the pretrained Q-function may be quite inaccurate, as there is311

7

Figure 4: We evaluate the performance of QWALE to finetuning SAC and GAIL in our four environments using
mixed data collected through RL as prior data. We omit the results of Behavior Cloning (BC) in the plots, as it
is unsuccessful at completing the task in every domain due to the distribution shift. We plot the average and
median number of steps to task completion along with the number of successes, taken over 10 seeds. We find
that GAIL outperforms SAC in 3 out of 4 domains, and QWALE significantly outperforms GAIL on 3 out of 4
domains and performs comparably on the fourth.

Method Avg ± Std error Success / 10 Median Method Avg ± Std error Success / 10 Median

Tabletop GAIL-s 83.2k ± 23.8k 8 75.6k Cheetah GAIL-s 99.2k ± 23.0k 7 77.4k
GAIL-sa 61.5k ± 28.7k 7 2.4k GAIL-sa 102.0k ± 19.3k 8 85.6k

QWALE (ours) 23.1k ± 7.9k 8 15.5k QWALE (ours) 77.0k ± 14.8k 9 63.2k

Pointmass GAIL-s 100.9k ± 33.0k 5 101.9k Kitchen GAIL-s 111.3k ± 27.9k 6 122.1k
GAIL-sa 140.4k ± 30.3k 3 200.0k GAIL-sa 127.8k ± 26.9k 5 189.1k

QWALE (ours) 61.2k ± 30.2k 7 2.1k QWALE (ours) 118.1k ± 23.8k 6 116.6k

Table 1: Discriminator-based Approaches on Mixed Data. We see that in each of the four experimental domains,
the three QWALE methods typically outperform GAIL and GAIL-sa on the average number of steps needed
before task completion, and on 3 out of the 4 environments, QWALE substantially improves performance over
both GAIL variants. All methods are evaluated over 10 runs.

a global distribution shift in the state space at test time–the agent has never seen both objects open312

before in the prior data. GAIL also outperforms finetuning SAC across three of the four domains.313

These results demonstrate the suitability of distribution-matching approaches over RL finetuning in314

the SLRL setting. We see that guidance particularly towards a good state distribution is important,315

as we compare to finetuning SAC with an exploration bonus through random network distillation316

([4]). From Figure 4, although RND may improve performance, particularly in the Tabletop domain,317

it generally does not perform as well as the distribution matching approaches, especially QWALE,318

showing that simply increasing exploration is not enough. Furthermore, these results show that the319

additional shaping provided by weighting the prior data by Q-value when training the discriminator320

can significantly improve guidance towards the goal. While GAIL gives equal weight to all transitions321

along an optimal path, the agent in QWALE is consistently guided towards states in the prior data322

with higher Q-value, leading to more efficient and reliable single-life task completion.323

7.3 Analysis of distribution matching approaches324

Next, to answer question (2), we analyze how QWALE helps agents learn to recover from novel325

situations in SLRL. To do so, we visualize QWALE’s state visitation in the Tabletop and Pointmass326

domains throughout a single lifetime. We color the trajectories according to timestep for both327

methods as well as by reward (discriminator score). The coloring in the timestep-colored plots is328

highly correlated with that in the reward-colored plots, showing how the reward gradually guides the329

agent towards the goal. In particular, when the agent is out of distribution, the agent is incentivized to330

explore states that will lead it closer back to the prior state distribution, and when the agent is within331

distribution, it is incentivized to move to states closer to the goal, leading to efficient task completion.332

7.4 Using demos as prior data333

Finally, we evaluate the performance of different discriminator-based approaches in the two SLRL334

problem settings–Tabletop and Pointmass–where demonstration data is available as prior data. We335

compare using AIL with a state-only discriminator (GAIL-s) as well as with a state-action discrimina-336

tor (GAIL-sa) to our proposed Q-weighted discriminator method (QWALE). With the latter method,337

we have access to the same Q-function pretrained when collecting prior data using standard RL for338

the mixed data experiments above, but we do not initialize any of the algorithms at test time with the339

pretrained policy and critic weights.340

8

Figure 5: We visualize the online state visitation plots in the Tabletop (left) and Pointmass (right) environments
of a single-life trial using QWALE. We plot the location of the mug throughout the agent’s single life for the
tabletop and the location of the agent for the pointmass as well as expert demo states (purple). We color the
trajectories green to blue according to timestep as well by reward (discriminator score) for the distribution-
matching approach.

Figure 6: Discriminator-based Approaches using Expert Demo Data. Given demonstration data, in both the
Tabletop and Pointmass domains, QWALE significantly outperforms both GAIL variants in almost all metrics.

From Figure 6, the GAIL variants are both able to consistently solve the task in the Tabletop341

domain, but unsurprisingly, GAIL-sa does especially poorly in the Pointmass domain, where the342

dynamics have changed at test time. Compared to the two GAIL variants, QWALE gives a significant343

improvement in both domains. These results demonstrate how more detailed reward shaping towards344

the completion of the desired task can be helpful in the SLRL setting even with demonstrations as345

prior data. Moreover, comparing these results with those in Table 1, while access to expert data346

as prior data unsurprisingly improves the performance of GAIL methods, it can also improve the347

performance of QWALE.348

8 Conclusion349

In this paper, we formalized and studied a problem setting underlying single-life reinforcement350

learning: settings where an agent needs to autonomously complete a task once while drawing upon351

prior experience from a related environment. We found that standard fine-tuning via RL is ill-suited352

for this problem because the algorithm struggles to recover from mistakes and novel situations. We353

hypothesized that this observation stems from the fact that resets in episodic RL prevent algorithms354

from needing to recover, whereas single-life RL and continuing settings in general do demand the355

agent to find its way back to good states on its own. We then postulated that distribution matching356

methods that aim to match the distribution of related prior data may help agents recover via reward357

shaping, and presented a new distribution matching method, QWALE, that weights examples by their358

Q-value. Our experiments verified that distribution matching approaches indeed do make better use359

of prior data, and that QWALE is competitive with or outperforms prior distribution matching methods360

on four single-life RL problems.361

While QWALE can efficiently complete novel target tasks in a single episode without any interventions,362

important limitations remain. No algorithm, including QWALE, was able to complete the target task363

with 100% success, indicating that future works should aim to improve an algorithm’s ability to364

solve tasks consistently. Moreover, the methods that we evaluated all used a pre-trained policy and365

value function from the source domain, which may be difficult to obtain in some source scenarios,366

as opposed to only obtaining some demonstrations or offline data. Finally, it would be interesting367

to explore problems with greater degrees of novelty between the source and target environments.368

We expect that such settings would place even greater importance on autonomy and exploration,369

requiring sophisticated strategies for both recovering to known states and exploring new strategies.370

By publicly releasing and open-sourcing the environments and code upon publication, we hope that371

future work can more easily explore these interesting questions and continue to make progress on372

allowing RL agents to autonomously complete tasks within a single lifetime.373

9

References374

[1] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot375

learning from demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.376

[2] Mark Beliaev, Andy Shih, Stefano Ermon, Dorsa Sadigh, and Ramtin Pedarsani. Imitation377

learning by estimating expertise of demonstrators. arXiv preprint arXiv:2202.01288, 2022.378

[3] Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E Taylor, and379

Ann Nowé. Reinforcement learning from demonstration through shaping. In Twenty-fourth380

international joint conference on artificial intelligence, 2015.381

[4] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random382

network distillation. arXiv preprint arXiv:1810.12894, 2018.383

[5] Zhangjie Cao, Zihan Wang, and Dorsa Sadigh. Learning from imperfect demonstrations via384

adversarial confidence transfer. arXiv preprint arXiv:2202.02967, 2022.385

[6] Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no trace: Learning386

to reset for safe and autonomous reinforcement learning. arXiv preprint arXiv:1711.06782,387

2017.388

[7] Benjamin Eysenbach, Swapnil Asawa, Shreyas Chaudhari, Sergey Levine, and Ruslan Salakhut-389

dinov. Off-dynamics reinforcement learning: Training for transfer with domain classifiers.390

arXiv preprint arXiv:2006.13916, 2020.391

[8] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal392

control via policy optimization. In International conference on machine learning, pages 49–58.393

PMLR, 2016.394

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-395

tation of deep networks. In International conference on machine learning, pages 1126–1135.396

PMLR, 2017.397

[10] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning.398

In International Conference on Machine Learning, pages 1920–1930. PMLR, 2019.399

[11] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse400

reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.401

[12] Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep402

q-learning algorithms. In International Conference on Machine Learning, pages 2021–2030.403

PMLR, 2019.404

[13] Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence mini-405

mization perspective on imitation learning methods. In Conference on Robot Learning, pages406

1259–1277. PMLR, 2020.407

[14] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay408

policy learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv409

preprint arXiv:1910.11956, 2019.410

[15] Abhishek Gupta, Justin Yu, Tony Z Zhao, Vikash Kumar, Aaron Rovinsky, Kelvin Xu, Thomas411

Devlin, and Sergey Levine. Reset-free reinforcement learning via multi-task learning: Learning412

dexterous manipulation behaviors without human intervention. In 2021 IEEE International413

Conference on Robotics and Automation (ICRA), pages 6664–6671. IEEE, 2021.414

[16] Abhishek Gupta, Corey Lynch, Brandon Kinman, Garrett Peake, Sergey Levine, and Karol415

Hausman. Bootstrapped autonomous practicing via multi-task reinforcement learning. arXiv416

preprint arXiv:2203.15755, 2022.417

[17] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-418

policy maximum entropy deep reinforcement learning with a stochastic actor. In International419

conference on machine learning, pages 1861–1870. PMLR, 2018.420

[18] Weiqiao Han, Sergey Levine, and Pieter Abbeel. Learning compound multi-step controllers421

under unknown dynamics. In 2015 IEEE/RSJ International Conference on Intelligent Robots422

and Systems (IROS), pages 6435–6442. IEEE, 2015.423

[19] Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A Efros, Lerrel424

Pinto, and Xiaolong Wang. Self-supervised policy adaptation during deployment. arXiv preprint425

arXiv:2007.04309, 2020.426

10

[20] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,427

John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In428

Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.429

[21] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural430

information processing systems, 29, 2016.431

[22] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual rein-432

forcement learning: A review and perspectives. arXiv preprint arXiv:2012.13490, 2020.433

[23] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:434

Model-based offline reinforcement learning. Advances in neural information processing systems,435

33:21810–21823, 2020.436

[24] Jigang Kim, J hyeon Park, Daesol Cho, and H Jin Kim. Automating reinforcement learning437

with example-based resets. IEEE Robotics and Automation Letters, 2022.438

[25] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan439

Tompson. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in440

adversarial imitation learning. arXiv preprint arXiv:1809.02925, 2018.441

[26] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning442

for offline reinforcement learning. Advances in Neural Information Processing Systems, 33:443

1179–1191, 2020.444

[27] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:445

Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.446

[28] Vincenzo Lomonaco, Karan Desai, Eugenio Culurciello, and Davide Maltoni. Continual447

reinforcement learning in 3d non-stationary environments. In Proceedings of the IEEE/CVF448

Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020.449

[29] Sridhar Mahadevan. Average reward reinforcement learning: Foundations, algorithms, and450

empirical results. Machine learning, 22(1):159–195, 1996.451

[30] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active452

domain randomization. In Conference on Robot Learning, pages 1162–1176. PMLR, 2020.453

[31] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,454

and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-455

reinforcement learning. arXiv preprint arXiv:1803.11347, 2018.456

[32] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-457

coming exploration in reinforcement learning with demonstrations. In 2018 IEEE international458

conference on robotics and automation (ICRA), pages 6292–6299. IEEE, 2018.459

[33] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,460

volume 1, page 2, 2000.461

[34] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.462

arXiv preprint arXiv:1803.02999, 2018.463

[35] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real464

transfer of robotic control with dynamics randomization. In 2018 IEEE international conference465

on robotics and automation (ICRA), pages 3803–3810. IEEE, 2018.466

[36] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel467

Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement468

learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.469

[37] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experi-470

ence replay for continual learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,471

E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.472

Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/473

file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf.474

[38] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and475

structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-476

tional conference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and477

Conference Proceedings, 2011.478

11

https://proceedings.neurips.cc/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf

[39] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,479

Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv480

preprint arXiv:1606.04671, 2016.481

[40] Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real482

image. arXiv preprint arXiv:1611.04201, 2016.483

[41] Anton Schwartz. A reinforcement learning method for maximizing undiscounted rewards. In484

Proceedings of the tenth international conference on machine learning, volume 298, pages485

298–305, 1993.486

[42] Archit Sharma, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Au-487

tonomous reinforcement learning via subgoal curricula. In M. Ranzato, A. Beygelz-488

imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neu-489

ral Information Processing Systems, volume 34, pages 18474–18486. Curran Asso-490

ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/491

99c83c904d0d64fbef50d919a5c66a80-Paper.pdf.492

[43] Archit Sharma, Kelvin Xu, Nikhil Sardana, Abhishek Gupta, Karol Hausman, Sergey Levine,493

and Chelsea Finn. Autonomous reinforcement learning: Formalism and benchmarking. arXiv494

preprint arXiv:2112.09605, 2021.495

[44] Archit Sharma, Rehaan Ahmad, and Chelsea Finn. A state-distribution matching approach to496

non-episodic reinforcement learning. arXiv preprint arXiv:2205.05212, 2022.497

[45] Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-to-end498

robotic reinforcement learning without reward engineering. arXiv preprint arXiv:1904.07854,499

2019.500

[46] Mingfei Sun and Xiaojuan Ma. Adversarial imitation learning from incomplete demonstrations.501

arXiv preprint arXiv:1905.12310, 2019.502

[47] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,503

2018.504

[48] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.505

Domain randomization for transferring deep neural networks from simulation to the real world.506

In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages507

23–30. IEEE, 2017.508

[49] Faraz Torabi, Garrett Warnell, and Peter Stone. Adversarial imitation learning from state-only509

demonstrations. In Proceedings of the 18th International Conference on Autonomous Agents510

and MultiAgent Systems, pages 2229–2231, 2019.511

[50] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas512

Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations513

for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint514

arXiv:1707.08817, 2017.515

[51] Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted516

imitation learning for batched historical data. Advances in Neural Information Processing517

Systems, 31, 2018.518

[52] Ruohan Wang, Carlo Ciliberto, Pierluigi Amadori, and Yiannis Demiris. Support-weighted519

adversarial imitation learning. arXiv preprint arXiv:2002.08803, 2020.520

[53] Yunke Wang, Chang Xu, and Bo Du. Robust adversarial imitation learning via adaptively-521

selected demonstrations. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International522

Joint Conference on Artificial Intelligence, IJCAI-21, pages 3155–3161. International Joint523

Conferences on Artificial Intelligence Organization, 2021.524

[54] Yunke Wang, Chang Xu, Bo Du, and Honglak Lee. Learning to weight imperfect demonstrations.525

In International Conference on Machine Learning, pages 10961–10970. PMLR, 2021.526

[55] Chen-Yu Wei, Mehdi Jafarnia Jahromi, Haipeng Luo, Hiteshi Sharma, and Rahul Jain. Model-527

free reinforcement learning in infinite-horizon average-reward Markov decision processes. In528

Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference529

on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages530

10170–10180. PMLR, 13–18 Jul 2020.531

12

https://proceedings.neurips.cc/paper/2021/file/99c83c904d0d64fbef50d919a5c66a80-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/99c83c904d0d64fbef50d919a5c66a80-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/99c83c904d0d64fbef50d919a5c66a80-Paper.pdf

[56] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement532

learning. arXiv preprint arXiv:1911.11361, 2019.533

[57] Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama.534

Imitation learning from imperfect demonstration. In International Conference on Machine535

Learning, pages 6818–6827. PMLR, 2019.536

[58] Annie Xie and Chelsea Finn. Lifelong robotic reinforcement learning by retaining experiences.537

arXiv preprint arXiv:2109.09180, 2021.538

[59] Annie Xie, James Harrison, and Chelsea Finn. Deep reinforcement learning amidst lifelong539

non-stationarity. arXiv preprint arXiv:2006.10701, 2020.540

[60] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In S. Bengio,541

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, edi-542

tors, Advances in Neural Information Processing Systems, volume 31. Curran As-543

sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/544

cee631121c2ec9232f3a2f028ad5c89b-Paper.pdf.545

[61] Takuma Yoneda, Ge Yang, Matthew R Walter, and Bradly Stadie. Invariance through inference.546

arXiv preprint arXiv:2112.08526, 2021.547

[62] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond548

empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.549

[63] Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash550

Kumar, and Sergey Levine. The ingredients of real-world robotic reinforcement learning. arXiv551

preprint arXiv:2004.12570, 2020.552

[64] Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Off-policy imitation learning from553

observations. In the Thirty-fourth Annual Conference on Neural Information Processing Systems554

(NeurIPS 2020), 2020.555

[65] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy556

inverse reinforcement learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.557

[66] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle of558

maximum causal entropy. In ICML, 2010.559

[67] Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,560

and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-561

learning. arXiv preprint arXiv:1910.08348, 2019.562

13

https://proceedings.neurips.cc/paper/2018/file/cee631121c2ec9232f3a2f028ad5c89b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/cee631121c2ec9232f3a2f028ad5c89b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/cee631121c2ec9232f3a2f028ad5c89b-Paper.pdf

A Appendix563

A.1 Implementation Details and Hyperparameters564

In our experiments, we use soft actor-critic [17] as our base RL algorithm. We use default hyperpa-565

rameter values: a learning rate of 3e-4 for all networks, optimized using Adam, with a batch size566

of 256 sampled from the entire replay buffer (both prior and online data), a discount factor of 0.99.567

The policy and critic networks are MLPs with 2 fully-connected hidden layers of size 256. For all568

methods training a discriminator, it is parameterized as an MLP with 1 fully-connected hidden layer569

of size 128 and trained with a batch size of 512. During the online trial, 1000 steps are taken as570

initial collection steps before network updates begin. For all methods training a discriminator, we use571

mixup regularization [62] to reduce the brittleness of the discriminator.572

Following [43], we use a biased TD update, where Q(st, at) ← r(st, at) + γQ(st+1, at+1) if t is573

not a multiple of 100, and Q(st, at) ← r(st, at) if it is. We use this update for all our evaluated574

methods online in order to improve stability. Since the online trial of single-life RL may have a large575

training horizon with hundreds of thousands of steps, this may lead to unstable bootstrapping, as for576

each t, Q(st, at) bootstraps on Q(st+1, at+1). Following [44], for the auxiliary reward given by the577

discriminator D, we use r(s, a) = − log(1−D(s)) instead of r(s, a) = logD(s) to further improve578

stability.579

For QWALE, the weighting of states is offset by a value b. This value may be treated like a constant580

hyperparameter and tuned. Adding this value changes the bias on the discriminator, which in effect581

adds a constant to the reward, though that constant changes over the course of training. In practice,582

to avoid having to tune b, we just use the value of the most recent state as b, i.e. b = Q(st, at). To583

better interpret this value, with this weighting, b is a baseline value capturing some notion of current584

progress. Prior data tends to get small weights if they have worse value than the current state, so the585

agent is consistently incentivized to move towards states with higher value than its current state.586

For all experiments using prior data collected through RL, the agent was initialized at test time587

with the pretrained policy and critic. For QWALE, a copy of that critic was frozen and used when588

calculating the weights for discriminator training. For all of the experiments with demonstration data589

in Section 7.4, the policy and critic were not initialized with any pretrained weights.590

A.2 Environment & Evaluation Details591

Tabletop-Organization. The details for this environment are in [43]. The state space consists of the592

gripper’s (x, y) position, the mug’s (x, y) position, the gripper’s state (whether attached to the mug or593

not), and the current goal, for a total of 12 dimensions. The action space is 3 dimensional, consisting594

of a delta in the gripper’s (x, y) position as well as an automatic gripper that will attach to the mug if595

the gripper is close enough. The tabletop extends from -2.8 to 2.8 in both the x and y directions. In596

the prior data, which consists either of 10 demonstrations or 50000 transitions collected through RL597

after 350000 steps of training, the initial state always places the mug at position (2.5, 0.0), and the598

goal is to place the mug at one of the following locations: (-2.5, -1.0), (-2.5, 1.0), (0, 2.0), (0, -2).599

For the online trial when evaluating SLRL, the mug is placed either at (2.7, 1.5) or (2.7, -1.5) with600

additional uniform randomness between (-0.15, 0.15) in both directions. This environment is also601

goal-conditioned at test time and the goal is randomly set to be either (-2.5, -1.0) or (-2.5, 1.0). The602

reward is 1 when the mug is within 0.15 distance of its goal position (at which point the single life603

ends) and 0 everywhere else.604

Pointmass. The Pointmass environment has a 6-dimensional state space consisting of the agent’s605

(x, y) position, its (x, y) velocity, and the (x, y) coordinates of the goal. The environment extends606

between -100 and 100 along the x axis and between -200 and 200 along the y axis. The action space607

is 2-D, consisting of the delta in both directions, clipped between -1 and 1 for a single action. The608

prior data consists of 3 demonstrations or 50000 transitions collected through RL after 350000 steps609

of training. The agent starts at (0, 0) and the goal is at (100, 0) for the prior data and online trial.610

During the online trial, a strong “wind” is introduced, where a random amount between 0.8 and 0.9 is611

added to the agent’s y coordinate and 0.2 is subtracted from the agent’s x coordinate at each step.612

The reward is 1 when the agent is within a distance of 2 of the goal position and 0 everywhere else.613

HalfCheetah. The HalfCheetah environment has a state space with 18 dimensions, consisting of the614

position and velocity of each joint. The prior data consists of 50000 transitions collected through RL615

after 150000 steps of training. The reward is rt = ∆xt − 0.1 ∗ ||at||22. At test time, 10 hurdles are616

14

included in the environment, spread between the x-coordinate of 7 and 260. The cheetah starts at 0617

and its single life is considered successful when it gets to the coordinate 300, although the information618

about the hurdles or goal are not included in the state space.619

Franka-Kitchen. The Franka-Kitchen is adapted from [14, 43]. The state space consists of a 9 DoF620

position-controlled Franka-robot with a microwave and hinged cabinet. The prior data consists of621

50000 transitions collected through standard episodic RL after 950000 steps of training, where one of622

the microwave or cabinet is open, and the task is to close that object. At test time, both are open, and623

the task is to close both objects. The reward function is equal to the sum of the Euclidean distance624

between the objects and their goal positions and the distance between the arm and its goal position.625

15

	Introduction
	Related Work
	Preliminaries
	Single-Life Reinforcement Learning
	Single-Life Performance of Online RL
	Q-weighted Adversarial Learning (Qwale)
	Algorithm Description
	Practical Implementation

	Experiments
	Experimental Setup
	Results using mixed data as prior data
	Analysis of distribution matching approaches
	Using demos as prior data

	Conclusion
	Appendix
	Implementation Details and Hyperparameters
	Environment & Evaluation Details

