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Abstract

Variational quantum Eigensolver (VQE) is a leading candidate for harnessing quan-
tum computers to advance quantum chemistry and materials simulations, yet its
training efficiency deteriorates rapidly for large Hamiltonians. Two issues underlie
this bottleneck: (i) the no-cloning theorem imposes a linear growth in circuit eval-
uations with the number of parameters per gradient step; and (ii) deeper circuits
encounter barren plateaus (BPs), leading to exponentially increasing measurement
overheads. To address these challenges, here we propose a deep learning frame-
work, dubbed TITAN, which identifies and freezes inactive parameters of a given
ansätze at initialization for a specific class of Hamiltonians, reducing the optimiza-
tion overhead without sacrificing accuracy. The motivation of TITAN starts with our
empirical findings that a subset of parameters consistently has negligible influence
on training dynamics. Its design combines a theoretically grounded data construc-
tion strategy, ensuring each training example is informative and BP-resilient, with
an adaptive neural architecture that generalizes across ansätze of varying sizes.
Across benchmark transverse-field Ising models, Heisenberg models, and multiple
molecule systems up to 30 qubits, TITAN achieves up to 3× faster convergence and
40–60% fewer circuit evaluations than state-of-the-art baselines, while matching or
surpassing their estimation accuracy. By proactively trimming parameter space,
TITAN lowers hardware demands and offers a scalable path toward utilizing VQE
to advance practical quantum chemistry and materials science.

1 Introduction

Quantum computing [1, 2] is widely believed to provide computational advantages in electronic-
structure calculations (ESCs) [3], a pivotal task in catalyst discovery [4], drug design [5], and materials
innovation [6–9]. The flagship protocol that leverages the power of quantum computers to advance
ESCs is the variational quantum Eigensolver (VQE) [10–12], which estimates molecular ground-state
energies by iteratively adjusting a parameterized ansätze to lower the expectation value of a fermionic
Hamiltonian mapped onto qubits. Recent experiments have verified the potential of VQE in solving
ESCs for small-scale systems [13–16]. Despite the progress, scaling VQE from pedagogical circuits
to chemically relevant systems confronts two intertwined training bottlenecks, i.e., (i) barren plateaus
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(BPs) [17, 18] and (ii) expensive measurement overhead. BPs describe the exponential suppression
of gradient magnitudes in the cost-function landscape as circuit depth or system size grows, thereby
impeding effective optimization [19–21]. Over the past years, huge efforts have been devoted to
overcoming BPs, where representative works include developing initialization heuristics [18, 22, 23],
layerwise training [24, 25], architecture design [26], and adaptive freezing [27–29].

In contrast to the extensive efforts focused on mitigating BPs, the equally fundamental challenge of
measurement overhead has received comparatively less attention [30, 31]. This substantial overhead
arises from the fundamental constraint that quantum states cannot be cloned and only unitary evolution
is permitted, necessitating external reconstruction of analytic derivatives [32]. In particular, the widely
used parameter-shift rule requires two circuit evaluations per tunable gate angle, effectively doubling
the number of shots per parameter [33–36]. As a result, the total measurement cost scales linearly
with the number of parameters and increases with both circuit depth and qubit count. For instance,
the benzene (C6H6), a simple molecular Hamiltonian, requires 106–108 circuit evaluations (about
5 hours for Ion-trap quantum computers), even after grouping optimizations [37]. Thus, even in
the absence of BPs, the scalability of VQE is fundamentally constrained by measurement overhead.
Addressing this often-overlooked bottleneck is essential for translating the theoretical potential of
VQE into practical quantum-computing workflows.

Initial attempts have been devoted to reducing the measurement overhead in large-scale VQE.
Prior strategies fall into several broad categories. Commuting-set partitioning and classical-
shadow/derandomization schemes compress the number of shots required to estimate expectation
values [38, 39]. Complementary Pauli-term grouping heuristics that exploit qubit-wise commutativity
further reduce the sample count in VQEs [40–42]. Quantum architecture search [43–45], QuACK
[46], and meta-learning for parameter initialization [47] are proposed to enhance the VQE perfor-
mance and reduce the overhead. While these complementary approaches alleviate part of the overall
computational burden, prior work typically treats them in isolation without a unified perspective.
A critical open question remains: can jointly addressing multiple aspects of the VQE optimization
pipeline lead to further reductions in measurement overhead and overall computational cost?

Figure 1: An illustration of the “frozen-parameter” phe-
nomenon of VQE. Intensity refers to the number of
inactive sessions. More details are offered in Sec. 4.

We address this question from a new perspec-
tive: connecting optimization dynamics with the
parameter initialization. This insight stems from
our empirical discovery of a “frozen-parameter”
phenomenon across diverse Hamiltonians, as
shown in Figure 1. This constitutes our first
contribution, which may inspire further inves-
tigations into parameter dynamics within VQE.
Building on this observation, we devise a deep
learning (DL) model, TITAN, aiming to harness
the power of neural networks to capture and pre-
dict the frozen parameters of VQE for a given family of Hamiltonians across varying scales. As
in other deep learning applications, TITAN comprises three stages: dataset construction, model
implementation and training, and model inference.

Despite its promise, implementing TITAN poses notable challenges, especially for dataset curation
and model architecture design. During the data construction phase, we proposed the Adaptive
Parameter Freezing and Activation (APFA) to collect trajectories of inactive parameters from VQE
instantiated on diverse Hamiltonians within the target family. A key requirement is that each
trajectory must avoid BPs and convey informative training signals. To meet this criterion, we
develop a theoretical framework based on Gaussian initialization (see Theorem 1), exhibiting that
our data-generation protocol circumvents BP artifacts. This theoretical result forms a core technical
contribution of our work and may be of independent interest. For the model implementation, we
introduce the coordinate-aware fully-convolutional self-attention (CFCSA) technique to enhance
TITAN’s adaptability, enabling it to accommodate variations in qubit count, circuit depth, and
Hamiltonian structure without retraining. Our final contribution is a systematic evaluation of TITAN’s
performance through extensive experiments on standard lattice and molecular systems with up to 30
qubits. The achieved results exhibit that TITAN attains ≥ 99% of the ground-state energy reached
by the baseline model by freezing at least 40% of parameters.
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2 Background and Related Works

Quantum Computing Quantum computing leverages intrinsically quantum-mechanical phenom-
ena—superposition, entanglement, and interference [48, 49]. In this framework, the fundamen-
tal unit of information is the qubit, a two-level quantum system that can occupy any complex
linear combination of computational basis states, i.e., |ψ⟩ = α |0⟩ + β |1⟩, with α, β ∈ C and
|α|2 + |β|2 = 1. An n-qubit state is represented by a vector in a 2n-dimensional Hilbert space,
|Ψ⟩ =

∑2n−1
x=0 cx |x⟩ ,

∑2n−1
x=0 |cx|2 = 1. Here |x⟩ denotes the computational basis for n qubits,

where |x1x2 . . . xn⟩ corresponds to a binary string (x1, x2, . . . , xn) of length n, and is defined by the
tensor-product rule |x⟩ = |x1⟩ ⊗ |x2⟩ ⊗ . . . ⊗ |xn⟩.
Quantum gates amount to the unitary operations that transform one quantum state into another. Solo-
vay–Kitaev theorem for standard constructions [1, 50], which guarantees that any unitary operation
can be decomposed into single and two-qubit gates. Measurement in quantum mechanics is described
by a positive operator–valued measure (POVM) {Mm} that satisfies the completeness relation∑

mM†
mMm = I . In the special—but ubiquitous case of a projective measurement in the computa-

tional basis, the POVM elements reduce to the projectors Mx = |x⟩⟨x| , x ∈ {0, 1}n, so that measur-
ing an n-qubit state |Ψ⟩ =

∑2n−1
x=0 cx |x⟩ yields outcome x with probability px = |⟨x|Ψ⟩|2 = |cx|2,

after which the post-measurement state collapses to |x⟩.
Variational Quantum Eigensolver (VQE) In quantum chemistry [51–54], one is often interested in
finding the ground-state energy of a molecular system described by the Hamiltonian: Ĥ =

∑
i hi Ĥi,

where each Ĥi is a tensor product of Pauli operators I = ( 1 0
0 1 ), X = ( 0 1

1 0 ), Y = ( 0 −i
i 0 ), Z =

( 1 0
0 −1 ), and the real coefficients hi encode system-specific molecular parameters [55, 56]. The VQE

aims to approximate the ground state |ψgs⟩ of Ĥ by employing a parameterized quantum circuit
(ansätze) |ψ(θ)⟩ = U(θ) |ψ0⟩, where |ψ0⟩ is an easily preparable reference state (e.g., the Hartree–
Fock state in chemistry), and U(θ) is a unitary operator constructed from quantum gates whose
adjustable parameters θ = {θ(1), θ(2), . . . θ(P )} are optimized to minimize the energy expectation
value. The generic form of an N -qubit ansätze is

U(θ) =

p∏
i=1

(
WiVi(θ

(i))
)
, (1)

where Vi(θ(i)) denotes the i-th tunable gate and Wi refers to the i-th fixed unitary operation. Existing
ansätze used in VQEs can be classified into two classes: structured ansätze and unstructured ansätze.
For structured ansätze, they are commonly designed with a layer-wise structure, comprising repeated
blocks of parameterized gates and entangling gates. A typical example in this class is the hardware-
efficient ansatz (HEA) [57], e.g., U(θ) =

∏L
ℓ=1(Wℓ ⊗N

i=1 RX(θ(i,ℓ))) with RX = exp(−iθX/2),
Wℓ =

∏N−1
i=1 CNOTi,i+1, and CNOTi,i+1 being applying CNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X gate

to the i-th and i+ 1-th qubits. Other notable structured ansätze include SU2 [58, 59] and SEL [60]
ansätze. In what follows, we denote an N -qubit VQE with a structured ansätze as

(
Ĥ,A(L,N,D)

)
,

whereD denotes the number of variational parameters per qubit wire in each block and p = L×D×N .
For unstructured ansätze, they generally encode prior knowledge of the explored Hamiltonian in
U(θ), where the corresponding gate layout is denoted by S . Typical instances in this regime include
unitary coupled cluster (UCC) [61] and unitary coupled cluster with singles and doubles (UCCSD).
We denote an N -qubit VQE with a unstructured ansatz as

(
Ĥ,A(p,S)

)
.

The objective of VQE is to approximate ground-state energy E0 of Ĥ by optimizing θ, i.e.,

E(θ) =
〈
ψ(θ)

∣∣Ĥ∣∣ψ(θ)〉 −→ Emin = min
θ

E(θ) ≈ E0. (2)

The optimization is often completed by the gradient-descent optimizer, where the update rule yields
θj ← θj − η ∂E/∂θj , and η is the learning rate [19, 20].

Related works Improving the optimization efficiency of large-scale VQE remains a central challenge
in quantum computing [62, 63]. Recent progress falls into three major directions: (i) Measurement
grouping. Learning-based grouping [64] and classical-shadow protocols [65, 66] compress the
number of shots required to estimate large Hamiltonians, but may incur substantial classical post-
processing overhead for high-qubit systems. (ii) ansätze design. Hardware-efficient circuits [57]
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suffer from BPs; remedies include quantum architecture search [43, 67], pruning [27, 68], and
domain-informed ansätze [69]. These improve expressibility and trainability at the expense of costly
search procedures and domain expertise. (iii) Advanced optimizers. Quantum-aware optimizers such
as Quack [46] and meta-learning frameworks [70, 71, 47], non-convex landscapes, but introduce
additional hyperparameters and nested optimization loops. Collectively, these three lines of research
are orthogonal to our contribution. TITAN addresses a fourth axis—parameter–space reduction via
predictive freezing—that can be layered on top of any measurement-grouping scheme, circuit-design
strategy, or optimizer, thereby providing a complementary boost to existing categories. More details
of related works are in Appendix A.

3 “Frozen-parameter” Phenomenon and Implementation of TITAN

In this section, we first present APFA scheme, using to exhibit the “frozen-parameter” phenomenon
in VQE. We then show the implementation details of the proposed TITAN.

3.1 Phenomenon of Frozen Parameters in VQE

VQE can exhibit a parameter–freezing effect in which portions of the variational parameters become
static during optimization; however, the extent of this phenomenon has never been quantified. Here
we introduce the APFA—to our knowledge, the first framework that records the full, time-resolved
mask trajectory of every parameter, thereby providing concrete numerical evidence of how, when,
and to what degree individual angles freeze over the course of training.

APFA The APFA mechanism dynamically identifies and freezes low-saliency parameters in a VQE
(at the t-th iteration) to record the freezing trajectory by executing the following four steps.

(Step i) For every coordinate i, keep an exponential moving average (EMA) [72] of the absolute
gradient ĝ(i)t = α ĝ

(i)
t−1 + (1 − α)

∣∣g(i)t

∣∣, 0 < α < 1, where g(i)t is the instantaneous gradient
∂f/∂θ(i) at iteration t, and α is a smoothing factor controlling memory depth.

(Step ii) For a VQE with parameters θt at iteration t, we define the stochastic gradient gt =
∇θ f

(
θt
)
+ ξt, where ξt is an isotropic noise term sampled from a multivariate normal distribution

N (0, γ2I) to improve exploration. Let rt = ∥gt∥2/(∥g0∥2 + ε) be the gradient-decay ratio with a
small constant ε. Two scale factors, λ(t)f (freeze) and λ(t)a (activate), are modulated by rt,

λ
(t)
f = λf,min + (1− rt) (λf,max − λf,min), 0 < λf,min < λf,max ≤ 1

λ(t)a = λa,min + (1− rt) (λa,max − λa,min), 1 < λa,min < λa,max

(3)

where λf,min /max and λa,min /max are four hyperparameter. Then, let ḡt = 1
P

∑P
i=1 ĝ

(i)
t be the

mean EMA magnitude across p parameters. Following this and Eq. (3), the freeze and activate
thresholds for APFA at the t-th iteration are τ (t)f = λ

(t)
f ḡt and τ (t)a = λ

(t)
a τ

(t)
f .

(Step iii) Each parameter maintains two counters: c(i)f , i.e., the number of successive optimization

iterations with ĝ(i)t < τ
(t)
f ; and c(i)a , i.e., the number of successive iterations ĝ(i)t > τ

(t)
a . These

counters together form a binary mask m(i)
t ∈{0, 1} indicating its state with 1 being active and 0 being

frozen, respectively. A parameter is frozen when c(i)f ≥Nf and reactivated when c(i)a ≥Na, where
Nf and Na are hyperparameter referring to the patience lengths.

(Step iv) Denote the mask vector as mt and the learning rate at the t-th iteration as ηt. The first-order
optimizer performs the Hadamard-masked update θt+1 = θt − ηt

(
mt ⊙ gt

)
, where ⊙ is the

Hadamard product. As such, only active parameters are updated.

After executing the four APFA steps for T iterations, we stack the iteration-wise binary masks
into Y =

{
mt

}T

t=0
∈ {0, 1}(T+1)×P , where each row mt indicates, at iteration t, which

of the P trainable parameters are frozen (0) or active (1). The cumulative sum of this sequence,
C =

∑T
t=0 mt ∈ RP , serves as a compact “intensity” measure of how often each parameter has

been frozen during the entire training process (see Appendix B for further details).
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Figure 2: Statistics of the frozen parameters in-
tensity in HEA optimized for isotropic Heisenberg
Hamiltonian.

Observation of frozen parameters Based on the
proposed AFPA, we report the cumulative freezing
counts of all parameters of HEA when applied to esti-
mate the ground state energy of the isotropic Heisen-
berg Hamiltonians. By varying the qubit size from 0
to 15 qubits, and ranging the layer number of HEA
from 0 to 15, the achieved results are shown in Fig-
ure 2. The color map ranges from white to dark
blue (frozen in nearly every epoch). Empirical evi-
dence shows that initialization decisively shapes the
subsequent saliency landscape: parameters that start
in poorly conditioned regions are rapidly driven to
negligible gradients, whereas well-scaled directions
remain trainable throughout the run. This tight cou-
pling between initialization and training dynamics
suggests that early-stage geometry can predetermine
long-term redundancy patterns. Hence, the optimization trajectory naturally partitions the parameter
space into persistently active and repeatedly redundant dimensions. This phenomenon delivers two
key insights that connect the parameter initialization and the optimization dynamics. First, parameters
identified as inactive can be frozen a priori, reducing the optimization overhead without sacrificing
accuracy. Second, it is possible to leverage learning models to predict those inactive parameters.

3.2 TITAN: Dataset Construction and Modeling

Motivated by these insights, we propose TITAN. It demonstrates that (i) frozen parameters can be
predicted a priori and (ii) this knowledge markedly reduces VQE measurement overhead without
affecting the accuracy. At a high level, TITAN establishes a deep predictive model to estimate
a freeze-intensity tensor Y returned by APFA, given the specified Hamiltonian and ansatz. After
training, TITAN can predict frozen parameters given any new ansatz and Hamiltonian to reduce VQE
measurement overhead. The implementation of TITAN comprises three stages: dataset construction,
model training, and inference. We next describe each stage in detail.

3.2.1 Dataset Construction

The training dataset employed in TITAN takes the form as D = {(Xi,Ci)}Mi=1, where M are data
points and each pair consists of (i) an input tensor Xi capturing the relevant features of a circuit
configuration, and (ii) the corresponding freeze-intensity tensor Ci, which indicates the activity of
each parameter recorded by APFA.

A critical issue in constructing D is ensuring that each data pair is informative. More precisely, when
a VQE instance suffers from BPs, the parameter-freezing trajectory returned by APFA fails to yield
useful information. To address this, we refine the original Gaussian initialization scheme [18] to
ensure the trainability of large-scale VQE for a broad class of ansätze. This result is formalized in the
following theorem, with the corresponding proof provided in Appendix C.

Theorem 1 (Enhanced Gaussian Initialization). Let H be the explored N -qubit local Hamiltonian.
Following notations in Eq. (1), when the employed HEA U(θ) yields

(
W2ℓ−1, V2ℓ−1(θ

(2ℓ−1))
)
=(

MℓCZℓ, RYℓ(θ
(2ℓ−1))

)
,
(
W2ℓ, V2ℓ(θ

(2ℓ))
)
=

(
I, RYℓ(θ(2ℓ))

)
, ∀ℓ = 1, . . . , L with Mℓ = I for

ℓ > 1 and M1 be the tensor product of fixed single-qubit unitary {Un}Nn=1 independently sampled
from {RZ(±π

4 ), RY (
π
4 )RX(±π

4 ), RX(π4 )RY (±π
4 )}.

Define the expectation f(θ) = ⟨0|U(θ)†OU(θ)|0⟩. Then Eθ, U1,...,UN
[(∂θ(j,n)f)2] ≥ Θ(1/L) when

each element in θ := (θ(1), · · · ,θ(2L)) is sampled independently from N (0, γ2) with γ2 = O(1/L).

Theorem 1 provides a non–vanishing lower bound on the square of partial derivative that scales
at worst as Θ(1/L) for the depth-dependent choice γ2 = c/L with c > 0. Therefore, the overall
gradient norm remains Ω(1) rather than decaying as 2−Ω(L). Hence, the parameter space does
not collapse into an exponentially flat plateau at initialization. Compared to the original Gaussian
Initialization [18] that considers Pauli matrix observables, Theorem 1 has milder conditions on the
observable format, which suits the VQE for quantum many-body Hamiltonians.

5



Figure 3: Overview of TITAN framework. TITAN predicts the frozen parameters of different
ansätze scales. (a) Dataset construction, (b) Model Training, (c) Extension of the multiscale ansätze.

3.2.2 Modeling Implementation and Optimization of TITAN

A deep neural network hω(·) is employed to map Xi to an estimate Ĉi = hω(Xi). We employ
a ResNet-18 backbone [73] augmented with a multi-head self-attention (MHSA) [74] layer acting
channel-wise to predict the intensity tensor C. Let hω(·) denote this mapping from X to Ĉ. To learn
ω, one minimizes a loss function over the dataset D: minω

1
N

∑N
i=1

∥∥Ĉi −Ci

∥∥2
F
, where ∥ · ∥F

denotes the Frobenius norm. Modern optimizers such as Adam are typically used to minimize the
loss function, and the training details are elucidated in the Appendix D.

CFCSA encoding for arbitrary Hamiltonians and ansätze layouts. The CFCSA (Coordinate +
Descriptor Fully Convolutional & Self-Attention) encoding scheme can handle arbitrarily structured
(Ĥ,A(L,N,D) or unstructured VQE ansätze circuits (Ĥ,A(p,S)) introduced in Section 2.

For Coordinate Channels (3D), each parameter is associated with a triple
[

ℓ
L−1 ,

d
D−1 ,

q
N−1

]
, where

ℓ ∈ {0, . . . , L − 1} tracks the layer index, d ∈ {0, . . . , D − 1} tracks the gate index within each
layer, and q ∈ {0, . . . , N − 1} tracks which qubit is targeted. These three normalized coordinates
form the first three channels, allowing the network to recognize positional and structural roles of each
parameter (e.g., early vs. late layer, different rotation axes, distinct qubits).

For Descriptor Channels (K-D), a set of external scalars S = {s1, . . . , sK} provides problem-specific
context (e.g. coupling constants, symmetry tags, or UCC-specific hyperparameter). Each descriptor
sk is normalized to [0, 1] and then broadcast over the entire p grid, creating K additional channels.
Hence, changes in the Hamiltonian Ĥ(S) or ansätze metadata are passed directly into the network as
an extra (K)-dimensional descriptor input.

After stacking all channels, we obtain an input tensor: X ∈ R(3+K)×L×(DN). This tensor is
processed by: Convolutional Layers (stride = 1) that preserve spatial dimensions, and then MHSA
over the flattened (L×DN) tokens. The key insight is that both the convolutional filters (stride 1)
and the global MHSA mechanism are dimension-agnostic, allowing the same backbone weights ω
to process any (L,N,D) combination. Thus, no architectural modifications are needed to handle
different depths, qubit counts, or gate sets.

3.2.3 Inference Phase and Complementary to Other Methods

TITAN can generalize across unseen Hamiltonians: changing S modifies descriptor channels,
injecting new context without altering the network structure. Arbitrary Circuit Architectures simply
changes the input shape, which the fully convolutional + MHSA backbone can still process. Hence,
CFCSA of TITAN enables a single predictor to operate on vastly different VQE setups, offering
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Figure 4: Frozen parameters intensity under APFA. Each panel shows the intensity (darker refers to
more often frozen) when applying VQE with HEA to the isotropic Hamiltonian.

Table 1: ∆E under Gaussian initialization. Frozen threshold (τ = 80) is marked with ∗ ; τ = 90 is
not. ∆E ≤ 0 is highlighted with green , frozen parameters ≥ 5 is colored with cyan .

N: 5 N: 6 N: 7 N: 8 N: 9 N: 10 N: 11 N: 12 N: 13 N: 14 N: 15

Proposed TITAN: Final Energy Comparison (∆E = ETitan Gauss − EBaseline Gauss)

L: 5 −0.104 +0.156 +0.324 −0.068 −0.092∗ −0.050 +0.582 −0.366 +0.434 −0.350 −0.315
L: 6 −0.084∗ −0.069 −0.138 −0.033 −0.014∗ +0.354 −0.181 +0.217 −0.024 −0.157 −0.087
L: 7 −0.222∗ −0.025∗ −0.035 −0.136 −0.054 +0.282 −0.002∗ −0.008∗ −0.141 −0.140 +0.538
L: 8 −0.015 −0.022∗ +0.176 +0.147 +0.146 −0.127 −0.029∗ −0.024 +0.184 −0.077 +0.426
L: 9 −0.047 −0.024∗ −0.114∗ −0.030∗ −0.119 −0.120∗ −0.122 −0.114∗ −0.177∗ −0.043 −0.063∗

L: 10 −0.084∗ −0.025 −0.136 −0.022 −0.011 +0.131 −0.033∗ −0.018 −0.003 −0.042 −0.074
Number of Frozen Parameters

L: 5 3/50 3/60 3/70 2/80 2/90 1/100 29/110∗ 2/120 2/130 2/140 8/150
L: 6 5/60∗ 1/72 1/84 4/96 1/108∗ 4/120 5/132 3/144 5/156 3/168 7/180
L: 7 9/70∗ 15/84∗ 2/98 2/112 3/126 3/140 14/154∗ 6/168∗ 6/182 12/196 4/210
L: 8 1/80 8/96∗ 5/112 4/128 1/144 5/160 4/176∗ 9/192 2/208 5/224 1/240
L: 9 4/90 10/108∗ 9/126∗ 7/144∗ 2/162 11/180∗ 1/198 26/216∗ 14/234∗ 2/252 15/270∗

L: 10 7/100∗ 1/120 1/140 2/160 2/180 11/200 11/220∗ 1/240 2/260 5/280 1/300

scalability and transferability across the full design space of
(
Ĥ,A(L,N,D)

)
or

(
Ĥ,A(p,S)

)
pairs.

In Section 4 and Appendix E, we show TITAN is complementary to other methods.

4 Experiments

Having established the validity of our training corpus, we now detail both the dataset–generation
experiments and the subsequent validation protocol for TITAN. The empirical study is organized into
two complementary suites: Heisenberg spin models and Quantum-chemistry benchmarks.

Hamiltonian with Varying Qubits and Layers We first consider a Heisenberg Hamiltonian H =∑N−1
i=1 (aXiXi+1 + b YiYi+1 + cZiZi+1), where N ∈ {5, . . . , 15} is the number of qubits. The

coefficients are set as (a, b, c)∈ [−5, 5]3.

Quantum-chemistry benchmarks After Jordan–Wigner or Bravyi–Kitaev transformation, the
molecular Hamiltonian Ĥ becomes a weighted sum of Pauli strings. So |ψ(θ)⟩ = V (θ) |ϕHF⟩, the
energy function in Eq. (2) becomes E(θ) = ⟨ϕHF|V †(θ) Ĥ V (θ) |ϕHF⟩.
Metric Throughout this work, we evaluate the performance of both Heisenberg Hamiltonian and
quantum chemistry by the variational energy itself as Eq. (2):

lower E(θ) =⇒ better approximation of the exact ground state. (4)

Settings All experiments are implemented by Tencent Quantum Tensor Circuits [75] and Pennylane
[76] with NVIDIA GeForce RTX 3060. More setting details are introduced in the Appendix F.

“Frozen-parameter” Phenomenon We first exhibit that APFA enables a stable and interpretable
sparsity pattern that persists across circuit scales as shown in Figure 4 when applying VQE with
HEA to isotropic Hamiltonian with L ∈ {5, . . . , 10} and N ∈ {5, . . . , 15}. For 5× 5 circuits, APFA
freezes almost all angles in the first two layers. Increasing the depth to 5 × 10 shifts the active
region to the circuit tail, concentrating optimization near the output. With 15 qubits, there are also
significantly more activation parameters on the output side.

HEA (Isotropic Hamiltonian) We employ a HEA with L layers and N qubits, L ∈ {5, . . . , 10}
and N ∈ {5, . . . , 15}. In the upper block of the Table 1, more than 90% of the cells are shaded
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Figure 5: Comparison of the final energies obtained using different initialization methods (Gaussian
[18], Zero, Uniform, and TITAN) and optimization strategies (Baseline (Vanilla), Random Freeze,
TITAN) with gradient descent optimizer. The results are shown for the isotropic Hamiltonian with
SEL (upper row) and SU2 (lower row), under the threshold τ = 80. Lower final energy values
indicate better optimization performance. Frozen parameters refer to the Appendix F.

Figure 6: Energy difference heat-maps for the HEA isotropic Heisenberg Hamiltonian with Gaussian
initialization. Each panel displays ∆E(a, b, c) = Ebaseline −Einit on a coefficient grid with horizontal
axis a ∈ [−5, 5] and vertical axis b ∈ [−5, 5]; the seven columns sweep the ZZ coupling coefficient
c ∈ −5,−3,−1, 0, 1, 3, 5 from left to right. Top row: TITAN. Middle row: Random Freezing.
Bottom row: Froze parameters counts (τ = 80). Positive (green) values indicate that the baseline
run converges to a higher final energy than the compared strategy, whereas negative (magenta) values
signify energy losses relative to the baseline. The color scale is clipped symmetrically about zero.

green (∆E ≤ 0), indicating that TITAN’s data-driven mask either matches or surpasses the baseline
across almost every ⟨layers, qubits⟩ setting where Baseline is without any parameters frozen. And
almost 50% of the cells are shaded cyan . Therefore, TITAN can also adjust the number of frozen
parameters by adjusting the threshold τ to achieve the energy we need that is relatively lower or
similar to the baseline (∆E ≤ 0). Additional threshold results appear in the Appendix F.

Test in SU2 and SEL (Isotropic Hamiltonian) On the other hand, to prove the generalization of
TITAN, we also tested it on other ansätze, i.e., SU2 and SEL, as shown in the Figure 5. We show
how TITAN complements traditional initialization methods, such as Zero initialization, uniform
initialization, and traditional Gaussian initialization [18]. Random Freeze never outperforms Baseline
and often incurs energy penalties of 0.3–1.2 Ha. This underscores that the benefit comes from pruning
targeted rather than a simple reduction. The success of TITAN on unseen ansätze and Hamiltonians
suggests that the learned mask captures Hamiltonian-invariant directions in the parameter landscape.
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Figure 7: Convergence behavior of TITAN (solid red) versus the Baseline (blue dotted) and a
Random-freeze control (black dashed) TFIM with coupling J = −3 and transverse field h = 2 with
Gaussian initialization [18]. The top row plots the ℓ2-norm, while the bottom row tracks f (final
energy). Shaded envelopes denote ±σ across 5 independent runs with threshold (τ = 80).

Table 2: Energy differences between Molecules with three initialization strategies: Gaussian [18]
(♢), zero (♡), and uniform (♣) under TITAN freezing and Random freezing. Less energy is colored
with blue and worse is red with (τ = 80).

H2 (4) HF (4) LiH (10) BeH2 (12) H2O (10) N2 (12) CO (12)
∆E = ETITAN − EBaseline

♢ 0.000 0.000 0.018 0.008 0.000 −0.007 −0.015
♡ 0.000 0.000 −0.017 −0.008 0.000 0.007 0.015

♣ 0.497 −0.148 0.145 −0.236 −0.078 2.512 −1.729
∆E = ERandom − EBaseline

♢ 2.248 0.000 0.003 0.013 0.004 0.011 0.017

♡ 2.248 0.001 0.003 0.013 0.004 0.010 0.017

♣ 1.991 0.573 −0.016 0.112 0.621 1.524 1.743

Number of Frozen Parameters
1/3 1/3 10/24 21/92 4/54 47/117 77/117

HEA (Anisotropic Hamiltonian) In terms of Anisotropic Hamiltonian, Figure 6 reports the fi-
nal–energy gap ∆E(a, b, c) = Ebaseline −Einit for a 8-qubit, 5-layer HEA. Across the entire (a, b, c)
hypersurface TITAN yields predominantly green cells, with improvements reaching ∆E ≈ 0.12.
Gains are especially pronounced for |c| ≥ 3 (i.e. strongly ZZ-dominated regimes) and for balanced
couplings |a| ≈ |b|, highlighting TITAN’s robustness under both isotropic and anisotropic interac-
tions. However, when considering random parameters freezing, it exhibits a near-zero mean: green
and magenta cells are interspersed without discernible structure, and the absolute deviations seldom
exceed |∆E| < 0.03. This corroborates that the performance lift stems from TITAN’s informed
freezing strategy rather than stochastic variance.

For c = 0 (pure XY model) TITAN’s advantage narrows yet remains positive, whereas for ZZ-
dominated columns (c = ±5) improvements are both larger in magnitude and spatially wider.
This pattern suggests that circuits with stronger longitudinal entanglement profit more from TI-
TAN’s early dimensionality reduction. The heat maps are approximately symmetric with respect
to (a, b) 7→ (−a,−b), in line with the underlying Hamiltonian symmetry; TITAN preserves this
property, indicating that the predictor does not inject bias towards a particular sign of the couplings.

TFIM (Anisotropic Hamiltonian) Compared with both reference baselines, TITAN exhibits markedly
superior optimization dynamics across all examined qubit counts. In the top-row panels of Figure 7,
the ℓ2-norm of the gradient for TITAN (solid red) diminishes precipitously within the first ∼ 10
training iterations, whereas the Baseline (blue dotted) and Random-freeze control (black dashed)
maintains substantially higher gradient amplitudes for 20–40 iterations. This steeper decay implies
that TITAN more rapidly enters a region of the parameter manifold where the objective landscape is
locally smoother, thereby reducing the variance of subsequent updates. The bottom-row panels reveal
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a correspondingly accelerated decrease in the objective value f (final variational energy): TITAN
attains energies lower than the Baseline after fewer than 15 iterations for N ≤ 15 qubits and sustains
an advantage that widens with system size, reaching a gap of ∼ 1.5–2.0 energy units at N = 20.
Moreover, the shaded envelopes are markedly narrower for TITAN, indicating reduced run-to-run
variability and greater stability.

Quantum Chemistry Molecules We also present the molecules experiment in the Table 2. For
most molecules (e.g., H2, HF, and LiH), the Gaussian initialization under TITAN yields negligible
∆E, suggesting that these methods closely match or slightly improve upon the baseline. In contrast,
Uniform initialization can lead to larger deviations, indicating higher energy. The last row reveals that
30% to 66% of parameters can be frozen a priori (e.g. 77/117 (65.8%) for CO) without degrading
energy, validating TITAN’s performance in VQE measurement overhead reduction.

5 Conclusion

This work introduced TITAN, the first end-to-end framework that learns to predict frozen-parameter
intensity for VQE. By harvesting large-scale frozen parameter trajectories by APFA, we created a
labeled dataset that exposes persistent redundancies in VQE ansätze. Combined with the enhanced
Gaussian initialization, which provably circumvents BPs via a depth-dependent variance and random
local Clifford twirling during dataset construction. This study remains limited to classical simulators
and benchmark circuits do not exceed ∼100 qubits, however, in the future, we plan to scale to deeper
circuits in real-world quantum sensors, ultimately enabling resource-efficient VQE deployments for
chemically and physically relevant systems.
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have claimed the experimental settings in page 7 and the Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have included our codes in Appendix and Anonymous Links.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have claimed the experimental settings in page 7 and the Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have claimed the information in our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have concluded the resources in Page 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper conform, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background and Related Works
	``Frozen-parameter'' Phenomenon and Implementation of TITAN
	Phenomenon of Frozen Parameters in VQE
	TITAN: Dataset Construction and Modeling
	Dataset Construction
	Modeling Implementation and Optimization of Titan
	Inference Phase and Complementary to Other Methods


	Experiments
	Conclusion

