
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LLMS ARE GREEDY AGENTS: EFFECTS OF RL
FINE-TUNING ON DECISION-MAKING ABILITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

The success of LLMs has sparked interest in various agentic applications. A
key hypothesis is that LLMs, leveraging common sense and Chain-of-Thought
(CoT) reasoning, can effectively explore and efficiently solve complex domains.
However, LLM agents have been found to suffer from sub-optimal exploration and
the knowing-doing gap, the inability to effectively act on knowledge present in the
model. In this work, we systematically study why LLMs perform sub-optimally
in decision-making scenarios. In particular, we closely examine three prevalent
failure modes: greediness, frequency bias, and the knowing-doing gap. We propose
mitigation of these shortcomings by fine-tuning via Reinforcement Learning (RL)
on self-generated CoT rationales. Our experiments across multi-armed bandits,
contextual bandits, and Tic-tac-toe demonstrate that RL fine-tuning enhances
the decision-making abilities of LLMs by increasing exploration and narrowing
the knowing-doing gap. Finally, we study both classic exploration mechanisms,
such as ϵ-greedy, and LLM-specific approaches, such as self-correction and self-
consistency, to enable more effective fine-tuning of LLMs for decision-making.

1 INTRODUCTION

Large Language Models (LLMs) pre-trained on massive internet-scale datasets have demonstrated
success across diverse domains, including text generation and language understanding (Radford et al.,
2019; Brown et al., 2020b; Team et al., 2023b; 2024a; Dubey et al., 2024). Their broad pre-training
distribution enables generalization to a wide range of scenarios, including coding assistance (Li et al.,
2022), education (Team et al., 2024d), and medicine (Saab et al., 2024). Therefore, their success has
sparked interest in using LLMs for decision-making problems (Chen et al., 2023; Krishnamurthy
et al., 2024; Nie et al., 2024) at the core of agentic AI systems (Durante et al., 2024).

One key hypothesis is that LLMs can generate informed action predictions without extensive en-
vironment interaction (Lu et al., 2024) due to “world knowledge” present in the model. Moreover,
Chain-of-Thought (CoT) (Wei et al., 2022) reasoning equips models with the ability to reason about
the observed history and their actions, which facilitates environment interaction. However, these
advantages often do not seem to materialize into strong performance when LLMs are faced with
decision-making scenarios. Notably, Krishnamurthy et al. (2024) and Nie et al. (2024) found that
LLMs do not robustly engage in exploration, resulting in sub-optimal behavior. Similar shortcomings
of LLMs have been observed by Paglieri et al. (2024) and Ruoss et al. (2024) on stateful environments
commonly used in RL (e.g., grid-worlds, Atari). Both works broadly attribute the shortcomings to the
knowing-doing gap, which states that models can possess knowledge about a task or can describe the
consequences of their behavior (i.e., they know what to do), but cannot materialize this knowledge
when acting (i.e., incapable of doing). Consequently, sub-optimal exploration and the knowing-doing
gap are considerable obstacles towards more powerful and robust agentic LLMs.

In this work, we aim to understand why LLMs often perform sub-optimally in simple decision-making
scenarios. In particular, we systematically study three prevalent failure modes in small-to-medium-
scale LLMs across different model families: greediness, frequency bias, and the knowing-doing gap
(see Section 4.2). Our analysis shows that final performance often remains sub-optimal, because
LLMs prematurely commit to greedy action selection strategies, leading to stagnating action coverage
that leaves a large part of the action space unexplored (up to 55%). Moreover, we observe that
small-scale LLMs (2B) tend to copy the most frequent actions in the context regardless of their

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Generate

Extract

Store

Update

Environment

Buffer

Figure 1: Illustration of our Reinforcement Learning Fine Tuning (RLFT) pipeline. We fine-tune
a pre-trained LLM πθ via self-generated Chain-of-Thought (CoT) rationales on environment rewards.

respective reward, which we refer to as frequency bias. In contrast, larger LLMs (27B) mostly
diminish the frequency bias, yet they remain prone to greedy behavior at the cost of exploration.
Similarly, we quantify the knowing-doing gap and find that LLMs often know how to solve a task
(87% correct rationales) but fail at acting on this knowledge as they prioritize greedy actions (64% of
actions when the rationale is correct).

To overcome these shortcomings, we propose Reinforcement Learning Fine-Tuning (RLFT) on self-
generated CoT rationales. RL is the predominant learning paradigm in decision-making scenarios
and has been successful in game-playing (Silver et al., 2016; Vinyals et al., 2019), robotics (Tirumala
et al., 2025), plasma-control (Degrave et al., 2022), or navigating stratospheric balloons (Bellemare
et al., 2020). We study the effects of RLFT on pre-trained Gemma2 models (Team et al., 2024b;c) in
three sizes (2B, 9B, 27B) in multi-arm bandit (MAB) and contextual bandit (CB) settings proposed
by Nie et al. (2024), and the textual Tic-tac-toe environment released by Ruoss et al. (2024). Across
environments, we find that RLFT enhances the decision-making abilities of LLMs by increasing
exploration and narrowing the knowing-doing gap. While RLFT positively affects exploration of
LLM agents, their exploration strategies remain sub-optimal. Therefore, we empirically evaluate both
“classic” exploration mechanisms commonly employed in RL, such as ϵ-greedy, and LLM-specific
approaches, such as self-consistency, to enable more effective fine-tuning for decision-making. Finally,
in our ablations, we investigate the importance of CoT reasoning for decision-making, highlight the
effectiveness of leveraging expert data, and show the benefits of giving the agent more reasoning
tokens to solve the decision-making problem. We emphasize that the central aim of this work is to
provide an in-depth analysis of LLM behavior in agentic scenarios, illustrating potential shortcomings
and avenues for improvement. We do not argue or believe that solely improving performance via
RLFT is a complete solution to the shortcomings outlined.

In summary, we make the following contributions:

• We systematically examine three failure modes of small-to-medium scale LLMs in decision-
making scenarios: greediness, frequency bias, and the knowing-doing gap.

• We study how RL fine-tuning on self-generated CoT rationales affects these shortcomings,
highlighting positive effects of RLFT on exploration and decision-making abilities.

• We evaluate a variety of exploration mechanisms (e.g., ϵ-greedy) and LLM-specific ap-
proaches (e.g., self-consistency), to enable more effective RLFT for LLMs.

2 RELATED WORK

Exploration in RL and LLMs. The trade-off between exploration and exploitation is a long-standing
challenge in the field of RL (Schmidhuber, 1991a;b; Still & Precup, 2012; Oudeyer et al., 2007).
Widely used RL agents have often relied on random schemes (Mnih et al., 2015), heuristics such
as state-visitation counts (Ecoffet et al., 2019; Raileanu & Rocktäschel, 2020), intrinsic curiosity
(Pathak et al., 2017; Burda et al., 2018; Groth et al., 2021), behavior priors (Rao et al., 2021), or

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

maximum entropy regularization (Schulman et al., 2017; Haarnoja et al., 2018). Naturally, a number
of works looked into leveraging LLMs for improving exploration of RL agents either as a source of
rewards (Klissarov et al., 2023; Lu et al., 2024) or to orchestrate exploration strategies (Klissarov
et al., 2024). Krishnamurthy et al. (2024) investigate the in-context exploration abilities of LLMs
when acting directly as a policy. Similarly, Nie et al. (2024) study the exploration abilities of LLMs
when fine-tuned on expert trajectories. In contrast, our work particularly investigates the effects of
RLFT on the exploration abilities of LLMs and focuses on why models fail.

In-context Learning for Decision-Making. ICL is a form of Meta-learning, also referred to as
learning-to-learn (Schmidhuber, 1987). While meta-learning is targeted via a meta-training phase
(Santoro et al., 2016; Mishra et al., 2018; Finn et al., 2017; Wang et al., 2016; Duan et al., 2016;
Kirsch et al., 2019; Flennerhag et al., 2019; Team et al., 2023a), ICL emerges as a result of the pre-
training data distribution (Chan et al., 2022; Kirsch et al., 2022). ICL has been rediscovered in LLMs
(Brown et al., 2020a) after initial observations by Hochreiter et al. (2001) in LSTMs (Hochreiter &
Schmidhuber, 1997). Mirchandani et al. (2023) leverage the ICL abilities of LLMs to operate as
general pattern machines. A number of works leverage the CoT abilities (Wei et al., 2022) of LLMs in
simple text-based scenarios (Shinn et al., 2023; Yao et al., 2022). Similar in-context decision-making
abilities have been observed in models trained from scratch, albeit in restricted environments (Laskin
et al., 2022; Lee et al., 2022; Kirsch et al., 2023; Raparthy et al., 2023; Schmied et al., 2024b;a).

Self-Correction in LLMs. A critical component for LLM agents is the ability to self-correct over
previously explored attempts. Existing works focus primarily on math benchmarks (Cobbe et al.,
2021; Hendrycks et al., 2021; Welleck et al., 2022). Zelikman et al. (2022) leverage hints to iteratively
generate correct answers and fine-tune on the respective CoT rationales. Kumar et al. (2024) employ
RLFT over multiple trials to induce self-correction. Similarly, Zelikman et al. (2024) make use of RL
fine-tuning, but instead generate rationales at every token position. Instead of imitation, Wang et al.
(2025) rely on critique fine-tuning to induce self-correction. Wulfmeier et al. (2024) make use of
inverse RL to avoid compounding errors. Other works rely on ICL abilities to learn from previous
mistakes (Zhang et al., 2024; Monea et al., 2024). In contrast to Monea et al. (2024), who use ICL
and contexts that span multiple previous episodes, we rely on single-trajectory contexts and CoT
reasoning abilities. Moreover, we focus on analyses of the decision-making abilities of LLMs and
the effects of RLFT, rather than proposing a new method. While conceptual corrections are possible,
exact token-level correction is usually difficult for autoregressive generation (Cundy & Ermon, 2023).

3 METHODOLOGY

3.1 BACKGROUND

Reinforcement Learning. We assume the standard RL formulation via a Markov Decision Process
(MDP) represented by a tuple of (S,A,P,R), where S and A denote state and action spaces,
respectively. At every timestep t the agent observes state st ∈ S , predicts action at ∈ A, and receives
a reward rt given by the reward function R(st, at). P(st+1 | st, at) defines the transition dynamics
constituting a probability distribution over next states st+1. The goal of RL is to learn a policy
πθ(at | st) with parameters θ that predicts an action at in state st that maximizes cumulative reward.

Reinforcement Learning from Human Feedback. RLHF aims to fine-tune pre-trained models
towards human preferences (Christiano et al., 2017). Preferences are typically encoded via a reward
model rϕ with parameters ϕ learned from a human-annotated dataset D consisting of query-response
pairs x and y, respectively. RLHF optimizes a constrained REINFORCE estimator (Williams, 1992):

max
θ

Ex∼D,y∼πθ(·|x)
[
(rϕ(x, y)− b)∇θ log πθ(y | x)− βDKL(πθ(· | x) || πref (· | x)

]
(1)

Here πref is a reference policy, which is typically the frozen pre-trained model, and β is a weighting
term. The baseline b represents a baseline to reduce variance and is commonly instantiated by a value
function (Schulman et al., 2017; Ouyang et al., 2022) or a Monte-Carlo (MC) estimate of the returns
(Ahmadian et al., 2024; Ramesh et al., 2024; Shao et al., 2024).

3.2 REINFORCEMENT LEARNING FINE-TUNING (RLFT)

Our RLFT approach relies on fine-tuning on self-generated CoT rationales on rewards obtained from
environment interaction. During RLFT, the model learns to iteratively refine its reasoning process,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

favoring CoT patterns and actions that lead to higher rewards (see Figure 1). Our approach is akin to
Guo et al. (2025) and targets decision-making scenarios similar to Zhai et al. (2025).

Context Representation. The input tokens to our model at step t consists of input instructions
cint , output instructions coutt , and the most recent interaction history c

τt−C:t

t (see Figure 1). The
history representation contains the trajectory τt−C:t = (st−C , at−C , rt−C , . . . , st, at, rt) of the C
most recent states, actions, and rewards. We opt for task-specific instructions for cint rather than a
generic instruction template, providing the agent with information about the observations, the possible
actions, and its objective. Consequently, ct is represented by the concatenation of the instruction and
history tokens ct = [cint ; coutt ; c

τt−C:t

t].

Factorization of Action Tokens. At every interaction step t, the agent generates action tokens
zt = [zCoT

t ; at] containing both the CoT reasoning tokens zCoT
t and the action to be executed in the

environment at. To extract at from zt, we make use of an extraction function at = g(zt). In practice,
g consists of regular expressions to match the output pattern given by coutt . If no valid action is found,
a random action is executed. To allow for flexibility in refining the reasoning process, we opt for a
permissive output template (i.e., ACTION=X), rather than enforcing a structured output template (e.g.,
<action> blocks). We employ a token generation budget of G tokens (=256), therefore |zt| ≤ G.

Reward Shaping for Valid Actions. In addition to the environment reward renvt , we employ a reward
shaping term rvalidt to encourage the model to adhere to the output template, rt = renvt + rvalidt .
More specifically, we make use of a reward penalty of −5 if g cannot extract a valid action, rvalidt =
−5 ·1(g(aactt) /∈ A). To ensure that the reward penalty does not overly bias optimization, we employ
reward normalization to the environment rewards.

Fine-tuning objective. We fine-tune using the clipping objective introduced by Schulman et al.
(2017) with and additional KL constraint to the reference policy πref :

max
θ

E(c,z)∼D

[
min

(
πθ(z|c)
πθold(z|c)

Aadv, clipϵ

(
πθ(z|c)
πθold(z|c)

)
Aadv

)
− βDKL(πθ(·|c)||πref (·|c))

]
(2)

Here πθold refers to the rollout generating policy, D is the rollout buffer, and ϵ is a hyperparameter.
To allow for memory-efficient fine-tuning in environments with fixed episode lengths (bandits), we
make use of a Monte Carlo baseline to estimate Aadv . Instead of exploiting multiple rollouts, as used
by Ahmadian et al. (2024) and Ramesh et al. (2024), we compute rewards-to-go. For environments
with variable episode lengths (Tic-tac-toe), we learn a separate state-value head on top of the last
layer LLM representations and make use of generalized advantage estimation (Schulman et al., 2015).
We provide additional implementation and training details in Appendix B.

4 LLMS FOR DECISION-MAKING

We study the effect of fine-tuning LLMs in multi-armed bandits and contextual bandits settings
proposed by Nie et al. (2024), and on a text-based version of Tic-tac-toe released by Paglieri et al.
(2024) (see Section 4.1). For our experiments, we primarily focus on Gemma2 (Team et al., 2024c)
at three model scales (2B, 9B, and 27B) and report additional analyses for Llama3 (Dubey et al.,
2024) and Qwen2.5 (Qwen et al., 2025) in Appendix C.4. In Section 4.2, we first analyze three
common failure modes of LLM agents in MAB scenarios: (1) greediness, (2) frequency bias, and
(3) the knowing-doing gap. Then we investigate the effects of fine-tuning on self-generated CoT
rationales or expert rationales in MABs/CBs (see Section 4.3), and in Tic-tac-toe (see Section 4.5). In
Section 4.4, we study the effects of exploration mechanisms on the fine-tuning performance. Finally,
in Section 4.5 we empirically examine important components of our approach.

4.1 ENVIRONMENTS & BASELINES

Multi-armed and Contextual Bandits. MABs (Slivkins et al., 2019; Lattimore & Szepesvári, 2020)
are a classic problem setting in RL that isolates the exploration-exploitation trade-off. For our MAB
experiments, we leverage the text-based bandit scenarios released by Nie et al. (2024). We focus
on the continuous and button variants, as illustrated in Figure 2. We report results for MAB with
k ∈ {5, 10, 20} arms (|A| = k) and payoffs of the arms being either Gaussian or Bernoulli distributed.
In addition, we consider three levels of stochasticity (low/medium/high) that determine the standard

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

deviation or delta gap in Gaussian or Bernoulli bandits, respectively. For all MAB settings, we limit
the horizon T to 50 interaction steps. We provide more details on our MAB setup in Appendix A.1.

Button Multi-armed Bandit (Gaussian)

You are a bandit algorithm in a room with
5 buttons labeled red, green, blue, yellow,
orange. [...].

Think step-by-step and output your final
answer in the format ACTION=X where X is
one of the arms listed above. IMPORTANT:
Provide your (SHORT!) thinking process and
your answer ACTION=X

So far you have tried/seen:
Step=0 Action=green Reward=0.3
Step=1 Action=blue Reward=0.1
Step=2 Action=orange Reward=-0.5
...
What do you predict next?

Figure 2: Button MAB from (Nie et al., 2024)
using our context representation and instructions.

We compare against two commonly used base-
lines for MABs: Upper-confidence Bound
(UCB) (Auer, 2002) and a random agent that
selects actions uniformly at random. UCB is
considered optimal and represents the upper
bound for agent performance, whereas the ran-
dom baseline represents the lower bound. We
want to emphasize that we do not aim to out-
perform UCB with LLMs, but instead aim for a
better understanding. We provide more details
on our baselines and on our setup for CBs in
Appendices A.1 and A.2, respectively.

Tic-tac-toe. In addition, we use the text-based
Tic-tac-toe environment released by Ruoss et al.
(2024), which exhibits proper state transitions.
Ruoss et al. (2024) demonstrated that frontier
models struggle to achieve strong performance
in this environment and often barely beat a ran-
dom opponent. Consequently, it is a good target
to investigate the efficacy of RLFT. In Appendix
A.3, we provide additional details on our Tic-
tac-toe environment and training setup.

4.2 WHY DO LLMS PERFORM
SUBOPTIMALLY IN DECISION-MAKING?

Prior works found that LLM agents often perform suboptimally and fail to explore sufficiently in
interactive settings (Paglieri et al., 2024; Ruoss et al., 2024). Therefore, we first examine why models
perform suboptimally and identify three prevalent failure modes: (1) greediness, (2) frequency bias,
and (3) the knowing-doing gap. In this section, we present analyses of LLMs models when given
input contexts that elucidate the failure corresponding modes. We conduct our analyses on the button
instance of our MAB experiments at three model scales, and find that the failure modes persist across
model scales (see Appendix C.1 for additional results on a continuous MAB instance).

0 10 20 30 40 50
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
tio

n
Sp

ac
e

Co
ve

ra
ge

Parameters
2B
9B
27B

CoT
True
False

(a) Action Coverage: 10 arms

0 10 20 30 40 50
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
tio

n
Sp

ac
e

Co
ve

ra
ge

Parameters
2B
9B
27B

CoT
True
False

(b) Action Coverage: 20 arms (c) Coverage vs. Regret: 10 arms

Figure 3: Illustration of greediness. We show action coverage for Gemma2 2B/9B/27B w/ and
w/o CoT for (a) 10 and (b) 20 arms over 50 interaction steps. Agents favor the best-performing
action among the set of selected actions, leading to stagnating action coverage, despite benefits of
larger models and CoT. In (c), we plot cumulative regret against action coverage. The agents exhibit
suboptimal regret because of greedy action selection strategies.

Greediness. The first and most pervasive failure mode is greediness, which is characterized by the
LLM overly favoring the best-performing action among a small set of actions seen so far. To illustrate
this failure mode, we show the average action coverage achieved by Gemma2 2B/9B/27B with and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

without CoT across 64 MABs with 10 and 20 arms over 50 interaction steps (see Figure 3 a and b).
We define action coverage Ct at step t as the fraction of available actions that have been selected
at least once, Ct =

{a∈A:Nt(a)>0}
|A| with Nt(a) representing the number of times action a ∈ A has

been selected until t. For 10 arms and averaged over 64 parallel environments, we find that Gemma2
2B covers 40% of all actions, while 9B/27B cover 65% (i.e., 6.5 actions), leaving a significant part of
the action space unexplored. Note that without CoT, all models explore merely 25% of all actions in
the 10 arms setting. The suboptimal coverage is caused by the model overly favoring high-reward
actions (see Figure 15 in Appendix C.1.1). Consequently, the model prematurely commits to a greedy
strategy, leading to a stagnating action coverage beyond 10 steps. Increasing the number of arms
makes the greediness even more apparent, with the largest models only covering 45% of all actions.
Due to this, the regret remains high compared to UCB, even though the models improve significantly
over a random agent (see Figure 3c). We repeat our analyses with the Llama3 (Dubey et al., 2024)
and Qwen2.5 (Qwen et al., 2025) model families in Appendix C.4 and show that these biases persist.

0 20 40 60 80 100
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
tio

n
En

tro
py

Correlation=-0.67
Frequent Fraction=0.96

(a) 2B: Correlations

0.0

0.4

0.8

Fr
ac

tio
n

pe
r w

in
do

w
2B

0-10 45-55 90-100
Action Repetitions

0.0

0.4

0.8

Fr
ac

tio
n

pe
r w

in
do

w

27B Strategy
frequent
greedy
other

(b) Strategy per Window

0 20 40 60 80 100
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
tio

n
En

tro
py

Correlation=0.61
Frequent Fraction=0.14

(c) 27B: Correlations

Figure 4: Illustration of frequency bias. We plot the frequency of the repeated action in the context
against the action entropy across all actions for 10 armed MABs in the button scenario (actions are
colors). (a) Gemma2 2B heavily suffers from frequency bias, becoming more certain of the most
frequent action, the more often it occurs in the context. (c) Gemma2 27B overcomes the frequency
bias, but instead behaves greedily. In (b), we show the action strategies for three repetition windows.

greedy optimal other
"Doing": Action Strategy

True

False"K
no

wi
ng

":
Co

rre
ct

ne
ss 58.1±2 21.6±2 10.6±1

7.2±1 0.6±0 2.0±0

Figure 5: Confusion matrix for the knowing-
doing gap of Gemma2 27B. The agent
“knows” how to solve the task (87% correct
rationales, sum of top row), but fails at "do-
ing" (58% greedy actions among correct ratio-
nales). See Figure 26 for the CoT instructions
and an agent response.

Frequency Bias. The next prevalent failure mode is
frequency bias, characterized by repeatedly select-
ing the most frequent action in the context, even
when that action gives low reward. To understand
how the model’s behavior is influenced by the fre-
quency, we construct prefix histories using a ran-
dom policy, vary the number of repetitions of the
last action in the history (0-100), and record the en-
tropy over all actions (Figure 4a and c). See Ap-
pendix C.1.2 for details on the context generation.
To quantify frequency bias, we categorize an ac-
tion as frequent af = argmaxa∈A NT (a), greedy
ag = argmaxa∈{a∈A:NT (a)>0} RT (a), or other if
they are neither frequent nor greedy. Note that an
action is optimal with 10% probability. Subsequently,
we compute the frequent Ff , greedy Fg, and other
Fo fractions as reported in Figure 4 (see Appendix 4
for additional definitions).

Gemma2 2B heavily suffers from repeated actions,
exhibiting a decreasing entropy with increasing repetitions (96% Ff , see Figure 4a). In contrast, 27B
escapes the frequency bias (14%, see Figure 4c) and interestingly becomes less certain of its action
prediction with increasing repetitions. To examine this further, we show the bucketized fractions with
0-10, 45-55, and 90-100 repetitions for 2B and 27B in Figure 4b. Indeed, for 2B Ff keeps increasing

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

with increasing repetitions. While 27B escapes the frequency bias, it suffers heavily from greediness.
Similar biases have been identified in Behavior Cloning (BC) settings using small models and termed
copycat bias (Wen et al., 2020; Schmied et al., 2024b). This suggests that the persistent frequency
bias in smaller models may be an artifact of supervised pre-training or insufficient model capabilities,
and motivates the use of RL as a counter-measurement.

Knowing-Doing Gap. The knowing-doing gap has been observed by Paglieri et al. (2024) and Ruoss
et al. (2024). Our simple MAB setting is well-suited to quantify the knowing-doing gap precisely.
To investigate this gap in our setting, we first task Gemma2 27B to produce the UCB algorithm, to
compute the relevant quantities accordingly ("knowing"), and finally to act according to the computed
quantities ("doing", see Figure 26 for the instructions and an agent response). We let Gemma2 27B
interact with the environment (64 instances) for 50 timesteps with G = 2048 per step, and extract the
UCB quantities from the generated rationales. To quantify "knowing", we compare the UCB values
computed by the model against the real UCB values, and consider the rationale zCoT as correct if the
arm with the highest UCB values matches (see Appendix C.1.3 for details). To quantify "doing", we
categorize the generated actions as optimal action if the model selects the action with the highest UCB
value, as greedy if it selects the action with the highest UCB value among the set of actions tried so
far, and as other if the action is neither optimal nor greedy. Subsequently, we compute the percentages
of greedy/optimal/other actions. The agent clearly knows how to solve the task, with 87% of all
rationales being correct (see Figure 5). However, even for correctly computed rationales, the model
often selects the greedy action (58%) over the optimal action (21%). This discrepancy highlights the
shortcomings of the LLM when it comes to "acting" even when "knowing" the algorithm.

4.3 EFFECTIVENESS OF RL FINE-TUNING

0 10 20 30 40 50
Step

0

10

20

30

40

50

60

70

Cu
m

ul
at

iv
e

Re
gr

et

Arms=5

0 10 20 30 40 50
Step

0

10

20

30

40

50

60

70
Arms=10

0 10 20 30 40 50
Step

0

10

20

30

40

50

60

70
Arms=20

Figure 6: Main Comparison on Gaussian MABs button scenario in the medium noise (σ = 1)
setting. We compare cumulative regrets (lower is better) of classic baselines against ICL and RLFT
performances for 5, 10, and 20 arms. See Figure 20 for σ = 0.1 and σ = 3.

Next, we study the effects of RLFT on cumulative regret (w.r.t. optimal policy) and whether it
alleviates the highlighted failure modes. We fine-tune Gemma2 2B and 9B on self-generated CoT
rationales for 30K updates with an (accumulated) batch size of 128. To avoid memorization of reward
distributions, we maintain a pool of 512 MABs and randomly select a subset of 16 MABs per rollout
during training, and report evaluation results on hold-out MABs (see Appendix B for details).

Figure 7: Effect of RLFT on
greediness for Gemma2 2B.

RLFT lowers regret. In Figure 6, we report the cumulative regrets
across model sizes and arms for a medium noise σ = 1.0 scenario
(see Appendix C.2 for low/high noise). Across environments, the
LLMs clearly outperform the random baseline, and RLFT lowers
regret for both 2B and 9B. For 2B, RLFT narrows the gap to its larger
counterparts and UCB. Similarly, RLFT lowers regret for Gemma2
9B. Note that the lower cumulative regret of Gemma2 9/27B com-
pared to UCB after 50 environment steps in the 20 arms scenario
is an artifact of the limited interaction steps, but the trends remain
clear. We repeat RLFT for CBs, and observe similar performance
improvements for Gemma2 2B (see Appendix C.3). Consequently,
reinforcing self-generated CoT rationales towards environment re-
wards improves performance on simple decision-making scenarios.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

RLFT mitigates greediness. In Figure 7, we report the action coverage for 2B after RLFT at different
numbers of gradient steps (10K, 20K, 30K). Indeed, we observe that RLFT results in increased action
coverage (+12%) after 30K updates. Interestingly, we first observe a decrease (at 10K) followed by
an increase in action coverage (20K, 30K). We observe similar effects for the 20 arms scenario (see
Figure 17). Via RLFT, the agent learns to explore its options and to mitigate greediness.

RLFT counteracts frequency bias. We find that RLFT counteracts frequency bias (see Figure 19).
In particular, for 0-10 repetitions, we observe a strong decrease in the fraction of frequent actions
(70% → 35%) and an increase in "other" actions (8% → 35%). However, Ff remains elevated for
high repetitions. Consequently, RLFT counteracts frequency bias, but does not fully alleviate it.

4.4 EFFECTS OF EXPLORATION MECHANISMS

For RLFT, we relied solely on the exploration properties for CoT reasoning. However, in RL it is
common practice to employ additional exploration strategies (Mnih et al., 2015; Schulman et al., 2017;
Haarnoja et al., 2018). Therefore, we study the effects of classic exploration mechanisms and LLM-
specific strategies to encourage exploration. We compare: (1) try-all actions initially similar to UCB,
(2) ϵ-greedy, (3) context randomization, (4) context summary similar to Krishnamurthy et al. (2024)
and Nie et al. (2024), (5) self-correction similar to Kumar et al. (2024), (6) self-consistency (Wang
et al., 2022), and (7) incorporating an exploration bonus during RLFT. We provide details on each
mechanism in Appendix B.4. Across model scales, we observe that the mechanisms result in varied
effects on action coverage (see Figure 8). First, we find that the simple try-all strategy, which reduces
the need for additional exploration by trying all actions, results in large performance improvements.
This suggests that only given sufficient information about the (sub-)optimality of actions, LLMs are
able to select actions accordingly, underscoring their exploration shortcomings. Second, a simple
exploration bonus (+1 reward for untried actions) during RLFT significantly increases exploration
(50% → 70%) and lowers regret towards the expert compared to regular RLFT. This highlights the
importance of reward shaping for fine-tuning LLMs to elucidate a desired behavior.

3040506070
Avg. Cumulative Regret

0.4

0.6

0.8

1.0

Ac
tio

n
Co

ve
ra

ge

Model = Gemma2 2B

3040506070
Avg. Cumulative Regret

Model = Gemma2 2B, RLFT

3040506070
Avg. Cumulative Regret

Model = Gemma2 9B

3040506070
Avg. Cumulative Regret

Model = Gemma2 27B

Figure 8: Effect of exploration mechanisms on action coverage and cumulative regret.

4.5 ABLATIONS

RLFT in Tic-tac-toe. To investigate the efficacy of RLFT in stateful environments, we evaluate on
Tic-tac-toe from Ruoss et al. (2024), in which frontier models struggle to achieve strong performance
(see Appendix B for training details). We fine-tune against three opponents: a random agent, Monte
Carlo Tree Search (MCTS) (Coulom, 2006), and noisy MCTS (50% of actions selected at random).
We find that RLFT significantly enhances the win-rate of Gemma2 2B against all opponents compared
to ICL (see Figure 9a). Against the random agent, RLFT elevates the average return from 0.15 (i.e.,
winning 15% of games) to 0.75. Notably, the agent even manages to draw against the optimal MCTS
baseline (−0.95 → 0.0), underscoring the effectiveness of RLFT for decision-making. However, for
high performance, it is essential to provide the currently legal actions in the context (see Figure 25).

Importance of CoT for RLFT. CoT reasoning is critical for ICL performance (see Figure 3), but
the question remains how CoT influences RLFT. Therefore, we run RLFT on Gemma2 2B on the
10 arms Gaussian MAB both with and without CoT (see Figure 9b, RLFT). Indeed, without CoT,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Tic-tac-toe: Opponents (b) MAB: Effect of CoT

Tokens

9B RLFT

(c) MAB: "Thinking" Time

Figure 9: Ablations. (a) Effect of RLFT in Tic-tac-toe from Ruoss et al. (2024). (b) Effect of CoT
on ICL, RLFT and SFT (expert data) performance on MABs. (c) Effect of increasing the number of
"thinking" tokens to generate during RLFT.

RLFT barely attains the performance of ICL with CoT. This highlights the function of CoT as a vital
exploration and rationalization mechanism for decision-making.

Expert Behavior Cloning vs. Thought Cloning. BC is a prevalent approach in sequence models
for decision-making (Pomerleau, 1988; Brohan et al., 2022; 2023) and relies on expert datasets.
Consequently, we construct two UCB expert datasets comprising 32K rollouts (1.6M transitions)
across different MABs either with or without CoT traces (see Figure 12 for an illustration) and perform
SFT on them. Notably, both SFT variants successfully mimic the expert, achieving comparable
regret to UCB (see Figure 9b, SFT). This result underscores the effectiveness of expert data in
decision-making, echoing findings in reasoning tasks (Muennighoff et al., 2025).

Effect of Thinking Time. Finally, we investigate the effect of giving the agent more/less time to
"think" during RLFT by varying the generation budget G (see Figure 9c and Appendix D). Decreasing
G results in poor performance, as the agent is unable to rationalize its decisions. Increasing G to 512
improves performance to the level of 9B w/ RLFT. The agent effectively leverages the additional
tokens, which reflects recent observations in mathematical reasoning (Guo et al., 2025). However,
when increasing G, rollout generation can make up the majority of the training time due to the
multi-step nature of decision-making tasks (e.g., for H = 50, G = 500, agent generates 25K tokens).

5 CONCLUSION

We study why LLMs perform sub-optimally in decision-making scenarios and examine three prevalent
and independent failure modes: greediness, frequency bias, and the knowing-doing gap. We empha-
size that we focus on in-depth analyses to provide a fundamental understanding of LLM behavior
in decision-making scenarios and to aid future research, rather than solely improving algorithm
performance via RLFT. In particular, our rigorous empirical analysis aims to inform design decisions
of future LLM agents. For example, when building tool-use or coding agents, it may be essential
to restrict the breadth of available tools initially due to pre-existing greediness biases (Yang et al.,
2025). We show that RLFT on CoT rationales mitigates greediness, counteracts frequency bias, and
improves performance. While RLFT improves exploration abilities, it remains sub-optimal compared
to bandit algorithms. Therefore, we investigate a variety of mechanisms to enhance exploration.
Models act near-optimally if provided with sufficient information, underscoring their shortcomings in
exploration. Finally, we highlight the importance of reward shaping for RLFT.

Future Work. We primarily focused our evaluation on the Gemma2/Llama3/Qwen2.5 series and
small-to-medium scale models. While we expect that our findings transfer to larger models, we deem
research into frontier models important. Moreover, our MAB experiments were conducted with a
limited horizon of 50 environment steps, which is sufficient for 5 and 10 arms, but insufficient for
20 arms. Due to its simplicity, the MAB setting also allows us to rigorously study how the learned
decision-making and exploration abilities transfer to unseen environments in future work (e.g., by
varying the number of arms or shifting the reward distribution at test time). We expect that RLFT
may increase robustness compared to SFT in such scenarios, which would reflect findings by Chu

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

et al. (2025). For future work, we believe that evaluating the exploration abilities of LLM agents
is particularly interesting in environments that require targeted exploration towards an end-goal.
First, this includes other stateful environments from Paglieri et al. (2024), Ruoss et al. (2024), and
Tajwar et al. (2025). A deeper investigation into the knowing-doing gap would be particularly
interesting in these environments. Second, we deem a systematic investigation into the exploration
abilities of LLMs in existing agentic and computer-use benchmarks (Mialon et al., 2023; He et al.,
2024; Zhou et al., 2023) interesting. While RLFT positively influenced the agent’s decision-making
abilities, our experiments demonstrated that performance remained suboptimal. Simple exploration
mechanisms, such as an extrinsic reward bonus, considerably improved performance. Similarly,
intrinsic reward mechanisms (Pathak et al., 2017; Burda et al., 2018) to encourage autonomous
exploration could be valuable components of future agents in multi-turn applications. Moreover, in
our ablations, we found that LLMs benefit from additional "thinking" time and believe that allowing
for a larger generation budget is becoming increasingly important for agentic scenarios, especially for
scenarios that involve high-stakes decisions (e.g., economics or AI safety). We deem investigations
into such high-stakes scenarios fruitful for future work. While increasing "thinking" time improves
performance, it comes with excessive computational cost at training time due to the rollout generation
and the multi-step nature of decision-making. Therefore, modern recurrent architectures (Gu & Dao,
2023; De et al., 2024; Beck et al., 2025) that allow for faster inference may be promising alternatives
for decision-making and scaling-up RLFT.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive details in the Appendix. We describe our
environment setup, the generated datasets, and our baselines in Appendix A. The primary benchmark
we focus on, BanditBench, was released by Nie et al. (2024) and is available on GitHub. Furthermore,
in Appendix B, we provide the implementation details for all RLFT and SFT experiments, along
with a comprehensive list of hyperparameters. Moreover, in Appendix B.4, we describe and provide
details for the exploration mechanisms compared in Section 4.4. Finally, in Appendix C, we provide
additional experimental results that we could not fit in the main text.

USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used LLMs to polish existing text, specifically for improving
grammar and some phrasings. No LLMs were used for research ideation or exploration.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Ahmet Üstün, and
Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brand-
stetter, and Sepp Hochreiter. Rudder: Return decomposition for delayed rewards. Advances in
Neural Information Processing Systems, 32, 2019.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. Advances in Neural Information Processing Systems, 37:107547–107603,
2025.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado, Sub-
hodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588(7836):77–82, 2020.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020a.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020b.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Stephanie Chan, Adam Santoro, Andrew K. Lampinen, Jane Wang, Aaditya Singh, Pierre H.
Richemond, James L. McClelland, and Felix Hill. Data distributional properties drive emer-
gent in-context learning in transformers. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle
Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022, 2022.

Liting Chen, Lu Wang, Hang Dong, Yali Du, Jie Yan, Fangkai Yang, Shuang Li, Pu Zhao, Si Qin,
Saravan Rajmohan, et al. Introspective tips: Large language model for in-context decision making.
arXiv preprint arXiv:2305.11598, 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Chris Cundy and Stefano Ermon. Sequencematch: Imitation learning for autoregressive sequence
modelling with backtracking. arXiv preprint arXiv:2306.05426, 2023.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Zane Durante, Qiuyuan Huang, Naoki Wake, Ran Gong, Jae Sung Park, Bidipta Sarkar, Rohan
Taori, Yusuke Noda, Demetri Terzopoulos, Yejin Choi, et al. Agent ai: Surveying the horizons of
multimodal interaction. arXiv preprint arXiv:2401.03568, 2024.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu, Francesco Visin, Hujun Yin, and Raia
Hadsell. Meta-learning with warped gradient descent. arXiv preprint arXiv:1909.00025, 2019.

Oliver Groth, Markus Wulfmeier, Giulia Vezzani, Vibhavari Dasagi, Tim Hertweck, Roland Hafner,
Nicolas Heess, and Martin Riedmiller. Is curiosity all you need? on the utility of emergent
behaviours from curious exploration. arXiv e-prints, pp. arXiv–2109, 2021.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In Artificial Neural Networks—ICANN 2001: International Conference Vienna, Austria, August
21–25, 2001 Proceedings 11, pp. 87–94. Springer, 2001.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Shengran Hu and Jeff Clune. Thought cloning: Learning to think while acting by imitating human
thinking. Advances in Neural Information Processing Systems, 36:44451–44469, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Improving generalization in meta
reinforcement learning using learned objectives. arXiv preprint arXiv:1910.04098, 2019.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

Louis Kirsch, James Harrison, C Freeman, Jascha Sohl-Dickstein, and Jürgen Schmidhuber. Towards
general-purpose in-context learning agents. In NeurIPS 2023 Workshop on Generalization in
Planning, 2023.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. arXiv preprint arXiv:2310.00166, 2023.

Martin Klissarov, Mikael Henaff, Roberta Raileanu, Shagun Sodhani, Pascal Vincent, Amy Zhang,
Pierre-Luc Bacon, Doina Precup, Marlos C Machado, and Pierluca D’Oro. Maestromotif: Skill
design from artificial intelligence feedback. arXiv preprint arXiv:2412.08542, 2024.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context? arXiv preprint arXiv:2403.15371, 2024.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning
with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game decision transformers.
arXiv preprint arXiv:2205.15241, 2022.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant
foundation models. arXiv preprint arXiv:2405.15143, 2024.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines.
arXiv preprint arXiv:2307.04721, 2023.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=B1DmUzWAW.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. Llms are in-context reinforce-
ment learners. arXiv preprint arXiv:2410.05362, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

13

https://openreview.net/forum?id=B1DmUzWAW

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H Chi, Quoc V Le, and Minmin Chen. Evolve:
Evaluating and optimizing llms for exploration. arXiv preprint arXiv:2410.06238, 2024.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir Khan,
Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, et al. Balrog: Benchmarking
agentic llm and vlm reasoning on games. arXiv preprint arXiv:2411.13543, 2024.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. arXiv preprint arXiv:2002.12292, 2020.

Shyam Sundhar Ramesh, Yifan Hu, Iason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa, Haitham Bou
Ammar, and Ilija Bogunovic. Group robust preference optimization in reward-free rlhf. arXiv
preprint arXiv:2405.20304, 2024.

Dushyant Rao, Fereshteh Sadeghi, Leonard Hasenclever, Markus Wulfmeier, Martina Zambelli,
Giulia Vezzani, Dhruva Tirumala, Yusuf Aytar, Josh Merel, Nicolas Heess, et al. Learning
transferable motor skills with hierarchical latent mixture policies. In International Conference on
Learning Representations, 2021.

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu. Gener-
alization to new sequential decision making tasks with in-context learning, 2023.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

Anian Ruoss, Fabio Pardo, Harris Chan, Bonnie Li, Volodymyr Mnih, and Tim Genewein. Lmact: A
benchmark for in-context imitation learning with long multimodal demonstrations. arXiv preprint
arXiv:2412.01441, 2024.

Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang,
Tim Strother, Chunjong Park, Elahe Vedadi, et al. Capabilities of gemini models in medicine.
arXiv preprint arXiv:2404.18416, 2024.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine
learning, pp. 1842–1850. PMLR, 2016.

14

https://arxiv.org/abs/2412.15115

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning now to learn:
The meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany, 14 May
1987.

Jürgen Schmidhuber. Curious model-building control systems. In Proc. international joint conference
on neural networks, pp. 1458–1463, 1991a.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. In Proc. of the international conference on simulation of adaptive behavior: From
animals to animats, pp. 222–227, 1991b.

Thomas Schmied, Markus Hofmarcher, Fabian Paischer, Razvan Pascanu, and Sepp Hochreiter.
Learning to modulate pre-trained models in rl. Advances in Neural Information Processing
Systems, 36:38231–38265, 2023.

Thomas Schmied, Thomas Adler, Vihang Patil, Maximilian Beck, Korbinian Pöppel, Johannes
Brandstetter, Günter Klambauer, Razvan Pascanu, and Sepp Hochreiter. A large recurrent action
model: xlstm enables fast inference for robotics tasks. arXiv preprint arXiv:2410.22391, 2024a.

Thomas Schmied, Fabian Paischer, Vihang Patil, Markus Hofmarcher, Razvan Pascanu, and Sepp
Hochreiter. Retrieval-augmented decision transformer: External memory for in-context rl. arXiv
preprint arXiv:2410.07071, 2024b.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning.(2023). arXiv preprint
cs.AI/2303.11366, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends® in Machine
Learning, 12(1-2):1–286, 2019.

Susanne Still and Doina Precup. An information-theoretic approach to curiosity-driven reinforcement
learning. Theory in Biosciences, 131(3):139–148, 2012.

Fahim Tajwar, Yiding Jiang, Abitha Thankaraj, Sumaita Sadia Rahman, J Zico Kolter, Jeff Schneider,
and Ruslan Salakhutdinov. Training a generally curious agent. arXiv preprint arXiv:2502.17543,
2025.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal M. P. Behbahani, Avishkar
Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, Vibhavari
Dasagi, Lucy Gonzalez, Karol Gregor, Edward Hughes, Sheleem Kashem, Maria Loks-Thompson,
Hannah Openshaw, Jack Parker-Holder, Shreyaan Pathak, Nicolas Perez Nieves, Nemanja Rakice-
vic, Tim Rocktäschel, Yannick Schroecker, Jakub Sygnowski, Karl Tuyls, Sarah York, Alexander

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Zacherl, and Lei M. Zhang. Human-timescale adaptation in an open-ended task space. In Interna-
tional Conference on Machine Learning, 2023a.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023b.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024a.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024b.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024c.

LearnLM Team, Abhinit Modi, Aditya Srikanth Veerubhotla, Aliya Rysbek, Andrea Huber, Brett Wilt-
shire, Brian Veprek, Daniel Gillick, Daniel Kasenberg, Derek Ahmed, et al. Learnlm: Improving
gemini for learning. arXiv preprint arXiv:2412.16429, 2024d.

Dhruva Tirumala, Markus Wulfmeier, Ben Moran, Sandy Huang, Jan Humplik, Guy Lever, Tuomas
Haarnoja, Leonard Hasenclever, Arunkumar Byravan, Nathan Batchelor, Neil sreendra, Kushal
Patel, Marlon Gwira, Francesco Nori, Martin Riedmiller, and Nicolas Heess. Learning robot soccer
from egocentric vision with deep reinforcement learning. In Pulkit Agrawal, Oliver Kroemer,
and Wolfram Burgard (eds.), Proceedings of The 8th Conference on Robot Learning, volume 270
of Proceedings of Machine Learning Research, pp. 165–184. PMLR, 06–09 Nov 2025. URL
https://proceedings.mlr.press/v270/tirumala25a.html.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yubo Wang, Xiang Yue, and Wenhu Chen. Critique fine-tuning: Learning to critique is more effective
than learning to imitate. arXiv preprint arXiv:2501.17703, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. arXiv preprint arXiv:2211.00053, 2022.

Chuan Wen, Jierui Lin, Trevor Darrell, Dinesh Jayaraman, and Yang Gao. Fighting copycat agents
in behavioral cloning from observation histories. Advances in Neural Information Processing
Systems, 33:2564–2575, 2020.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

16

https://proceedings.mlr.press/v270/tirumala25a.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Markus Wulfmeier, Michael Bloesch, Nino Vieillard, Arun Ahuja, Jörg Bornschein, Sandy Huang,
Artem Sokolov, Matt Barnes, Guillaume Desjardins, Alex Bewley, Sarah Maria Elisabeth Bech-
tle, Jost Tobias Springenberg, Nikola Momchev, Olivier Bachem, Matthieu Geist, and Martin
Riedmiller. Imitating language via scalable inverse reinforcement learning. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Ad-
vances in Neural Information Processing Systems, volume 37, pp. 90714–90735. Curran Asso-
ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
a5036c166e44b731f214f41813364d01-Paper-Conference.pdf.

Zonghan Yang, Shengjie Wang, Kelin Fu, Wenyang He, Weimin Xiong, Yibo Liu, Yibo Miao, Bofei
Gao, Yejie Wang, Yingwei Ma, et al. Kimi-dev: Agentless training as skill prior for swe-agents.
arXiv preprint arXiv:2509.23045, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via
reinforcement learning. Advances in Neural Information Processing Systems, 37:110935–110971,
2025.

Tianjun Zhang, Aman Madaan, Luyu Gao, Steven Zheng, Swaroop Mishra, Yiming Yang, Niket Tan-
don, and Uri Alon. In-context principle learning from mistakes. arXiv preprint arXiv:2402.05403,
2024.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

17

https://proceedings.neurips.cc/paper_files/paper/2024/file/a5036c166e44b731f214f41813364d01-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a5036c166e44b731f214f41813364d01-Paper-Conference.pdf

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

CONTENTS

A Environments & Datasets 18
A.1 Multi-arm Bandits: BanditBench . 18

A.1.1 Baselines . 19
A.1.2 SFT Datasets . 20

A.2 Contextual Bandits . 20
A.3 Tic-tac-toe . 21

B Experimental & Implementation Details 23
B.1 Training & Evaluation . 23

B.2 RLFT . 23
B.3 SFT . 24
B.4 Exploration Mechanisms . 24

C Additional Results 26
C.1 Failure Modes . 26

C.1.1 Greediness . 26
C.1.2 Frequency Bias . 27

C.1.3 Knowing-Doing Gap . 27

C.2 Multi-armed Bandits . 28
C.3 Contextual Bandits . 29
C.4 Other Model Families: Qwen-2.5 and Llama3 . 30

C.5 Percentage of invalid actions. 30

C.6 Prompt Template Variations. 31

C.7 Effect of Exploration Mechanisms . 32

D Ablations 32
D.1 RLFT in Tic-tac-toe. 32
D.2 Tic-tac-toe: Effect of Legal Actions in State . 32

D.3 Importance of CoT for RLFT . 33

D.4 Expert Behavior Cloning vs. Thought Cloning . 33

D.5 “Thinking” Time . 33

A ENVIRONMENTS & DATASETS

We conduct experiments on three sets of environments: multi-armed bandits, contextual bandits, and
Tic-tac-toe. For the SFT experiments reported in Section 4.5, we generate our own expert datasets. In
this section, we provide additional details on our environments and datasets.

A.1 MULTI-ARM BANDITS: BANDITBENCH

MABs (Slivkins et al., 2019; Lattimore & Szepesvári, 2020) are a classic problem setting in RL
that isolates the exploration-exploitation trade-off. In contrast, commonly used RL environments
(Bellemare et al., 2013; Tassa et al., 2018) often conflate exploration with other RL-specific aspects,
such as delayed rewards (Arjona-Medina et al., 2019). We rely on the MAB scenarios released in
BanditBench (Nie et al., 2024) and also used by (Krishnamurthy et al., 2024). MABs come with a
number of variable dimensions, including the scenario type (textual description of the task), the type
of reward distribution (Gaussian, Bernoulli) and its corresponding noise level (low/medium/high),

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

the number of arms (i.e., actions), and the number of interaction steps per episode. Consequently,
MABs are a good testbed for LLM agents.

We focus on the continuous and button variants released by Nie et al. (2024) using their benchmark
available on Github. We report results for MAB with k ∈ {5, 10, 20} arms (|A| = k) for three levels
of stochasticity (low/medium/high). In our experiments, for every arm the corresponding reward
is sampled from a Gaussian distribution r ∼ N (µ, σ) where µ ∼ N (0, 1) and is a fixed scalar
σ ∈ {0.1, 1, 3} for the three levels of stochasticity, respectively. For all MAB settings, we limit
the horizon T to 50 interaction steps. Limiting the horizon is necessary to handle the increasing
lengths and, consequently, RAM requirements for fine-tuning. While we consider 50 interaction
steps sufficient for 5 and 10 arms, it is insufficient for the 20-arms scenario. However, note that the
general trends are well observable for the 20 arms scenario. In Figure 10, we show the continuous
and button Gaussian MABs with CoT instructions for the agent. Similarly, in Figure 11 we show the
same instances without CoT instructions.

Continuous MAB (Gaussian)

You are a bandit algorithm and interact
with 5 arms labeled 0,1,2,3,4. Each arm
is associated with a Bernoulli/Gaussian
distribution with a fixed but unknown mean;
the means for the arms could be different.
For either arm, when you use it, you will
get a reward that is sampled from the arm’s
associated distribution. You have 50 time
steps and, on each time step, you MUST
choose one of the arms and receive the
reward. Your goal is to maximize the total
reward.

[More Instructions]

Think step-by-step and output your final
answer in the format ACTION=X where X is
one of the arms listed above. IMPORTANT:
Provide your (SHORT!) thinking process
and your answer ACTION=X

So far you have tried/seen:
Step=0 Action=1 Reward=0.3
Step=1 Action=2 Reward=0.1
Step=2 Action=0 Reward=-0.5
Step=3 Action=3 Reward=0.5
Step=4 Action=1 Reward=0.24
...
What do you predict next?

Button MAB (Gaussian)

You are a bandit algorithm in a room with
5 buttons labeled red, green, blue, yellow,
orange. Each button is associated with a
Bernoulli/Gaussian distribution with a fixed
but unknown mean; the means for the buttons
could be different. For either button, when you
press it, you will get a reward that is sampled
from the button’s associated distribution. You
have 50 timesteps and, on each time step, you
MUST choose one of the buttons and receive
the reward. Your goal is to maximize the total
reward over the 50 timesteps.

[More Instructions]

Think step-by-step and output your final
answer in the format ACTION=X where X is
one of the arms listed above. IMPORTANT:
Provide your (SHORT!) thinking process and
your answer ACTION=X

So far you have tried/seen:
Step=0 Action=green Reward=0.3
Step=1 Action=blue Reward=0.1
Step=2 Action=orange Reward=-0.5
Step=3 Action=red Reward=0.5
Step=4 Action=green Reward=0.24
...
What do you predict next?

Figure 10: Illustration of continuous and button Gaussian multi-armed bandits scenarios from
BanditBench (Nie et al., 2024) using our context representation and with CoT instructions.

A.1.1 BASELINES

We compare against two commonly used baselines for MABs: Upper-confidence Bound (UCB)
(Auer, 2002) and a random agent that selects actions uniformly at random. Generally, UCB aims to
balance exploitation and exploration. The exploitation value in UCB:

V exploit
t (a) =

t∑
t′=1

1{at′=a}rt′

Nt(a)
(3)

for a given action a at timestep t represents the empirical mean of the rewards obtained when that
action was executed, where Nt(a) indicates the action frequency. The exploration bonus in UCB:

V explore
t (a) = α

√
log t

Nt(a)
(4)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Continuous MAB (Gaussian)

You are a bandit algorithm and interact
with 5 arms labeled 0,1,2,3,4. Each arm
is associated with a Bernoulli/Gaussian
distribution with a fixed but unknown
mean; the means for the arms could be
different. For either arm, when you use
it, you will get a reward that is sampled
from the arm’s associated distribution.
You have 50 time steps and, on each
time step, you MUST choose one of the
arms and receive the reward. Your goal
is to maximize the total reward.

[More Instructions]

Output ONLY your final answer in the
format ACTION=X.

So far you have tried/seen:
Step=0 Action=1 Reward=0.3
Step=1 Action=2 Reward=0.1
Step=2 Action=0 Reward=-0.5
Step=3 Action=3 Reward=0.5
Step=4 Action=1 Reward=0.24
...
What do you predict next?

Button MAB (Gaussian)

You are a bandit algorithm in a room with
5 buttons labeled red, green, blue, yellow,
orange. Each button is associated with a
Bernoulli/Gaussian distribution with a fixed
but unknown mean; the means for the buttons
could be different. For either button, when you
press it, you will get a reward that is sampled
from the button’s associated distribution. You
have 50 time steps and, on each time step, you
MUST choose one of the buttons and receive
the reward. Your goal is to maximize the total
reward over the 50 time steps.

[More Instructions]

Output ONLY your final answer in the format
ACTION=X.

So far you have tried/seen:
Step=0 Action=green Reward=0.3
Step=1 Action=blue Reward=0.1
Step=2 Action=orange Reward=-0.5
Step=3 Action=red Reward=0.5
Step=4 Action=green Reward=0.24
...
What do you predict next?

Figure 11: Illustration of continuous and button Gaussian multi-armed bandits scenarios from
BanditBench (Nie et al., 2024) using our context representation without CoT instructions.

is proportional to how frequently that action a has previously been selected, and α is a hyperparameter.
UCB is considered optimal and represents the upper bound for agent performance, whereas the random
baseline represents the lower bound. Consequently, we want to emphasize that the purpose of this
work is not to outperform UCB or to propose a better bandit algorithm with LLMs and RLFT. Instead,
we aim to better understand the decision-making abilities of LLMs and the effects of RLFT on
exploration.

A.1.2 SFT DATASETS

In our main experiments, we focused on self-generated CoT rationales and action predictions
produced by our fine-tuned agents, which do not require a pre-collected dataset. In contrast, for
our SFT experiments reported in Section 4.5, we generated UCB expert datasets. In particular, we
construct two dataset instances: a behavior cloning dataset that only contains expert actions and a
thought cloning (TC) dataset that incorporates expert actions alongside a thought process for coming
up with the respective action (i.e., w/ CoT). For every arm and stochasticity level combination,
we construct 32K rollouts from different MABs, which amounts to 1.6M transitions (state, action,
reward) per dataset.

To provide the thought process in the TC datasets, we reconstruct the computations of the UCB values
conducted by the UCB expert in textual format. The thought process ends with a final conclusion of
why a particular action was selected (i.e., highest UCB value or exploratory action). Consequently,
the action zt at step t contains the thought process zCoT and the action to execute at (see Section
3.2). We illustrate the actions contained in the dataset for a trajectory at steps 4 and 11 in Figure 12.
The BC datasets do not contain the thought process. Instead, they only contain the final predictions
made by the model, for example ACTION=yellow as shown in Figure 12.

A.2 CONTEXTUAL BANDITS

MABs do not emit states. In contrast, CBs emit state representations at every interaction step, making
them contextual. Consequently, CBs are interesting to test the abilities of LLMs to make use of the
given context when predicting the next action. For our CB experiments, we leverage the MovieLens
environment released by Nie et al. (2024), a semisynthetic bandit task based on the MovieLens

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Multi-armed Bandit at step 4

Let’s think step-by-step. We calculate the counts and means for every action.

[More Thoughts]

Count for action blue = 1, Mean = (-1.91) / 1 = -1.91, UCB = -1.91 + sqrt(1 / 1)) = -0.91
Count for action green = 1, Mean = (1.41) / 1 = 1.41, UCB = 1.41 + sqrt(1 / 1)) = 2.41
Count for action red = 1, Mean = (0.45) / 1 = 0.45, UCB = 0.45 + sqrt(1 / 1)) = 1.45
Count for action yellow = 0, Mean = NaN, UCB = NaN
Count for action orange = 0, Mean = NaN, UCB = NaN

We have not yet selected all actions. Therefore, we select the next one.

ACTION=yellow

Multi-armed Bandit at step 11

Let’s think step-by-step. We calculate the counts and means for every action.

[More Thoughts]

Count for action blue = 1, Mean = (-1.91) / 1 = -1.91, UCB = -1.91 + sqrt(1 / 1)) = -0.91
Count for action green = 4, Mean = (1.41 + 0.17 + 0.67 + -0.1) / 4 = 0.54, UCB = 0.54 + sqrt(1 / 4)) =
1.04
Count for action red = 3, Mean = (0.45 + 0.78 + 2.16) / 3 = 1.13, UCB = 1.13 + sqrt(1 / 3)) = 1.71
Count for action yellow = 1, Mean = (-1.03) / 1 = -1.03, UCB = -1.03 + sqrt(1 / 1)) = -0.03
Count for action orange = 1, Mean = (-1.2) / 1 = -1.2, UCB = -1.2 + sqrt(1 / 1)) = -0.2

We select actions according to the highest UCB value. Therefore, action red is selected.

ACTION=red

Figure 12: Illustration of UCB rationales contained in our SFT expert datasets at two timesteps (4
and 11) in the same trajectory. Both examples show the Thought Cloning dataset instance containing
both the produced CoT rationale and the predicted action. The Behavior Cloning instances contain
only the final action prediction (in red).

dataset (Harper & Konstan, 2015). In this setting, the agent operates as a movie recommendation
engine given a contextual description of a user (10K users in total) and a list of K possible movies.
The context representation provides a textual description of the user to recommend the movie to.
This description includes the user’s gender, age, profession, location, and a numeric description
of the user’s preferences for each of the possible movies. As for MABs, we report results for
K ∈ {5, 10, 20}, and limit the horizon to 50 interaction steps. In Figure 13, we provide an example
for a MovieLens CB with 5 actions with our context representation and CoT instructions.

Baselines. Similar to MABs, we compare against LinUCB (Chu et al., 2011) and an agent selecting
actions uniformly at random. We provide implementation details on our baselines in Appendix B.

A.3 TIC-TAC-TOE

Finally, we use the text-based Tic-tac-toe environment released by Ruoss et al. (2024) (see Figure
14 for an example). Unlike MABs and CBs, Tic-tac-toe is a stateful environment with proper state
transitions (i.e., action predicted at step t affects the state observed at step t+ 1). The agent receives
scalar rewards of 1, 0, and -1 for winning, drawing, and losing against its opponent, respectively.
Episodes last until either of the players wins, draws, or loses. To enable easy extraction of actions from
the generated rationales, we represent the action space as a discrete set of 9 actions, corresponding to
the grid positions on the 3× 3 grid used in Tic-tac-toe (| A |= 9). However, only at the start of an
episode are all 9 actions valid. Subsequently, only a subset is valid because of the currently taken
board positions. We (optionally) provide the set of valid actions at a particular step in textual form
in the context given to the agent. Ruoss et al. (2024) demonstrated that frontier models struggle to
achieve strong performance in this environment and barely beat a random opponent. Consequently,
we deem it a good target to investigate the efficacy of RLFT.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

MovieLens Contextual Bandit

You are an AI movie recommendation assistant for a streaming
platform powered by a bandit algorithm that offers a wide variety of
films from different studios and genres. There are 5 unique movies
you can recommend, named star_wars_(1977), contact_(1997),
fargo_(1996), return_of_the_jedi_(1983), liar_liar_(1997). When
a user visits the streaming platform, you assess their demographic
description to choose a movie to suggest. You aim to match the user
with movies they are most likely to watch and enjoy.

[More Instructions]

Think step-by-step and output your final answer in the format
ACTION=X where X is one of the arms listed above. IMPORTANT:
Provide your (SHORT!) thinking process and your answer AC-
TION=X

So far you have tried/seen:
...
Step=4 This person is a 28-year-old man, working as an administrator
and living in Santa Clara county, CA. The user has some numeri-
cal values that represent their true implicit preference or taste for all
movies: [-0.04, 0.02, -0.02, -0.0, 0.02]
What do you predict next?

Figure 13: Illustration of contextual MovieLens scenario from BanditBench (Nie et al., 2024) using
our context representation and instructions.

Baselines. Following Ruoss et al. (2024), we compare against a random agent by default. In addition,
we also compare against (MCTS) (Coulom, 2006), and a noisy variant of MCTS that selects an action
randomly with 50% chance and according to MCTS otherwise.

Tic-tac-toe

You are an agent playing tic-tac-toe. You observe a board with 9 entries that looks like this:
000
100
002
1 indicates that player 1 has placed a stone in that square. 2 indicates that player 2 has placed a stone in
that square. 0 indicates that no stone has been placed in that square. You play as 1.
There are 9 possible actions: 0, 1, 2, 3, 4, 5, 6, 7, 8. The actions correspond to the following board
locations
012
345
678

[More Instructions]

Think step-by-step and output your final answer in the format ACTION=X where X is one of the arms
listed above. IMPORTANT: Provide your (SHORT!) thinking process and your answer ACTION=X

So far you have tried/seen:
Step=0 State=000000000 Action=0 Reward=0
Step=1 State=102000000 Action=4 Reward=0
Step=2 State=102010002 Action=5 Reward=0
What do you predict next?

Figure 14: Illustration of the text-based Tic-tac-toe environment.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL & IMPLEMENTATION DETAILS

B.1 TRAINING & EVALUATION

In our experiments, we fine-tune Gemma2 models in three model sizes (2B/9B/27B). For all exper-
iments, we use the instruction-tuned versions of Gemma2 and leverage the respective instruction
pre- and post-fixes. For bandits, we fine-tune all models for a total of 30K updates and evaluate after
every 10K steps. with an accumulated batch size of 128. Similarly, we fine-tune for 12K updates and
evaluate every 4K updates on Tic-tac-toe. We report the mean and 95% confidence intervals over
three seeds, as suggested by Agarwal et al. (2021).

General. We train all agents with an accumulated batch size of 128. We use a learning rate of 1e−4,
100 linear warm-up steps followed by a cosine decay to 1e−6. To enable memory-efficient fine-tuning
of 2B and 9B models, we utilize the AdaFactor optimizer (Shazeer & Stern, 2018). We experiment
with LoRA (Hu et al., 2022) for fine-tuning the 9B and 27B models, but found it insufficient for
improving the agent’s decision-making abilities in our setting. However, LoRA considerably reduces
the amount of memory required for RLFT and has been shown to work well for supervised fine-tuning
of decision-making agents (Schmied et al., 2023). Therefore, we deem it a promising candidate for
RLFT in decision-making scenarios. Furthermore, we employ gradient clipping of 1.0. We list all
hyperparameters in Table 1.

Table 1: Default hyperparameters used in our experiments.

Name Value Description
Training
training_steps 30K or 12K Number of training steps.
eval_freq 10K or 4K Evaluation frequency (in updates).
batch_size 128 Accumulated batch size.
lr_scheduler Linear + cosine Learning rate scheduler
warmup steps 100 Warmup steps.
lr 1e4 to 1e6 Maximum learning rate.
optimizer AdaFactor Optimizer.
Sequence Length & Generation Budget
context_length 1792 Input context length.
num_tokens 256 Generation budget.
RLFT
rollout_steps 800 or 2048 Rollout steps in-between updates.
update_epochs 1 or 2 Update epochs over rollout-buffer.
reward_penalty -5 Reward penalty for invalid actions.
loss PPO clipping objective + KL constraint Objective function.
baseline MC-baseline or state-value head Baseline.
envs 16 Number of parallel envs.
ϵ 0.2 Clipping value.
β 0.05 KL coefficient.
reward_norm True Whether reward normalization is used.
train_temp 1.0 Sampling temp during rollouts.
eval_temp 0.0 Sampling temp during evaluation.
top_p 1.0 Sampling top-p.
Hardware
accelerator 8 × H100 Hardware accelerator.

Context Lengths & Generation Budget. For all model sizes and tasks, we use a context length of
1792 for the input context. By default, we set the generation budget to 256 tokens, except for the
knowing-doing gap analyses reported in Section 4.2, which require a larger budget of 2048 tokens,
and our generation budget ablation. Consequently, the effective sequence length for fine-tuning is
2048.
Hardware Setup. We train all models on a server equipped with 8 × H100 GPUs.

B.2 RLFT

For our RLFT experiments on bandits, we employ the context representation, action factorization,
reward shaping terms, and training objectives described in Section 3.2. To extract the target action at

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

from zt, we make use of a stack of regex expressions against the target pattern (i.e., ACTION=X) and
consider the last match in the generated tokens as at. In addition to being fairly robust, we found
that this approach allows for more flexibility during the RLFT process and led to better outcomes
than a more structured approach. We opt for this choice, as preliminary experiments showed it was
more robust to varied, sometimes malformed CoT outputs, which as particularly important during
early stages of RLFT. This design choice prioritized more reliable signal extraction during training
over strict format adherence. However, we acknowledge that depending on the model at hand and
its associated post-training approach, it makes sense to consider different established extraction
approaches, such as boxed{}.

Across model sizes, we additionally found it essential to introduce a reward shaping term to penalize
rationales that contain no valid actions. By default, we use a reward penalty of -5 for invalid
actions. To ensure that the reward penalty does not overly bias the optimization, we employ reward
normalization to the environment rewards. In preliminary experiments, we found that a range of
values between [−10,−1] resulted in stable training. In contrast, a high penalty of −100 caused
instabilities. In case no valid action is found within the generated tokens, we execute a random action.
While this occurs seldomly, this mechanism is a useful safeguard to ensure robust interaction with the
environment during RLFT (see Table 2 for percentage of random actions). Empirically, we found
that the reward shaping term is sufficient for the models to produce exclusively valid actions early on
in the training. Consequently, this simple mechanism enables a consistent signal throughout RLFT,
and we add it to our recipe.

We fine-tune using the clipping objective introduced by Schulman et al. (2017) with an additional KL
constraint to the reference policy πref . We set β = 0.05 and ϵ = 0.2 for all experiments. We make
use of the approximated per-token KL divergence instead of computing the full KL. While we found
that computing the full KL slightly improves performance, it slows down training considerably. In
contrast to Ahmadian et al. (2024) and Ramesh et al. (2024), we do not rely on producing multiple
rollouts, because it is impractical for the multi-step nature of decision-making tasks. We opt for this
choice because obtaining multiple rollouts from the same state, as are required for GRPO (Ramesh
et al., 2024) and RLOO (Ahmadian et al., 2024), is difficult in decision-making scenarios for two
reasons. First, due to the multi-step nature of decision-making tasks, it would be necessary to execute
k different actions corresponding to k rollouts at every interaction step. This is difficult due to the
already high associated costs of generating tokens on every step. Incorporating multiple rollouts would
therefore drive up cost by a factor of k. Second, in stateful environments, the environment naturally
transitions to the next state after executing an action. Consequently, obtaining multiple rollouts from
the same state would require environment resets. In certain scenarios, such as simulations, resetting
the environment is possible, but in many scenarios, this is not feasible. Therefore, we rely on
standard MC-baselines to estimate Aadv .

For bandit experiments, we maintain a pool of 512 stochastic MABs. For every rollout, we let the
agent interact with a subset of 16 bandits for a single episode (50 timesteps). Consequently, every
rollout contains 800 transitions. Similarly, for Tic-tac-toe, we maintain 16 parallel environments and
collect 2048 rollout steps. We conduct 1 and 2 update epochs over the rollout buffer for bandits and
Tic-tac-toe, respectively.

B.3 SFT

For our SFT experiments on MABs, we fine-tune on either the expert action or expert rationales
produced by UCB. We employ standard SFT training on the SFT datasets described in Appendix
A.1.2 using a cross-entropy objective on the target tokens.

B.4 EXPLORATION MECHANISMS

In Section 8, we compare a variety of classic exploration mechanisms and LLM-specific approaches
and study their effects on agent performance on Gaussian MABs with 10 arms. Here, we provide a
description for each mechanism.

Try-all. The try-all strategy is inspired by UCB, which incorporates an initial phase in which
all untried actions are executed. This is because the UCB values for all untried actions are ∞.
Therefore, for try-all, we incorporate the same exploration phase when performing ICL and RLFT at
the beginning of every episode. To enable fine-tuning on exploration actions, we provide an action
rationale template to the model (e.g., Action X has not been tried yet, let’s explore it.
ACTION=X). While simple, we find that this try-all strategy is effective for lowering regret across all
model sizes (see Figure 8). This suggests that the model is able to select appropriate actions if given
sufficient information about the consequences of all actions, but struggles to explore actions by itself.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

ϵ-greedy. ϵ-greedy is classic exploration mechanism and commonly used in RL algorithms (Mnih
et al., 2015; Hessel et al., 2018). For our experiments, we use ϵ = 0.1 both during training and
evaluation. Note that ϵ-greedy exploration is performed on a per-action level, not on a per-token level.
Consequently, at every step, there is a 10% chance that the executed action is sampled uniformly
from the action space, instead of being predicted by the agent. In preliminary experiments, we swept
over different ϵ values. However, with ϵ-greedy, we found it difficult to strike a good balance between
sufficient action coverage and low regret in our setting. Overall, ϵ = 0.1 enabled stable learning
and minor exploration benefits. As for the try-all strategy, we construct a synthetic action rationale
template (“Action X has not been tried yet, let’s explore it. ACTION=X”) to enable RLFT on the
random actions.
Context Randomization. Context Randomization is an LLM-specific mechanism designed to
introduce randomness in the action predictions by modifying the context representation. At every
interaction step, we construct a mapping from the original action labels to a shuffled list of the same
action labels. Subsequently, we remap action in the context history according to the constructed
mapping. Finally, the predicted action is mapped back to the original action label space and executed
environment. Besides introducing randomness, context randomization acts as a control mechanism to
ensure that the observed biases do not only stem from biases towards particular action-tokens (e.g.,
blue occurs more often than magenta in the pre-training dataset).

Context Summary. Similar to Krishnamurthy et al. (2024) and Nie et al. (2024), we evaluate the
effects of providing a context summary to the agent. After the context history, we provide the model
with a summary of that history that contains the number of times every action has been selected so
far, along with their respective mean rewards.

Self-Correction. Inspired by Kumar et al. (2024) and Wang et al. (2025), we employ self-correction
to the model’s predicted actions. First, we let the model generate its initial rationale and corresponding
action prediction. Then we append the generated rationale along with a self-correction message
(similar to Kumar et al. (2024)) to the input context, and repeat the action generation. Finally, we
extract the action from the final response and execute it in the environment. For RLFT, we only
fine-tune on the final response, but retain the initial response along with the self-correction message
in the context.
Self-Consistency. Instead of generating a single answer, self-consistency (Wang et al., 2022) relies on
generating multiple responses. Subsequently, self-consistency employs a majority voting mechanism
to determine the final response. For our experiments in Figure 8, we report results for self-consistency
with 16 generated responses. Instead of majority voting, we experimented with sampling from the
respective response distribution or random mechanisms.

Exploration Bonus. Finally, we evaluate a reward shaping mechanism in the form of an exploration
bonus. In particular, we give an exploration bonus of +1 if the agent selects an action not yet tried
within the respective episode. While simple, we find that the exploration bonus effectively narrows
the gap to the UCB expert. This highlights the importance of reward shaping for fine-tuning LLMs in
decision-making scenarios.

Button MAB

[Instructions]

S=0 A=blue R=1
S=1 A=blue R=1
S=2 A=blue R=1
S=3 A=green R=0
S=4 A=red R=2
What do you predict
next?

(a) Example: History

blu
e

gre
en red

ye
llow

ora
ng

e
pu

rpl
e
pin

k
bro

wn
bla

ck
whit

e

Action

0.0

0.2

0.4

0.6

0.8

1.0

P(
a)

Parameters
2B
9B
27B

(b) Example: Probability Mass

Figure 15: Illustration of action probabilities leading to greediness behavior. Models exhibit overly
high action probabilities in the presence of rewards, potentially resulting in repeatedly selecting
sub-optimal actions.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C ADDITIONAL RESULTS

C.1 FAILURE MODES

C.1.1 GREEDINESS

Greediness is characterized by the LLM overly favoring the best-performing action among a small
set of actions seen so far. We define action coverage Ct at step t as the fraction of available actions
that have been selected at least once, Ct =

{a∈A:Nt(a)>0}
|A| with Nt(a) representing the number of

times action a has been selected until t.
Action probabilities. The suboptimal action coverage reported in Section 4.2 is caused by the model
overly favoring high-reward actions (i.e., overly high action probabilities). In Figure C.1.1, we provide
an illustration of the action probabilities for a given input history. Across model sizes, Gemma2
exhibits overly high action probabilities in the presence of reward, which results in repeatedly
selecting a potentially suboptimal action.

0 10 20 30 40 50
Step

0.2

0.4

0.6

0.8

Ac
tio

n
Sp

ac
e

Co
ve

ra
ge

Parameters
2B
9B
27B

CoT
True
False

(a) Action Coverage: 10 arms

0 10 20 30 40 50
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
tio

n
Sp

ac
e

Co
ve

ra
ge

Parameters
2B
9B
27B

CoT
True
False

(b) Action Coverage: 20 arms

Figure 16: Illustration of greediness for the numbers scenario.

Greediness on Continuous MABs. We repeat the analyses conducted in Section 4.2 using numbers
instead of buttons as the possible actions. Indeed, we find that the same trends hold. Without CoT,
the performance remains low. For Gemma2 27B, we observe an increase in the action coverage to
almost 90% for the 10 arms scenario, and to 60% for the 20 arms scenario.

Post RLFT. In line with Figure 17a, we present the post-RLFT action coverage on the 20 arms
scenario in Figure 17b. Similar to the effects on the 10 arms scenario, we observe that RLFT improves
the action coverage by 13%.

Figure 17: Effect of RLFT on greediness for 2B on 20 arms (medium noise).

100-step Horizon. Throughout our experiments, we limit the horizon to 50 interaction steps (see
Figure 3) because of practical reasons. In our setup, the agent has to produce a decision rationale at
every step because of the multi-step nature of decision-making. Every step involves both a prefilling
stage (encoding instructions, history) and a generation stage for producing the rationale/action, which
is costly over multi-turn interactions. Given the flattening of the action coverage curves in Figure
3, we do not expect that the agent would continue to explore over a longer horizon. To verify this

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

hypothesis, we conduct an additional ablation in which we run the smallest and largest Gemma2
models on the 10 arms scenario with an extended horizon of 100 interaction steps (see Figure 18).
Indeed, we find that the action coverage remains flat over the longer horizon, which indicates that the
agent does not continue to explore due to greedy action selection strategies.

0 20 40 60 80 100
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
tio

n
Sp

ac
e

Co
ve

ra
ge

Parameters
2B
27B
CoT
True
False

Figure 18: Illustration of greediness over a longer horizon of 100 interaction steps. We compare
Gemma2 2B and 27B with and without CoT. The agents do not continue to explore over the longer
horizon.

C.1.2 FREQUENCY BIAS

Frequency bias is characterized by repeatedly selecting the most frequently occurring actions in
the context, even when the dominant action gives a low reward. To measure frequency bias, we
first construct a variety of interaction histories (occurred during environment interaction) containing
between 2 and 10 transitions. This interaction history is collected using a random policy. Given an
initial interaction history, we repeat the last action in the history, which we also refer to as the target
action, between 0 and 100 times. Finally, we report the entropy all actions, H(θ) = −

∑
a∈A πθ(a |

τ) log πθ(a | τ) . To achieve this, we conduct a separate forward pass for every possible action
in the action space and report the respective log probabilities. We repeat the same procedure for
different interaction histories and target actions (see Figure 4a and c). For the 10 arms scenario, every
interaction history therefore results in 1000 (10 arms * 100 repetitions of the target action) forward
passes. We repeat this procedure for the 5 target actions reported in Figure 4 (i.e., ’green’, ’red’,
’blue’, ’orange’, ’black’ buttons) using 5 interaction histories per action, accumulating to a total of
25K model forward passes (1000 * 5 * 5) per figure.

To quantify frequency bias, we categorize the resulting actions as frequent action, greedy, or other if
they are neither frequent nor greedy. Subsequently, we compute the frequent Ff , greedy Fg and other
Fo fractions as reported in Figure 4:

Ff =
NT (af)

N
; Fg =

NT (ag)

N
; Fo =

∑
a∈A\{af ,ag} NT (a)

N
, with N =

∑
a∈A

NT (a). (5)

Note that there can be an overlap between greedy and frequent actions. In these (rare) cases, the
greedy action category is dominant, i.e., we categorize the action as greedy even if it would also
be the frequent action. This implies that the actions classified as frequent in Figure 4, are always
suboptimal/bad compared to the respective greedy action. Consequently, a high Ff indicates that the
model prefers the most frequent action even when observing a better action in the context.

Post RLFT. In Section 4.3, we observed that RLFT counteracts frequency bias. In addition to
frequency buckets reported in Figure 19a, we plot frequency against action entropy post RLFT in
Figure 19b. Compared to Figure 4a, we observe that after RLFT the models maintain a higher action
entropy for longer. Only at high repetition frequencies does the action entropy decrease severely.
Consequently, RLFT counteracts frequency bias, but does not completely alleviate it.

C.1.3 KNOWING-DOING GAP

The knowing-doing gap has been observed by Paglieri et al. (2024) and Ruoss et al. (2024). It
states that models possess knowledge about a task or consequences of their behavior (i.e., they know
what to do), but cannot materialize this knowledge when acting (i.e., they are incapable of doing).
However, in these works, it was difficult to characterize the knowing-doing gap empirically, due to
the complexity of their environments. In contrast, our simple MAB setting is well-suited to quantify

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(a) Action Strategies

0 20 40 60 80 100
Frequency

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ac
tio

n
En

tro
py

Correlation=-0.49
Frequent Fraction=0.67

(b) Corrleations

Figure 19: Effect of RLFT on frequency bias for 2B (10 arms, medium noise).

their observations precisely. We illustrate the knowing-doing gap empirically in Figure 5. To this
end, we first task Gemma2 27B to produce the UCB algorithm and to compute the relevant quantities
required to act according to UCB (“knowing”). This involves counting how often every action was
selected, computing the mean rewards for every action, and computing the final UCB values. After
producing the quantities, the model is tasked to act according to them (i.e., “doing”). In Figure 26,
we present an example of the final instructions given to the model along with a response produced by
Gemma2 27B.
To evaluate performance empirically, we let Gemma2 27B interact with the environment (64 parallel
instances) for 50 timesteps. We extend the token generation budget to 2048 tokens per step to
accommodate the additional required computations. Every produced action z contains both the CoT
rationale zCoT and the final selected action a. We first extract the computed UCB values from the
produced rationale zCoT . To achieve this, we task Gemma2 27B to enclose the computed values
by <ucb_values> and </ucb_values> blocks. Then we extract the selected action a and execute it
in the environment. For this experiment, we use Gemma2 27B, because we found that 2B and 9B
struggled with computing the relevant UCB quantities and with enclosing them appropriately under
the desired blocks.
Quantifying “Knowing”. To quantify “knowing”, we compare the UCB values computed by the
model and extracted from zCoT against the real UCB values. To this end, we recompute the real UCB
values for every action at every time step given the observed history. We consider the rationale as
correct if the arm with the highest UCB values matches. We opt for this choice rather than checking
for exact equality because we observed that the model struggles with exact calculations for complex
operations. This is expected because the necessary computations involve logarithms and square roots
of floating-point values. While tool use (e.g., a calculator) could mitigate this issue, we observed that
Gemma2 27B gets the quantities approximately right, resulting in valid rationales. Thus, the fraction
of correct rationales is Fc =

1
N

∑N
i=1 g(z

i
CoT) given a classifier g.

Quantifying “Doing”. To quantify “doing”, we categorize the generated actions as optimal action
if the model selects the action with the highest UCB value, as greedy if it selects the action with
the highest UCB value among the set of actions tried so far, and as other if the action is neither
optimal nor greedy. It is possible that the greedy action is the optimal action. However, in this case,
the action is considered optimal instead of greedy. Subsequently, we compute the percentages of
greedy/optimal/other actions (e.g., Fg × 100). We find that the model clearly knows how to solve the
task, with 89% of all rationales being correct (see Figure 5).

To ensure that our findings represent a fundamental model bias and not a prompt artifact, we
investigated a variety of prompting strategies in preliminary experiments to encourage the LLM
to strictly adhere to the UCB algorithm. For example, this involved strong language, including
explicit instructions to prioritize untried actions and to prefer actions with high/infinite UCB values.
Moreover, we provided hints to the model that actions with infinite UCB are strictly better than other
actions and should always be preferred. Across prompting strategies, our findings remained similar.

C.2 MULTI-ARMED BANDITS

In Figure 6, we report the cumulative regrets across model sizes and arms for a medium noise
(σ = 1.0) scenario. In addition, we repeat the same experiment in the low-noise (σ = 0.1) and the
high-noise σ = 3.0 setting in Figure 20. For both noise levels, we observe similar trends to those

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

for the medium noise setting. In particular, we observe that LLMs clearly outperform the random
baseline, and RLFT lowers the cumulative regret for Gemma2 2B across all arm scenarios.

We note that in Figure 6, we observed that 9B, ICL outperforms 9B, RLFT. One possible hypothesis
for this behavior is that the higher short-term regret may be a direct consequence of RLFT. RLFT
encourages the agent to explore more by rewarding reasoning processes that lead to exploratory
actions. In this specific scenario, the increased exploration can be costly in the short term over the
50-step horizon, even though it may be essential for long-term performance.

0 10 20 30 40 50
Step

0

50

100

150

200

Cu
m

ul
at

iv
e

Re
gr

et

Arms=5

0 10 20 30 40 50
Step

0

50

100

150

200

Arms=10

0 10 20 30 40 50
Step

0

50

100

150

200

Arms=20

(a) High Noise (σ = 3)

0 10 20 30 40 50
Step

0

10

20

30

40

50

60

70

Cu
m

ul
at

iv
e

Re
gr

et

Arms=5

0 10 20 30 40 50
Step

0

10

20

30

40

50

60

70
Arms=10

0 10 20 30 40 50
Step

0

10

20

30

40

50

60

70
Arms=20

(b) Low Noise (σ = 0.1)

Figure 20: Main Comparison on Gaussian MABs button scenario in the (a) high σ = 3 and (a) low
σ = 0.1 noise settings. We compare cumulative regrets (lower is better) of classic baselines against
ICL and RLFT performances for Gemma2 2/9/27B for 5, 10, and 20 arms.

C.3 CONTEXTUAL BANDITS

We repeat the same fine-tuning experiment for the contextual MovieLens bandits described in Section
A.2. In Figure 21, we report the cumulative regrets attained by Gemma2B across different model
sizes and for 5, 10, and 20 arms. Furthermore, we compare against a LinearUCB and a random
baseline. Overall, we observe similar performance improvements for RLFT on CBs as on MABs.
While the ICL performances barely attain the same performance as a random agent, RLFT fine-tuned
Gemma2 2B performs similarly to UCB.

0

25

50

75

100

125

150

Av
g.

 C
um

ul
at

iv
e

Re
gr

et

Arms = 5

0

25

50

75

100

125

150
Arms = 10

0

25

50

75

100

125

150
Arms = 20

Figure 21: Main Comparison on Gaussian MovieLens CBs for (a) 5, (b) 10, and (c) 20 arms. We
compare classic baselines against ICL and RLFT performances for Gemma2 2/9/27B.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

C.4 OTHER MODEL FAMILIES: QWEN-2.5 AND LLAMA3

To ensure that our results are not specific to the Gemma2 model family, we repeat the greediness
analysis reported in Figure 3 with the widely-used instruction-tuned Llama3 (Dubey et al., 2024)
and Qwen-2.5 (Qwen et al., 2025) models. We report the action coverages for 10 arms and 20 arms
along with the action coverages plotted against cumulative regret for 10 arms in Figure 22 and 23 for
Qwen-2.5 and Llama3, respectively.

For Llama3, we evaluate the latest checkpoints for three available model sizes: 3B, 8B, and 70B.
Specifically, we use the instruction-tuned variants of Llama 3.2 for 3B, Llama 3.1 for 8B, and Llama
3.3 for 70B. Similarly, we report scores for the instruction-tuned variants of Qwen-2.5 in 4 model
sizes: 3B, 7B, 14B, and 32B. We evaluate all checkpoints both with and without CoT instructions
using their respective instruction templates.

0 10 20 30 40 50
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
tio

n
Sp

ac
e

Co
ve

ra
ge

Parameters
3B
7B
14B
32B
CoT
True
False

(a) Action Coverage: 10 arms

0 10 20 30 40 50
Step

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
tio

n
Sp

ac
e

Co
ve

ra
ge

Parameters
3B
7B
14B
32B
CoT
True
False

(b) Action Coverage: 20 arms

3040506070
Avg. Cumulative Regret

0.2

0.4

0.6

0.8

1.0

Ac
tio

n
Co

ve
ra

ge Model
3B
7B
14B
32B
Random
UCB
CoT
False
True

(c) Coverage vs. Regret: 10 arms

Figure 22: Illustration of Greediness. We show action coverage for Qwen-2.5 3B/7B/14B/32B
instruct models with and without CoT for (a) 10 and (b) 20 arms over 50 interaction steps. The
agents favor the best-performing action among the set of selected actions, leading to stagnating
action coverage, despite the benefits of larger models and CoT. In (c), we plot cumulative regret
against action coverage. The general trends are similar to Gemma2 and Llama3, suggesting that the
limitations persist across model families.

Generally, we observe that Llama3 and Qwen-2.5 models exhibit similar trends in terms of action
coverage and regret as Gemma2 models (see Figures 22 and 23). For both model families, CoT
considerably improves action coverage and therefore regret. One exception is Qwen-2.5 3B w/o CoT
in the 10 arm scenario, which always first selects 5 actions before committing to a particular action.
Overall, the smaller-scale Llama3 models (3B, 8B) tend to achieve lower action coverages compared
to the Gemma2 and Qwen-2.5 models of similar sizes, both in the 10 and 20-arms scenario. Llama3
70B achieves the highest action coverage across all model sizes, potentially highlighting the benefits
of the larger model size. However, in the 20 arms scenario, we still observe a considerable gap to full
action coverage for both model families, with Qwen-2.5 and Llama3 selecting 35% and 65% of all
actions at maximum, respectively.

We note that for Qwen-2.5, the larger models do not always outperform the smaller models. For
example, in 7B attains 10$ higher action coverage than 14B in the 10 arms scenario. This is an
interesting observation of non-monotonic scaling, where performance on certain tasks does not strictly
increase with model size. We believe that this may stem from differences in the pre-training corpora,
token budgets, or alignment techniques applied to specific model checkpoints. We leave a deeper
analysis of this phenomenon for future work. Across model sizes, it is, however, apparent that the
action coverage flattens out over the 50-step horizon. This indicates that all model sizes suffer from
the same fundamental bias.

C.5 PERCENTAGE OF INVALID ACTIONS.

In the case that no valid action is extracted from the decision rationale, a random action is executed.
This mechanism serves as a safeguard to ensure that the environment interaction continues without
interruptions. To verify that the safeguard does not bias our experimental results, we report the
percentage of invalid and consequently random actions performed across the 50-step horizon for all
model families in Table 2.
For the experiments reported in Figures 3, 22, and 23, we recorded whether the executed action was
valid or invalid. To compute the percentages reported in Table 2, we first calculate the fraction of
random actions per episode (i.e., over the 50-step horizon) and subsequently average over the 64
bandits to get a more robust statistical estimate. Indeed, we find that only a small percentage of all

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Step

0.2

0.4

0.6

0.8

Ac
tio

n
Sp

ac
e

Co
ve

ra
ge

Parameters
3B
8B
70B
CoT
True
False

(a) Action Coverage: 10 arms

0 10 20 30 40 50
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
tio

n
Sp

ac
e

Co
ve

ra
ge

Parameters
3B
8B
70B
CoT
True
False

(b) Action Coverage: 20 arms

30405060708090
Avg. Cumulative Regret

0.2

0.4

0.6

0.8

1.0

Ac
tio

n
Co

ve
ra

ge

Model
3B
8B
70B
Random
UCB
CoT
False
True

(c) Coverage vs. Regret: 10 arms

Figure 23: Illustration of Greediness. We show action coverage for Llama3 3B/8B/70B instruct
models with and without CoT for (a) 10 and (b) 20 arms over 50 interaction steps. The agents
favor the best-performing action among the set of selected actions, leading to stagnating action
coverage, despite the benefits of larger models and CoT. In (c), we plot cumulative regret against
action coverage. We use Llama 3.2, 3.1, and 3.3 for 3B, 8B, and 70B, respectively. Note that we do
not report results for Llama3 70B w/o CoT, as we did not get the model to produce valid actions
without CoT instructions. The general trends are similar to Gemma2 and Qwen-2.5, suggesting that
the limitations persist across model families.

actions is invalid. For example, 2% of the 50 interaction steps indicates that, on average, only a single
action is invalid per episode. Consequently, the safeguard does not introduce any meaningful bias
into our results. Interestingly, we found that for many trials, the very first interaction in the trial
resulted in an invalid action, with the model often producing ACTION=random as its final output. We
assume that this is due to the empty interaction history in the first step.

Table 2: Percentages of invalid/random actions performed over the 50-step horizon on the Gaussian
button bandit with 10 arms for all model families.

Model Chain of Thought % of invalid/random actions
Gemma2 2B × 2.00
Gemma2 2B ✓ 3.19
Gemma2 9B × 2.00
Gemma2 9B ✓ 2.00
Gemma2 27B × 2.00
Gemma2 27B ✓ 0.00
Llama3 3B × 2.00
Llama3 3B ✓ 1.50
Llama3 8B × 2.00
Llama3 8B ✓ 1.50
Llama3 70B ✓ 0.00
Qwen 2.5 3B × 0.00
Qwen 2.5 3B ✓ 2.00
Qwen 2.5 8B × 0.00
Qwen 2.5 8B ✓ 0.00
Qwen 2.5 14B × 2.00
Qwen 2.5 14B ✓ 0.00
Qwen 2.5 32B × 0.25
Qwen 2.5 32B ✓ 0.00

C.6 PROMPT TEMPLATE VARIATIONS.

To better understand the influence of the position of the interaction history on final performance, we
conduct an additional ablation study using Gemma2 2B with different prompt templates. In our setup,
the input context contains 3 sections, as illustrated in Figure 1: (1) task instructions, (2) output instruc-
tions, and (3) the interaction history. Accordingly, we mix up the order of these sections, resulting in
3 context variations: task-output-history, task-history-output, history-task-output.

Across prompt templates, we observe similar patterns with action coverages flattening out over
the 50-step horizon (see Figure 24). Nevertheless, some differences exist among the templates.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

For example, history-task-output performs worst overall without CoT. Overall, positioning the
interaction history last (our default setting) performed best in the CoT setting.

0 10 20 30 40 50
Step

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
tio

n
Sp

ac
e

Co
ve

ra
ge

Context
task-output-history
task-history-output
history-task-output
CoT
True
False

Figure 24: Illustration of the effect of different prompt templates. We compare Gemma2
2B with and without CoT using three different context orderings: task-output-history,
task-history-output, history-task-output. While differences exist, the variations exhibit
similar patterns with action coverages flattening out after a handful of steps.

C.7 EFFECT OF EXPLORATION MECHANISMS

For RLFT, we relied solely on the exploration properties for CoT reasoning. Therefore, in Section 4.4
we studied the effects of classic exploration mechanisms and LLM-specific strategies to encourage
exploration. In particular, we compare: (1) try-all actions initially similar to UCB, (2) ϵ-greedy, (3)
context randomization, (4) context summary similar to Krishnamurthy et al. (2024) and Nie et al.
(2024), (5) self-correction similar to Kumar et al. (2024), (6) self-consistency (Wang et al., 2022),
and (7) exploration bonus.

In Figure 8, we observe that the mechanisms result in varied effects on action coverage First, we find
that the simple try-all strategy, which reduces the need for additional exploration by trying all actions,
results in the biggest performance improvements. This suggests that given sufficient information
about the (sub-)optimality of actions, LLMs are better able to select actions accordingly, underscoring
their exploration shortcomings. Second, a simple exploration bonus (+1 reward for untried actions
during RLFT) significantly increases exploration (50% → 70%) and lowers regret towards the expert
compared to regular RLFT. This highlights the importance of reward shaping for fine-tuning LLMs
to elucidate a desired behavior.

D ABLATIONS

Finally, we provide additional details on the ablations conducted in this work.

D.1 RLFT IN TIC-TAC-TOE.

To investigate the efficacy of RLFT in stateful environments, we evaluate on Tic-tac-toe from Ruoss
et al. (2024), in which frontier models struggle to achieve strong performance (see Appendix B for
training details). We fine-tune against three opponents: a random agent, Monte Carlo Tree Search
(MCTS) (Coulom, 2006), and noisy MCTS (50% of actions selected at random). We find that RLFT
significantly enhances the win-rate of Gemma2 2B against all opponents compared to ICL (see
Figure 9a). Against the random agent, RLFT elevates the average return from 0.15 (i.e., winning
15% of games) to 0.75. Notably, the agent even manages to draw against the optimal MCTS baseline
(−0.95 → 0.0), underscoring the effectiveness of RLFT for decision-making. However, for high
performance, it is essential to provide the legal actions in the context (see Figure 25).

D.2 TIC-TAC-TOE: EFFECT OF LEGAL ACTIONS IN STATE

By default, we provided the legal actions available at the current turn within the input context
to the agent. We found this design choice to be essential for effective fine-tuning compared to
training without legal actions (see Figure 9b). Without legal actions in the context, the average
return drops from 0.75 (w/ legal actions) to 0.45. This suggests that the LLM fails at identifying the
appropriate actions among the set of all possible actions when not given legal actions at the current

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

state. In contrast, when provided with sufficient information (i.e., legal actions), the LLM is able
to select actions appropriately (similar to Section 4.4). Providing the legal actions in the agent’s
context alleviates the need to explore/identify invalid actions. Consequently, this shortcoming further
highlights the need for principled exploration strategies for LLMs in decision-making scenarios.

Figure 25: Effect of removing legal actions from the context in Tic-tac-toe.

D.3 IMPORTANCE OF COT FOR RLFT

CoT reasoning is critical for ICL performance (see Figure 3), but the question remains how CoT
influences RLFT. Therefore, we run RLFT on Gemma2 2B on the 10 arms Gaussian MAB both with
and without CoT (see Figure 9b, RLFT). Indeed, without CoT, RLFT barely attains the performance
of ICL w/ CoT. This highlights the function of CoT as a vital exploration and rationalization
mechanism for decision-making. For our results without CoT reported in Figure 9b, we remove the
CoT instructions given to our agents. Instead, we instruct the agents not to perform any reasoning
steps and to only produce the action to execute in the environment a. In addition, we limit the
token generation budget G to 16 to avoid the model ignoring the instructions and making use of the
additional tokens. Furthermore, this considerably speeds up training due to faster rollout times and
shorter context lengths.

D.4 EXPERT BEHAVIOR CLONING VS. THOUGHT CLONING

A prevalent approach in sequence models for decision-making is behavior cloning (BC) (Pomerleau,
1988; Reed et al., 2022; Brohan et al., 2022; 2023), which relies on expert datasets. Consequently,
we construct two UCB expert datasets comprising 32K rollouts either w/o CoT (behavior cloning) or
w/ CoT (thought cloning), as described in Appendix A.1. Notably, both SFT variants successfully
mimic the expert, achieving comparable regret to the UCB expert (see Figure 9b, SFT). This result
underscores the efficacy of training on expert data in decision-making scenarios when available,
echoing recent findings in reasoning tasks (Muennighoff et al., 2025). While BC and TC attain similar
performance levels on the simplistic MABs, we anticipate that TC is advantageous in more complex
decision-making scenarios as found by Hu & Clune (2023).

D.5 “THINKING” TIME

We investigate the effect of giving the agent more time to “think” in Figure 9c. To achieve this, we
vary the maximal number of tokens that the agent can generate per action G ∈ {16, 64, 256, 512}.
By default, we set G to 256. Indeed, we observe that the performance improves consistently with
more thinking tokens. Decreasing G to 16 or 64 results in poor performance, because the agent
is unable to rationalize its decisions within the restricted generation budget. This is similar to the
performance without CoT, but in contrast, the agent is instructed to produce the reasoning process.
Over the course of RLFT, the agents learn to produce short rationales zCoT , including the action a
due to our reward shaping mechanism (see Section 3.2). However, the produced short rationales are
unhelpful to improving agent performance.

In contrast, doubling G from 256 to 512 results in a considerable performance increase to the level
of Gemma2 9B with RLFT (see Figure 6). We observe an increase in the average sequence length
over the course of the RLFT process. This suggests that the agent learns to effectively leverage the
additional “thinking time” and reflects recent observations in mathematical reasoning (Guo et al.,
2025). However, the increased performance comes with additional training cost due to the multistep
nature of decision-making scenarios. In fact, we observed that rollout generation can make up

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

the majority of the training time required by the RLFT process. This is because the agent has to
produce more tokens at every environment interaction step. For example, for our default horizon of
50 timesteps and a generation budget of 500, the agent produces 25K tokens (at maximum).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Instructions for Gemma2 27B as UCB agent

[Instructions]

Your task is to act according to the Upper-Confidence-Bound (UCB) algorithm. First, write down the
UCB algorithm. Then compute the relevant UCB values for every button (approximate if necessary).
Finally, select your action according to the computed quantities.

[More Instructions]

So far you have tried/seen:
Step=0 Action=blue Reward=1.06
Step=1 Action=blue Reward=1.82
Step=2 Action=green Reward=1.0
Step=3 Action=green Reward=-0.26
Step=4 Action=blue Reward=-0.58
Step=5 Action=blue Reward=-0.34
Step=6 Action=green Reward=1.19
Step=7 Action=green Reward=2.21
Step=8 Action=green Reward=0.07
Step=9 Action=green Reward=1.45
Step=10 Action=green Reward=-0.11
What do you predict next?

Generated response by Gemma2 27B

Here’s how I’d approach this as a UCB bandit algorithm:
UCB Algorithm (Short Version)

• Initialization: For each button, set a count (number of times pressed) to 0 and an estimated
reward average to 0.

• Iteration:

– For each button, calculate the UCB value: UCB = average_reward +
√

2·ln(total_steps)
button_count

– Choose the button with the highest UCB value.
– Update the button’s count and average reward based on the observed reward.

UCB Calculations (Approximate)
Let’s denote the buttons by their colors. Here’s a breakdown after 10 steps:

• blue:
– Count = 4
– Average Reward = (1.06 + 1.82 - 0.58 - 0.34) / 4 = 0.49

– UCB ≈ 0.49 +
√

2·ln(11)
4

≈ 1.17

• green:
– Count = 7
– Average Reward = (1.0 + -0.26 + 1.19 + 2.21 + 0.07 + 1.45 - 0.11) / 7 ≈ 0.92

– UCB ≈ 0.92 +
√

2·ln(11)
7

≈ 1.47

• Other buttons: Count = 0, Average Reward = 0, UCB =
√

2·ln(11)
0

= ∞ (We’ll explore
these later)

Action Selection: The button with the highest UCB value is green.
Therefore, ACTION=green
Explanation: The UCB algorithm balances exploration (trying buttons we haven’t seen much) and
exploitation (choosing buttons that seem to have high rewards).

• Green has a higher average reward than blue, but blue has been explored less.
• The UCB formula takes this into account, giving a higher value to green because its average

reward is more reliable due to more observations.
• The other buttons have infinite UCB values because we haven’t tried them yet, so they are

highly prioritized for exploration. However, green’s current UCB is high enough to warrant
another try.

Figure 26: Illustration of the knowing-doing gap. (a) Instructions for the agent, which is prompted
to act like a UCB algorithm. (b) The response generated by Gemma2 27B with greedy decoding
(temperature=0). The LLM “knows” the UCB algorithm and computes the relevant quantities
approximately correctly, but acts erroneously by selecting the next action greedily.

35

	Introduction
	Related Work
	Methodology
	Background
	Reinforcement Learning Fine-Tuning (RLFT)

	LLMs for Decision-Making
	Environments & Baselines
	Why do LLMs perform suboptimally in decision-making?
	Effectiveness of RL Fine-Tuning
	Effects of Exploration Mechanisms
	Ablations

	Conclusion
	Environments & Datasets
	Multi-arm Bandits: BanditBench
	Baselines
	SFT Datasets

	Contextual Bandits
	Tic-tac-toe

	Experimental & Implementation Details
	Training & Evaluation
	RLFT
	SFT
	Exploration Mechanisms

	Additional Results
	Failure Modes
	Greediness
	Frequency Bias
	Knowing-Doing Gap

	Multi-armed Bandits
	Contextual Bandits
	Other Model Families: Qwen-2.5 and Llama3
	Percentage of invalid actions.
	Prompt Template Variations.
	Effect of Exploration Mechanisms

	Ablations
	RLFT in Tic-tac-toe.
	Tic-tac-toe: Effect of Legal Actions in State
	Importance of CoT for RLFT
	Expert Behavior Cloning vs. Thought Cloning
	“Thinking” Time

