GENERATIVE MODEL VIA QUANTILE ASSIGNMENT

Anonymous authorsPaper under double-blind review

000

001 002 003

006 007

008 009 010

011

012

013

014

015

016

018

019

020

021

024

025

026

028

029

031

032

039

040

041 042 043

044 045

046

047

048

052

ABSTRACT

Deep Generative models (DGMs) play two central roles in modern machine learning: (i) producing new information (e.g., image synthesis, data augmentation, and creative content generation) and (ii) reducing dimensionality. Yet, DGMs' versatility must confront training difficulty. While deep neural networks (DNNs) are a natural choice for parameterizing generators, there is no universally reliable method for learning compact latent representations. As a compromise, current approaches rely on introducing an additional DNN: (i) variational autoencoders (VAEs), which map data into latent variables through an encoder, and (ii) generative adversarial networks (GANs), which employ a discriminator in an adversarial framework. Learning two DNNs simultaneously, however, introduces conceptual and practical difficulties. Conceptually, there is no guarantee that such an encoder/discriminator exists, especially in the form of a DNN. In practice, training encoders/discriminators on high-dimensional inputs can be more data-hungry and unstable than training a generator on low-dimensional latents (whereas generators usually take low-dimensional latent data as input). Moreover, training multiple DNNs jointly is unstable, particularly in GANs, leading to convergence issues, such as mode collapse. Here, we introduce NeuroSQL, a DGM that learns lowdimensional latent representations without an encoder. Specifically, NeuroSQL learns the latent variables implicitly by solving a linear assignment problem, then passes the latent information to a unique generator. To demonstrate NeuroSQL's efficacy, we benchmark its performance against GANs, VAEs, and a budgetmatched diffusion baseline on four independent datasets on handwritten digits (MNIST), faces from the CelebFaces Attributes Dataset (CelebA), animal faces from Animal Faces HQ (AFHQ), and brain images from the Open Access Series of Imaging Studies (OASIS). Compared to VAEs, GANs, and diffusion models: (1) in terms of image quality, NeuroSQL achieves overall lower mean pixel distance between synthetic and true images and stronger perceptual/structural fidelity, under the same computational setting; (2) computationally, NeuroSQL requires the least amount of training time; and (3) practically, NeuroSQL provides an effective solution for generating synthetic data when there are limited training data (e.g., data with a higher-dimensional feature space than the sample size). Taken together, by embracing quantile assignment instead of an encoder, NeuroSQL presents us a fast, stable, and robust way to generate synthetic data with minimal information loss.

1 Introduction

Deep generative models (DGMs) have become a cornerstone of machine learning and have made ample contributions to image synthesis, data augmentation, and creative content generation. Over the past decade, they have become ubiquitous in scientific fields, such as genomics and neuroimaging, to handle complex data analysis tasks, including data interpretation, decoding, and generating intricate datasets.

A large share of these advances has been powered by variational autoencoders (VAEs; Kingma & Welling, 2014) and generative adversarial networks (GANs; Goodfellow et al., 2014), which remain the two dominant approaches for generative modeling from lower-dimensional latent spaces. Both frameworks adopt a common strategy: pairing a generator with a complementary deep neural

network (DNN). In VAEs, an encoder learns to map observations into latent variables, while in GANs, a discriminator provides adversarial feedback to train the generator indirectly.

Despite their promise, training DGMs remains a complex and challenging task. These approaches introduce both conceptual and practical limitations. Conceptually, there is no guarantee that an encoder or discriminator, viewed as a continuous mapping that can be approximated by a DNN, exists in the first place. While the generator is a function of the latent variable, which can have (much) lower dimension than the observations, both the encoder and discriminator are functions of the (potentially large) data itself, and thus may introduce a curse of dimensionality (Stone, 1985). While DNNs are believed to enjoy fast rates of convergence (Schmidt-Hieber (2020)) or can sometimes mitigate the curse of dimensionality under favorable conditions (see e.g. Suzuki (2019)), these properties are derived under strict assumptions (Golestaneh et al., 2025). These limitations are reflected in theoretical works on VAEs and GANs, which sidestep these issues. For instance, Chae et al. (2023) analyzes direct optimization of the likelihood, without introducing the encoder, which is unfeasible in practice. Biau et al. (2020) assumes from the outset that the discriminator lies in a parametric space. Ideally, however, assumptions should be placed only on the true objects of interest: the generator and the latent space.

Practically, training such auxiliary networks is often more unstable and data-intensive than training the generator itself. GANs, in particular, are prone to convergence failures such as mode collapse (Mescheder et al., 2018). At the same time, VAEs often suffer from blurred reconstructions due to their variational approximations and pixel-wise reconstruction losses, such as the mean squared error (MSE). More generally, learning multiple deep networks jointly exacerbates issues of sample complexity, computational cost, and training instability. Furthermore, training DGMs requires data of a large sample size, and, when the data is large or high-dimensional (compared to the sample size), they may behave unfavorably.

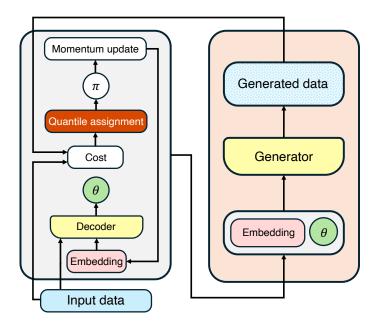


Figure 1: A schematic representation of the NeuroSQL architecture. Left: The conceptual algorithm of finding the optimal latent embedding and parameter θ for the generator. Right: The conceptual flow of generating synthetic data using the NeuroSQL. From left to right, input data enters the NeuroSQL; the model learns the embedding and parameter θ ; the embedding enters a generator parameterized by θ ; NeuroSQL outputs generated data.

Among generative models that do not feature a well-defined latent space, diffusion models use a likelihood-based progressive denoising procedure Ho et al. (2020); Dhariwal & Nichol (2021); Rombach et al. (2022), which enables stable training and high-quality output generation. Nevertheless, diffusion models often suffer from slow sampling and high computational and memory costs

Song et al. (2021); Nichol & Dhariwal (2021); Lu et al. (2022). Theoretically, it was found that diffusion models suffer from the curse of dimensionality unless the observations are generated by a linear factor structure (Oko et al., 2023).

To address these issues, we introduce NEUROSQL, a new latent variable DGM that fundamentally differs from existing approaches relying on encoders, discriminators, or complex sampling procedures. NEUROSQL approximates the latent space through a permutation of quantiles, defined via optimal transport, and the latent variables implicitly by solving a linear assignment problem. As a result, NEUROSQL trains a unique DNN for the generator, alongside an assignment procedure. NEUROSQL is fast, stable, resource-friendly, and generates high image quality given the same computational resources. Experimental tasks on generating digits, human faces, animal faces, and brain imaging data suggest NEUROSQL offers a robust solution for generating synthetic data when there is limited training data (e.g., neuroimaging data with a higher-dimensional feature space than the sample size). Finally, by integrating Statistical Quantile Learning (SQL; Bodelet et al., 2025), which was developed for additive latent variable models, and a generator, NEUROSQL achieves a marriage between generative models and the blessing of dimensionality.

2 Related Work

GANs and VAEs There are some recent attempts to improve GAN, notably the StyleGAN, Karras et al. (2019), which transformed controllable image generation through style-based architectures, as well as StyleGAN2 and StyleGAN3, which are considered to be state-of-the-art for several benchmarking datasets Karras et al. (2020)Karras et al. (2021). In parallel, Brock et al. (2019) demonstrated the importance of scale with BigGAN, while Kynkäänniemi et al. (2019) proposed improved training techniques for large-scale GANs. While these approaches are beginning to address artifacts and improve training dynamics, they nonetheless suffer from training instability and mode collapse as they are naturally GAN and, therefore, all rely on the (minimax) adversarial training. To improve reconstruction quality, Vector Quantized VAEs (VQ-VAE) discretise the latent space Razavi et al. (2019), and VQ-VAE-2, a follow-up work, extended the original VQ-VAE by introducing hierarchical modeling Child (2021), thereby achieving high-resolution image generation. Combining the benefits of VQ-VAE with adversarial training, VOGAN further enhanced perceptual quality Esser et al. (2021).

Diffusion Models The next phase of generative AI came with the introduction of the denoising diffusion(DDPM) paradigm Ho et al. (2020) or more commonly known as the diffusion models. An extension of DDPM was proposed by Song et al. (2021), providing theoretical foundations for score-based generative models. Thanks to diffusion models' progressive denoising procedure, they have achieved most of the current state-of-the-art results in image and video generation. Recent advances in diffusion modeling include improved sampling efficiency Song et al. (2021); Lu et al. (2022), conditional generation Dhariwal & Nichol (2021), and classifier-free guidance Ho & Salimans (2022). While excelling in the quality of data generation, diffusion models are computationally extremely costly and training them is time-consuming. A few works are aiming to reduce the computational cost, such as the Latent Diffusion Models (LDMs) Rombach et al. (2022), and faster sampling Song et al. (2023); Luo et al. (2023). As one of the most actively researched fields, improvements are constantly being proposed Peebles & Xie (2023); Chen et al. (2024). While most of the newer versions of diffusion models excel at generating high-quality data, and despite plentiful attempts to reduce the computational and time cost, the sequential denoising steps have remained a bottleneck.

3 METHODOLOGY

3.1 The model

In what follows, we first state the model we aim to learn. We consider a dataset \mathcal{D} composed of n independent copies of p-dimensional random vectors, $\mathcal{D} = \{X_1, \dots, X_n\}$. We assume that the data are driven by unobserved continuous latent variables $Z_i \in \mathcal{Z} \subseteq \mathbb{R}^d$. Specifically, we consider a probabilistic generative model, which models the observations:

$$X_i = G(Z_i) + \epsilon_i \tag{1}$$

where $G: \mathcal{Z} \to \mathbb{R}^p$ is an unknown generator, and ϵ_i are independent random errors. We assume that the latent variables have a known continuous distribution P_Z . The latent dimension is usually (much) smaller than the ambient dimension (d << p) in order to allow dimension reduction. This, therefore, contrasts with a flow-based generative model where the generator has to be invertible. As DGMs are not identifiable, one can select any distribution as long as it has a continuous cumulative distribution function. Regarding the prior distribution, it is common to select the $\mathcal{N}(\mathbf{0}, \mathbf{I})$ or a Uniform distribution. We approximate the generator using deep neural networks (DNN), that is $G \approx G_{\theta}$, where:

$$G_{\theta} \in \{W_L \circ \sigma \circ W_{L-1} \circ \sigma \cdots \circ \sigma \circ W_1\},\$$

where W_l denote affine transformations and σ is an activation function. The vector $\theta \in \Theta$ contains the DNN parameters. We aim to learn both the generator parameter θ and the latent variables Z_i .

3.2 LATENT SPACE APPROXIMATION AND LOSS FUNCTION

Our aim is to learn both the generator and the latent variables. In the context of deep generative models, computing and optimising the likelihood is feasible only for simple frameworks, such as linear factor analysis. In this section, we describe our estimation method with inspiration from the sieve method. The sieve method replaces an intractable optimization over the full parameter space with tractable problems on a growing sequence of simpler, typically finite-dimensional, subspaces, called sieves, that are dense in the parameter space (see e.g. Chen (2007) for a review).

Our aim is, therefore, to build an approximation for the latent space in order to obtain a tractable problem. The construction of this approximate latent space relies on partitioning the distribution of the latent space into n regions. Specifically, we consider quantiles denoted by $Q_1^n,\ldots,Q_n^n\in\mathbb{R}^d$, and let $\mathbf{Z}:=(\mathbf{Z}_1,\ldots,\mathbf{Z}_n)'$ and $\mathbf{Q}^n:=(\mathbf{Q}_1^n,\ldots,\mathbf{Q}_n^n)'$ be the $n\times d$ matrices of the latent variables and (n+1)-quantiles respectively. The basic idea of NEUROSQL is based on the fact that there exists a permutation π such that the latent variable can be approximated by:

$$oldsymbol{Z}pprox oldsymbol{Q}_{\pi}^{n}$$

where for a matrix (or column vector) \boldsymbol{A} and a permutation π , we denote by \boldsymbol{A}_{π} a permutation of the rows of \boldsymbol{A} . For clarity of exposure, we discuss here the univariate case and delay the case of d>1 to Section 3.3. For d=1, we select (n+1)- quantiles, i.e. $\boldsymbol{Q}_i^n=F^{-1}(\frac{i}{n+1}), i=1,\ldots,n$, where F denotes the cumulative distribution function associated to P_Z . It can be shown using the delta method (see, e.g.,van der Vaart 2000) that:

$$|\mathbf{Z}_{(i)} - \mathbf{Q}_i^n| = \mathcal{O}_p\left(\frac{1}{\sqrt{n}}\right),\tag{2}$$

where $Z_{(i)}$ denotes the order statistics of the latent variables. Note that the $Z_{(i)}$'s are distinct almost surely and are thus, almost surely, a permutation of the Z_i 's. We can thus write:

$$\min_{\pi \in S_n} \frac{1}{n} \sum_{i=1}^n |Z_i - Q_{\pi(i)}^n|^2 = \mathcal{O}_p\left(\frac{1}{n}\right),\tag{3}$$

where S_n denotes the set of all permutations, or symmetric group, of order n. Therefore, one can obtain an approximation of the latent variables by simply learning permutations. Intuitively, the set of (n+1)-quantiles can be thought of as a "probabilistic sieve" space for the latent space. Leveraging on this approximation, we consider the following loss function:

$$\mathcal{L}(\boldsymbol{\theta}, \pi) = \frac{1}{n} \sum_{i=1}^{n} \ell\left(\boldsymbol{X}_{i}, \boldsymbol{G}_{\boldsymbol{\theta}}\left(\boldsymbol{Q}_{\pi(i)}^{n}\right)\right)$$

for some distance, or distortion, $\ell: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}_+$ (e.g., squared ℓ_2 , LPIPS features). We then define NEUROSQL as the solution of:

$$(\hat{\boldsymbol{\theta}}, \hat{\pi}) = \underset{\boldsymbol{\theta} \in \Theta, \ \pi \in S_n}{\arg \min} \ \mathcal{L}(\boldsymbol{\theta}, \pi) + \lambda \, \mathcal{R}(\boldsymbol{\theta}), \tag{4}$$

where $\mathcal{R}(\theta)$ is a regularizer controlling the complexity of G_{θ} and $\lambda > 0$ is some tuning parameter. With the solution $\hat{\pi}$, we then obtain the estimator of the latent variable as $\hat{Z} = Q_{\hat{\pi}}$.

3.3 Multivariate quantiles (d > 1)

We now consider how to approximate the latent space in higher dimensions. In contrast to the real line, there is no canonical ordering when d>1, and therefore several methods can be used to construct "multivariate quantiles". We concentrate on recent developments that leverage the optimal transport approach (Hallin, 2022; Chernozhukov et al., 2017; Hallin et al., 2021; Ghosal & Sen, 2022), which offers a conceptually clean and practical way to define quantiles in multivariate dimensions. Specifically, we will need the concept of the center-outward distribution function, F_{\pm} , which is the unique gradient of a convex function pushing P_Z forward to the uniform distribution over the unit ball $\mathcal{U}_d:=\{\boldsymbol{z}\in\mathbb{R}^d:\|\boldsymbol{z}\|<1\}$. For d=1, the center-outward distribution is simply given by $F_{\pm}=2F-1$, where F is the cumulative distribution. We refer to Hallin et al. (2021) and Hallin (2022) for a detailed explanation.

Given a regular grid , $U_1, U_2, \ldots, U_n \in \mathcal{U}_d$, we define the multivariate quantiles as $Q_i^n := F_{\pm}^{-1}(U_i)$. This grid does not have to be perfectly regular, which is in general not possible for $d \geq 3$. We require only that the discrete distribution with probability 1/n at each grid point converges weakly to the uniform distribution over \mathcal{U}_d . In practice, it is suitable to select a grid with a low discrepancy in order to obtain faster convergence rates.

For simplicity and without loss of generality, we assume here that the distribution P_Z is uniform over \mathcal{U}_d , yielding $\mathbf{Q}_i^n = \mathbf{U}_i$. Furthermore, we note that this is without loss of generality as the latent distribution of (deep) generative models is not identifiable and should be selected (we refer to Bodelet et al., 2025 for a discussion).

Following Hallin et al. (2021), we define the center-outward empirical distribution function as the solution of the optimal transportation problem:

$$F_{\pm}^{n} = \operatorname*{arg\,min}_{T \in \mathcal{T}} \sum_{i=1}^{n} \|\boldsymbol{Z}_{i} - T(\boldsymbol{Z}_{i})\|^{2}$$

where the minimum is taken over \mathcal{T} the set of all bijective mappings between $Z_1, ..., Z_n$ and the grid $U_1, ..., U_n$. In fact, this is equivalent to solve a linear assignment problem:

$$\pi^* = \operatorname*{arg\,min}_{\pi \in S_n} \|\boldsymbol{Z} - \boldsymbol{U}_{\pi}^n\|^2,$$

and set $F^n_+(\mathbf{Z}^n) := U^n_{\pi^*}$. Then we apply Theorem 2.4 in (Hallin et al., 2021) to obtain:

$$\max_{1 \le i \le n} \|F_{\pm}^n(\boldsymbol{Z}_i) - F_{\pm}(\boldsymbol{Z}_i)\|^2 \to 0 \text{ a.s. as } n \to \infty.$$

In our case, as F_{\pm} is the uniform distribution over \mathcal{U}_d , it is straightforward to see that:

$$\min_{\pi \in S_n} \|\boldsymbol{Q}_{\pi}^n - \boldsymbol{Z}\|^2 \to 0$$
, a.s. as $n \to \infty$.

3.4 Computational algorithm

We note that, for fixed θ , the inner problem in equation 4 reduces to:

$$\min_{\pi \in S_n} \frac{1}{n} \sum_{i=1}^n C_{i,\pi(i)}, \qquad C_{i,k} := \ell(X_i, \boldsymbol{G}_{\boldsymbol{\theta}}(\boldsymbol{Q}_k)).$$

This is a *linear assignment problem* solvable *exactly* by the Hungarian method in $O(n^3)$ time (Kuhn, 1955). For fixed π , equation 4 reduces to standard supervised regression of X on assigned codes $\{z_{\pi(i)}\}$. We therefore propose to solve equation 4 alternatively: (i) Given a permutation π , minimize the loss function with respect to θ (Decoder step); (ii) Given θ , we solve exactly the linear assignment matching problem by the Hungarian method. We iterate (i) and (ii) until convergence. Furthermore, we introduce a momentum update after each assignment, that is $\widehat{z}^{(t)} \leftarrow \rho \, z_{\pi^{(t)}(i)} + (1-\rho) \, \widehat{z}^{(t-1)}$ for some $0 \le \rho < 1$, in order to stabilize training. The exact steps are detailed in Algorithm 1.

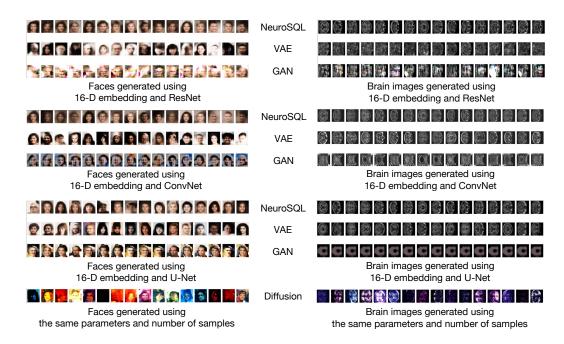


Figure 2: Qualitative comparison of NeuroSQL against standard generative models across different decoder architectures. Generated samples from CelebA faces, a face attributes dataset (left), and OASIS, a brain imaging dataset (right), using 16-dimensional latent embeddings. Under each setting, every row shows results from a different generative approach: NeuroSQL (proposed), variational autoencoder (VAE), generative adversarial network (GAN), and Diffusion (DDPM). We compare consistency across three lightweight decoder architectures (ResNet, ConvNet, and U-Net), highlighting that performance gains stem from the quantile-assignment paradigm rather than decoder sophistication. VAE and GAN results show typical artifacts, including mode collapse, blurriness, and training instabilities, while diffusion models exhibit characteristic oversaturation and unrealistic color distributions. In comparison, NeuroSQL produces consistently high-quality, diverse samples across all decoder choices, demonstrating the robustness of the deterministic lattice-based approach. All models use identical training budgets and matched generator capacities for fair comparison.

```
Algorithm 1 NeuroSQL (full-batch assignment)
 1: Input: data \{X_i\}_{i=1}^n, prior P_Z, lattice Q^n, outer iters T, momentum \rho \in [0,1), \lambda > 0
```

```
2: Initialize \pi^{(0)} (e.g., random or PCA-sorted); set \widehat{\pmb{Z}}^{(0)}=\pmb{Q}^n_{\pi^{(0)}} 3: for t=1,\ldots,T do
               \textbf{Decoder step: } \boldsymbol{\theta}^{(t)} \in \arg\min_{\boldsymbol{\theta}} \ \frac{1}{n} \sum_{i=1}^{n} \ell \! \left( \boldsymbol{X}_{i}, \boldsymbol{G}_{\boldsymbol{\theta}}(\widehat{\boldsymbol{Z}}_{i}^{(t-1)}) \right) + \lambda \mathcal{R}(\boldsymbol{\theta})
                                                                                                                                                                                            (implemented via
       AdamW with standard NN init on first call)
                Cost matrix: C_{i,k}^{(t)} \leftarrow \ell(\boldsymbol{X}_i, \boldsymbol{G}_{\boldsymbol{\theta}^{(t)}}(\boldsymbol{Q}_k))
5:
```

Assignment: $\pi^{(t)} \leftarrow \arg\min_{\pi \in S_n} \operatorname{Trace}(C_{\pi}^{(t)})$ 6:

(exact LSAP)

Momentum update: $\hat{Z}_i^{(t)} \leftarrow \rho \, Q_{\pi^{(t)}(i)}^n + (1-\rho) \, \hat{Z}_i^{(t-1)}$ 7:

9: **Output:** $\widehat{\boldsymbol{\theta}} = \boldsymbol{\theta}^{(T)}$, aligned latents $\widehat{\boldsymbol{Z}} = \widehat{\boldsymbol{Z}}^{(T)}$.

Complexity. Each outer iteration forms $C^{(t)}$ with n forward passes over $\{z_k\}$ and solves one Hungarian problem: overall $O(n c_G + n^3)$, where c_G is the decoder's forward cost. Crucially, the assignment cost does not depend on p, which is why NEUROSQL scales favorably to (very) high dimensions. Scalability Considerations. The $O(n^3)$ Hungarian algorithm may be an overhead for large sample sizes. In practice, when $n > 10^4$, we used the Hungarian algorithm on mini-batches to speed up computations.

4 DATA AND EXPERIMENTAL SETUP

We evaluate NeuroSQL under a *sparse-resource* regime across four domains of increasing structural complexity: digits (MNIST), faces (CelebA), animal faces (AFHQ), and neuroimaging (OASIS). Our emphasis is on *paradigm control*: models share (as closely as possible) the same generator backbone, data budgets, and optimization schedules, so that differences arise from the learning principle (quantile–assignment vs. probabilistic/adversarial/denoising) rather than capacity or compute.

4.1 DATASETS

MNIST (LeCun et al., 2002). Handwritten digits (60k train, 10k test, 28×28 grayscale). We replicate to RGB for evaluation only.

CelebA (Liu et al., 2015). Face dataset (202,599 images) center-cropped and resized to 128×128 . Training is unconditional despite available attributes.

AFHQ (Choi et al., 2020). Animal Faces HQ contains 15,000 high-quality animal face images across cats, dogs, and wildlife at 512×512 resolution originally. Within experiments, image size was reduced to 128×128 and total number of images used was about 2000.

OASIS (Marcus et al., 2007; Aithal, 2023). Neuroimaging dataset with $\sim 80 \mathrm{k}$ MRI slices from 416 subjects, downsampled to 128×128 . Medical images test resistance to overfitting in constrained domains. We used the version of OASIS that is publicly available on Kaggle. It is pre-structured and is organized in four subfolders, namely: Mild Dementia, Moderate Dementia, Non Demented, and Very Mild Demented.

4.2 Models and training

We compare **NeuroSQL** to **VAE**, **GAN**, and **DDPM** under matched budgets and identical generator backbones; only the learning paradigm differs. For NEUROSQL we used the Sobol lattice in $[0,1]^d$ to construct the quantiles. The *Hungarian* algorithm is performed at every K epochs (with $K \in \{2,3,5\}$ treated as a hyperparameter), and we select the momentum parameter as ρ =0.7. NEUROSQL was trained with the perceptual loss $\ell = \frac{1}{2}(1-\mathrm{SSIM}) + \frac{1}{2}\|\cdot\|_1$. All methods use AdamW, cosine decay, gradient clipping, and early stopping; full architectures and hyperparameters appear in Appendix G.

Generator backbones. Unless otherwise specified, NeuroSQL/VAE/GAN share an identical *ConvNet upsampling decoder* (four residual up blocks, $512 \rightarrow 256 \rightarrow 128 \rightarrow 64$, 3×3 head with sigmoid). We ablate *es*RNet and *U-Net* decoders to show that gains are *decoder-agnostic*. For fairness, Diffusion's U-Net width is chosen so the parameter count is within $\pm 10\%$ of the shared decoder.

4.3 EVALUATION METRICS AND PROTOCOL

FID (**proxy**; \$\psi\$): Since our domains are not ImageNet/COCO, we report FID only as a coarse proxy (Inception-V3 pool3, 2048-d); in this setting, it behaves like a *lower mean pixel distance* between synthetic and real sets. We match #gen=#real (MNIST: 10k; CelebA: test split; OASIS: test slices), fix the sampling seed, and replicate grayscale to 3 channels at metric time. **LPIPS** (\$\psi\$): VGG backbone via LPIPS (fallback: cosine similarity on VGG features); mean over 50 paired real-fake images. **SSIM** (\$\psi\$): mean over the same 50 pairs. Unless noted, we evaluate NeuroSQL in $sampled-z \mod (z \sim \mathcal{N}(0, I))$; paired-z (reconstruction) results appear in the supplement.

4.4 Fairness controls and ablations

Backbone parity: NeuroSQL/VAE/GAN share identical decoder weights at init; diffusion U-Net is matched by parameter count. **Budget parity:** Same epochs, optimizer/scheduler, grad clipping, and batch size per dataset. **Latent sweep:** $q \in \{2, \dots, 128\}$. **Resolution:** OASIS at 64^2 vs. 128^2 . **Loss sensitivity:** pixel ℓ_2 vs. SSIM+L1 for the assignment cost (main uses SSIM+L1; see details in the Appendix).

4.5 ETHICAL AND DOMAIN-SPECIFIC NOTES (OASIS)

In order to keep the experimental setup free of data leakage within the train/val/test splits, we performed subject-stratified cross-validation. We highlight that one must not equate synthetic imaging data with clinical data. Synthetic imaging data, however, may have practical utilities, such as for treating missing data, but this is beyond the scope of this paper. Here, we generate synthetic data to demonstrate the efficacy of NeuroSQL as a generative model; we use the generated imaging data to evaluate the model's performance; we do not claim its clinical utility. Future work should verify this independently, and we will release seeds, splits, and scripts to facilitate further validations.

5 RESULTS

5.1 Observations

We evaluate NeuroSQL for synthetic data generation against strong baselines among benchmarks. To ensure a fair comparison, we (1) test various latent dimensionalities, (2) include both ConvNet, ResNet, and U-Net generators, and (3) evaluate all models on generating different types of data. For demonstration purposes, we discuss NeuroSQL's performance against VAE and GAN on generating brain imaging data and human (celebrity) faces, but see the Appendix for comparison with diffusion models and model performance on handwritten digits and animal faces. To quantify the model performance, we report, for each scenario, a proxy of FID (Fréchet Inception Distance; lower is better), LPIPS (Learned Perceptual Image Patch Similarity; lower is better), and SSIM (Structural Similarity Index; higher is better). We present the results in the tables in the Appendix C, given the wide range of experiment specifications.

For the brain imaging data (OASIS), we notice that, overall, NeuroSQL outperforms both VAE and GAN across all combinations of choices of latent dimension and generator. Particularly, NeuroSQL outperforms VAE and GAN in terms of LPIPS (measuring perceptual similarity between images (i.e., how similar they look to humans) and SSIM (measuring pixel-level structural similarity) scores in all scenarios. All models with a ConvNet generator yield much better results compared to those with a ResNet. The choice of generator, however, has a marginal effect on FID scores. For FID, which measures distribution similarity between generated and real images in feature space, NeuroSQL outperforms VAE and GAN in all cases with a ResNet generator. It outperforms VAE and GAN when the latent dimension is moderate (between 16 and 64) with a ConvNet generator. When the latent dimension is very small or very large, VAE with ConvNet has a modest improvement. With a U-Net generator, NeuroSQL attains the best LPIPS and SSIM, while the FID (proxy) varies and is lowest for VAE on average.

For human faces (CelebA), NeuroSQL achieves similar performance to its brain imaging data. Particularly, NeuroSQL with a ResNet generator is better in terms of FID, LPIPS, and SSIM score compared to its counterparts. NeuroSQL with a ConvNet generator is better than its counterpart in terms of SSIM, only mildly underperforms its VAE counterpart in terms of LPIPS score when the latent dimension is 16 or 128, and underperforms or marginally underperforms its VAE counterpart in terms of FID when the latent space is 16 or 64. NeuroSQL with a U-Net generator is better in terms of FID, LPIPS, and SSIM score compared to its counterparts.

Taken together, our results demonstrate the overall efficacy of NeuroSQL compared to its state-of-the-art competitors in generating synthetic human faces as well as neuroimaging data. Particularly, NeuroSQL with a ConvNet generator achieves overall superior performance across different scenarios, particularly in metrics evaluating perceptual similarity between images (how similar they look to humans) and pixel-level structural similarity, and its performance improves as the dimension of its latent space increases.

5.2 Compute budget, data scale, and evaluation scope

Our aim is to introduce a learning *paradigm*, not to chase unconstrained fidelity. All experiments ran end-to-end on a single Google Colab with a fixed allowance of 200 compute units. Within this envelope we capped training data at **2,000 images** and resolutions at $64 \times 64 - 128 \times 128$ (occasional tests at 256×256). This budget dictated architectures, optimisers, and protocols, targeting *compute-and data-frugal* generative learning.

What we show. We visualize only benchmarks whose semantics survive low resolution: (i) OASIS 2D brain MRI slices, where gross anatomy is discernible at 64–128 px, and (ii) MNIST digits, an intrinsically low-frequency signal. For faces/natural scenes, perceptual judgments at 64–128 px are less diagnostic under our budget; raising resolution would violate the cap. Our contribution is the *training principle*, not a new high-capacity image backbone.

Why diffusion is ill-suited here. With T = 1000 steps and $N \approx 1000$ images, supervision per noise level is O(N/T), yielding high-variance score estimates; a single noise-conditional network must span widely varying SNRs under tight capacity/time; gradients are diluted by averaging across many timesteps; and wall-clock scales with T, reducing optimizer updates at fixed budget. Low-data remedies (heavy augmentation, distillation, large-scale pretraining) fall outside our *from-scratch*, *small-budget* premise.

Reproducibility and scale. All settings are reproducible within the stated Colab budget; code paths carry to higher resolutions and larger datasets. Scaling batch size, training time, and image size is orthogonal engineering we leave to follow-ups; our results isolate the methodological contribution under realistic small-resource conditions.

6 CONCLUSIONS

We introduced NeuroSQL, a deep generative model that replaces stochastic encoders with rankbased quantile assignment. By learning embeddings through assignments rather than amortised inference, NeuroSQL eliminates the mode of posterior collapse in VAE and avoids adversarial dynamics, yielding more stable training than GANs. Thanks to the quantile assignment, NeuroSQL's generation processes are deterministic, resulting in distributions that are substantially more interpretable than those of GANs and VAEs, whose embeddings depend on samples from a Gaussian posterior, even when the encoder is deterministic. Compared to diffusion models, which require extensive denoising steps and large datasets for stable training, NeuroSQL demonstrates better performance in constrained settings with datasets under 10⁵ samples. The deterministic assignment mechanism avoids the high-variance score estimation that plagues diffusion models in low-data regimes. Trained on four distinctive tasks: handwritten digits (MNIST), human faces (CelebA), animal faces (AFHQ), and brain images (OASIS) to generate synthetic samples, NeuroSQL generally achieves the best performance under the same experimental settings. While our constrained experimental setup was intentional to introduce the NeuroSQL paradigm under controlled conditions, future work should address its scalability to larger datasets and higher resolutions, compare it with advanced baselines like StyleGAN3 and latent diffusion models, and explore alternatives to the $O(n^3)$ Hungarian algorithm, such as approximate Sinkhorn iterations. In terms of future work, for example that of medical applications, a natural next step is to experiment with the MedMNIST Yang et al. (2023) benchmark suite to assess NeuroSQL across diverse biomedical imaging tasks. Moving forward, we see two promising directions: (i) scaling the assignment mechanism and generator capacity to higher resolutions and additional modalities (e.g., audio, 3D, and multimodal settings), and (ii) expanding the theory of quantile-assignment training for deep generators beyond the current empirical scope.

REFERENCES

- Ninad Aithal. Oasis alzheimer's detection (images). Kaggle dataset, 2023. URL https://www.kaggle.com/datasets/ninadaithal/imagesoasis. Accessed 2025-09-23.
- Gérard Biau, Benoît Cadre, Maxime Sangnier, and Ugo Tanielian. Some theoretical properties of gans. *The Annals of Statistics*, 48(3):1539–1566, 2020.
 - Julien Bodelet, Guillaume Blanc, Jiajun Shan, Graciela Muniz Terrera, and Oliver Y Chén. Statistical quantile learning for large additive latent variable models. *Journal of the American Statistical Association*, pp. 1–22, 2025.
 - Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image synthesis, 2019. URL https://arxiv.org/abs/1809.11096.
 - Minwoo Chae, Dongha Kim, Yongdai Kim, and Lizhen Lin. A likelihood approach to nonparametric estimation of a singular distribution using deep generative models. *Journal of Machine Learning Research*, 24(77):1–42, 2023.
 - Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, et al. PixArt-α: Fast training of diffusion transformer for photorealistic text-to-image synthesis. In *International Conference on Learning Representations*, 2024.
 - Xiaohong Chen. Large sample sieve estimation of semi-nonparametric models. In *Handbook of Econometrics*, volume 6, pp. 5549–5632. Elsevier, 2007.
 - Victor Chernozhukov, Alfred Galichon, Marc Hallin, and Marc Henry. Monge–kantorovich depth, quantiles, ranks and signs. *The Annals of Statistics*, 45:223–256, 2017.
 - Rewon Child. Very deep vaes generalize autoregressive models and can outperform them on images, 2021. URL https://arxiv.org/abs/2011.10650.
 - Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Stargan v2: Diverse image synthesis for multiple domains. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8188–8197, 2020.
 - Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in neural information processing systems*, 34:8780–8794, 2021.
 - Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12873–12883, 2021.
 - Promit Ghosal and Bodhisattva Sen. Multivariate ranks and quantiles using optimal transport: Consistency, rates and nonparametric testing. *The Annals of Statistics*, 50(2):1012–1037, 2022.
 - Pegah Golestaneh, Mahsa Taheri, and Johannes Lederer. How many samples are needed to train a deep neural network? In *The Thirteenth International Conference on Learning Representations*, 2025.
 - Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Information Processing Systems, 27, 2014.
 - Marc Hallin. Measure transportation and statistical decision theory. *Annual Review of Statistics and Its Application*, 9(1):401–424, 2022.
- Marc Hallin, Eustasio Del Barrio, Juan Cuesta-Albertos, and Carlos Matrán. Distribution and quantile functions, ranks and signs in dimension d: A measure transportation approach. *The Annals of Statistics*, 49:1139–1165, 2021.
 - Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL https://arxiv.org/abs/2207.12598.

- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
 - Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4401–4410, 2019.
 - Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8110–8119, 2020.
 - Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free generative adversarial networks. *Advances in neural information processing systems*, 34:852–863, 2021.
 - Diederik P Kingma and Max Welling. Stochastic gradient vb and the variational auto-encoder. In *International Conference on Learning Representations*, 2014.
 - Harold W Kuhn. The hungarian method for the assignment problem. *Naval Research Logistics Quarterly*, 2(1-2):83–97, 1955.
 - Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved precision and recall metric for assessing generative models. *Advances in neural information processing systems*, 32, 2019.
 - Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 2002.
 - Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pp. 3730–3738, 2015.
 - Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in neural information processing systems*, 35:5775–5787, 2022.
 - Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthesizing high-resolution images with few-step inference. In *Advances in Neural Information Processing Systems*, volume 36, 2023.
 - Daniel S. Marcus, Tracy H. Wang, Jamie Parker, John G. Csernansky, John C. Morris, and Randy L. Buckner. Open access series of imaging studies (oasis): Cross-sectional mri data in young, middle aged, nondemented, and demented older adults. *Journal of Cognitive Neuroscience*, 19(9):1498–1507, 2007. doi: 10.1162/jocn.2007.19.9.1498.
 - Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do actually converge? In *Proceedings of the 35th International Conference on Machine Learning*, volume 80, pp. 3481–3490, 2018.
 - Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.
 - Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distribution estimators. In *International Conference on Machine Learning*, pp. 26517–26582. PMLR, 2023.
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.
 - Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2. *Advances in neural information processing systems*, 32, 2019.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.

- Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation function. *The Annals of Statistics*, 48(4):1875–1897, 2020.
- Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations, 2021. URL https://arxiv.org/abs/2011.13456.
- Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *International Conference on Machine Learning*, pp. 32211–32252. PMLR, 2023.
- Charles J Stone. Additive regression and other nonparametric models. *The Annals of Statistics*, 13 (2):689–705, 1985.
- Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov spaces: optimal rate and curse of dimensionality. In *The 7th International Conference on Learning Representations (ICLR2019)*, volume 7, 2019.
- Aad W van der Vaart. Asymptotic statistics, volume 3. Cambridge University Press, 2000.
- Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and Bingbing Ni. Medmnist v2 a large-scale lightweight benchmark for 2d and 3d biomedical image classification. *Scientific Data*, 10(1), January 2023. ISSN 2052-4463. doi: 10.1038/s41597-022-01721-8. URL http://dx.doi.org/10.1038/s41597-022-01721-8.

A ACKNOWLEDGMENTS

We acknowledge the use of large language models for grammar checking, punctuation correction, spelling verification, and synonym suggestions to enhance writing clarity.

B APPENDIX

B.1 Preprocessing and splits

For each dataset, we standardize a lightweight pipeline to minimize confounds while allowing small variations across runs.

- Resize/crop. MNIST: native 28×28 . CelebA: center-crop then resize, typically to 32×32 (primary), with occasional 64–128 experiments. OASIS: center-crop then resize, primarily 128×128 with 64×64 ablations.
- Scaling. Inputs mapped to [0, 1] (no per-image standardization during training).
- **Channel handling.** MNIST/OASIS trained as single-channel; for backends expecting 3 channels (e.g., LPIPS/VGG), we replicate channels *at metric time only*.
- **Splits.** MNIST: standard train/test. CelebA: official train/val/test. OASIS: subject-wise 80/10/10 to prevent slice leakage. Seeds and split indices are provided in the supplementary.

Scope and reproducibility. Settings are chosen for a small-resource envelope (single-session runs). Results emphasize methodology under constrained compute; scaling to larger images/batches follows the same code paths.

Optimization and budgets (typicals/ranges). AdamW (or Adam), cosine warm restarts; weight decay $\sim 10^{-4}$; gradient clip ≈ 1.0 ; early stopping on validation loss with patience $\sim 25\text{--}30$ epochs. Learning rates are usually in $[1\times10^{-4},\ 3\times10^{-4}]$ for convolutional decoders; diffusion runs use comparable schedules at matched compute. Batch sizes depend on resolution: MNIST 32–64, CelebA 64–128, OASIS 32–64. Epoch caps are typically 120–250 across datasets, with early stopping often terminating earlier. We sweep latent dimension q over $\{2,4,8,16,32,64,128\}$ and report results (Sec. C).

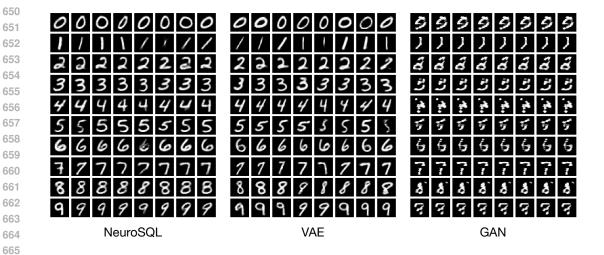


Figure 3: MNIST digit generation comparison across generative modeling paradigms. Each method generates 8 samples per digit class (0–9) using identical network capacities and training budgets. NeuroSQL (left) produces consistently sharp, well-formed digits with clear class separation and minimal artifacts. VAE (center) exhibits typical reconstruction blur and shape distortions, particularly evident in digits with fine details (e.g., 8, 9). GAN (right) shows characteristic training instabilities, including mode collapse, with several digit classes producing nearly identical or malformed samples. The systematic comparison demonstrates NeuroSQL's ability to maintain both sample quality and diversity across all digit classes, highlighting the advantages of the deterministic quantile-assignment approach over stochastic generative methods in controlled generation tasks.

B.2 GENERATED IMAGES

C TABULAR RESULTS ON OASIS, A BRAIN IMAGING DATASET

Table 1: Results on OASIS, a brain imaging dataset, using ConvNet across latent dimensions. Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension	Method	FID (Proxy) ↓	LPIPS ↓	SSIM ↑
	NeuroSQL	7.914	0.390	0.259
2	VAE	8.198	0.410	0.246
	GAN	9.936	0.450	0.218
	NeuroSQL	9.241	0.403	0.257
4	VAE	8.720	0.463	0.212
	GAN	19.420	0.509	0.206
	NeuroSQL	8.286	0.411	0.256
8	VAE	8.029	0.485	0.215
	GAN	12.766	0.558	0.193
	NeuroSQL	8.602	0.455	0.267
16	VAE	12.768	0.539	0.171
	GAN	12.485	0.584	0.200
	NeuroSQL	8.856	0.401	0.257
32	VAE	12.490	0.525	0.178
	GAN	14.852	0.593	0.174
	NeuroSQL	7.385	0.388	0.265
64	VAE	16.003	0.567	0.151
	GAN	14.453	0.602	0.125
	NeuroSQL	18.743	0.453	0.248
128	VAE	16.329	0.571	0.158
	GAN	29.792	0.620	0.084

Table 2: Results on OASIS, a brain imaging dataset, using ResNet across latent dimensions. Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension	Method	FID (proxy) \downarrow	LPIPS ↓	SSIM
	NeuroSQL	25.410	0.249	0.301
16	VAE	51.139	0.309	0.171
	GAN	168.993	0.727	0.008
	NeuroSQL	31.957	0.257	0.242
32	VAE	66.045	0.362	0.128
	GAN	158.103	0.687	0.008
	NeuroSQL	30.892	0.220	0.221
64	VAE	47.146	0.358	0.135
	GAN	156.088	0.741	0.135
	NeuroSQL	34.346	0.224	0.196
128	VAE	52.317	0.397	0.135
	GAN	156.288	0.723	0.124

Table 3: Results on OASIS, a brain imaging dataset, using a U-Net across latent dimensions. Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension	Method	FID (proxy) ↓	LPIPS ↓	SSIM ↑
4	NeuroSQL	8.519902	0.386861	0.254752
4	VAE	7.858056	0.377805	0.265082
4	GAN	26.234322	0.597633	0.206676
8	NeuroSQL	8.579974	0.401890	0.238080
8	VAE	5.976874	0.384821	0.264277
8	GAN	35.444614	0.609803	0.172225
16	NeuroSQL	10.037155	0.391049	0.260999
16	VAE	7.178138	0.402099	0.231028
16	GAN	20.907921	0.616312	0.225444
32	NeuroSQL	8.405630	0.388190	0.253740
32	VAE	4.424680	0.402910	0.238710
32	GAN	28.069950	0.613550	0.200620
64	NeuroSQL	8.259449	0.385646	0.262159
64	VAE	6.098939	0.395427	0.272117
64	GAN	30.385052	0.644507	0.153054
128	NeuroSQL	7.553965	0.371082	0.282864
128	VAE	9.101107	0.415775	0.257312
128	GAN	30.505713	0.553681	0.202557

Table 4: Results on OASIS, a brain imaging dataset, using a U-Net — with results averaged across latent dimensions $\{4, 8, 16, 32, 64, 128\}$.

Method	FID (proxy) \downarrow	LPIPS \downarrow	SSIM ↑
NeuroSQL	8.559346	0.387453	0.258766
VAE	6.772966	0.396473	0.254754
GAN	28.591262	0.605914	0.193429

On average, across latent dimensions, NeuroSQL attains the best LPIPS and SSIM, while VAE has the lowest FID (proxy).

D TABULAR RESULTS ON CELEBA, A FACE ATTRIBUTES DATASET

Table 5: Results on CelebA, a face attributes dataset, using ConvNet across latent dimensions. Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension	Method	$\textbf{FID (proxy)} \downarrow$	LPIPS \downarrow	SSIM ↑
	NeuroSQL	9.64453	0.22094	0.31376
2	VAE	11.49087	0.24068	0.27396
	GAN	26.56548	0.47277	0.10216
	NeuroSQL	6.99789	0.22845	0.31645
4	VAE	8.57467	0.23091	0.26471
	GAN	29.68144	0.49874	0.06955
	NeuroSQL	6.686607	0.244427	0.297947
8	VAE	32.183292	0.281024	0.226046
	GAN	28.772638	0.461147	0.058802
	NeuroSQL	17.252127	0.304758	0.296877
16	VAE	11.955338	0.282781	0.160219
	GAN	20.922581	0.419844	0.117695
	NeuroSQL	4.04047	0.19269	0.25707
32	VAE	6.57785	0.21120	0.13975
	GAN	13.92531	0.31649	0.12201
	NeuroSQL	3.94787	0.20649	0.25782
64	VAE	3.93301	0.21478	0.15485
	GAN	16.27481	0.35050	0.10456
	NeuroSQL	4.91280	0.20557	0.26119
128	VAE	5.57425	0.20361	0.16837
	GAN	17.16048	0.34640	0.15798

Table 6: Results on CelebA, a face attributes dataset, using ResNet across latent dimensions. Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension	Method	FID (proxy) \downarrow	LPIPS \downarrow	SSIM ↑
	NeuroSQL	4.40599	0.18367	0.27506
2	VAE	8.01552	0.19720	0.24972
	GAN	19.01699	0.20240	0.13535
	NeuroSQL	4.47511	0.16968	0.26754
4	VAE	6.03891	0.20652	0.20760
	GAN	14.21587	0.26898	0.14515
	NeuroSQL	4.60623	0.18201	0.25536
8	VAE	4.86620	0.25218	0.17823
	GAN	13.94172	0.18593	0.17628
	NeuroSQL	3.99240	0.18115	0.21823
32	VAE	6.00124	0.25017	0.12915
	GAN	11.08812	0.23644	0.16986
	NeuroSQL	2.89791	0.20532	0.20588
64	VAE	10.59103	0.25116	0.13515
	GAN	16.09010	0.28388	0.11962
	NeuroSQL	2.48879	0.19150	0.19373
128	VAE	18.35559	0.26214	0.12317
	GAN	14.04322	0.20137	0.17414

Table 7: Results on CelebA, a face attributes dataset, using U-Net (unconditional) across latent dimensions. Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension	method	FID (proxy) \downarrow	LPIPS ↓	SSIM ↑
2	NeuroSQL	4.96169	0.18253	0.27537
2	VAE	7.33227	0.19269	0.25696
2	GAN	14.09393	0.22041	0.12822
4	NeuroSQL	3.54758	0.18932	0.27993
4	VAE	4.99991	0.19061	0.22841
4	GAN	7.66398	0.19251	0.14899
8	NeuroSQL	3.96161	0.19244	0.24416
8	VAE	5.48428	0.20413	0.20573
8	GAN	20.46054	0.16577	0.18463
16	NeuroSQL	2.72089	0.17970	0.24505
16	VAE	10.00917	0.19001	0.18914
16	GAN	14.48838	0.18500	0.15935
32	NeuroSQL	14.65015	0.21850	0.27135
32	VAE	31.10957	0.24081	0.21405
32	GAN	30.37928	0.31335	0.13607

E TABULAR RESULTS ON AFHQ, AN ANIMAL FACES DATASET

Table 8: Results on AFHQ, an animal faces dataset, using ConvNet across latent dimensions. Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension	Method	$\textbf{FID (proxy)} \downarrow$	$\mathbf{LPIPS}\downarrow$	SSIM ↑
	NeuroSQL	22.023664	0.563209	0.339032
2	VAE	44.276279	0.531442	0.284219
2	GAN	74.178604	0.693773	0.080698
4	NeuroSQL	35.913769	0.538813	0.357857
4	VAE	35.430927	0.527985	0.285893
4	GAN	48.706165	0.669665	0.129869
8	NeuroSQL	37.569298	0.505324	0.353983
8	VAE	83.373650	0.516064	0.211640
8	GAN	30.621849	0.797056	0.191322
16	NeuroSQL	52.609642	0.564259	0.370944
16	VAE	88.436768	0.527512	0.161437
16	GAN	98.826027	0.620977	0.066925
32	NeuroSQL	31.695450	0.512806	0.339188
32	VAE	95.740288	0.499635	0.172815
32	GAN	46.238804	0.751076	0.072116
64	NeuroSQL	28.105133	0.532103	0.347139
64	VAE	127.357986	0.525766	0.140224
64	GAN	50.671597	0.753972	0.067132
128	NeuroSQL	17.399908	0.591030	0.368674
128	VAE	23.283272	0.789889	0.374535
128	GAN	59.287437	0.754374	0.042504

Table 9: Results on AFHQ, an animal faces dataset, using ConvNet — with results averaged across latent dimensions.

Method	FID (proxy) ↓	LPIPS ↓	SSIM ↑
NeuroSQL	32.19	0.544	0.354
VAE	71.13	0.560	0.233
GAN	58.36	0.720	0.093

Table 10: Results on AFHQ, an animal faces dataset, using ResNet across latent dimensions. Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension	Method	FID (proxy) \downarrow	LPIPS ↓	SSIM ↑
2	NeuroSQL	7.267559	0.459967	0.267403
2	VAE	15.259568	0.448991	0.235907
2	GAN	39.100639	0.550003	0.091928
4	NeuroSQL	11.560558	0.460007	0.246023
4	VAE	13.387914	0.432443	0.192707
4	GAN	37.873501	0.356168	0.120893
8	NeuroSQL	13.611592	0.471643	0.241053
8	VAE	11.736956	0.431859	0.204782
8	GAN	29.584837	0.486513	0.081718
16	NeuroSQL	17.987249	0.341935	0.208179
16	VAE	9.721145	0.347468	0.178343
16	GAN	17.546219	0.483133	0.107947
32	NeuroSQL	14.799847	0.438891	0.255200
32	VAE	8.249439	0.341844	0.188594
32	GAN	22.425539	0.363643	0.113281
64	NeuroSQL	10.561233	0.558646	0.252005
64	VAE	14.458963	0.404593	0.202796
64	GAN	40.478588	0.423956	0.107915
128	NeuroSQL	11.019302	0.489376	0.261104
128	VAE	13.060718	0.353215	0.208177
128	GAN	18.462259	0.381437	0.104066

Table 11: Results on AFHQ, an animal faces dataset, using ResNet — with results averaged across latent dimensions.

Method	$FID \ (proxy) \downarrow$	$\textbf{LPIPS} \downarrow$	SSIM ↑	
NeuroSQL	12.40	0.460	0.247	
VAE	12.27	0.394	0.202	
GAN	29.35	0.435	0.104	

Table 12: Results on AFHQ, an animal faces dataset, using U-Net across latent dimensions. Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension	Method	FID (proxy) ↓	LPIPS ↓	SSIM ↑
2	NeuroSQL	17.626825	0.595854	0.272737
2	VAE	10.595321	0.620105	0.279837
2	GAN	23.709433	0.405830	0.116950
3	NeuroSQL	10.193194	0.617973	0.278050
3	VAE	29.156761	0.578171	0.173115
3	GAN	17.098032	0.607903	0.074634
4	NeuroSQL	10.773172	0.561935	0.258762
4	VAE	14.463408	0.576194	0.117610
4	GAN	13.078835	0.626831	0.057038
8	NeuroSQL	11.994763	0.638746	0.275091
8	VAE	42.187984	0.571152	0.062857
8	GAN	75.077110	0.618699	0.039482
16	NeuroSQL	10.660514	0.659894	0.266318
16	VAE	51.288338	0.550339	0.135791
16	GAN	97.593185	0.703616	0.010010
32	NeuroSQL	16.301731	0.595429	0.252468
32	VAE	28.342377	0.566271	0.076232
32	GAN	25.781809	0.604119	0.025050
64	NeuroSQL	9.855629	0.660927	0.276445
64	VAE	62.289070	0.585000	0.093420
64	GAN	99.730621	0.702493	0.010348

Table 13: Results on AFHQ, an animal faces dataset, using U-Net — with results averaged across latent dimensions $\{2,3,4,8,16,32,64\}$.

Method	FID (proxy) ↓	LPIPS ↓	SSIM ↑
NeuroSQL	12.486547	0.618680	0.268553
VAE	34.046180	0.578176	0.134123
GAN	50.295575	0.609927	0.047645

On average, NeuroSQL achieves the best FID (proxy) and SSIM; VAE attains the lowest LPIPS.

F MNIST, A DATABASE OF HANDWRITTEN DIGITS

Table 14: Ablation results on MNIST, a database of handwritten digits (all runs). Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension	Seed	Method	FID (proxy) ↓	LPIPS ↓	SSIM ↑
2	11	NeuroSQL	0.696835	0.039503	0.564344
2	11	VAE	1.070473	0.058065	0.200167
2	11	GAN	2.157639	0.054278	0.245780
3	11	NeuroSQL	0.527451	0.030257	0.668574
3	11	VAE	1.443453	0.060009	0.157831
3	11	GAN	1.849820	0.057282	0.220785

Table 15: Results on MNIST, a database of handwritten digits — averaged over latent dimensions $\{2,3\}$ (seed = 11).

Method	FID (proxy) ↓	LPIPS ↓	SSIM ↑
NeuroSQL	0.612143	0.034880	0.616459
VAE	1.256963	0.059037	0.178999
GAN	2.003730	0.055780	0.233283

NeuroSQL is best on all three metrics (FID (proxy), LPIPS, and SSIM).

F.1 PRACTICAL TRAINING DETAILS

Loss choices. For images, we use a perceptual, scale-stable loss:

$$\ell(\hat{x}, x) = \frac{1}{2} (1 - \text{SSIM}(\hat{x}, x)) + \frac{1}{2} ||\hat{x} - x||_1,$$

which is the exact loss used in our codebase.

We instantiate gen with lightweight decoders so that comparisons against VAEs/GANs/Diffusion control for capacity and compute:

- ConvNet. Transposed-convolution stack mapping $z \in \mathbb{R}^q$ to $X \in \mathbb{R}^{3 \times H \times H}$ (stride-2 upsampling).
- ResNet Four residual upsampling blocks (512→256→128→64), followed by a 3 × 3 head with sigmoid output in [0, 1]. We optionally initialize residual weights from ResNet-18 where shapes match.
- **U-Net decoder.** A small transformer decoder on patchified embeddings of z followed by an MLP head back to pixels.

Our experiments keep these decoders small and matched across methods to stress that gains come from the *quantile–assignment loop*, not decoder sophistication.

- Loss and normalization. Images are scaled to [0,1]. We use $\ell = \frac{1}{2}(1 SSIM) + \frac{1}{2}\ell_1$ in both decoder and cost matrix.
- Optimization. AdamW with cosine annealing and gradient clipping; early stopping on validation ℓ .
- Latent momentum. After each assignment, a momentum update $\hat{z}^{(t)} \leftarrow \rho \, z_{\pi^{(t)}(i)} + (1 \rho) \, \hat{z}^{(t-1)}$ stabilizes training (we use $\rho = 0.7$).
- **Resource parity.** For fair comparisons to VAEs, GANs, and Diffusion, we fix the *same* generator backbone and training budget; only the learning paradigm changes.

G Models and training protocol

Common setup. Images are scaled to [0,1] (diffusion uses [-1,1] internally). We use AdamW, cosine annealing, gradient clipping, and early stopping on validation loss. Generator backbones are matched across methods for capacity parity.

NeuroSQL (ours). We construct a size-n deterministic latent lattice via scrambled Sobol points mapped coordinatewise through $F_{Z_{\ell}}^{-1}$ (Sobol \rightarrow Gaussian). Every K epochs we solve an exact global assignment (Hungarian) between data and lattice codes, where $K \in \{2, 3, 5\}$ is selected as a hyperparameter. After each assignment, we apply latent momentum $\widehat{z}^{(t)} \leftarrow \rho \, z_{\pi^{(t)}(i)} + (1-\rho) \, \widehat{z}^{(t-1)}$ with $\rho = 0.7$. The decoder is trained by regression on assigned codes using $\ell = \frac{1}{2}(1 - \mathrm{SSIM}) + \frac{1}{2} \| \cdot \|_1$.

VAE. We reuse the same generator backbone as the decoder; the encoder is an MLP on flattened pixels (to keep capacity modest). Training uses SSIM+L1 reconstruction plus a β -scaled KL term with $\beta=0.005$.

GAN. The generator backbone is identical to NeuroSQL's. The discriminator is a lightweight four-layer CNN. We use the non-saturating objective with BCE logits, sharing optimiser, scheduler, and gradient clipping with NeuroSQL. **Diffusion (DDPM).** A compact U-Net (base width 32) is trained with a linear β schedule for T=1000 steps; default sampling uses 100 steps to match compute. Inputs are normalized to [-1, 1] following common practice. Reproducibility knobs. We fix random seeds, match the number of training epochs and batch sizes across methods, and report all per-method hyperparameters (including learning rates, $K \in$ $\{2,3,5\}$, and augmentations).