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ABSTRACT

Deep Generative models (DGMs) play two central roles in modern machine learn-
ing: (i) producing new information (e.g., image synthesis, data augmentation, and
creative content generation) and (ii) reducing dimensionality. Yet, DGMs’ ver-
satility must confront training difficulty. While deep neural networks (DNNs)
are a natural choice for parameterizing generators, there is no universally reliable
method for learning compact latent representations. As a compromise, current
approaches rely on introducing an additional DNN: (i) variational autoencoders
(VAEs), which map data into latent variables through an encoder, and (ii) genera-
tive adversarial networks (GANs), which employ a discriminator in an adversarial
framework. Learning two DNNs simultaneously, however, introduces conceptual
and practical difficulties. Conceptually, there is no guarantee that such an en-
coder/discriminator exists, especially in the form of a DNN. In practice, training
encoders/discriminators on high-dimensional inputs can be more data-hungry and
unstable than training a generator on low-dimensional latents (whereas generators
usually take low-dimensional latent data as input). Moreover, training multiple
DNNs jointly is unstable, particularly in GANSs, leading to convergence issues,
such as mode collapse. Here, we introduce NeuroSQL, a DGM that learns low-
dimensional latent representations without an encoder. Specifically, NeuroSQL
learns the latent variables implicitly by solving a linear assignment problem, then
passes the latent information to a unique generator. To demonstrate NeuroSQL’s
efficacy, we benchmark its performance against GANs, VAEs, and a budget-
matched diffusion baseline on four independent datasets on handwritten digits
(MNIST), faces from the CelebFaces Attributes Dataset (CelebA), animal faces
from Animal Faces HQ (AFHQ), and brain images from the Open Access Se-
ries of Imaging Studies (OASIS). Compared to VAEs, GANSs, and diffusion mod-
els: (1) in terms of image quality, NeuroSQL achieves overall lower mean pixel
distance between synthetic and true images and stronger perceptual/structural fi-
delity, under the same computational setting; (2) computationally, NeuroSQL re-
quires the least amount of training time; and (3) practically, NeuroSQL provides
an effective solution for generating synthetic data when there are limited train-
ing data (e.g., data with a higher-dimensional feature space than the sample size).
Taken together, by embracing quantile assignment instead of an encoder, Neu-
roSQL presents us a fast, stable, and robust way to generate synthetic data with
minimal information loss.

1 INTRODUCTION

Deep generative models (DGMs) have become a cornerstone of machine learning and have made
ample contributions to image synthesis, data augmentation, and creative content generation. Over
the past decade, they have become ubiquitous in scientific fields, such as genomics and neuroimag-
ing, to handle complex data analysis tasks, including data interpretation, decoding, and generating
intricate datasets.

A large share of these advances has been powered by variational autoencoders (VAEs; Kingma
& Welling}, |2014) and generative adversarial networks (GANSs; |Goodfellow et al. [2014), which
remain the two dominant approaches for generative modeling from lower-dimensional latent spaces.
Both frameworks adopt a common strategy: pairing a generator with a complementary deep neural
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network (DNN). In VAEs, an encoder learns to map observations into latent variables, while in
GANsS, a discriminator provides adversarial feedback to train the generator indirectly.

Despite their promise, training DGMs remains a complex and challenging task. These approaches
introduce both conceptual and practical limitations. Conceptually, there is no guarantee that an
encoder or discriminator, viewed as a continuous mapping that can be approximated by a DNN,
exists in the first place. While the generator is a function of the latent variable, which can have
(much) lower dimension than the observations, both the encoder and discriminator are functions of
the (potentially large) data itself, and thus may introduce a curse of dimensionality (Stone} |1985).
While DNNs are believed to enjoy fast rates of convergence (Schmidt-Hieber| (2020)) or can some-
times mitigate the curse of dimensionality under favorable conditions (see e.g. |Suzuki| (2019)),
these properties are derived under strict assumptions (Golestaneh et al.l 2025). These limitations
are reflected in theoretical works on VAEs and GANSs, which sidestep these issues. For instance,
Chae et al.|(2023) analyzes direct optimization of the likelihood, without introducing the encoder,
which is unfeasible in practice. Biau et al.|(2020) assumes from the outset that the discriminator lies
in a parametric space. Ideally, however, assumptions should be placed only on the true objects of
interest: the generator and the latent space.

Practically, training such auxiliary networks is often more unstable and data-intensive than training
the generator itself. GANS, in particular, are prone to convergence failures such as mode collapse
(Mescheder et al.l 2018)). At the same time, VAEs often suffer from blurred reconstructions due
to their variational approximations and pixel-wise reconstruction losses, such as the mean squared
error (MSE). More generally, learning multiple deep networks jointly exacerbates issues of sample
complexity, computational cost, and training instability. Furthermore, training DGMs requires data
of a large sample size, and, when the data is large or high-dimensional (compared to the sample
size), they may behave unfavorably.
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Figure 1: A schematic representation of the NeuroSQL architecture. Left: The conceptual
algorithm of finding the optimal latent embedding and parameter 6 for the generator. Right: The
conceptual flow of generating synthetic data using the NeuroSQL. From left to right, input data
enters the NeuroSQL; the model learns the embedding and parameter 6; the embedding enters a
generator parameterized by 6; NeuroSQL outputs generated data.

Among generative models that do not feature a well-defined latent space, diffusion models use
a likelihood-based progressive denoising procedure [Ho et al.| (2020); [Dhariwal & Nicholl (2021));
Rombach et al.[(2022)), which enables stable training and high-quality output generation. Neverthe-
less, diffusion models often suffer from slow sampling and high computational and memory costs
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Song et al.| (2021)); Nichol & Dhariwal| (2021); [Lu et al.| (2022). Theoretically, it was found that
diffusion models suffer from the curse of dimensionality unless the observations are generated by a
linear factor structure (Oko et al., [2023)).

To address these issues, we introduce NEUROSQL, a new latent variable DGM that fundamentally
differs from existing approaches relying on encoders, discriminators, or complex sampling proce-
dures. NEUROSQL approximates the latent space through a permutation of quantiles, defined via
optimal transport, and the latent variables implicitly by solving a linear assignment problem. As
a result, NEUROSQL trains a unique DNN for the generator, alongside an assignment procedure.
NEUROSQL is fast, stable, resource-friendly, and generates high image quality given the same com-
putational resources. Experimental tasks on generating digits, human faces, animal faces, and brain
imaging data suggest NEUROSQL offers a robust solution for generating synthetic data when there is
limited training data (e.g., neuroimaging data with a higher-dimensional feature space than the sam-
ple size). Finally, by integrating Statistical Quantile Learning (SQL; Bodelet et al.| [2025), which
was developed for additive latent variable models, and a generator, NEUROSQL achieves a marriage
between generative models and the blessing of dimensionality.

2 RELATED WORK

GANs and VAEs There are some recent attempts to improve GAN, notably the StyleGAN, |[Karras
et al.|(2019), which transformed controllable image generation through style-based architectures, as
well as StyleGAN2 and StyleGAN3, which are considered to be state-of-the-art for several bench-
marking datasets |[Karras et al.| (2020)Karras et al.| (2021). In parallel, Brock et al.| (2019) demon-
strated the importance of scale with BigGAN, while [Kynkaidnniemi et al.|(2019) proposed improved
training techniques for large-scale GANs. While these approaches are beginning to address artifacts
and improve training dynamics, they nonetheless suffer from training instability and mode collapse
as they are naturally GAN and, therefore, all rely on the (minimax) adversarial training. To improve
reconstruction quality, Vector Quantized VAEs (VQ-VAE) discretise the latent space Razavi et al.
(2019), and VQ-VAE-2, a follow-up work, extended the original VQ-VAE by introducing hierar-
chical modeling (Child (2021), thereby achieving high-resolution image generation. Combining the
benefits of VQ-VAE with adversarial training, VOGAN further enhanced perceptual quality Esser
et al.[(2021)).

Diffusion Models The next phase of generative Al came with the introduction of the denoising
diffusion(DDPM) paradigm |Ho et al.|(2020) or more commonly known as the diffusion models. An
extension of DDPM was proposed by|Song et al.|(2021)), providing theoretical foundations for score-
based generative models. Thanks to diffusion models’ progressive denoising procedure, they have
achieved most of the current state-of-the-art results in image and video generation. Recent advances
in diffusion modeling include improved sampling efficiency Song et al.| (202 1)); |Lu et al.|(2022), con-
ditional generation Dhariwal & Nichol| (2021)), and classifier-free guidance Ho & Salimans| (2022).
While excelling in the quality of data generation, diffusion models are computationally extremely
costly and training them is time-consuming. A few works are aiming to reduce the computational
cost, such as the Latent Diffusion Models (LDMs) Rombach et al.|(2022)), and faster sampling|Song
et al.[(2023)); Luo et al.[(2023)). As one of the most actively researched fields, improvements are con-
stantly being proposed Peebles & Xie|(2023); |Chen et al.|(2024). While most of the newer versions
of diffusion models excel at generating high-quality data, and despite plentiful attempts to reduce
the computational and time cost, the sequential denoising steps have remained a bottleneck.

3 METHODOLOGY

3.1 THE MODEL

In what follows, we first state the model we aim to learn. We consider a dataset D composed of
n independent copies of p-dimensional random vectors, D = {X},..., X, }. We assume that the
data are driven by unobserved continuous latent variables Z; € Z C RY. Specifically, we consider
a probabilistic generative model, which models the observations:

X, =G(Z)+e€ (1)
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where G : Z — RP is an unknown generator, and €; are independent random errors. We assume
that the latent variables have a known continuous distribution P,. The latent dimension is usually
(much) smaller than the ambient dimension (d << p) in order to allow dimension reduction. This,
therefore, contrasts with a flow-based generative model where the generator has to be invertible. As
DGMs are not identifiable, one can select any distribution as long as it has a continuous cumulative
distribution function. Regarding the prior distribution, it is common to select the A(0,I) or a
Uniform distribution. We approximate the generator using deep neural networks (DNN), that is
G ~ Gy, where:
Gope {(WroooWp_j00---000W;},

where W, denote affine transformations and o is an activation function. The vector 8 € © contains
the DNN parameters. We aim to learn both the generator parameter 8 and the latent variables Z;.

3.2 LATENT SPACE APPROXIMATION AND LOSS FUNCTION

Our aim is to learn both the generator and the latent variables. In the context of deep generative
models, computing and optimising the likelihood is feasible only for simple frameworks, such as
linear factor analysis. In this section, we describe our estimation method with inspiration from the
sieve method. The sieve method replaces an intractable optimization over the full parameter space
with tractable problems on a growing sequence of simpler, typically finite-dimensional, subspaces,
called sieves, that are dense in the parameter space (see e.g. [(Chen|(2007) for a review).

Our aim is, therefore, to build an approximation for the latent space in order to obtain a tractable
problem. The construction of this approximate latent space relies on partitioning the distribution of
the latent space into n regions. Specifically, we consider quantiles denoted by Q7, ..., Q" € R4,
andlet Z := (Zy,...,Z,) and Q™ := (QF, ..., Q") be the n x d matrices of the latent variables
and (n + 1)-quantiles respectively. The basic idea of NEUROSQL is based on the fact that there
exists a permutation 7 such that the latent variable can be approximated by:

Z~Qr

where for a matrix (or column vector) A and a permutation 7w, we denote by A, a permutation of
the rows of A. For clarity of exposure, we discuss here the univariate case and delay the case of
d > 1 to Section For d = 1, we select (n + 1)- quantiles, i.e. Q7 = Ffl(njrl), i=1,...,n,
where F' denotes the cumulative distribution function associated to Py. It can be shown using the

delta method (see, e.g./van der Vaart[2000) that:

1
Ze - QY =0, (ﬁ) , )

where Z ;) denotes the order statistics of the latent variables. Note that the Z;)’s are distinct almost
surely and are thus, almost surely, a permutation of the Z;’s. We can thus write:

1« 1
] . n 2 _ —_
gg}tﬁzl‘zl Qrnl" =0y (n> ; 3)
i=
where .S,, denotes the set of all permutations, or symmetric group, of order n. Therefore, one can
obtain an approximation of the latent variables by simply learning permutations. Intuitively, the set
of (n+1)-quantiles can be thought of as a “probabilistic sieve” space for the latent space. Leveraging
on this approximation, we consider the following loss function:

L£O,7) = %Zf CHACE),
=1

for some distance, or distortion, ¢ : R? x RP — R, (e.g., squared {5, LPIPS features). We then
define NEUROSQL as the solution of:

(0,7) = argmin L£(0,7) + AR(H), 4)
0ecO, TteS,

where R(0) is a regularizer controlling the complexity of Gg and A > 0 is some tuning parameter.
With the solution 7, we then obtain the estimator of the latent variable as Z = Q5.
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3.3 MULTIVARIATE QUANTILES (d > 1)

We now consider how to approximate the latent space in higher dimensions. In contrast to the real
line, there is no canonical ordering when d > 1, and therefore several methods can be used to con-
struct “multivariate quantiles”. We concentrate on recent developments that leverage the optimal
transport approach (Hallin) 2022} |Chernozhukov et al., 2017; Hallin et al., 2021; |Ghosal & Sen)
2022), which offers a conceptually clean and practical way to define quantiles in multivariate di-
mensions. Specifically, we will need the concept of the center-outward distribution function, F.,
which is the unique gradient of a convex function pushing Pz forward to the uniform distribution
over the unit ball U, := {z € R¢ : ||z < 1}. For d = 1, the center-outward distribution is simply
given by Fy = 2F — 1, where F' is the cumulative distribution. We refer toHallin et al.|(2021)) and
Hallin| (2022)) for a detailed explanation.

Given a regular grid , U;,Us,,...,U, € U, we define the multivariate quantiles as Q7 :=
Fy 1(Ui). This grid does not have to be perfectly regular, which is in general not possible for
d > 3. We require only that the discrete distribution with probability 1/n at each grid point con-
verges weakly to the uniform distribution over U/;. In practice, it is suitable to select a grid with a
low discrepancy in order to obtain faster convergence rates.

For simplicity and without loss of generality, we assume here that the distribution Py is uniform
over Uy, yielding Q7 = U,. Furthermore, we note that this is without loss of generality as the
latent distribution of (deep) generative models is not identifiable and should be selected (we refer to
Bodelet et al.| [2025|for a discussion).

Following |Hallin et al|(2021), we define the center-outward empirical distribution function as the
solution of the optimal transportation problem:

F? = argmin Z, —T(Z)|?
+ ;g“GT ;” v ( z)”

where the minimum is taken over T the set of all bijective mappings between Zy, ..., Z,, and the
grid Uy, ..., U,. In fact, this is equivalent to solve a linear assignment problem:

7 = argmin || Z — U"|?,
TESH

and set F?'(Z"™) := U?.. Then we apply Theorem 2.4 in (Hallin et al.; 2021)) to obtain:

nax |F2(Z;) — Fi(Z;)||* — 0as. asn — oo.

In our case, as F is the uniform distribution over Uy, it is straightforward to see that:

min Q" — Z|* — 0, as. asn — oc.

n

3.4 COMPUTATIONAL ALGORITHM

We note that, for fixed 6, the inner problem in equation 4] reduces to:

n

1
min ;cm(i), Cik = (Xi, Go(Qy))-
This is a linear assignment problem solvable exactly by the Hungarian method in O(n?) time
(Kuhnl [1955). For fixed 7, equation E] reduces to standard supervised regression of X on as-
signed codes {zr(;)}. We therefore propose to solve equation {4| alternatively: (i) Given a per-
mutation 7, minimize the loss function with respect to 8 (Decoder step); (ii) Given 8, we solve
exactly the linear assignment matching problem by the Hungarian method. We iterate (i) and (ii)
until convergence. Furthermore, we introduce a momentum update after each assignment, that is
21 Pz Tt (1-p) 21 for some 0 < p < 1, in order to stabilize training. The exact steps
are detailed in Algorithm [T}
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Figure 2: Qualitative comparison of NeuroSQL against standard generative models across
different decoder architectures. Generated samples from CelebA faces, a face attributes dataset
(left), and OASIS, a brain imaging dataset (right), using 16-dimensional latent embeddings. Under
each setting, every row shows results from a different generative approach: NeuroSQL (proposed),
variational autoencoder (VAE), generative adversarial network (GAN), and Diffusion (DDPM). We
compare consistency across three lightweight decoder architectures (ResNet, ConvNet, and U-Net),
highlighting that performance gains stem from the quantile-assignment paradigm rather than decoder
sophistication. VAE and GAN results show typical artifacts, including mode collapse, blurriness,
and training instabilities, while diffusion models exhibit characteristic oversaturation and unrealistic
color distributions. In comparison, NeuroSQL produces consistently high-quality, diverse samples
across all decoder choices, demonstrating the robustness of the deterministic lattice-based approach.
All models use identical training budgets and matched generator capacities for fair comparison.

Algorithm 1 NeuroSQL (full-batch assignment)
1: Input: data {X;}! ,, prior Py, lattice @™, outer iters 7', momentum p € [0,1), A > 0

2: Initialize 7(¥) (e.g., random or PCA-sorted); set Z(©) = Q" v
3. fort=1,...,7 do

1o (-
4:  Decoder step: 8*) ¢ arg min — ZE(Xi, Go(Z 1))) + AR(0) (implemented via
n 4

i=1
AdamW with standard NN init on first call)

5 Cost matrix: Cl(tlz — U X, G (Qr))

6: Assignment: 7(*)  argmin,cg, Trace(C’th)) (exact LSAP)
7: Momentum update: Z(t) — /’sz(i) +(1-p) Zi(t_l)

8: end for

9: Output: 8 = 0, aligned latents Z = ZD),

Complexity. Each outer iteration forms C*) with n forward passes over {z;} and solves one
Hungarian problem: overall O(n cg + n?), where cg is the decoder’s forward cost. Crucially, the
assignment cost does not depend on p, which is why NEUROSQL scales favorably to (very) high
dimensions. Scalability Considerations. The O(n?) Hungarian algorithm may be an overhead for
large sample sizes. In practice, when n > 10%, we used the Hungarian algorithm on mini-batches to
speed up computations.
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4 DATA AND EXPERIMENTAL SETUP

We evaluate NeuroSQL under a sparse-resource regime across four domains of increasing structural
complexity: digits (MNIST), faces (CelebA), animal faces (AFHQ), and neuroimaging (OASIS).
Our empbhasis is on paradigm control: models share (as closely as possible) the same generator
backbone, data budgets, and optimization schedules, so that differences arise from the learning prin-
ciple (quantile—assignment vs. probabilistic/adversarial/denoising) rather than capacity or compute.

4.1 DATASETS

MNIST (LeCun et al., 2002). Handwritten digits (60k train, 10k test, 28 x28 grayscale). We
replicate to RGB for evaluation only.

CelebA (Liu et al.,2015). Face dataset (202,599 images) center-cropped and resized to 128 x128.
Training is unconditional despite available attributes.

AFHQ (Choi et al., 2020). Animal Faces HQ contains 15,000 high-quality animal face images
across cats, dogs, and wildlife at 512x512 resolution originally. Within experiments, image size
was reduced to 128 x 128 and total number of images used was about 2000.

OASIS (Marcus et al., 2007; |Aithal, 2023). Neuroimaging dataset with ~ 80k MRI slices from
416 subjects, downsampled to 128 x 128. Medical images test resistance to overfitting in constrained
domains. We used the version of OASIS that is publicly available on Kaggle. It is pre-structured
and is organized in four subfolders, namely: Mild Dementia, Moderate Dementia, Non Demented,
and Very Mild Demented.

4.2 MODELS AND TRAINING

We compare NeuroSQL to VAE, GAN, and DDPM under matched budgets and identical gener-
ator backbones; only the learning paradigm differs. For NEUROSQL we used the Sobol lattice in
[0, 1]¢ to construct the quantiles. The Hungarian algorithm is performed at every K epochs (with
K e€{2,3,5} treated as a hyperparameter), and we select the momentum parameter as p=0.7. NEU-
ROSQL was trained with the perceptual loss £ = (1 — SSIM) + £ || - [|1. All methods use AdamW,

2
cosine decay, gradient clipping, and early stopping; full architectures and hyperparameters appear

in Appendix

Generator backbones. Unless otherwise specified, NeuroSQL/VAE/GAN share an identical Con-
vNet upsampling decoder (four residual up blocks, 512—256—128—64, 3x3 head with sigmoid).
We ablate esRNet and U-Net decoders to show that gains are decoder-agnostic. For fairness, Diffu-
sion’s U-Net width is chosen so the parameter count is within +10% of the shared decoder.

4.3 EVALUATION METRICS AND PROTOCOL

FID (proxy; |): Since our domains are not ImageNet/COCO, we report FID only as a coarse proxy
(Inception-V3 pool3, 2048-d); in this setting, it behaves like a lower mean pixel distance between
synthetic and real sets. We match #gen=#real (MNIST: 10k; CelebA: test split; OASIS: test slices),
fix the sampling seed, and replicate grayscale to 3 channels at metric time. =~ LPIPS (J): VGG
backbone via LPIPS (fallback: cosine similarity on VGG features); mean over 50 paired real-fake
images. SSIM (7): mean over the same 50 pairs.  Unless noted, we evaluate NeuroSQL in
sampled-z mode (z ~N (0, I)); paired-z (reconstruction) results appear in the supplement.

4.4 FAIRNESS CONTROLS AND ABLATIONS

Backbone parity: NeuroSQL/VAE/GAN share identical decoder weights at init; diffusion U-Net is
matched by parameter count. Budget parity: Same epochs, optimizer/scheduler, grad clipping,
and batch size per dataset. Latent sweep: ¢€{2,...,128}. Resolution: OASIS at 642 vs. 128>
Loss sensitivity: pixel /5 vs. SSIM+L1 for the assignment cost (main uses SSIM+L1; see details
in the Appendix).
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4.5 ETHICAL AND DOMAIN-SPECIFIC NOTES (OASIS)

In order to keep the experimental setup free of data leakage within the train/val/test splits, we per-
formed subject-stratified cross-validation. We highlight that one must not equate synthetic imaging
data with clinical data. Synthetic imaging data, however, may have practical utilities, such as for
treating missing data, but this is beyond the scope of this paper. Here, we generate synthetic data to
demonstrate the efficacy of NeuroSQL as a generative model; we use the generated imaging data to
evaluate the model’s performance; we do not claim its clinical utility. Future work should verify this
independently, and we will release seeds, splits, and scripts to facilitate further validations.

5 RESULTS

5.1 OBSERVATIONS

We evaluate NeuroSQL for synthetic data generation against strong baselines among benchmarks.
To ensure a fair comparison, we (1) test various latent dimensionalities, (2) include both ConvNet,
ResNet, and U-Net generators, and (3) evaluate all models on generating different types of data. For
demonstration purposes, we discuss NeuroSQL’s performance against VAE and GAN on generating
brain imaging data and human (celebrity) faces, but see the Appendix for comparison with diffusion
models and model performance on handwritten digits and animal faces. To quantify the model
performance, we report, for each scenario, a proxy of FID (Fréchet Inception Distance; lower is
better), LPIPS (Learned Perceptual Image Patch Similarity; lower is better), and SSIM (Structural
Similarity Index; higher is better). We present the results in the tables in the Appendix [C] given the
wide range of experiment specifications.

For the brain imaging data (OASIS), we notice that, overall, NeuroSQL outperforms both VAE and
GAN across all combinations of choices of latent dimension and generator. Particularly, NeuroSQL
outperforms VAE and GAN in terms of LPIPS (measuring perceptual similarity between images
(i.e., how similar they look to humans) and SSIM (measuring pixel-level structural similarity) scores
in all scenarios. All models with a ConvNet generator yield much better results compared to those
with a ResNet. The choice of generator, however, has a marginal effect on FID scores. For FID,
which measures distribution similarity between generated and real images in feature space, Neu-
roSQL outperforms VAE and GAN in all cases with a ResNet generator. It outperforms VAE and
GAN when the latent dimension is moderate (between 16 and 64) with a ConvNet generator. When
the latent dimension is very small or very large, VAE with ConvNet has a modest improvement.
With a U-Net generator, NeuroSQL attains the best LPIPS and SSIM, while the FID (proxy) varies
and is lowest for VAE on average.

For human faces (CelebA), NeuroSQL achieves similar performance to its brain imaging data. Par-
ticularly, NeuroSQL with a ResNet generator is better in terms of FID, LPIPS, and SSIM score
compared to its counterparts. NeuroSQL with a ConvNet generator is better than its counterpart in
terms of SSIM, only mildly underperforms its VAE counterpart in terms of LPIPS score when the
latent dimension is 16 or 128, and underperforms or marginally underperforms its VAE counterpart
in terms of FID when the latent space is 16 or 64. NeuroSQL with a U-Net generator is better in
terms of FID, LPIPS, and SSIM score compared to its counterparts.

Taken together, our results demonstrate the overall efficacy of NeuroSQL compared to its state-of-
the-art competitors in generating synthetic human faces as well as neuroimaging data. Particularly,
NeuroSQL with a ConvNet generator achieves overall superior performance across different scenar-
ios, particularly in metrics evaluating perceptual similarity between images (how similar they look
to humans) and pixel-level structural similarity, and its performance improves as the dimension of
its latent space increases.

5.2 COMPUTE BUDGET, DATA SCALE, AND EVALUATION SCOPE

Our aim is to introduce a learning paradigm, not to chase unconstrained fidelity. All experiments
ran end-to-end on a single Google Colab with a fixed allowance of 200 compute units. Within this
envelope we capped training data at 2,000 images and resolutions at 64 x 64-128x 128 (occasional
tests at 256 x256). This budget dictated architectures, optimisers, and protocols, targeting compute-
and data-frugal generative learning.
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What we show. We visualize only benchmarks whose semantics survive low resolution: (i) OASIS
2D brain MRI slices, where gross anatomy is discernible at 64—128 px, and (ii)) MNIST digits, an
intrinsically low-frequency signal. For faces/natural scenes, perceptual judgments at 64—128 px are
less diagnostic under our budget; raising resolution would violate the cap. Our contribution is the
training principle, not a new high-capacity image backbone.

Why diffusion is ill-suited here. With 7'= 1000 steps and N~1000 images, supervision per noise
level is O(N/T), yielding high-variance score estimates; a single noise-conditional network must
span widely varying SNRs under tight capacity/time; gradients are diluted by averaging across many
timesteps; and wall-clock scales with 7', reducing optimizer updates at fixed budget. Low-data
remedies (heavy augmentation, distillation, large-scale pretraining) fall outside our from-scratch,
small-budget premise.

Reproducibility and scale. All settings are reproducible within the stated Colab budget; code paths
carry to higher resolutions and larger datasets. Scaling batch size, training time, and image size is
orthogonal engineering we leave to follow-ups; our results isolate the methodological contribution
under realistic small-resource conditions.

6 CONCLUSIONS

We introduced NeuroSQL, a deep generative model that replaces stochastic encoders with rank-
based quantile assignment. By learning embeddings through assignments rather than amortised
inference, NeuroSQL eliminates the mode of posterior collapse in VAE and avoids adversarial dy-
namics, yielding more stable training than GANs. Thanks to the quantile assignment, NeuroSQL’s
generation processes are deterministic, resulting in distributions that are substantially more inter-
pretable than those of GANs and VAEs, whose embeddings depend on samples from a Gaussian
posterior, even when the encoder is deterministic. Compared to diffusion models, which require
extensive denoising steps and large datasets for stable training, NeuroSQL demonstrates better per-
formance in constrained settings with datasets under 10° samples. The deterministic assignment
mechanism avoids the high-variance score estimation that plagues diffusion models in low-data
regimes. Trained on four distinctive tasks: handwritten digits (MNIST), human faces (CelebA),
animal faces (AFHQ), and brain images (OASIS) to generate synthetic samples, NeuroSQL gen-
erally achieves the best performance under the same experimental settings. While our constrained
experimental setup was intentional to introduce the NeuroSQL paradigm under controlled condi-
tions, future work should address its scalability to larger datasets and higher resolutions, compare it
with advanced baselines like StyleGAN3 and latent diffusion models, and explore alternatives to the
O(n?®) Hungarian algorithm, such as approximate Sinkhorn iterations. In terms of future work, for
example that of medical applications, a natural next step is to experiment with the MedMNIST |Yang
et al.| (2023) benchmark suite to assess NeuroSQL across diverse biomedical imaging tasks. Mov-
ing forward, we see two promising directions: (i) scaling the assignment mechanism and generator
capacity to higher resolutions and additional modalities (e.g., audio, 3D, and multimodal settings),
and (ii) expanding the theory of quantile-assignment training for deep generators beyond the current
empirical scope.
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B APPENDIX

B.1 PREPROCESSING AND SPLITS

For each dataset, we standardize a lightweight pipeline to minimize confounds while allowing small
variations across runs.

* Resize/crop. MNIST: native 28 x28. CelebA: center-crop then resize, typically to 32x32
(primary), with occasional 64—128 experiments. OASIS: center-crop then resize, primarily
128 %128 with 64 x 64 ablations.

* Scaling. Inputs mapped to [0, 1] (no per-image standardization during training).

* Channel handling. MNIST/OASIS trained as single-channel; for backends expecting 3
channels (e.g., LPIPS/VGG), we replicate channels at metric time only.

* Splits. MNIST: standard train/test. CelebA: official train/val/test. OASIS: subject-wise
80/10/10 to prevent slice leakage. Seeds and split indices are provided in the supplemen-
tary.

Scope and reproducibility. Settings are chosen for a small-resource envelope (single-session
runs). Results emphasize methodology under constrained compute; scaling to larger images/batches
follows the same code paths.

Optimization and budgets (typicals/ranges). AdamW (or Adam), cosine warm restarts; weight
decay ~ 10~4; gradient clip ~ 1.0; early stopping on validation loss with patience ~ 25-30 epochs.
Learning rates are usually in [1 x 10~%, 3x 10~%] for convolutional decoders; diffusion runs use com-
parable schedules at matched compute. Batch sizes depend on resolution: MNIST 32-64, CelebA
64-128, OASIS 32—64. Epoch caps are typically 120-250 across datasets, with early stopping often
terminating earlier. We sweep latent dimension ¢ over {2,4, 8,16, 32,64, 128} and report results

(Sec.[0).
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Figure 3: MNIST digit generation comparison across generative modeling paradigms. Each
method generates 8 samples per digit class (0-9) using identical network capacities and training
budgets. NeuroSQL (left) produces consistently sharp, well-formed digits with clear class separa-
tion and minimal artifacts. VAE (center) exhibits typical reconstruction blur and shape distortions,
particularly evident in digits with fine details (e.g., 8, 9). GAN (right) shows characteristic train-
ing instabilities, including mode collapse, with several digit classes producing nearly identical or
malformed samples. The systematic comparison demonstrates NeuroSQL’s ability to maintain both
sample quality and diversity across all digit classes, highlighting the advantages of the deterministic
quantile-assignment approach over stochastic generative methods in controlled generation tasks.
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B.2 GENERATED IMAGES

C TABULAR RESULTS ON OASIS, A BRAIN IMAGING DATASET

Table 1: Results on OASIS, a brain imaging dataset, using ConvNet across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Method FID (Proxy) ] LPIPS| SSIM 1

NeuroSQL 7914 0.390 0.259
2 VAE 8.198 0.410 0.246
GAN 9.936 0.450 0.218
NeuroSQL 9.241 0.403 0.257
4 VAE 8.720 0.463 0.212
GAN 19.420 0.509 0.206
NeuroSQL 8.286 0.411 0.256
8 VAE 8.029 0.485 0.215
GAN 12.766 0.558 0.193
NeuroSQL 8.602 0.455 0.267
16 VAE 12.768 0.539 0.171
GAN 12.485 0.584 0.200
NeuroSQL 8.856 0.401 0.257
32  VAE 12.490 0.525 0.178
GAN 14.852 0.593 0.174
NeuroSQL 7.385 0.388 0.265
64 VAE 16.003 0.567 0.151
GAN 14.453 0.602 0.125
NeuroSQL 18.743 0.453 0.248
128 VAE 16.329 0.571 0.158
GAN 29.792 0.620 0.084

Table 2: Results on OASIS, a brain imaging dataset, using ResNet across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension = Method FID (proxy) | LPIPS| SSIM

NeuroSQL 25.410 0.249  0.301
16 VAE 51.139 0.309 0.171
GAN 168.993 0.727  0.008
NeuroSQL 31.957 0.257 0.242
32  VAE 66.045 0.362 0.128
GAN 158.103 0.687  0.008
NeuroSQL 30.892 0.220 0.221
64 VAE 47.146 0.358 0.135
GAN 156.088 0.741  0.135
NeuroSQL 34.346 0.224  0.196
128 VAE 52.317 0.397 0.135
GAN 156.288 0.723  0.124
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Table 3: Results on OASIS, a brain imaging dataset, using a U-Net across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension = Method FID (proxy) | LPIPS | SSIM 1+

4 NeuroSQL 8.519902 0.386861  0.254752

4 VAE 7.858056  0.377805  0.265082

4 GAN 26.234322  0.597633  0.206676

8  NeuroSQL 8.579974  0.401890  0.238080

8 VAE 5976874 0.384821  0.264277

8 GAN 35.444614  0.609803  0.172225
16  NeuroSQL 10.037155  0.391049  0.260999
16 VAE 7.178138  0.402099  0.231028
16 GAN 20.907921 0.616312  0.225444
32 NeuroSQL 8.405630 0.388190  0.253740
32  VAE 4.424680 0.402910 0.238710
32  GAN 28.069950 0.613550  0.200620
64  NeuroSQL 8.259449  0.385646  0.262159
64 VAE 6.098939  0.395427 0.272117
64 GAN 30.385052  0.644507  0.153054
128  NeuroSQL 7.553965 0.371082  0.282864
128 VAE 9.101107  0.415775 0.257312
128 GAN 30.505713  0.553681  0.202557

Table 4: Results on OASIS, a brain imaging dataset, using a U-Net — with results averaged across
latent dimensions {4, 8, 16, 32, 64, 128}.

Method FID (proxy) | LPIPS | SSIM 1

NeuroSQL 8.559346  0.387453  0.258766
VAE 6.772966  0.396473  0.254754
GAN 28.591262  0.605914  0.193429

On average, across latent dimensions, NeuroSQL attains the best LPIPS and SSIM, while VAE has the lowest
FID (proxy).
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D TABULAR RESULTS ON CELEBA, A FACE ATTRIBUTES DATASET

Table 5: Results on CelebA, a face attributes dataset, using ConvNet across latent dimensions.
Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension = Method FID (proxy) | LPIPS | SSIM

NeuroSQL 9.64453 0.22094 0.31376
2 VAE 11.49087 0.24068 0.27396
GAN 26.56548 0.47277 0.10216
NeuroSQL 6.99789 0.22845 0.31645
4 VAE 8.57467 0.23091 0.26471
GAN 29.68144 0.49874 0.06955
NeuroSQL 6.686607  0.244427  0.297947
8 VAE 32.183292  0.281024  0.226046
GAN 28.772638  0.461147  0.058802
NeuroSQL 17.252127  0.304758  0.296877
16 VAE 11.955338  0.282781  0.160219
GAN 20.922581 0.419844  0.117695
NeuroSQL 4.04047 0.19269 0.25707
32 VAE 6.57785 0.21120 0.13975
GAN 13.92531 0.31649 0.12201
NeuroSQL 3.94787 0.20649 0.25782
64 VAE 3.93301 0.21478 0.15485
GAN 16.27481 0.35050 0.10456
NeuroSQL 4.91280 0.20557 0.26119
128 VAE 5.57425 0.20361 0.16837
GAN 17.16048 0.34640 0.15798

Table 6: Results on CelebA, a face attributes dataset, using ResNet across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Method FID (proxy) | LPIPS| SSIM ¢

NeuroSQL 440599  0.18367 0.27506
2 VAE 8.01552  0.19720 0.24972
GAN 19.01699  0.20240  0.13535
NeuroSQL 447511  0.16968  0.26754
4 VAE 6.03891  0.20652  0.20760
GAN 14.21587  0.26898  0.14515
NeuroSQL 4.60623  0.18201 0.25536
8 VAE 4.86620  0.25218 0.17823
GAN 13.94172  0.18593  0.17628
NeuroSQL 3.99240  0.18115 0.21823
32  VAE 6.00124  0.25017  0.12915
GAN 11.08812  0.23644  0.16986
NeuroSQL 2.89791  0.20532  0.20588
64 VAE 10.59103  0.25116  0.13515
GAN 16.09010  0.28388 0.11962
NeuroSQL 248879  0.19150 0.19373
128 VAE 18.35559  0.26214  0.12317
GAN 14.04322  0.20137 0.17414
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Table 7: Results on CelebA, a face attributes dataset, using U-Net (unconditional) across latent
dimensions. Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension method FID (proxy) | LPIPS| SSIM 1

2 NeuroSQL 496169  0.18253  0.27537
2 VAE 7.33227  0.19269  0.25696
2  GAN 14.09393  0.22041 0.12822
4 NeuroSQL 3.54758  0.18932  0.27993
4 VAE 4.99991  0.19061 0.22841
4 GAN 7.66398  0.19251  0.14899
8 NeuroSQL 3.96161 0.19244  0.24416
8 VAE 548428  0.20413  0.20573
8 GAN 20.46054  0.16577 0.18463
16  NeuroSQL 2.72089  0.17970  0.24505
16 VAE 10.00917  0.19001 0.18914
16 GAN 14.48838  0.18500 0.15935
32 NeuroSQL 14.65015  0.21850 0.27135
32 VAE 31.10957  0.24081  0.21405
32  GAN 30.37928  0.31335  0.13607

E TABULAR RESULTS ON AFHQ, AN ANIMAL FACES DATASET

Table 8: Results on AFHQ, an animal faces dataset, using ConvNet across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Method FID (proxy) | LPIPS | SSIM 1t

2 NeuroSQL 22.023664  0.563209  0.339032

2 VAE 44.276279  0.531442  0.284219

2 GAN 74.178604  0.693773  0.080698

4 NeuroSQL 35913769 0.538813  0.357857

4 VAE 35.430927 0.527985  0.285893

4 GAN 48.706165 0.669665  0.129869

8 NeuroSQL 37.569298  0.505324  0.353983

8 VAE 83.373650 0.516064 0.211640

8 GAN 30.621849  0.797056  0.191322
16  NeuroSQL 52.609642  0.564259  0.370944
16 VAE 88.436768 0.527512  0.161437
16 GAN 98.826027 0.620977  0.066925
32 NeuroSQL 31.695450  0.512806  0.339188
32  VAE 95.740288  0.499635 0.172815
32  GAN 46.238804 0.751076  0.072116
64  NeuroSQL 28.105133  0.532103  0.347139
64 VAE 127.357986  0.525766  0.140224
64 GAN 50.671597  0.753972  0.067132
128  NeuroSQL 17.399908  0.591030 0.368674
128 VAE 23.283272  0.789889  0.374535
128 GAN 59.287437  0.754374  0.042504
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Table 9: Results on AFHQ, an animal faces dataset, using ConvNet — with results averaged across
latent dimensions.

Method FID (proxy) | LPIPS| SSIM

NeuroSQL 32.19 0.544 0.354
VAE 71.13 0.560 0.233
GAN 58.36 0.720 0.093

Table 10: Results on AFHQ, an animal faces dataset, using ResNet across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Method FID (proxy) | LPIPS | SSIM

2 NeuroSQL 7.267559  0.459967  0.267403

2 VAE 15.259568  0.448991  0.235907

2  GAN 39.100639  0.550003  0.091928

4 NeuroSQL 11.560558  0.460007  0.246023

4 VAE 13.387914  0.432443  0.192707
4 GAN 37.873501  0.356168  0.120893

8  NeuroSQL 13.611592 0.471643  0.241053

8 VAE 11.736956  0.431859  0.204782

8 GAN 29.584837 0.486513  0.081718
16  NeuroSQL 17.987249  0.341935  0.208179
16 VAE 9.721145  0.347468  0.178343
16 GAN 17.546219  0.483133  0.107947
32 NeuroSQL 14.799847  0.438891  0.255200
32  VAE 8.249439  0.341844  0.188594
32  GAN 22.425539  0.363643  0.113281
64  NeuroSQL 10.561233  0.558646  0.252005
64 VAE 14.458963  0.404593  0.202796
64 GAN 40.478588  0.423956  0.107915
128  NeuroSQL 11.019302  0.489376  0.261104
128  VAE 13.060718  0.353215  0.208177
128 GAN 18.462259  0.381437  0.104066

Table 11: Results on AFHQ, an animal faces dataset, using ResNet — with results averaged across
latent dimensions.

Method  FID (proxy) | LPIPS | SSIM

NeuroSQL 12.40 0.460 0.247
VAE 12.27 0.394 0.202
GAN 29.35 0.435 0.104
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Table 12: Results on AFHQ, an animal faces dataset, using U-Net across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension = Method FID (proxy) | LPIPS | SSIM 1+

2 NeuroSQL 17.626825  0.595854  0.272737
2 VAE 10.595321  0.620105  0.279837
2  GAN 23.709433  0.405830 0.116950
3 NeuroSQL 10.193194  0.617973  0.278050
3 VAE 29.156761  0.578171  0.173115
3  GAN 17.098032  0.607903  0.074634
4 NeuroSQL 10.773172  0.561935  0.258762
4 VAE 14.463408 0.576194 0.117610
4 GAN 13.078835  0.626831  0.057038
8 NeuroSQL 11.994763  0.638746  0.275091
8 VAE 42.187984  0.571152  0.062857
8 GAN 75.077110  0.618699  0.039482
16 NeuroSQL 10.660514  0.659894  0.266318
16 VAE 51.288338  0.550339  0.135791
16 GAN 97.593185 0.703616  0.010010
32 NeuroSQL 16.301731  0.595429  0.252468
32  VAE 28.342377  0.566271  0.076232
32  GAN 25.781809  0.604119  0.025050
64  NeuroSQL 9.855629  0.660927  0.276445
64 VAE 62.289070  0.585000  0.093420
64 GAN 99.730621  0.702493  0.010348

Table 13: Results on AFHQ, an animal faces dataset, using U-Net — with results averaged across
latent dimensions {2, 3, 4,8, 16, 32, 64}.

Method FID (proxy) | LPIPS | SSIM 1

NeuroSQL 12.486547 0.618680  0.268553
VAE 34.046180 0.578176  0.134123
GAN 50.295575  0.609927  0.047645

On average, NeuroSQL achieves the best FID (proxy) and SSIM; VAE attains the lowest LPIPS.

F MNIST, A DATABASE OF HANDWRITTEN DIGITS

Table 14: Ablation results on MNIST, a database of handwritten digits (all runs). Lower is better for
FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Seed Method FID (proxy) | LPIPS | SSIM +

2 11 NeuroSQL 0.696835  0.039503  0.564344
2 11 VAE 1.070473  0.058065 0.200167
2 11  GAN 2.157639  0.054278  0.245780
3 11 NeuroSQL 0.527451  0.030257  0.668574
3 11  VAE 1.443453  0.060009 0.157831
3 11 GAN 1.849820 0.057282  0.220785
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Table 15: Results on MNIST, a database of handwritten digits — averaged over latent dimensions
{2,3} (seed = 11).

Method  FID (proxy) | LPIPS|  SSIM ¢

NeuroSQL 0.612143  0.034880 0.616459
VAE 1.256963  0.059037  0.178999
GAN 2.003730 0.055780  0.233283

NeuroSQL is best on all three metrics (FID (proxy), LPIPS, and SSIM).

F.1 PRACTICAL TRAINING DETAILS
Loss choices. For images, we use a perceptual, scale-stable loss:
1 1
Lz, x) = 5(1 — SSIM(&, z)) + 5”@ — x|,

which is the exact loss used in our codebase.

We instantiate gen with lightweight decoders so that comparisons against VAEs/GANs/Diffusion
control for capacity and compute:

+ ConvNet. Transposed-convolution stack mapping z € R? to X € R3*HXH (stride-2
upsampling).

* ResNet Four residual upsampling blocks (512—256—128—64), followed by a 3 x 3 head
with sigmoid output in [0, 1]. We optionally initialize residual weights from ResNet-18
where shapes match.

* U-Net decoder. A small transformer decoder on patchified embeddings of z followed by
an MLP head back to pixels.

Our experiments keep these decoders small and matched across methods to stress that gains come
from the quantile—assignment loop, not decoder sophistication.

* Loss and normalization. Images are scaled to [0, 1]. We use ¢ = (1 — SSIM) + ¢ in
both decoder and cost matrix.

* Optimization. AdamW with cosine annealing and gradient clipping; early stopping on
validation 4.

+ Latent momentum. After each assignment, a momentum update 2(*) « P Zr@) () T (1-
p) 2(t=1) stabilizes training (we use p = 0.7).

* Resource parity. For fair comparisons to VAEs, GANSs, and Diffusion, we fix the same
generator backbone and training budget; only the learning paradigm changes.

G MODELS AND TRAINING PROTOCOL

Common setup. Images are scaled to [0, 1] (diffusion uses [—1, 1] internally). We use AdamW,
cosine annealing, gradient clipping, and early stopping on validation loss. Generator backbones are
matched across methods for capacity parity.

NeuroSQL (ours). We construct a size-n deterministic latent lattice via scrambled Sobol points
mapped coordinatewise through £ ! (Sobol—Gaussian). Every K epochs we solve an exact global

assignment (Hungarian) between data and lattice codes, where K € {2,3,5} is selected as a hyper-
parameter. After each assignment, we apply latent momentum 2(*) < pz_« kA (1—p) 2¢=1 with
p = 0.7. The decoder is trained by regression on assigned codes using £ = (1 — SSIM) + 1| - 1.

VAE. We reuse the same generator backbone as the decoder; the encoder is an MLP on flattened
pixels (to keep capacity modest). Training uses SSIM+L1 reconstruction plus a 3-scaled KL term
with 8 = 0.005.
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GAN. The generator backbone is identical to NeuroSQL’s. The discriminator is a lightweight
four-layer CNN. We use the non-saturating objective with BCE logits, sharing optimiser, scheduler,
and gradient clipping with NeuroSQL.

Diffusion (DDPM). A compact U-Net (base width 32) is trained with a linear /5 schedule for
T = 1000 steps; default sampling uses 100 steps to match compute. Inputs are normalized to
[—1, 1] following common practice.

Reproducibility knobs. We fix random seeds, match the number of training epochs and batch

sizes across methods, and report all per-method hyperparameters (including learning rates, K €
{2, 3,5}, and augmentations).
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