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ABSTRACT

Deep Generative models (DGMs) play two central roles in modern machine learn-
ing: (i) producing new information (e.g., image synthesis, data augmentation, and
creative content generation) and (ii) reducing dimensionality. Yet, DGMs’ ver-
satility must confront training difficulty. While deep neural networks (DNNs)
are a natural choice for parameterizing generators, there is no universally reliable
method for learning compact latent representations. As a compromise, current
approaches rely on introducing an additional DNN: (i) variational autoencoders
(VAEs), which map data into latent variables through an encoder, and (ii) genera-
tive adversarial networks (GANs), which employ a discriminator in an adversarial
framework. Learning two DNNs simultaneously, however, introduces conceptual
and practical difficulties. Conceptually, there is no guarantee that such an en-
coder/discriminator exists, especially in the form of a DNN. In practice, training
encoders/discriminators on high-dimensional inputs can be more data-hungry and
unstable than training a generator on low-dimensional latents (whereas generators
usually take low-dimensional latent data as input). Moreover, training multiple
DNNs jointly is unstable, particularly in GANs, leading to convergence issues,
such as mode collapse. Here, we introduce NeuroSQL, a DGM that learns low-
dimensional latent representations without an encoder. Specifically, NeuroSQL
learns the latent variables implicitly by solving a linear assignment problem, then
passes the latent information to a unique generator. To demonstrate NeuroSQL’s
efficacy, we benchmark its performance against GANs, VAEs, and a budget-
matched diffusion baseline on four independent datasets on handwritten digits
(MNIST), faces from the CelebFaces Attributes Dataset (CelebA), animal faces
from Animal Faces HQ (AFHQ), and brain images from the Open Access Se-
ries of Imaging Studies (OASIS). Compared to VAEs, GANs, and diffusion mod-
els: (1) in terms of image quality, NeuroSQL achieves overall lower mean pixel
distance between synthetic and true images and stronger perceptual/structural fi-
delity, under the same computational setting; (2) computationally, NeuroSQL re-
quires the least amount of training time; and (3) practically, NeuroSQL provides
an effective solution for generating synthetic data when there are limited train-
ing data (e.g., data with a higher-dimensional feature space than the sample size).
Taken together, by embracing quantile assignment instead of an encoder, Neu-
roSQL presents us a fast, stable, and robust way to generate synthetic data with
minimal information loss.

1 INTRODUCTION

Deep generative models (DGMs) have become a cornerstone of machine learning and have made
ample contributions to image synthesis, data augmentation, and creative content generation. Over
the past decade, they have become ubiquitous in scientific fields, such as genomics and neuroimag-
ing, to handle complex data analysis tasks, including data interpretation, decoding, and generating
intricate datasets.

A large share of these advances has been powered by variational autoencoders (VAEs; Kingma
& Welling, 2014) and generative adversarial networks (GANs; Goodfellow et al., 2014), which
remain the two dominant approaches for generative modeling from lower-dimensional latent spaces.
Both frameworks adopt a common strategy: pairing a generator with a complementary deep neural
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network (DNN). In VAEs, an encoder learns to map observations into latent variables, while in
GANs, a discriminator provides adversarial feedback to train the generator indirectly.

Despite their promise, training DGMs remains a complex and challenging task. These approaches
introduce both conceptual and practical limitations. Conceptually, there is no guarantee that an
encoder or discriminator, viewed as a continuous mapping that can be approximated by a DNN,
exists in the first place. While the generator is a function of the latent variable, which can have
(much) lower dimension than the observations, both the encoder and discriminator are functions of
the (potentially large) data itself, and thus may introduce a curse of dimensionality (Stone, 1985).
While DNNs are believed to enjoy fast rates of convergence (Schmidt-Hieber (2020)) or can some-
times mitigate the curse of dimensionality under favorable conditions (see e.g. Suzuki (2019)),
these properties are derived under strict assumptions (Golestaneh et al., 2025). These limitations
are reflected in theoretical works on VAEs and GANs, which sidestep these issues. For instance,
Chae et al. (2023) analyzes direct optimization of the likelihood, without introducing the encoder,
which is unfeasible in practice. Biau et al. (2020) assumes from the outset that the discriminator lies
in a parametric space. Ideally, however, assumptions should be placed only on the true objects of
interest: the generator and the latent space.

Practically, training such auxiliary networks is often more unstable and data-intensive than training
the generator itself. GANs, in particular, are prone to convergence failures such as mode collapse
(Mescheder et al., 2018). At the same time, VAEs often suffer from blurred reconstructions due
to their variational approximations and pixel-wise reconstruction losses, such as the mean squared
error (MSE). More generally, learning multiple deep networks jointly exacerbates issues of sample
complexity, computational cost, and training instability. Furthermore, training DGMs requires data
of a large sample size, and, when the data is large or high-dimensional (compared to the sample
size), they may behave unfavorably.

𝜃

Cost

Quantile assignment

Momentum update

Input data

Decoder

𝜋

Embedding

Generator

Generated data

Embedding 𝜃

Figure 1: A schematic representation of the NeuroSQL architecture. Left: The conceptual
algorithm of finding the optimal latent embedding and parameter θ for the generator. Right: The
conceptual flow of generating synthetic data using the NeuroSQL. From left to right, input data
enters the NeuroSQL; the model learns the embedding and parameter θ; the embedding enters a
generator parameterized by θ; NeuroSQL outputs generated data.

Among generative models that do not feature a well-defined latent space, diffusion models use
a likelihood-based progressive denoising procedure Ho et al. (2020); Dhariwal & Nichol (2021);
Rombach et al. (2022), which enables stable training and high-quality output generation. Neverthe-
less, diffusion models often suffer from slow sampling and high computational and memory costs
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Song et al. (2021); Nichol & Dhariwal (2021); Lu et al. (2022). Theoretically, it was found that
diffusion models suffer from the curse of dimensionality unless the observations are generated by a
linear factor structure (Oko et al., 2023).

To address these issues, we introduce NEUROSQL, a new latent variable DGM that fundamentally
differs from existing approaches relying on encoders, discriminators, or complex sampling proce-
dures. NEUROSQL approximates the latent space through a permutation of quantiles, defined via
optimal transport, and the latent variables implicitly by solving a linear assignment problem. As
a result, NEUROSQL trains a unique DNN for the generator, alongside an assignment procedure.
NEUROSQL is fast, stable, resource-friendly, and generates high image quality given the same com-
putational resources. Experimental tasks on generating digits, human faces, animal faces, and brain
imaging data suggest NEUROSQL offers a robust solution for generating synthetic data when there is
limited training data (e.g., neuroimaging data with a higher-dimensional feature space than the sam-
ple size). Finally, by integrating Statistical Quantile Learning (SQL; Bodelet et al., 2025), which
was developed for additive latent variable models, and a generator, NEUROSQL achieves a marriage
between generative models and the blessing of dimensionality.

2 RELATED WORK

GANs and VAEs There are some recent attempts to improve GAN, notably the StyleGAN, Karras
et al. (2019), which transformed controllable image generation through style-based architectures, as
well as StyleGAN2 and StyleGAN3, which are considered to be state-of-the-art for several bench-
marking datasets Karras et al. (2020)Karras et al. (2021). In parallel, Brock et al. (2019) demon-
strated the importance of scale with BigGAN, while Kynkäänniemi et al. (2019) proposed improved
training techniques for large-scale GANs. While these approaches are beginning to address artifacts
and improve training dynamics, they nonetheless suffer from training instability and mode collapse
as they are naturally GAN and, therefore, all rely on the (minimax) adversarial training. To improve
reconstruction quality, Vector Quantized VAEs (VQ-VAE) discretise the latent space Razavi et al.
(2019), and VQ-VAE-2, a follow-up work, extended the original VQ-VAE by introducing hierar-
chical modeling Child (2021), thereby achieving high-resolution image generation. Combining the
benefits of VQ-VAE with adversarial training, VOGAN further enhanced perceptual quality Esser
et al. (2021).

Diffusion Models The next phase of generative AI came with the introduction of the denoising
diffusion(DDPM) paradigm Ho et al. (2020) or more commonly known as the diffusion models. An
extension of DDPM was proposed by Song et al. (2021), providing theoretical foundations for score-
based generative models. Thanks to diffusion models’ progressive denoising procedure, they have
achieved most of the current state-of-the-art results in image and video generation. Recent advances
in diffusion modeling include improved sampling efficiency Song et al. (2021); Lu et al. (2022), con-
ditional generation Dhariwal & Nichol (2021), and classifier-free guidance Ho & Salimans (2022).
While excelling in the quality of data generation, diffusion models are computationally extremely
costly and training them is time-consuming. A few works are aiming to reduce the computational
cost, such as the Latent Diffusion Models (LDMs) Rombach et al. (2022), and faster sampling Song
et al. (2023); Luo et al. (2023). As one of the most actively researched fields, improvements are con-
stantly being proposed Peebles & Xie (2023); Chen et al. (2024). While most of the newer versions
of diffusion models excel at generating high-quality data, and despite plentiful attempts to reduce
the computational and time cost, the sequential denoising steps have remained a bottleneck.

3 METHODOLOGY

3.1 THE MODEL

In what follows, we first state the model we aim to learn. We consider a dataset D composed of
n independent copies of p-dimensional random vectors, D = {X1, . . . ,Xn}. We assume that the
data are driven by unobserved continuous latent variables Zi ∈ Z ⊆ Rd. Specifically, we consider
a probabilistic generative model, which models the observations:

Xi = G(Zi) + ϵi (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where G : Z → Rp is an unknown generator, and ϵi are independent random errors. We assume
that the latent variables have a known continuous distribution PZ . The latent dimension is usually
(much) smaller than the ambient dimension (d << p) in order to allow dimension reduction. This,
therefore, contrasts with a flow-based generative model where the generator has to be invertible. As
DGMs are not identifiable, one can select any distribution as long as it has a continuous cumulative
distribution function. Regarding the prior distribution, it is common to select the N (0, I) or a
Uniform distribution. We approximate the generator using deep neural networks (DNN), that is
G ≈ Gθ, where:

Gθ ∈ {WL ◦ σ ◦WL−1 ◦ σ · · · ◦ σ ◦W1},
where Wl denote affine transformations and σ is an activation function. The vector θ ∈ Θ contains
the DNN parameters. We aim to learn both the generator parameter θ and the latent variables Zi.

3.2 LATENT SPACE APPROXIMATION AND LOSS FUNCTION

Our aim is to learn both the generator and the latent variables. In the context of deep generative
models, computing and optimising the likelihood is feasible only for simple frameworks, such as
linear factor analysis. In this section, we describe our estimation method with inspiration from the
sieve method. The sieve method replaces an intractable optimization over the full parameter space
with tractable problems on a growing sequence of simpler, typically finite-dimensional, subspaces,
called sieves, that are dense in the parameter space (see e.g. Chen (2007) for a review).

Our aim is, therefore, to build an approximation for the latent space in order to obtain a tractable
problem. The construction of this approximate latent space relies on partitioning the distribution of
the latent space into n regions. Specifically, we consider quantiles denoted by Qn

1 , . . . ,Q
n
n ∈ Rd,

and let Z := (Z1, . . . ,Zn)
′ and Qn := (Qn

1 , . . . ,Q
n
n)

′ be the n× d matrices of the latent variables
and (n + 1)-quantiles respectively. The basic idea of NEUROSQL is based on the fact that there
exists a permutation π such that the latent variable can be approximated by:

Z ≈ Qn
π

where for a matrix (or column vector) A and a permutation π, we denote by Aπ a permutation of
the rows of A. For clarity of exposure, we discuss here the univariate case and delay the case of
d > 1 to Section 3.3. For d = 1, we select (n+ 1)- quantiles, i.e. Qn

i = F−1( i
n+1 ), i = 1, . . . , n,

where F denotes the cumulative distribution function associated to PZ . It can be shown using the
delta method (see, e.g.,van der Vaart 2000) that:

|Z(i) −Qn
i | = Op

(
1√
n

)
, (2)

where Z(i) denotes the order statistics of the latent variables. Note that the Z(i)’s are distinct almost
surely and are thus, almost surely, a permutation of the Zi’s. We can thus write:

min
π∈Sn

1

n

n∑
i=1

|Zi −Qn
π(i)|

2 = Op

(
1

n

)
, (3)

where Sn denotes the set of all permutations, or symmetric group, of order n. Therefore, one can
obtain an approximation of the latent variables by simply learning permutations. Intuitively, the set
of (n+1)-quantiles can be thought of as a “probabilistic sieve” space for the latent space. Leveraging
on this approximation, we consider the following loss function:

L(θ, π) = 1

n

n∑
i=1

ℓ
(
Xi,Gθ

(
Qn

π(i)

))
for some distance, or distortion, ℓ : Rp × Rp → R+ (e.g., squared ℓ2, LPIPS features). We then
define NEUROSQL as the solution of:

(θ̂, π̂) = argmin
θ∈Θ, π∈Sn

L(θ, π) + λR(θ), (4)

where R(θ) is a regularizer controlling the complexity of Gθ and λ > 0 is some tuning parameter.
With the solution π̂, we then obtain the estimator of the latent variable as Ẑ = Qπ̂ .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 MULTIVARIATE QUANTILES (d > 1)

We now consider how to approximate the latent space in higher dimensions. In contrast to the real
line, there is no canonical ordering when d > 1, and therefore several methods can be used to con-
struct “multivariate quantiles”. We concentrate on recent developments that leverage the optimal
transport approach (Hallin, 2022; Chernozhukov et al., 2017; Hallin et al., 2021; Ghosal & Sen,
2022), which offers a conceptually clean and practical way to define quantiles in multivariate di-
mensions. Specifically, we will need the concept of the center-outward distribution function, F±,
which is the unique gradient of a convex function pushing PZ forward to the uniform distribution
over the unit ball Ud := {z ∈ Rd : ∥z∥ < 1}. For d = 1, the center-outward distribution is simply
given by F± = 2F − 1, where F is the cumulative distribution. We refer to Hallin et al. (2021) and
Hallin (2022) for a detailed explanation.

Given a regular grid , U1,U2, . . . ,Un ∈ Ud, we define the multivariate quantiles as Qn
i :=

F−1
± (Ui). This grid does not have to be perfectly regular, which is in general not possible for

d ≥ 3. We require only that the discrete distribution with probability 1/n at each grid point con-
verges weakly to the uniform distribution over Ud. In practice, it is suitable to select a grid with a
low discrepancy in order to obtain faster convergence rates.

For simplicity and without loss of generality, we assume here that the distribution PZ is uniform
over Ud, yielding Qn

i = Ui. Furthermore, we note that this is without loss of generality as the
latent distribution of (deep) generative models is not identifiable and should be selected (we refer to
Bodelet et al., 2025 for a discussion).

Following Hallin et al. (2021), we define the center-outward empirical distribution function as the
solution of the optimal transportation problem:

Fn
± = argmin

T∈T

n∑
i=1

∥Zi − T (Zi)∥2

where the minimum is taken over T the set of all bijective mappings between Z1, ...,Zn and the
grid U1, . . . ,Un. In fact, this is equivalent to solve a linear assignment problem:

π∗ = argmin
π∈Sn

∥Z −Un
π ∥2,

and set Fn
±(Z

n) := Un
π∗ . Then we apply Theorem 2.4 in (Hallin et al., 2021) to obtain:

max
1≤i≤n

∥Fn
±(Zi)− F±(Zi)∥2 → 0 a.s. as n→∞.

In our case, as F± is the uniform distribution over Ud, it is straightforward to see that:

min
π∈Sn

∥Qn
π −Z∥2 → 0, a.s. as n→∞.

3.4 COMPUTATIONAL ALGORITHM

We note that, for fixed θ, the inner problem in equation 4 reduces to:

min
π∈Sn

1

n

n∑
i=1

Ci,π(i), Ci,k := ℓ
(
Xi,Gθ(Qk)

)
.

This is a linear assignment problem solvable exactly by the Hungarian method in O(n3) time
(Kuhn, 1955). For fixed π, equation 4 reduces to standard supervised regression of X on as-
signed codes {zπ(i)}. We therefore propose to solve equation 4 alternatively: (i) Given a per-
mutation π, minimize the loss function with respect to θ (Decoder step); (ii) Given θ, we solve
exactly the linear assignment matching problem by the Hungarian method. We iterate (i) and (ii)
until convergence. Furthermore, we introduce a momentum update after each assignment, that is
ẑ(t)←ρ zπ(t)(i) + (1− ρ) ẑ(t−1) for some 0 ≤ ρ < 1, in order to stabilize training. The exact steps
are detailed in Algorithm 1.

5
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16-D embedding and ResNet
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16-D embedding and ConvNet

Faces generated using
16-D embedding and U-Net

Brain images generated using 
16-D embedding and ResNet

Brain images generated using 
16-D embedding and ConvNet

Brain images generated using
16-D embedding and U-Net

NeuroSQL

VAE

GAN

Faces generated using 
the same parameters and number of samples

Brain images generated using 
the same parameters and number of samples

Diffusion

NeuroSQL
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Figure 2: Qualitative comparison of NeuroSQL against standard generative models across
different decoder architectures. Generated samples from CelebA faces, a face attributes dataset
(left), and OASIS, a brain imaging dataset (right), using 16-dimensional latent embeddings. Under
each setting, every row shows results from a different generative approach: NeuroSQL (proposed),
variational autoencoder (VAE), generative adversarial network (GAN), and Diffusion (DDPM). We
compare consistency across three lightweight decoder architectures (ResNet, ConvNet, and U-Net),
highlighting that performance gains stem from the quantile-assignment paradigm rather than decoder
sophistication. VAE and GAN results show typical artifacts, including mode collapse, blurriness,
and training instabilities, while diffusion models exhibit characteristic oversaturation and unrealistic
color distributions. In comparison, NeuroSQL produces consistently high-quality, diverse samples
across all decoder choices, demonstrating the robustness of the deterministic lattice-based approach.
All models use identical training budgets and matched generator capacities for fair comparison.

Algorithm 1 NeuroSQL (full-batch assignment)
1: Input: data {Xi}ni=1, prior PZ , lattice Qn, outer iters T , momentum ρ ∈ [0, 1), λ > 0

2: Initialize π(0) (e.g., random or PCA-sorted); set Ẑ(0) = Qn
π(0)

3: for t = 1, . . . , T do

4: Decoder step: θ(t) ∈ argmin
θ

1

n

n∑
i=1

ℓ
(
Xi,Gθ(Ẑ

(t−1)
i )

)
+ λR(θ) (implemented via

AdamW with standard NN init on first call)
5: Cost matrix: C(t)

i,k ← ℓ
(
Xi,Gθ(t)(Qk)

)
6: Assignment: π(t) ← argminπ∈Sn

Trace
(
C

(t)
π

)
(exact LSAP)

7: Momentum update: Ẑ(t)
i ← ρQn

π(t)(i)
+ (1− ρ) Ẑ

(t−1)
i

8: end for
9: Output: θ̂ = θ(T ), aligned latents Ẑ = Ẑ(T ).

Complexity. Each outer iteration forms C(t) with n forward passes over {zk} and solves one
Hungarian problem: overall O(n cG + n3), where cG is the decoder’s forward cost. Crucially, the
assignment cost does not depend on p, which is why NEUROSQL scales favorably to (very) high
dimensions. Scalability Considerations. The O(n3) Hungarian algorithm may be an overhead for
large sample sizes. In practice, when n > 104, we used the Hungarian algorithm on mini-batches to
speed up computations.

6
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4 DATA AND EXPERIMENTAL SETUP

We evaluate NeuroSQL under a sparse-resource regime across four domains of increasing structural
complexity: digits (MNIST), faces (CelebA), animal faces (AFHQ), and neuroimaging (OASIS).
Our emphasis is on paradigm control: models share (as closely as possible) the same generator
backbone, data budgets, and optimization schedules, so that differences arise from the learning prin-
ciple (quantile–assignment vs. probabilistic/adversarial/denoising) rather than capacity or compute.

4.1 DATASETS

MNIST (LeCun et al., 2002). Handwritten digits (60k train, 10k test, 28×28 grayscale). We
replicate to RGB for evaluation only.

CelebA (Liu et al., 2015). Face dataset (202,599 images) center-cropped and resized to 128×128.
Training is unconditional despite available attributes.

AFHQ (Choi et al., 2020). Animal Faces HQ contains 15,000 high-quality animal face images
across cats, dogs, and wildlife at 512×512 resolution originally. Within experiments, image size
was reduced to 128×128 and total number of images used was about 2000.

OASIS (Marcus et al., 2007; Aithal, 2023). Neuroimaging dataset with ∼ 80k MRI slices from
416 subjects, downsampled to 128×128. Medical images test resistance to overfitting in constrained
domains. We used the version of OASIS that is publicly available on Kaggle. It is pre-structured
and is organized in four subfolders, namely: Mild Dementia, Moderate Dementia, Non Demented,
and Very Mild Demented.

4.2 MODELS AND TRAINING

We compare NeuroSQL to VAE, GAN, and DDPM under matched budgets and identical gener-
ator backbones; only the learning paradigm differs. For NEUROSQL we used the Sobol lattice in
[0, 1]d to construct the quantiles. The Hungarian algorithm is performed at every K epochs (with
K∈{2, 3, 5} treated as a hyperparameter), and we select the momentum parameter as ρ=0.7. NEU-
ROSQL was trained with the perceptual loss ℓ = 1

2 (1− SSIM)+ 1
2∥ · ∥1. All methods use AdamW,

cosine decay, gradient clipping, and early stopping; full architectures and hyperparameters appear
in Appendix G.

Generator backbones. Unless otherwise specified, NeuroSQL/VAE/GAN share an identical Con-
vNet upsampling decoder (four residual up blocks, 512→256→128→64, 3×3 head with sigmoid).
We ablate esRNet and U-Net decoders to show that gains are decoder-agnostic. For fairness, Diffu-
sion’s U-Net width is chosen so the parameter count is within ±10% of the shared decoder.

4.3 EVALUATION METRICS AND PROTOCOL

FID (proxy; ↓): Since our domains are not ImageNet/COCO, we report FID only as a coarse proxy
(Inception-V3 pool3, 2048-d); in this setting, it behaves like a lower mean pixel distance between
synthetic and real sets. We match #gen=#real (MNIST: 10k; CelebA: test split; OASIS: test slices),
fix the sampling seed, and replicate grayscale to 3 channels at metric time. LPIPS (↓): VGG
backbone via LPIPS (fallback: cosine similarity on VGG features); mean over 50 paired real–fake
images. SSIM (↑): mean over the same 50 pairs. Unless noted, we evaluate NeuroSQL in
sampled-z mode (z∼N (0, I)); paired-z (reconstruction) results appear in the supplement.

4.4 FAIRNESS CONTROLS AND ABLATIONS

Backbone parity: NeuroSQL/VAE/GAN share identical decoder weights at init; diffusion U-Net is
matched by parameter count. Budget parity: Same epochs, optimizer/scheduler, grad clipping,
and batch size per dataset. Latent sweep: q∈{2, . . . , 128}. Resolution: OASIS at 642 vs. 1282.
Loss sensitivity: pixel ℓ2 vs. SSIM+L1 for the assignment cost (main uses SSIM+L1; see details
in the Appendix).
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4.5 ETHICAL AND DOMAIN-SPECIFIC NOTES (OASIS)

In order to keep the experimental setup free of data leakage within the train/val/test splits, we per-
formed subject-stratified cross-validation. We highlight that one must not equate synthetic imaging
data with clinical data. Synthetic imaging data, however, may have practical utilities, such as for
treating missing data, but this is beyond the scope of this paper. Here, we generate synthetic data to
demonstrate the efficacy of NeuroSQL as a generative model; we use the generated imaging data to
evaluate the model’s performance; we do not claim its clinical utility. Future work should verify this
independently, and we will release seeds, splits, and scripts to facilitate further validations.

5 RESULTS

5.1 OBSERVATIONS

We evaluate NeuroSQL for synthetic data generation against strong baselines among benchmarks.
To ensure a fair comparison, we (1) test various latent dimensionalities, (2) include both ConvNet,
ResNet, and U-Net generators, and (3) evaluate all models on generating different types of data. For
demonstration purposes, we discuss NeuroSQL’s performance against VAE and GAN on generating
brain imaging data and human (celebrity) faces, but see the Appendix for comparison with diffusion
models and model performance on handwritten digits and animal faces. To quantify the model
performance, we report, for each scenario, a proxy of FID (Fréchet Inception Distance; lower is
better), LPIPS (Learned Perceptual Image Patch Similarity; lower is better), and SSIM (Structural
Similarity Index; higher is better). We present the results in the tables in the Appendix C, given the
wide range of experiment specifications.

For the brain imaging data (OASIS), we notice that, overall, NeuroSQL outperforms both VAE and
GAN across all combinations of choices of latent dimension and generator. Particularly, NeuroSQL
outperforms VAE and GAN in terms of LPIPS (measuring perceptual similarity between images
(i.e., how similar they look to humans) and SSIM (measuring pixel-level structural similarity) scores
in all scenarios. All models with a ConvNet generator yield much better results compared to those
with a ResNet. The choice of generator, however, has a marginal effect on FID scores. For FID,
which measures distribution similarity between generated and real images in feature space, Neu-
roSQL outperforms VAE and GAN in all cases with a ResNet generator. It outperforms VAE and
GAN when the latent dimension is moderate (between 16 and 64) with a ConvNet generator. When
the latent dimension is very small or very large, VAE with ConvNet has a modest improvement.
With a U-Net generator, NeuroSQL attains the best LPIPS and SSIM, while the FID (proxy) varies
and is lowest for VAE on average.

For human faces (CelebA), NeuroSQL achieves similar performance to its brain imaging data. Par-
ticularly, NeuroSQL with a ResNet generator is better in terms of FID, LPIPS, and SSIM score
compared to its counterparts. NeuroSQL with a ConvNet generator is better than its counterpart in
terms of SSIM, only mildly underperforms its VAE counterpart in terms of LPIPS score when the
latent dimension is 16 or 128, and underperforms or marginally underperforms its VAE counterpart
in terms of FID when the latent space is 16 or 64. NeuroSQL with a U-Net generator is better in
terms of FID, LPIPS, and SSIM score compared to its counterparts.

Taken together, our results demonstrate the overall efficacy of NeuroSQL compared to its state-of-
the-art competitors in generating synthetic human faces as well as neuroimaging data. Particularly,
NeuroSQL with a ConvNet generator achieves overall superior performance across different scenar-
ios, particularly in metrics evaluating perceptual similarity between images (how similar they look
to humans) and pixel-level structural similarity, and its performance improves as the dimension of
its latent space increases.

5.2 COMPUTE BUDGET, DATA SCALE, AND EVALUATION SCOPE

Our aim is to introduce a learning paradigm, not to chase unconstrained fidelity. All experiments
ran end-to-end on a single Google Colab with a fixed allowance of 200 compute units. Within this
envelope we capped training data at 2,000 images and resolutions at 64×64–128×128 (occasional
tests at 256×256). This budget dictated architectures, optimisers, and protocols, targeting compute-
and data-frugal generative learning.
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What we show. We visualize only benchmarks whose semantics survive low resolution: (i) OASIS
2D brain MRI slices, where gross anatomy is discernible at 64–128 px, and (ii) MNIST digits, an
intrinsically low-frequency signal. For faces/natural scenes, perceptual judgments at 64–128 px are
less diagnostic under our budget; raising resolution would violate the cap. Our contribution is the
training principle, not a new high-capacity image backbone.

Why diffusion is ill-suited here. With T=1000 steps and N≈1000 images, supervision per noise
level is O(N/T ), yielding high-variance score estimates; a single noise-conditional network must
span widely varying SNRs under tight capacity/time; gradients are diluted by averaging across many
timesteps; and wall-clock scales with T , reducing optimizer updates at fixed budget. Low-data
remedies (heavy augmentation, distillation, large-scale pretraining) fall outside our from-scratch,
small-budget premise.

Reproducibility and scale. All settings are reproducible within the stated Colab budget; code paths
carry to higher resolutions and larger datasets. Scaling batch size, training time, and image size is
orthogonal engineering we leave to follow-ups; our results isolate the methodological contribution
under realistic small-resource conditions.

6 CONCLUSIONS

We introduced NeuroSQL, a deep generative model that replaces stochastic encoders with rank-
based quantile assignment. By learning embeddings through assignments rather than amortised
inference, NeuroSQL eliminates the mode of posterior collapse in VAE and avoids adversarial dy-
namics, yielding more stable training than GANs. Thanks to the quantile assignment, NeuroSQL’s
generation processes are deterministic, resulting in distributions that are substantially more inter-
pretable than those of GANs and VAEs, whose embeddings depend on samples from a Gaussian
posterior, even when the encoder is deterministic. Compared to diffusion models, which require
extensive denoising steps and large datasets for stable training, NeuroSQL demonstrates better per-
formance in constrained settings with datasets under 105 samples. The deterministic assignment
mechanism avoids the high-variance score estimation that plagues diffusion models in low-data
regimes. Trained on four distinctive tasks: handwritten digits (MNIST), human faces (CelebA),
animal faces (AFHQ), and brain images (OASIS) to generate synthetic samples, NeuroSQL gen-
erally achieves the best performance under the same experimental settings. While our constrained
experimental setup was intentional to introduce the NeuroSQL paradigm under controlled condi-
tions, future work should address its scalability to larger datasets and higher resolutions, compare it
with advanced baselines like StyleGAN3 and latent diffusion models, and explore alternatives to the
O(n3) Hungarian algorithm, such as approximate Sinkhorn iterations. In terms of future work, for
example that of medical applications, a natural next step is to experiment with the MedMNIST Yang
et al. (2023) benchmark suite to assess NeuroSQL across diverse biomedical imaging tasks. Mov-
ing forward, we see two promising directions: (i) scaling the assignment mechanism and generator
capacity to higher resolutions and additional modalities (e.g., audio, 3D, and multimodal settings),
and (ii) expanding the theory of quantile-assignment training for deep generators beyond the current
empirical scope.
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B APPENDIX

B.1 PREPROCESSING AND SPLITS

For each dataset, we standardize a lightweight pipeline to minimize confounds while allowing small
variations across runs.

• Resize/crop. MNIST: native 28×28. CelebA: center-crop then resize, typically to 32×32
(primary), with occasional 64–128 experiments. OASIS: center-crop then resize, primarily
128×128 with 64×64 ablations.

• Scaling. Inputs mapped to [0, 1] (no per-image standardization during training).

• Channel handling. MNIST/OASIS trained as single-channel; for backends expecting 3
channels (e.g., LPIPS/VGG), we replicate channels at metric time only.

• Splits. MNIST: standard train/test. CelebA: official train/val/test. OASIS: subject-wise
80/10/10 to prevent slice leakage. Seeds and split indices are provided in the supplemen-
tary.

Scope and reproducibility. Settings are chosen for a small-resource envelope (single-session
runs). Results emphasize methodology under constrained compute; scaling to larger images/batches
follows the same code paths.

Optimization and budgets (typicals/ranges). AdamW (or Adam), cosine warm restarts; weight
decay∼ 10−4; gradient clip≈ 1.0; early stopping on validation loss with patience∼ 25–30 epochs.
Learning rates are usually in [1×10−4, 3×10−4] for convolutional decoders; diffusion runs use com-
parable schedules at matched compute. Batch sizes depend on resolution: MNIST 32–64, CelebA
64–128, OASIS 32–64. Epoch caps are typically 120–250 across datasets, with early stopping often
terminating earlier. We sweep latent dimension q over {2, 4, 8, 16, 32, 64, 128} and report results
(Sec. C).
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NeuroSQL VAE GAN

Figure 3: MNIST digit generation comparison across generative modeling paradigms. Each
method generates 8 samples per digit class (0–9) using identical network capacities and training
budgets. NeuroSQL (left) produces consistently sharp, well-formed digits with clear class separa-
tion and minimal artifacts. VAE (center) exhibits typical reconstruction blur and shape distortions,
particularly evident in digits with fine details (e.g., 8, 9). GAN (right) shows characteristic train-
ing instabilities, including mode collapse, with several digit classes producing nearly identical or
malformed samples. The systematic comparison demonstrates NeuroSQL’s ability to maintain both
sample quality and diversity across all digit classes, highlighting the advantages of the deterministic
quantile-assignment approach over stochastic generative methods in controlled generation tasks.
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B.2 GENERATED IMAGES

C TABULAR RESULTS ON OASIS, A BRAIN IMAGING DATASET

Table 1: Results on OASIS, a brain imaging dataset, using ConvNet across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Method FID (Proxy) ↓ LPIPS ↓ SSIM ↑

2
NeuroSQL 7.914 0.390 0.259
VAE 8.198 0.410 0.246
GAN 9.936 0.450 0.218

4
NeuroSQL 9.241 0.403 0.257
VAE 8.720 0.463 0.212
GAN 19.420 0.509 0.206

8
NeuroSQL 8.286 0.411 0.256
VAE 8.029 0.485 0.215
GAN 12.766 0.558 0.193

16
NeuroSQL 8.602 0.455 0.267
VAE 12.768 0.539 0.171
GAN 12.485 0.584 0.200

32
NeuroSQL 8.856 0.401 0.257
VAE 12.490 0.525 0.178
GAN 14.852 0.593 0.174

64
NeuroSQL 7.385 0.388 0.265
VAE 16.003 0.567 0.151
GAN 14.453 0.602 0.125

128
NeuroSQL 18.743 0.453 0.248
VAE 16.329 0.571 0.158
GAN 29.792 0.620 0.084

Table 2: Results on OASIS, a brain imaging dataset, using ResNet across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Method FID (proxy) ↓ LPIPS ↓ SSIM

16
NeuroSQL 25.410 0.249 0.301
VAE 51.139 0.309 0.171
GAN 168.993 0.727 0.008

32
NeuroSQL 31.957 0.257 0.242
VAE 66.045 0.362 0.128
GAN 158.103 0.687 0.008

64
NeuroSQL 30.892 0.220 0.221
VAE 47.146 0.358 0.135
GAN 156.088 0.741 0.135

128
NeuroSQL 34.346 0.224 0.196
VAE 52.317 0.397 0.135
GAN 156.288 0.723 0.124
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Table 3: Results on OASIS, a brain imaging dataset, using a U-Net across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Method FID (proxy) ↓ LPIPS ↓ SSIM ↑
4 NeuroSQL 8.519902 0.386861 0.254752
4 VAE 7.858056 0.377805 0.265082
4 GAN 26.234322 0.597633 0.206676

8 NeuroSQL 8.579974 0.401890 0.238080
8 VAE 5.976874 0.384821 0.264277
8 GAN 35.444614 0.609803 0.172225

16 NeuroSQL 10.037155 0.391049 0.260999
16 VAE 7.178138 0.402099 0.231028
16 GAN 20.907921 0.616312 0.225444

32 NeuroSQL 8.405630 0.388190 0.253740
32 VAE 4.424680 0.402910 0.238710
32 GAN 28.069950 0.613550 0.200620

64 NeuroSQL 8.259449 0.385646 0.262159
64 VAE 6.098939 0.395427 0.272117
64 GAN 30.385052 0.644507 0.153054

128 NeuroSQL 7.553965 0.371082 0.282864
128 VAE 9.101107 0.415775 0.257312
128 GAN 30.505713 0.553681 0.202557

Table 4: Results on OASIS, a brain imaging dataset, using a U-Net — with results averaged across
latent dimensions {4, 8, 16, 32, 64, 128}.

Method FID (proxy) ↓ LPIPS ↓ SSIM ↑
NeuroSQL 8.559346 0.387453 0.258766
VAE 6.772966 0.396473 0.254754
GAN 28.591262 0.605914 0.193429

On average, across latent dimensions, NeuroSQL attains the best LPIPS and SSIM, while VAE has the lowest
FID (proxy).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D TABULAR RESULTS ON CELEBA, A FACE ATTRIBUTES DATASET

Table 5: Results on CelebA, a face attributes dataset, using ConvNet across latent dimensions.
Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Method FID (proxy) ↓ LPIPS ↓ SSIM ↑

2
NeuroSQL 9.64453 0.22094 0.31376
VAE 11.49087 0.24068 0.27396
GAN 26.56548 0.47277 0.10216

4
NeuroSQL 6.99789 0.22845 0.31645
VAE 8.57467 0.23091 0.26471
GAN 29.68144 0.49874 0.06955

8
NeuroSQL 6.686607 0.244427 0.297947
VAE 32.183292 0.281024 0.226046
GAN 28.772638 0.461147 0.058802

16
NeuroSQL 17.252127 0.304758 0.296877
VAE 11.955338 0.282781 0.160219
GAN 20.922581 0.419844 0.117695

32
NeuroSQL 4.04047 0.19269 0.25707
VAE 6.57785 0.21120 0.13975
GAN 13.92531 0.31649 0.12201

64
NeuroSQL 3.94787 0.20649 0.25782
VAE 3.93301 0.21478 0.15485
GAN 16.27481 0.35050 0.10456

128
NeuroSQL 4.91280 0.20557 0.26119
VAE 5.57425 0.20361 0.16837
GAN 17.16048 0.34640 0.15798

Table 6: Results on CelebA, a face attributes dataset, using ResNet across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Method FID (proxy) ↓ LPIPS ↓ SSIM ↑

2
NeuroSQL 4.40599 0.18367 0.27506
VAE 8.01552 0.19720 0.24972
GAN 19.01699 0.20240 0.13535

4
NeuroSQL 4.47511 0.16968 0.26754
VAE 6.03891 0.20652 0.20760
GAN 14.21587 0.26898 0.14515

8
NeuroSQL 4.60623 0.18201 0.25536
VAE 4.86620 0.25218 0.17823
GAN 13.94172 0.18593 0.17628

32
NeuroSQL 3.99240 0.18115 0.21823
VAE 6.00124 0.25017 0.12915
GAN 11.08812 0.23644 0.16986

64
NeuroSQL 2.89791 0.20532 0.20588
VAE 10.59103 0.25116 0.13515
GAN 16.09010 0.28388 0.11962

128
NeuroSQL 2.48879 0.19150 0.19373
VAE 18.35559 0.26214 0.12317
GAN 14.04322 0.20137 0.17414
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Table 7: Results on CelebA, a face attributes dataset, using U-Net (unconditional) across latent
dimensions. Lower is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension method FID (proxy) ↓ LPIPS ↓ SSIM ↑
2 NeuroSQL 4.96169 0.18253 0.27537
2 VAE 7.33227 0.19269 0.25696
2 GAN 14.09393 0.22041 0.12822

4 NeuroSQL 3.54758 0.18932 0.27993
4 VAE 4.99991 0.19061 0.22841
4 GAN 7.66398 0.19251 0.14899

8 NeuroSQL 3.96161 0.19244 0.24416
8 VAE 5.48428 0.20413 0.20573
8 GAN 20.46054 0.16577 0.18463

16 NeuroSQL 2.72089 0.17970 0.24505
16 VAE 10.00917 0.19001 0.18914
16 GAN 14.48838 0.18500 0.15935

32 NeuroSQL 14.65015 0.21850 0.27135
32 VAE 31.10957 0.24081 0.21405
32 GAN 30.37928 0.31335 0.13607

E TABULAR RESULTS ON AFHQ, AN ANIMAL FACES DATASET

Table 8: Results on AFHQ, an animal faces dataset, using ConvNet across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Method FID (proxy) ↓ LPIPS ↓ SSIM ↑
2 NeuroSQL 22.023664 0.563209 0.339032
2 VAE 44.276279 0.531442 0.284219
2 GAN 74.178604 0.693773 0.080698

4 NeuroSQL 35.913769 0.538813 0.357857
4 VAE 35.430927 0.527985 0.285893
4 GAN 48.706165 0.669665 0.129869

8 NeuroSQL 37.569298 0.505324 0.353983
8 VAE 83.373650 0.516064 0.211640
8 GAN 30.621849 0.797056 0.191322

16 NeuroSQL 52.609642 0.564259 0.370944
16 VAE 88.436768 0.527512 0.161437
16 GAN 98.826027 0.620977 0.066925

32 NeuroSQL 31.695450 0.512806 0.339188
32 VAE 95.740288 0.499635 0.172815
32 GAN 46.238804 0.751076 0.072116

64 NeuroSQL 28.105133 0.532103 0.347139
64 VAE 127.357986 0.525766 0.140224
64 GAN 50.671597 0.753972 0.067132

128 NeuroSQL 17.399908 0.591030 0.368674
128 VAE 23.283272 0.789889 0.374535
128 GAN 59.287437 0.754374 0.042504
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Table 9: Results on AFHQ, an animal faces dataset, using ConvNet — with results averaged across
latent dimensions.

Method FID (proxy) ↓ LPIPS ↓ SSIM ↑
NeuroSQL 32.19 0.544 0.354
VAE 71.13 0.560 0.233
GAN 58.36 0.720 0.093

Table 10: Results on AFHQ, an animal faces dataset, using ResNet across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Method FID (proxy) ↓ LPIPS ↓ SSIM ↑
2 NeuroSQL 7.267559 0.459967 0.267403
2 VAE 15.259568 0.448991 0.235907
2 GAN 39.100639 0.550003 0.091928

4 NeuroSQL 11.560558 0.460007 0.246023
4 VAE 13.387914 0.432443 0.192707
4 GAN 37.873501 0.356168 0.120893

8 NeuroSQL 13.611592 0.471643 0.241053
8 VAE 11.736956 0.431859 0.204782
8 GAN 29.584837 0.486513 0.081718

16 NeuroSQL 17.987249 0.341935 0.208179
16 VAE 9.721145 0.347468 0.178343
16 GAN 17.546219 0.483133 0.107947

32 NeuroSQL 14.799847 0.438891 0.255200
32 VAE 8.249439 0.341844 0.188594
32 GAN 22.425539 0.363643 0.113281

64 NeuroSQL 10.561233 0.558646 0.252005
64 VAE 14.458963 0.404593 0.202796
64 GAN 40.478588 0.423956 0.107915

128 NeuroSQL 11.019302 0.489376 0.261104
128 VAE 13.060718 0.353215 0.208177
128 GAN 18.462259 0.381437 0.104066

Table 11: Results on AFHQ, an animal faces dataset, using ResNet — with results averaged across
latent dimensions.

Method FID (proxy) ↓ LPIPS ↓ SSIM ↑
NeuroSQL 12.40 0.460 0.247
VAE 12.27 0.394 0.202
GAN 29.35 0.435 0.104
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Table 12: Results on AFHQ, an animal faces dataset, using U-Net across latent dimensions. Lower
is better for FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Method FID (proxy) ↓ LPIPS ↓ SSIM ↑
2 NeuroSQL 17.626825 0.595854 0.272737
2 VAE 10.595321 0.620105 0.279837
2 GAN 23.709433 0.405830 0.116950

3 NeuroSQL 10.193194 0.617973 0.278050
3 VAE 29.156761 0.578171 0.173115
3 GAN 17.098032 0.607903 0.074634

4 NeuroSQL 10.773172 0.561935 0.258762
4 VAE 14.463408 0.576194 0.117610
4 GAN 13.078835 0.626831 0.057038

8 NeuroSQL 11.994763 0.638746 0.275091
8 VAE 42.187984 0.571152 0.062857
8 GAN 75.077110 0.618699 0.039482

16 NeuroSQL 10.660514 0.659894 0.266318
16 VAE 51.288338 0.550339 0.135791
16 GAN 97.593185 0.703616 0.010010

32 NeuroSQL 16.301731 0.595429 0.252468
32 VAE 28.342377 0.566271 0.076232
32 GAN 25.781809 0.604119 0.025050

64 NeuroSQL 9.855629 0.660927 0.276445
64 VAE 62.289070 0.585000 0.093420
64 GAN 99.730621 0.702493 0.010348

Table 13: Results on AFHQ, an animal faces dataset, using U-Net — with results averaged across
latent dimensions {2, 3, 4, 8, 16, 32, 64}.

Method FID (proxy) ↓ LPIPS ↓ SSIM ↑
NeuroSQL 12.486547 0.618680 0.268553
VAE 34.046180 0.578176 0.134123
GAN 50.295575 0.609927 0.047645

On average, NeuroSQL achieves the best FID (proxy) and SSIM; VAE attains the lowest LPIPS.

F MNIST, A DATABASE OF HANDWRITTEN DIGITS

Table 14: Ablation results on MNIST, a database of handwritten digits (all runs). Lower is better for
FID (proxy) and LPIPS; higher is better for SSIM.

Latent dimension Seed Method FID (proxy) ↓ LPIPS ↓ SSIM ↑
2 11 NeuroSQL 0.696835 0.039503 0.564344
2 11 VAE 1.070473 0.058065 0.200167
2 11 GAN 2.157639 0.054278 0.245780

3 11 NeuroSQL 0.527451 0.030257 0.668574
3 11 VAE 1.443453 0.060009 0.157831
3 11 GAN 1.849820 0.057282 0.220785
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Table 15: Results on MNIST, a database of handwritten digits — averaged over latent dimensions
{2, 3} (seed = 11).

Method FID (proxy) ↓ LPIPS ↓ SSIM ↑
NeuroSQL 0.612143 0.034880 0.616459
VAE 1.256963 0.059037 0.178999
GAN 2.003730 0.055780 0.233283

NeuroSQL is best on all three metrics (FID (proxy), LPIPS, and SSIM).

F.1 PRACTICAL TRAINING DETAILS

Loss choices. For images, we use a perceptual, scale-stable loss:

ℓ(x̂, x) =
1

2

(
1− SSIM(x̂, x)

)
+

1

2
∥x̂− x∥1,

which is the exact loss used in our codebase.

We instantiate gen with lightweight decoders so that comparisons against VAEs/GANs/Diffusion
control for capacity and compute:

• ConvNet. Transposed-convolution stack mapping z ∈ Rq to X ∈ R3×H×H (stride-2
upsampling).

• ResNet Four residual upsampling blocks (512→256→128→64), followed by a 3× 3 head
with sigmoid output in [0, 1]. We optionally initialize residual weights from ResNet-18
where shapes match.

• U-Net decoder. A small transformer decoder on patchified embeddings of z followed by
an MLP head back to pixels.

Our experiments keep these decoders small and matched across methods to stress that gains come
from the quantile–assignment loop, not decoder sophistication.

• Loss and normalization. Images are scaled to [0, 1]. We use ℓ = 1
2 (1 − SSIM) + 1

2ℓ1 in
both decoder and cost matrix.

• Optimization. AdamW with cosine annealing and gradient clipping; early stopping on
validation ℓ.

• Latent momentum. After each assignment, a momentum update ẑ(t) ← ρ zπ(t)(i) + (1−
ρ) ẑ(t−1) stabilizes training (we use ρ = 0.7).

• Resource parity. For fair comparisons to VAEs, GANs, and Diffusion, we fix the same
generator backbone and training budget; only the learning paradigm changes.

G MODELS AND TRAINING PROTOCOL

Common setup. Images are scaled to [0, 1] (diffusion uses [−1, 1] internally). We use AdamW,
cosine annealing, gradient clipping, and early stopping on validation loss. Generator backbones are
matched across methods for capacity parity.

NeuroSQL (ours). We construct a size-n deterministic latent lattice via scrambled Sobol points
mapped coordinatewise through F−1

Zℓ
(Sobol→Gaussian). Every K epochs we solve an exact global

assignment (Hungarian) between data and lattice codes, where K ∈ {2, 3, 5} is selected as a hyper-
parameter. After each assignment, we apply latent momentum ẑ(t) ← ρ zπ(t)(i)+(1−ρ) ẑ(t−1) with
ρ = 0.7. The decoder is trained by regression on assigned codes using ℓ = 1

2 (1− SSIM) + 1
2∥ · ∥1.

VAE. We reuse the same generator backbone as the decoder; the encoder is an MLP on flattened
pixels (to keep capacity modest). Training uses SSIM+L1 reconstruction plus a β-scaled KL term
with β = 0.005.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

GAN. The generator backbone is identical to NeuroSQL’s. The discriminator is a lightweight
four-layer CNN. We use the non-saturating objective with BCE logits, sharing optimiser, scheduler,
and gradient clipping with NeuroSQL.

Diffusion (DDPM). A compact U-Net (base width 32) is trained with a linear β schedule for
T = 1000 steps; default sampling uses 100 steps to match compute. Inputs are normalized to
[−1, 1] following common practice.

Reproducibility knobs. We fix random seeds, match the number of training epochs and batch
sizes across methods, and report all per-method hyperparameters (including learning rates, K ∈
{2, 3, 5}, and augmentations).
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