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Abstract
Despite serving as the foundation models for001
a wide range of NLP benchmarks, pre-trained002
language models have shown limited capabili-003
ties of acquiring implicit commonsense knowl-004
edge from self-supervision alone, compared to005
learning linguistic and factual knowledge that006
appear more explicitly in the surface patterns007
in text.008

In this work, we introduce commonsense knowl-009
edge transfer, a framework to transfer the010
commonsense knowledge stored in a neural011
commonsense knowledge model to a general-012
purpose pre-trained language model. It first013
exploits general texts to form queries for ex-014
tracting commonsense knowledge from the015
neural commonsense knowledge model and016
then refines the language model with two self-017
supervised objectives: commonsense mask in-018
filling and commonsense relation prediction,019
which align human language with the underly-020
ing commonsense knowledge.021

Empirical results show that our approach con-022
sistently improves the model’s performance on023
downstream tasks that require commonsense024
reasoning. Moreover, we find that the improve-025
ment is more significant in the few-shot set-026
ting. This suggests that our approach helps027
language models better transfer to downstream028
tasks without extensive supervision by injecting029
commonsense knowledge into their parameters.030

1 Introduction031

Recent advances in pre-trained language models032

have transformed the landscape of natural language033

processing. Self-supervised pre-training objectives034

including masked language modeling (Devlin et al.,035

2019) and masked span infilling (Lewis et al., 2020)036

enable pre-trained models to acquire linguistic (He-037

witt and Manning, 2019; Manning et al., 2020) and038

factual knowledge (Petroni et al., 2019) by mod-039

eling the distribution of naturally occurring texts.040

However, most of these objectives are limited to ex-041

ploiting the surface form of human language, and042
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Figure 1: Illustration of the commonsense knowledge
transfer framework. We first extract commonsense
knowledge related to sentences in general text corpus
from a neural commonsense knowledge model. We then
use natural texts and the extracted commonsense knowl-
edge to form self-supervised training data to refine a
pre-trained model with commonsense knowledge.

the lack of grounded supervision calls into question 043

how well these representations can ever capture 044

meaning (Bender and Koller, 2020), not to mention 045

the underlying commonsense knowledge which is 046

often reasoned implicitly and does not appear in 047

the surface form of human language (Merrill et al., 048

2021; Zhou et al., 2020a; Hwang et al., 2021). On 049

the other hand, commonsense reasoning is impor- 050

tant for building generalizable models because it 051

enables the model to reason about a great num- 052

ber of events, causes, and effects, while observing 053

only a small fraction of them. The ineffectiveness 054

of self-supervised language model pre-training on 055

acquiring commonsense knowledge makes them 056

require a relatively large number of labeled exam- 057

ples to succeed in a downstream task and prune to 058

overfit task-specific correlations (Tu et al., 2020). 059

Therefore, equipping pre-trained language mod- 060

els with commonsense reasoning ability has at- 061

tracted much attention. To this end, two distinct 062

lines of research focus on improving commonsense 063

reasoning ability of pre-trained language models. 064

The first one focuses on incorporating external com- 065

monsense knowledge graph for commonsense rea- 066
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soning (Lin et al., 2019; Liu et al., 2021; Cui and067

Chen, 2021) while the other attempts to inject com-068

monsense knowledge into the parameters of pre-069

trained models (Li et al., 2019; Zhou et al., 2021;070

Klein and Nabi, 2021). In this work we focus on071

the second type of method because it alleviates the072

need for external knowledge bases for training and073

inference on downstream tasks, thus simpler, more074

efficient, and not limited by the coverage issue of075

external knowledge bases.076

Prior art inject commonsense knowledge into077

pre-trained models either on symbolic common-078

sense knowledge graphs with manually defined079

rules (Li et al., 2019) or masked language mod-080

eling (Hosseini et al., 2021) or on general text081

corpus with concept-centric self-supervised objec-082

tives (Zhou et al., 2021). The former method is083

limited by the coverage of knowledge graphs and084

human-written rules. It also fails to make use of085

large scale diverse natural text corpus. Therefore,086

the training is limited on short and synthetic com-087

monsense tuples, which affects its generalization088

ability on diverse downstream tasks. The latter089

method, however, only captures surface-level or-090

der relations between concepts and fail to learn091

commonsense relations between concepts such as092

cause, effect, intent, requirement, etc., which are093

crucial for commonsense reasoning but often im-094

plicitly reasoned, thus do not appear in the surface095

form of natural language.096

In this work, we propose commonsense knowl-097

edge transfer, an alternative framework to refine a098

general purpose pre-trained model’s commonsense099

reasoning ability. In contrast to previous work,100

it aims to transfer the commonsense knowledge101

stored in a neural commonsense knowledge model102

(e.g., COMET (Bosselut et al., 2019)) to a general103

purpose pre-trained model on large scale general104

text corpus. In this way, our approach combines the105

best of both worlds from prior art: the dense and106

informative commonsense knowledge from com-107

monsense knowledge graphs and the accessibility108

of large scale diverse general corpus.109

Commonsense knowledge transfer is conceptu-110

ally related to knowledge distillation (KD) (Hinton111

et al., 2015) since they both aim to transfer knowl-112

edge from a knowledge-rich model to another113

model that lacks it. However, different from con-114

ventional KD, in commonsense knowledge transfer,115

the source model (i.e., neural commonsense model)116

and the target model (i.e., pre-trained model) are117

heterogeneous. Moreover, instead of simply mim- 118

icking the teacher model, commonsense knowl- 119

edge transfer requires the target model to learn spe- 120

cialized knowledge from the source model while 121

retaining its own capability. This poses unique 122

challenges since the knowledge transfer can not be 123

accomplished by simply matching the logits or fea- 124

ture distribution from the student and the teacher. 125

To this end, we propose to first extract common- 126

sense knowledge in textual form from the source 127

model, and then exploits the extracted knowledge 128

to form self-supervised training data for the target 129

model. As illustrated in Figure 1, commonsense 130

knowledge transfer first exploits general texts to 131

form queries for retrieving commonsense knowl- 132

edge from the neural commonsense knowledge 133

model. Then it refines a pre-trained model with two 134

self-supervised objectives that align surface form 135

of human language with its underlying common- 136

sense inference: commonsense text infilling and 137

commonsense relation prediction. The former ob- 138

jective concatenates natural text with its common- 139

sense inference to form an input example, mask 140

certain spans in it, and train the model to recon- 141

struct the original input. The latter method instead 142

trains the model to distinguish valid commonsense 143

inference from carefully constructed spurious com- 144

monsense inference given the original text and com- 145

monsense relation. Refining a pre-trained model 146

by multi-tasking on both generation (former) and 147

understanding (latter) tasks enables the model to 148

better adapt to different kinds of downstream tasks. 149

We refine T5 (Raffel et al., 2020) with common- 150

sense knowledge transfer and fine-tune the result- 151

ing model downstream tasks requiring common- 152

sense reasoning ability in both the fully supervised 153

setting and few-shot settings where only a percent- 154

age of labeled examples are available. Experimen- 155

tal results show substantial improvements on down- 156

stream tasks requiring commonsense reasoning, es- 157

pecially in the few-shot setting, demonstrating the 158

effectiveness of our approach. 159

2 Methodology 160

Our proposed commonsense knowledge transfer 161

framework consists of a neural commonsense 162

knowledge model (e.g., COMET) and a pre-trained 163

model (e.g., T5). The goal of commonsense knowl- 164

edge transfer is to transfer the commonsense knowl- 165

edge from the neural commonsense knowledge 166

model (i.e., source model) to the pre-trained model 167

2



(i.e., target model) so that it can generalize bet-168

ter to downstream tasks requiring commonsense169

reasoning ability.170

Compared to conventional knowledge transfer171

methods such as knowledge distillation, common-172

sense knowledge transfer faces a unique challenge:173

the source model and the target model are hetero-174

geneous because they are trained on different data175

with different objectives. As such, we can not sim-176

ply feed a batch of data to both of the models and177

train the target model to match the source model’s178

logits or feature distribution. To alleviate this prob-179

lem, we propose a two-stage knowledge transfer180

scheme as illustrated in Figure 1. To be specific,181

we first use natural texts to form queries for re-182

trieving commonsense knowledge (in text form)183

from the neural commonsense knowledge model.184

We then construct training data with two novel185

commonsense-related self-supervised objectives186

based on the retrieved commonsense knowledge187

and the corresponding natural text. Finally, we188

train the target model on the constructed training189

data to inject commonsense knowledge retrieved190

from the source model. We describe our method191

to extract commonsense knowledge from a neural192

commonsense knowledge model and the proposed193

commonsense-related self-supervised objectives in194

detail in this section.195

2.1 Commonsense Knowledge Extraction196

We first describe the source model, i.e., neural197

commonsense knowledge model, in the common-198

sense knowledge transfer framework. It is a trans-199

former (Vaswani et al., 2017a) language model200

trained on commonsense knowledge graphs like201

ATOMIC (Sap et al., 2019a) and ConceptNet (Speer202

et al., 2017) with the objective of predicting the203

object (i.e., commonsense inference) with the sub-204

ject (i.e., natural text) and relation as input. For205

example, given a commonsense tuple (s=“take a206

nap", r=Causes, o=“have energy"), the neural com-207

monsense knowledge model is trained to generate208

o given s and r as inputs. After training, it can gen-209

erate accurate, representative knowledge for new,210

unseen entities and events.211

To extract commonsense knowledge stored in a212

neural commonsense knowledge model, we use a213

natural sentence as the subject s (e.g., he wants to214

cook a meal) and concatenate it with a randomly se-215

lected commonsense relation r (e.g., xNeed) from216

a pre-defined set to form a prompt (e.g., he wants217

to cook a meal xNeed ). We then feed the prompt 218

to the neural commonsense knowledge model and 219

use it to generate a commonsense inference (e.g., 220

to buy ingredients). In this way, the commonsense 221

knowledge generation process resembles the way in 222

which the neural commonsense knowledge model 223

is trained. As such, we can get commonsense infer- 224

ences of relatively high qualities. 225

Using a neural commonsense knowledge model 226

as knowledge source has two advantages. On one 227

hand, compared to the previous method (Li et al., 228

2019) using a symbolic commonsense knowledge 229

graph, a neural commonsense knowledge model 230

can generalize to unseen subjects, thus enabling us 231

to refine the target pre-trained model on large-scale 232

natural text corpus together with its commonsense 233

inferences. As such, the resulting model can better 234

adapt to downstream tasks which are formulated in 235

diverse natural texts. On the other hand, compared 236

to another method (Zhou et al., 2021) that only uses 237

plain text and thus limited to the surface form of 238

naturally occurring text, the use of a neural com- 239

monsense knowledge model provides much denser 240

commonsense knowledge including a diverse set of 241

commonsense relations between natural texts and 242

the underlying commonsense knowledge. 243

2.2 Commonsense Knowledge Injection 244

After commonsense knowledge extraction, we need 245

to inject the extracted commonsense knowledge 246

into the target model. A straightforward solution is 247

to use sequence-level knowledge distillation (Kim 248

and Rush, 2016) and continually train the student 249

to generate retrieved commonsense inference given 250

the original text and commonsense relation. How- 251

ever, this can be sub-optimal due to the domain dis- 252

crepancy between commonsense knowledge and 253

natural text, which introduces the catastrophic for- 254

getting problem (Kirkpatrick et al., 2017) and hurts 255

the performance on downstream tasks, which is 256

also recently confirmed by Cui and Chen (2021). 257

To better inject the extracted commonsense 258

knowledge into a pre-trained model without suf- 259

fering from catastrophic forgetting so that its ca- 260

pability on general NLP tasks is retained (or even 261

improved), we propose two commonsense-related 262

self-supervised objectives: commonsense text in- 263

filling and commonsense relation prediction. The 264

former objective is generative while the latter is a 265

discriminative objective. We refine the pre-trained 266

model by multi-tasking on both the objective so 267
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subject object
he plans to cook a meal for himself

relation
xNeed to buy ingredients

Commonsense Text Infilling

he <mask> a <mask> for himself 
xNeed to buy ingredients plans to cook <s> mealtext masking

he plans to cook a meal for
himself xNeed to <mask>

buy ingredientscommonsense masking

he plans to <mask> for himself 
xNeed to buy <mask>

bidirectional masking

plans torelation masking

cook a meal <s> ingredients 

he plans to cook a meal for himself 
<mask> to buy ingredients

Figure 2: Illustration of the commonsense text infilling
objective. Given a commonsense tuple constructed in
the commonsense knowledge retrieval phase, we ran-
domly mask text spans in the commonsense tuple fol-
lowing different patterns and train the pre-trained model
to reconstruct the masked spans.

that the model can better adapt to tasks requiring268

either generative or discriminative commonsense269

reasoning ability.270

Commonsense Text Infilling Commonsense text271

infilling is a simple extension to the conventional272

text infilling objective used for pre-training BART273

and T5. It transforms each sentence to a com-274

monsense tuple similar to that in a commonsense275

knowledge graph by appending the commonsense276

relation and the generated commonsense inference.277

We then mask text spans in the commonsense tuple278

by randomly select one masking scheme among279

text masking, commonsense masking, bidirectional280

masking, and relation masking. As illustrated in281

Fig 2, these masking strategies selectively mask282

different components in the input commonsense283

tuple and lead to different optimization objectives.284

Specifically, these masking schemes masks either285

spans in natural text (P(s|s̃, r, o)), commonsense286

inference (P(o|s, r, õ)), natural text/commonsense287

inference (P(s, o|s̃, r, õ)), or commonsense relation288

(P(r|s, r̃, o)), respectively. We then train the model289

to predict the masked spans autoregressively. The290

diverse masking strategies provide more diverse291

training signals compared to randomly masking,292

thus enabling the model to better align the surface293

form of human language and the underlying com-294

monsense knowledge.295

In addition, unlike conventional practice in296

masked span infilling objective that randomly mask297

text spans with a same probability, we propose to298

mask text spans including concepts (tokens recog-299

nized as nouns or verbs by a Spacy POS tagger)300

with a higher probability so that the model will be301

trained to predict concepts more frequently com-302

Commonsense Relation Prediction

Input: he plans to cook a meal for himself, what is needed for that?

Options: (object) Subject: Relation

A. to buy ingredients  he plans to cook a meal for himself.   xNeed

B. to eat food he plans to cook a meal for himself.   xWant

C. to get prepared I don’t want to fail the next exam xNeed

D. to find a job she wants to save money for a car     xNeed

Output: A

Figure 3: Illustration of the commonsense relation pre-
diction objective. We train the pre-trained model to
predict the correct commonsense inference given the
subject and relation from three distractors generated
with either different subjects or relations as inputs.

pared to non-content words that are generally not 303

related to commonsense reasoning. 304

Commonsense Relation Prediction While the 305

commonsense text infilling objective encourages 306

the pre-trained model to align natural texts and 307

their commonsense inferences, it is always trained 308

on valid commonsense tuples. This can be sub- 309

optimal because we also want the model to be ca- 310

pable of discriminating invalid commonsense infer- 311

ences, which is important for many commonsense- 312

related downstream tasks. 313

To this end, we introduce a commonsense re- 314

lation prediction task which trains the model to 315

distinguish the correct commonsense inference cor- 316

responding to the input sentence and the common- 317

sense relation from distractors. To be specific, the 318

commonsense relation prediction objective is for- 319

mulated as a multi-choice QA problem with an 320

input sentence as the context, a commonsense rela- 321

tion as the question, and a set of four commonsense 322

inferences as options. The set of options consists 323

of one correct commonsense inference, which is 324

generated by the neural commonsense model with 325

the input sentence and commonsense relation as 326

input, and three carefully curated distractors (i.e., 327

negative examples) generated by the same neural 328

commonsense knowledge model with different in- 329

puts. As illustrated in Figure 3, among the three 330

distractors, one is generated with an input com- 331

posed by the same sentence and a different com- 332

monsense relation, and another two are generated 333

with an input composed by different sentences with 334

the same commonsense relation. In this way, the 335

model learns to align the natural texts with valid 336

commonsense knowledge while also distinguishing 337

commonsense inferences that do not make sense. 338
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Methods CSQA OBQA PIQA aNLI SOCIALIQA COPA

BERT-base 53.08(±0.16) 57.60(±0.8) 64.86(±0.52) 61.88(±0.56) 64.3(±0.4) 67.3(±0.4)
ERNIE-base 54.06(±0.12) 58.90(±0.9) 66.47(±0.58) 63.04(±0.46) 65.1(±0.4) 68.9(±0.4)
KnowBERT 53.88(±0.15) 58.50(±0.8) 66.61(±0.63) 63.18(±0.52) 65.4(±0.5) 69.4 (±0.4)

T5-base 61.88(±0.08) 58.20(±1.0) 68.14(±0.73) 61.10(±0.38) 65.1(±0.5) 71.4 (±0.7)
T5-base + TI 62.05(±0.17) 58.43(±0.8) 68.32(±0.66) 61.42(±0.32) 65.3(±0.4) 71.8 (±0.8)
T5-base + SSM 62.37(±0.25) 58.60(±0.9) 68.48(±0.65) 61.57(±0.44) 65.5(±0.5) 72.1 (±0.6)
T5-base + CSKG (TI) 60.22(±0.40) 56.17(±0.8) 66.51(±0.57) 59.92(±0.47) 62.7(±0.7) 68.5 (±1.1)
T5-base + CSKG (Rule) 63.10(±0.35) 57.97(±0.8) 68.27(±0.71) 60.15(±0.51) 65.7(±0.4) 72.4 (±0.9)
T5-base + KD 61.83(±0.42) 56.54(±0.7) 67.35(±0.63) 60.94(±0.66) 64.8(±0.5) 71.0 (±1.0)
CALM 63.32(±0.35) 60.90(±0.4) 71.01(±0.61) 63.20(±0.52) 66.0(±0.5) 72.2 (±0.8)

CKT-base 64.11(±0.31) 61.58(±0.5) 72.26(±0.61) 64.37(±0.49) 67.3(±0.4) 73.4 (±0.5)

Table 1: Experimental results on base-size models. Best models are bold and second best ones are underlined
within each metric. Mean and standard deviation of 3 different runs with different random seeds are reported. TI
denotes the text infilling objective and SSM denotes the salient span masking objective.

Moreover, this objective is formulated as a multi-339

choice QA task which closely resembles several340

downstream commonsense-related tasks such as341

CommonsenseQA and SOCIALIQA, thus enabling342

easier transfer especially when labeled training ex-343

amples are scarce.344

3 Experiments345

3.1 Experimental Settings346

Models In our experiments we apply common-347

sense knowledge transfer to refine T5 (Raffel et al.,348

2019), a popular model pre-trained with the text349

infilling objective. We experiment with both T5-350

base and T5-large, which consist of 220 million351

and 774 million parameters respectively, as the tar-352

get model in the commonsense knowledge transfer353

framework. We use COMET-ATOMIC20
20, a state-of-354

the-art neural commonsense knowledge model that355

can generate accurate, representative knowledge356

for new, unseen entities and events, as the source357

model. It is initialized with BART and continually358

trained on ATOMIC20
20 (Hwang et al., 2021), a new359

general purpose commonsense knowledge graph.360

Data We randomly sample a subset consisting of361

10 million sentences from the English Wikipedia362

and the BookCorpus (Zhu et al., 2015), which is363

used for pre-training BERT and its variants. We se-364

lect a set of representative commonsense relations365

including intent, reason, effect, need, want, and re-366

act from relations used to train COMET-ATOMIC20
20.367

For each sentence, we randomly sample two rela-368

tions and retrieve the corresponding commonsense369

explanation from COMET20
20. We randomly select370

one relation-explanation pair to form the input ex-371

ample and leave another as the distractor for the372

commonsense relation prediction objective. 373

Training We refine the pre-trained models on 374

the self-supervised examples constructed with the 375

sampled 10 million sentences for 100k steps with a 376

batch size of 1024, a maximum sequence length of 377

256, and a learning rate of 5e-5/2e-5 for base-size 378

and large-size models respectively with a linear 379

warm-up for the first 8,000 updates. After knowl- 380

edge transfer, we fine-tune the models on down- 381

stream tasks by formulating the tasks into text-to- 382

text problems. Pre-training and fine-tuning details 383

are included in the Appendix. 384

Evaluation We evaluate the continual pre-trained 385

models on downstream tasks that require common- 386

sense reasoning including CommonsenseQA (Tal- 387

mor et al., 2018), OpenbookQA (Mihaylov et al., 388

2018), PIQA (Bisk et al., 2020), aNLI (Bhagavat- 389

ula et al., 2019), COPA (Roemmele et al., 2011), 390

and SOCAILIQA (Sap et al., 2019b) In addition to 391

the conventional fully supervised setting, we also 392

test our approach in the few-shot setting by vary- 393

ing the percentage of labeled examples from the 394

original training set used for fine-tuning. The idea 395

is that limited labeled examples can only help the 396

model understand the task but are insufficient for 397

the model to acquire enough commonsense knowl- 398

edge to solve the task. As such, it requires the 399

model to store enough commonsense knowledge 400

in its parameters to succeed in the few-shot set- 401

ting. For both the settings, we report the results 402

on the official development set and tune the hyper- 403

parameters based on the models’ performance on 404

an in-house split dev set. We report the mean and 405

variance of 3 individual runs with different random 406

seeds because most datasets are relatively small, 407

which makes the variance in results non-negligible. 408
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Methods CSQA OBQA PIQA aNLI SOCIALIQA COPA

BERT-large 57.06(±0.12) 60.40(±0.6) 67.08(±0.61) 66.75(±0.56) 69.5(±0.4) 82.8(±0.8)
T5-large 69.81(±1.02) 61.40(±1.0) 72.19(±1.09) 75.54(±1.22) 71.3(±0.8) 83.6(±1.1)
CALM-large 71.31(±0.04) 66.00(±1.0) 75.11(±1.65) 77.12(±0.34) 72.7(±0.7) 84.9(±1.0)

CKT-large 72.15(±0.61) 66.70(±1.1) 76.07(±0.95) 77.94(±0.59) 73.8(±0.8) 86.0(±1.2)

Table 2: Experimental results on large-size models. Best models are bold and second best ones are underlined
within each metric. Mean and variance of 3 different runs with different random seeds are reported.

Baselines We compare our approach with methods409

that continual train a pre-trained model with dif-410

ferent objectives. We divide the baselines into two411

categories based on the source of their supervision.412

The first category include methods that only exploit413

general text corpus, including (1) T5 + TI that con-414

tinually pre-trains the public checkpoint of T5 with415

the same text infilling objective for more steps, (2)416

T5 + SSM that also continual pre-trains T5 with the417

text infilling objective, but use salient span mask-418

ing (Roberts et al., 2020) instead of random mask-419

ing for data construction, and (3) CALM (Zhou420

et al., 2021) that uses novel self-supervised objec-421

tives to construct concept-centric self-supervision422

from general text corpus. The second category in-423

stead exploit CSKG, including (4) T5 + CSKG424

(TI) train T5 with the text infilling objective on425

tuples in a CSKG, and (5) T5 + CSKG (Rule) (Li426

et al., 2019) that use manually defined rules to427

construct training examples from a CSKG and con-428

tinually pre-train T5 with these examples. We also429

include a baseline method using sequence-level430

knowledge distillation (Kim and Rush, 2016) (T5 +431

KD). For fair comparison, we use the same data and432

training steps compared to our approach for base-433

lines from the first category, and use ATOMIC20
20, on434

which the teacher model in our framework is pre-435

train on, as the commonsense knowledge graph436

and train until convergence. For reference, we437

also include some popular knowledge-enhanced438

pre-trained model including ERNIE (Zhang et al.,439

2019) and KnowBERT (Peters et al., 2019).440

3.2 Fully-supervised Results441

We first present results in the fully-supervised set-442

ting. Results on base-size models are presented in443

Table 1. We can see that our approach yields signif-444

icant improvement compared to the T5 baseline (up445

to 4 absolute scores) and consistently outperform446

CALM, the state-of-the-art method on injecting447

commonsense knowledge into PTLMs.448

In addition, we observe that simply using con-449

tinual training with the original text infilling ob-450

Figure 4: Performance of compared base-size models
fine-tuned with different fraction of the datasets.

jective or its variant with salient span masking 451

only marginally improves the performance. Sur- 452

prisingly, training with text infilling on a common- 453

sense knowledge graph leads to degraded perfor- 454

mance compared to the T5 baseline. We suspect 455

this is because the commonsense tuples in com- 456

monsense knowledge graphs are generally too short 457

and simple, making the pre-trained model unable 458

to reason within relatively long contexts which is 459

crucial for most downstream tasks. Moreover, we 460

find that continually pre-training with training data 461

constructed with commonsense tuples in a com- 462

monsense knowledge graph following manual de- 463

signed rules leads to improvements in certain tasks. 464

However, the improvement is inconsistent across 465

different tasks and it even hurts the performance 466

on certain tasks, which may because the rules for 467

constructing training data are tailored for certain 468

tasks like CSQA. The inferior performance of using 469

commonsense knowledge graphs as data sources 470

also confirms the need of using natural text corpus 471

during continual pre-training for better adapting to 472

diverse downstream tasks. Moreover, directly ap- 473

plying sequence-level KD and train the student to 474

mimic the teacher on the commonsense tuple gener- 475

ation task fails to improve the performance because 476

the task is too narrow and thus cannot transfer to 477

diverse downstream tasks well. 478

To further confirm the effectiveness of common- 479

sense knowledge transfer, we apply it on T5-large 480

and compare it to competitive baselines in the base- 481
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Methods CSQA OBQA PIQA aNLI SIQA COPA

T5-base 61.88 58.20 68.14 61.10 65.1 71.4
CKT-base 64.57 62.77 73.26 64.75 68.3 73.4

Objective Analysis

CKT-base w/o CSTI 62.58 60.97 70.61 62.11 66.5 72.0
CKT-base w/o text masking 62.98 61.74 72.55 63.81 67.7 72.8
CKT-base w/o commonsense masking 63.61 62.03 72.83 64.40 67.5 72.7
CKT-base w/o bidirectional masking 63.52 62.11 72.30 64.24 67.6 72.9
CKT-base w/o relation masking 64.12 62.48 73.31 64.57 67.4 72.7
CKT-base w/o CSRP 63.12 62.07 72.44 64.11 67.5 72.6
CKT-base w/ random distractors 64.04 62.29 72.95 64.48 68.0 73.1

Multi-task versus Sequential Transfer

CKT-base (CSTI → CSRP) 64.69 62.51 73.35 64.11 67.9 73.5
CKT-base (CSRP → CSTI) 63.49 61.33 71.54 63.41 67.0 72.0

Corpus Size

CKT-base w/ 10% data 64.18 62.21 71.86 64.31 67.7 73.1
CKT-base w/ 50% data 64.45 62.66 73.10 64.72 68.2 73.4

Table 3: Analysis of the proposed commonsense knowledge transfer framework. CSTI and CSRP denote the
commonsense text infilling objective and the commonsense relation prediction objective, respectively. CSTI →
CSRP means first continual pre-training using CSTI and then switch to the CSRP objective, and vice versa.

size experiments. The results are presented in Table482

2. We can see that our approach consistently out-483

performs T5-large and CALM-large. This suggests484

that our approach can successfully generalize to485

large-size pre-trained models.486

3.3 Few-shot Results487

Injecting commonsense knowledge into pre-trained488

models is important because it enables the model489

to reason and generalize to unseen examples while490

observing only a few labeled examples. To this491

end, we fine-tune the compared models with differ-492

ent fractions of labeled training data to investigate493

the transition of the behavior of our model and494

baselines from the low-resource regime to the fully-495

supervised setting (Fig. 4). We observe that the496

performance improvement of our approach com-497

pared to the baselines is more significant in the498

low-resource regime. This shows that common-499

sense knowledge transfer can successfully transfer500

commonsense knowledge into pre-trained models501

so that they can generalize well while seeing only502

a small part of training data. This may also help503

the model reduce the risk/tendency of fitting the504

spurious correlations in the annotated datasets and505

thus generalize better.506

3.4 Analysis 507

To better understand the proposed commonsense 508

knowledge transfer framework and the role of its 509

different components, we conduct an ablation study 510

about the impact of different proposed objectives, 511

the impact of multi-tasking the commonsense- 512

related self-supervised objective versus sequen- 513

tially training, and the impact of the size of natural 514

text corpus used for transfer (see Table 3). 515

Impact of Objectives We find that both the pro- 516

posed objectives contribute to the performance im- 517

provement of our approach. The commonsense 518

text infilling objective is shown to be more criti- 519

cal than the commonsense relation prediction task. 520

We suspect this is because commonsense text in- 521

filling resembles the vanilla text infilling objective 522

with which the T5 models are pre-trained, thus pre- 523

venting the model from catastrophic forgetting. In 524

addition, all of the four masking strategies are ben- 525

eficial, and their contribution varies for different 526

downstream tasks. This confirms the necessity of 527

a diverse masking scheme. Moreover, our strat- 528

egy for constructing distractors outperforms the 529

random counterpart, demonstrating the necessity 530

of hard negative examples for the commonsense 531

relation prediction task. 532

Multi-task versus Sequential Transfer As for 533
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the training order between the two objectives, we534

find that starting from the commonsense text infill-535

ing task and then switching to the commonsense536

relation prediction task performs similarly with our537

multi-tasking strategy while significantly outper-538

forming its counterpart training with the reverse539

direction. We think this is because the common-540

sense text infilling objective resembles the original541

pre-training while the commonsense relation pre-542

diction is more similar to downstream tasks. We543

opt to the multi-tasking strategy because of its sim-544

plicity.545

Impact of Corpus Size We find that common-546

sense knowledge transfer significantly outperforms547

both the T5 baseline and the competitive CALM548

method with only 10 percent of the full data used549

for distillation. Nevertheless, the performance im-550

provement also confirms that our approach can551

benefit from the accessibility of large-scale nat-552

ural texts. For base-size models, the performance553

improvements seem to saturate after 10 million sen-554

tence pairs. However, we anticipate that larger-size555

models may still benefit from a larger amount of556

data, and leave this for future work.557

4 Related Work558

SSL for NLP Recently, the pre-training then fine-559

tuning paradigm has become a common practice in560

NLP. Large scale language models based on trans-561

former architecture (Vaswani et al., 2017b) pre-562

trained with self-supervised objectives including563

mask language modeling objective (Devlin et al.,564

2018; Liu et al., 2019; Lan et al., 2019) and text565

infilling objective (Lewis et al., 2019; Raffel et al.,566

2019) have advanced the state of the art on multiple567

NLU and NLG tasks.568

Knowledge-augmented Pre-trained Models A569

number of recent works have examined the prob-570

lem of incorporating world knowledge with the571

pre-trained models. A number of works utilizes572

an external knowledge base to incorporate entity573

knowledge with pre-trained models (Zhang et al.,574

2019; Peters et al., 2019; Wang et al., 2020; Liu575

et al., 2020). However, these approaches require576

specialized resources like knowledge bases which577

are non-trivial to seek, thus limiting the domain578

they can be applied to. Xiong et al. (2020) pro-579

posed a novel entity replacement detection objec-580

tive which incorporates Wikipedia to encode world581

knowledge into a BERT-like pre-trained model.582

The aforementioned approaches generally focus583

on factual knowledge of entities while our work 584

mainly focuses on commonsense knowledge. 585

Commonsense Reasoning for NLP Several re- 586

cent studies (Talmor et al., 2018; Sap et al., 2019c; 587

Zhou et al., 2020b; Lin et al., 2020; Xu et al., 2021) 588

evaluate the performance of several pre-trained lan- 589

guage models on tasks that require commonsense 590

reasoning and find that it is still very hard for pre- 591

trained language models to match or exceed human- 592

level performance even fine-tuned on many labeled 593

examples. Therefore, approaches to improve the 594

commonsense reasoning ability of pre-trained lan- 595

guage models has attracted much attention. The 596

approaches for improving the commonsense rea- 597

soning ability of pre-trained models can be divided 598

into two categories. The first category focuses 599

on incorporating an external commonsense knowl- 600

edge graph for commonsense reasoning. For exam- 601

ple, Lin et al. (2019), Cui and Chen (2021), and Liu 602

et al. (2021) propose to exploit structured symbolic 603

commonsense knowledge graphs to perform com- 604

monsense reasoning. The second one instead at- 605

tempts to inject commonsense knowledge into the 606

parameters of pre-trained models. For example, Li 607

et al. (2019) proposed to use manually designed 608

rules to construct commonsense related training 609

examples from commonsense knowledge graphs. 610

Zhou et al. (2021) instead only relies on general 611

text corpus and proposed two concept-centric self- 612

supervised objectives to refine pre-trained models 613

with commonsense knowledge. Concurrently to 614

our work, Hosseini et al. (2021) propose to ver- 615

balize commonsense knowledge graphs into a text 616

corpus and continually train BERT with the masked 617

language modeling objective on it. 618

5 Conclusion 619

We introduce commonsense knowledge transfer, 620

a framework to transfer the commonsense knowl- 621

edge stored in a neural commonsense knowledge 622

model into a general-purpose pre-trained model. 623

Our method first extracts commonsense knowledge 624

from the source model and then uses the extracted 625

knowledge to construct self-supervised training 626

data for the target model. Empirical results show 627

that our approach outperforms previous methods 628

that exploit either symbolic knowledge graphs or 629

texts alone. Moreover, our proposed approach may 630

also be generalized to transfer other types of knowl- 631

edge (e.g., factual knowledge) from specific knowl- 632

edge models to general-purpose models. 633
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Ethical Considerations634

Our work focuses on improving the commonsense635

reasoning ability of pre-trained language models. It636

probably does not introduce extra ethical concerns.637

However, in commonsense knowledge extraction,638

the neural commonsense knowledge model may639

generate unexpected (e.g., biased) commonsense640

inferences and training with these inferences may641

lead to additional bias in the pre-trained model.642

Nevertheless, all pre-trained language models con-643

tain bias and should be examined.644
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A Pre-training and Fine-tuning Details 902

A.1 Pre-Training Details 903

We implement our models using Pytorch- 904

lightning (Falcon, 2019) and Hugginface’s Pytorch 905

Transformers (Wolf et al., 2019). For pre-training 906

phase, we use the AdamW optimizer with maxi- 907

mum sequence length 256, train batch size 8, gradi- 908

ent accumulation 8, warmup steps 8000, weight de- 909

cay 0.01 and adam epsilon 1e-6. We train the mod- 910

els with 8 V100 GPUs and FP32 precision. The 911

model is pre-trained for 10 epochs. We searched 912

for the best learning rate for our model out of [5e-6, 913

2e-5, 5e-5, 1e-4]. 914

A.2 Fine-Tuning Details 915

For fine-tuning, we use 4 V100 GPUs and use FP32. 916

For all tasks, we use the AdamW optimizer with 917

learning rate from [1e-5, 2e-5, 5e-5, 1e-4, 2e-4], 918

maximum sequence length 256, batch size from [4, 919

8, 16, 32]. For all tasks, we use a warmup fraction 920

of 0.01, and max epoch of 20. 921
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