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Abstract: We propose PokeFlex, a dataset featuring real-world paired and an-
notated multimodal data that includes 3D textured meshes, point clouds, RGB
images, and depth maps. To deal with the challenges posed by real-world 3D
mesh reconstruction, we leverage a professional volumetric capture system that
allows complete 360° reconstruction. PokeFlex consists of 18 deformable objects
with varying stiffness and shapes. Deformations are generated by dropping objects
onto a flat surface or by poking the objects with a robot arm. Interaction forces are
also reported for the latter case. Using different data modalities, we demonstrated
a use case for the PokeFlex dataset in online 3D mesh reconstruction. We refer
the reader to our website2 for demos and examples of our dataset.
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Figure 1: PokeFlex captures the deformability of various everyday and 3D-printed objects, as illus-
trated by the poking manipulator on the Left. On the Right, the Top Row contains segmented RGB
images of selected objects. The Middle Row shows reconstructed objects in an undeformed state.
The Bottom Row provides reconstructed 3D-textured meshes of deformed objects.

1 Introduction

The development of high-quality datasets is essential to further advance research in deformable
object manipulation. Such datasets are crucial for training manipulation policies, estimating material
parameters, and training 3D mesh reconstruction models. In light of these needs, this work aims to
create a reproducible, diverse, and high-quality dataset for deformable volumetric objects that is
grounded in real-world data and incorporates multiple sensor modalities.
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Table 1: Dataset overview (per object, per sequence).

Sequence Data Poking Dropping

3D textured deformed mesh model ✓ ✓
RGB images from two Volucam cameras (cameras from the MVS) ✓ ✓
RGB-D images from two Realsense D405 sensors (eye-in-hand mounted) ✓
RGB-D images from two Azure Kinect sensors (eye-to-hand mounted) ✓
Estimated 3D contact forces and torques ✓
End-effector poses ✓

Camera and Object Data

Camera intrinsic and extrinsic parameters ✓
3D textured template mesh model ✓
Open-source print files to reproduce the 3D printed objects ✓
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Figure 2: Left: Robotic manipulator positioned inside MVS with external lower-cost camera sensors
during a poking sequence. Right: Overview of the system architecture to capture PokeFlex data.

Current state-of-the-art simulators are an attractive alternative to collect such datasets as they provide
easy access to privileged information such as deformed mesh configurations and contact forces [1,
2, 3, 4, 5]. However, such simulators require careful system identification and fine-tuning to address
the sim-to-real gap, which ultimately requires real-world data. Custom multi-camera systems [6]
can be used to collect real-world 3D models, however, they require careful synchronization and data
curation, especially when using noisy lower-cost sensors.

To address these challenges, we leverage a professional multi-view volumetric capture system
(MVS) that allows capturing detailed 360° mesh reconstructions of deformable objects over time [7].
We integrate a robotic manipulator with joint-torque sensing capabilities into the MVS, enabling
contact force estimation and facilitating automated data collection. Moreover, to enhance repro-
ducibility and to expand the diversity of data modalities, we also integrate and synchronize lower-
cost Azure Kinect and Intel Realsense D405 RGB-D sensors into the MVS.

An overview of the paired, synchronized, and annotated data is presented in Table 1. We demon-
strated a use case of the PokeFlex dataset, proposing baseline models capable of ingesting PokeFlex
multimodal data. We present evaluation criteria for benchmarking the results. The proposed archi-
tectures are suitable for online applications, reconstructing 3D meshes at a range from 106 Hz to
215 Hz depending on the input data modality, on a desktop PC with an NVIDIA RTX 4090 GPU. A
summary of related work on deformable object datasets can be found in Appendix A.

2 Methodology

Data Acquisition. The PokeFlex dataset involves the acquisition of deformations under two differ-
ent protocols (i) poking and (ii) dropping. For the poking protocol, we use a robotic manipulator that
pokes objects with a transparent acrylic stick multiple times along a randomly oriented horizontal
vector (Figure 2). For the dropping protocol, objects are attached to a light nylon cord at approxi-
mately 2 m height and captured in a free-fall drop onto a flat surface. We record data at 30 fps and
60 fps for the poking and dropping protocols, respectively. The capture system – MVS – consists
of 53 RGB and 53 infrared cameras with 12 MP resolution. For the poking protocol, we integrated
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and synchronized additional hardware to the MVS to ensure temporally aligned data capture across
all modalities. The additional hardware includes the robot manipulator and four additional RGB-
D cameras: two eye-to-hand Azure Kinect cameras, and two eye-in-hand Intel RealSense D405
cameras. The robot logs end-effector poses, interaction forces and torques at 120 Hz, while these
four cameras record RGB-D data at 30 Hz. Further details about device synchronization, using a
leader/follower architecture based on a Linear Timecode (LTC) signal, can be found in Appendix B.

We utilize a system similar to that described by [7] to reconstruct the meshes and textures of the
entire scene. When recording at 30 fps, the MVS generates raw data at approximately 27 GB/s,
which is curated by the authors to ensure that only the deformable objects are retained in the scene.

Learning-based Mesh Reconstruction. We train models for template-based mesh reconstruction,
predicting the deformation of the rest-state mesh of an object using various combinations of input
data modalities: sequences of images, point clouds (PCDs), and/or robot data. Figure 3 illustrates the
building blocks that we used to generate different architectures depending on the input modalities.

Real-NVP
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Figure 3: Superimposed representation of the proposed network architectures for ingesting the multi-
modal PokeFlex data to predict deformed mesh reconstruction.

At a high level, we use three main common components: an encoder for extracting features from
an input modality, an attention mechanism for exploiting temporal information, and a conditional-
NVP [8] for predicting the offsets of template vertices, yielding the predicted deformed mesh.

Image input: For pipelines using images as input, we use a DinoV2 vision transformer to extract
embeddings of each image frame. In particular, we use a DinoV2-small model, pretrained via dis-
tillation from the largest DinoV2 transformer presented in Oquab et al. [9] (LVD-142M dataset).
The embedding dimension is later reduced using a 1D convolutional layer and a subsequent fully
connected layer (Feature Dim. Reduction block in Figure 3).

Point cloud input: When using PCDs, we leverage a FoldingNet encoder [10] for representation
learning, trained end-to-end together with the attention mechanism and the conditional-NVP.

Robot data input: To fuse the robot data, we concatenate the measured end-effector forces and the
position of the interaction point. The concatenated data is later fed into a single fully connected
layer, to match the dimensionality of the embeddings used for the attention mechanisms.

For set-ups having single data modality as input, we use self-attention mechanism. In contrast, we
employ cross-attention across modalities when multiple modalities are available as observation (see
Figure 3). In the experiments presented in the results section, we use cross-attention to handle a
mixture of image sequences and robot data sequences as input. However, other combinations of
input data are also possible. Loss function and metrics are detailed in Appendix C.

3 Results

Dataset: The PokeFlex dataset comprises 18 deformable objects, including 13 everyday items as
well as 5 objects that are 3D printed. In order to ensure the reproducibility of the 3D printed ob-
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jects, we provide detailed specifications in Appendix D. For the poking protocol, we recorded 4-8
sequences of 5-6 seconds at 30 fps for each object. Similarly, for the dropping protocol, we recorded
3 sequences of 1 second at 60 fps for each object. In the case of the poking sequences, each frame
includes synchronized and paired data from all modalities.

The total number of reconstructed frames used to generate ground-truth data was 20k, which com-
prises 16.8k frames for the poking sequences and 3.2k frames for the dropping sequences. Consid-
ering the different modalities, the total of PokeFlex amounts to more than 240k samples. It is worth
noting that after curating the frames of the poking sequences, i.e., discarding the frames where the
robot arm is not in contact with the objects, the total number of active paired poking frames sum
up to 8.4k. A summary of the physical properties of the objects, as well as a per-object list of the
recorded frames under deformation for the poking sequences, is presented in Appendix E. For the
dropping protocol, we recorded 180 frames per object.
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0.00190.0016

0.0012

8.000 mm4.895 mm4.909 mm

0.0015

Figure 4: Three example predictions of deforma-
tions of a foam dice and their corresponding losses
and the CDUL1 metric.

Overview of training data. In the following
experiments, we exclusively used poking se-
quences because of the higher diversity of input
data modalities available. The input sequence
length was set to 5 steps, heuristically, for bet-
ter performance. The train-validation split was
generated by randomly choosing one recording
sequence per object as the validation set.

Learning from different data modalities.
In this experiment, we train various deformed
mesh prediction models using sequences from
different input modalities. For each combi-
nation of the tested input modalities, a sin-
gle model is trained on a subset of PokeFlex
containing five objects simultaneously. De-
tailed performance results for the evaluated data
modalities are in Table 2. Inference rates across different data modalities, detailed in Appendix G,
range from 106 Hz to 215 Hz for dense PCDs and forces, respectively. Figure 4 shows examples
of predicted meshes with varying reconstruction quality obtained using a multi-object model trained
from image-sequences. Additional experiments and a comprehensive discussion of the results are
presented in Appendix H and Appendix I, respectively.

Table 2: Prediction performance metrics for proposed model configurations.

Input LPFD · 103 ↓ LROI · 103 ↓ RPFD ↓ CDUL1[mm] ↓ J(MP,MGT) ↑
Images 3.90 4.27 0.649 5.656 0.847
Robot Data 4.82 2.81 0.747 6.266 0.830
Images + Robot data 3.08 3.34 0.548 5.291 0.860
Kinect PCDs 2.83 3.73 0.589 5.050 0.870
Dense synthetic PCDs (5k) 2.58 2.81 0.450 5.150 0.869
Sparse synthetic PCDs (100) 3.72 5.30 0.640 5.513 0.851

4 Conclusion

This paper introduced PokeFlex, a new dataset that captures the behavior of 18 deformable volumet-
ric objects throughout poking and dropping. The focus is on volumetric objects, while thin clothing
items or thin cables are not considered in the dataset. In an effort to enhance reproducibility, the
objects included in our dataset can be either purchased from global providers or 3D printed with
our open-source models. Using different combinations of the data modalities provided in PokeFlex,
we train and benchmark a list of baseline models for the task of multi-object template-based mesh
reconstruction. In doing so, we present a list of suitable criteria for evaluating PokeFlex.
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With its rich and multimodal data, as well as its focus on reproducibility, we believe that PokeFlex
will drive innovation in both simulation-based and real-world applications of deformable object ma-
nipulation. This includes better material parameter identification to fine-tune simulators, viewpoint-
agnostic online 3D mesh reconstruction methods, and policy learning for manipulation tasks. We
look forward to sharing this dataset with the community and fostering new collaborations.
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Fostering benchmarking in deformable object manipulation. IEEE Robotics and Automation
Letters, 7(3):5866–5873, 2022. doi:10.1109/LRA.2022.3158428.

[14] J. Lei and K. Daniilidis. Cadex: Learning canonical deformation coordinate space for dynamic
surface representation via neural homeomorphism. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 6624–6634, June 2022.

[15] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. Occupancy flow: 4d reconstruction
by learning particle dynamics. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019.

[16] N. Wang, Y. Zhang, Z. Li, Y. Fu, H. Yu, W. Liu, X. Xue, and Y.-G. Jiang. Pixel2mesh: 3d
mesh model generation via image guided deformation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(10):3600–3613, 2021. doi:10.1109/TPAMI.2020.2984232.

[17] D. Jack, J. K. Pontes, S. Sridharan, C. Fookes, S. Shirazi, F. Maire, and A. Eriksson. Learning
free-form deformations for 3d object reconstruction, 2018.

[18] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learning category-specific mesh recon-
struction from image collections, 2018.

[19] J. Xu, W. Cheng, Y. Gao, X. Wang, S. Gao, and Y. Shan. Instantmesh: Efficient 3d mesh
generation from a single image with sparse-view large reconstruction models, 2024.

[20] G. Turk. The stanford bunny. Technical report, The Stanford Graphics Laboratory, 1994.

[21] N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, and T. Dvir. 3d printing of personalized
thick and perfusable cardiac patches and hearts. Advanced science, 6(11):1900344, 2019.

[22] D. Ispolatov. Stylized pizza slice 3d model. https://stock.adobe.com/fr/3d-assets/
stylized-pizza-slice/373507126, 2024. Accessed: 2024-09-25.

[23] B. Curless and M. Levoy. A volumetric method for building complex models from range
images. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’96), pages 303–312, 1996.

[24] P. Sundaresan, R. Antonova, and J. Bohgl. Diffcloud: Real-to-sim from point clouds with
differentiable simulation and rendering of deformable objects. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 10828–10835, 2022. doi:10.1109/
IROS47612.2022.9981101.

[25] E. Heiden, M. Macklin, Y. S. Narang, D. Fox, A. Garg, and F. Ramos. DiSECt: A Differ-
entiable Simulation Engine for Autonomous Robotic Cutting. In Proceedings of Robotics:
Science and Systems, Virtual, July 2021. doi:10.15607/RSS.2021.XVII.067.

6

http://dx.doi.org/10.1109/LRA.2022.3158428
http://dx.doi.org/10.1109/TPAMI.2020.2984232
https://stock.adobe.com/fr/3d-assets/stylized-pizza-slice/373507126
https://stock.adobe.com/fr/3d-assets/stylized-pizza-slice/373507126
http://dx.doi.org/10.1109/IROS47612.2022.9981101
http://dx.doi.org/10.1109/IROS47612.2022.9981101
http://dx.doi.org/10.15607/RSS.2021.XVII.067


A Related Work

Table 3: Feature comparison of the PokeFlex dataset with other deformable object datasets.
Real-
world Meshes Point

clouds
RGB

images
Force
torque

# of
objects

# of
time frames

Type of
deformation

PokeFlex (ours) ✓ ✓ ✓ ✓ ✓ 18 20k Poke, drop
HMDO [11] ✓ ✓ ✓ 12 2,166 Manual†
PLUSH [6] ✓ ✓ ✓ Force 12 22.84k Airstream
DOT [12] ✓ ✓ ✓ 4 117k Manual
Household Cloth Object Set
[13] ✓ ✓‡ ✓ 27 67 /

Defgraspsim [1] ✓ 34 1.1M Grasp
† by hand ‡ for ten static scenes of the cloth objects folded
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Figure 5: Samples of different data modalities provided by the PokeFlex dataset.

Deformable object datasets. Depending on the use of synthetic or real-world data, deformable ob-
ject datasets can be roughly categorized into two major groups. Huang et al. [1], for instance, eval-
uates multiple grasping poses for deformable objects on a large-scale synthetic dataset. Qualitative
sim-to-real experiments for such dataset, show that their simulator captures the general deformation
behavior of objects during grasping. However, careful system identification and parameter tuning
are necessary to achieve higher sim-to-real fidelity.

On the other hand, real-world data collection opens up the door to better capture the complex be-
havior of deformable objects. Current real-world datasets focus mostly on RGB images. HMDO
[11] also provides real-world 3D meshes for objects undergoing deformation due to hand manipula-
tion. However, they fell short of providing point cloud or force contact information. Chen et al. [6]
provides points clouds and force contact information but it does not perform 3D mesh reconstruc-
tion and the deformations are only globally produced using an airstream. Li et al. [12] offer a large
number of frames, however, the object diversity in their dataset is limited.

In a departure from other datasets, PokeFlex offers a more comprehensive list of features including;
3D meshes, point clouds, contact forces, higher diversity of objects, and multiple types of deforma-
tions as detailed in Table 3 and illustrated in Figure 5. For simplicity, we report only the effective
number of paired time frames in our table, in contrast to what is reported by Xie et al. [11] and Li
et al. [12], where the total number of samples is computed as the number of time frames times the
number of cameras.

Data-driven mesh reconstruction methods vary widely in terms of the input data modalities they
employ. Previous approaches that rely on point clouds to predict deformations are typically trained
on synthetic data [8, 14, 15]. While synthetic training data offers controlled and dense point cloud
representations, it often leads to a sim-to-real gap as real-world point cloud measurements tend to be
noisy and sparse, especially in dynamic and unstructured environments. In contrast, methods using
single images as input have gained attention for their real-world reconstruction capability without the
need for depth information [16, 17, 18]. However, many of these image-based approaches are not
optimized for online inference, making them unsuitable for downstream applications in robotics,
where online feedback is essential. For instance, Xu et al. [19] proposes an instant image-to-3D
framework to generate high-quality 3D assets, but requires up to 10 seconds per frame, limiting its
practicality for scenarios demanding real-time processing.
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B Device Synchronization

To synchronize devices, we rely on a Linear Timecode (LTC) signal provided by an Atomos Ul-
trasync device. The cameras of the MVS have a leader/follower architecture, where the internal
clocks of the follower cameras are synchronized to one single leader camera, which reads the LTC
signal. In addition to the MVS control system, we use two desktop PCs to read the additional
data streams: a Robot PC that reads the robot data and the streams of the two RealSense D405
cameras and a dedicated Kinect PC that reads the streams of the two Azure Kinect devices. The
robot PC is synchronized with the capture system by reading the same LTC signal provided by the
Atomos Ultrasync device. The Kinect cameras are hardware-synchronized with each other. Their
synchronization with the capture system is achieved retrospectively by comparing the current time-
code displayed on a screen in the camera frames of the Kinect and the camera frames of the capture
system. An overview of the architecture is illustrated on Figure 2 (Right).

C Training Loss and Evaluation Metrics

All architectures are end-to-end trained using the same loss. We include the weights of the DinoV2
transformer during backpropagation for finetuning. The main point face distance (PFD) criterion
LPFD accounts for the global deformation of the objects, which computes the average squared dis-
tance d(p,f) from the set of sampled points pi ∈ P on the predicted mesh to the nearest faces in
the set of triangular faces fi ∈ F of the ground truth mesh and vice versa (eq. (1)). Moreover, to
deal with the local deformations generated in the poking region, we add a region-of-interest (ROI)
loss LROI (eq. (2)) that computes the unidirectional chamfer distance from the points pi in the ROI
to the set of sampled points qi ∈ Q of the ground truth mesh. The ROI is defined using the indicator
function I(C(pi)), which evaluates to 1 if point pi is close enough to the contact point t according
to a threshold ϵ, and if the minimum vertical component of the contact point pi,y is bigger than the
minimum vertical coordinate across all the vertices ymin scaled by a factor (eq. (3)).

LPFD =
1

|P|
∑
pi∈P

min
fj∈F

d(pi,fj) +
1

|F|
∑
fj∈F

min
pi∈P

d(fj ,pi) , (1)

LROI =
1

|P|
∑
pi∈P

I(C(pi)) · min
qj∈Q

∥pi − qj∥2 , (2)

C(pi) = (∥pi − t∥ ≤ ϵ) ∧ (pi,y > 0.2 · ymin) . (3)

The total loss is then set as L = LPFD + 0.5LROI.

During training, we reposition and re-scale all meshes into a cube of unit size ([−0.5, 0.5]3) to main-
tain a consistent scale across all objects. The losses LPFD and LROI are computed in this normalized
scale. Additionally, we calculate the relative point-to-face distance (RPFD) by dividing LPFD by the
average point-to-face distance between the template mesh MT and the ground truth mesh MGT. An
RPFD value below 1 indicates that the predicted deformed mesh MP is closer to the ground truth
than the undeformed template, with smaller values indicating better accuracy.

To further assess the prediction accuracy, we evaluate two additional metrics between the predicted
mesh and the ground truth mesh in their original scale: the unidirectional L1 Norm Chamfer Dis-
tance CDUL1 (eq. (4)) and the volumetric Jaccard Index J (eq. (5)), which we defined in terms of
the volume operator V . The two metrics provide insights into the L1 Norm surface distance and the
volume overlap ratio, respectively.

CDUL1 =
1

|P|
∑
pi∈P

min
qj∈Q

∥pi − qj∥1 , (4)

J(MA,MB) =
V (MA ∩MB)

V (MA ∪MB)
. (5)
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D 3D Printing Details

All 3D printed objects were printed using thermoplastic polyurethane (TPU) Filaflex Shore 60A Pro
White filament on Prusa MK3S+ and Prusa XL 3D printers equipped with 0.4mm nozzles. The
mechanical properties of the filament are presented in Table 4.

Table 4: Mechanical Properties of Filaflex shore 60A Pro TPU provided by the manufacturer.

Mechanical properties Value Unit Test method according to

Tensile strength 26 MPa DIN 53504-S2
Stress at 20% elongation 1 MPa DIN 53504-S2

The printing parameters of the 3D printed objects are summarized in Table 5, where the infill used
for all objects is the isotropic gyroid pattern with uniform properties and behavior in all directions.
Example of the gyroid pattern can be seen in Figure 6.

Table 5: Printing parameters of 3D printed objects featured in the PokeFlex dataset.

Object Infill density [%] Layer thickness [mm] Perimeters Bottom layers Top layers

Bunny [20] 10 0.2 3 3 3
Cylinder 10 0.15 2 3 3
Heart [21] 10 0.2 3 3 3
Pizza [22] 10 0.2 3 3 3
Pyramid 8 0.2 3 3 3

5cm

Figure 6: Top (Left) and bottom (Right) view of 3D printed pyramid, with a close-up view of the
interior gyroid infill pattern.
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E Properties of Featured Objects

Beanbag Foam Half SphereFoam Cylinder

Plush Dice Plush Moon Plush Octopus SpongePlush Turtle

Toilet Paper Roll

Foam Dice Memory Foam

Plush Volleyball

Pillow

3D Printed Heart 3D Printed Pizza 3D Printed Pyramid3D Printed Bunny 3D Printed Cylinder 

Figure 7: Rest-state reconstructed 3D meshes of all 18 objects featured in the PokeFlex dataset.

Table 6: Physical properties of objects featured in the PokeFlex dataset. Dimensions of sphere-like
objects are described by their diameter (D). Cylinder-like objects are characterized by their diameter
(D) and height (H). For objects with irregular or complex shapes, dimensions are provided using a
bounding box defined by length (L), width (W), and height (H). Stiffness of the objects is estimated
according to the method described in Section 3.

Object Weight [g] Dimensions [cm] Est. stiffness [N/m] Frames Deformations

Beanbag 184 DxH: 26x9 523 1084 363
Foam cylinder 153 DxH: 12x29 250 990 407
Foam dice 140 L: 15.5 748 1220 738
Foam half sphere 41 D: 15 1252 619 384
Memory foam 213 LxWxH: 17.5x8.5x7 395 420 141
Pillow 975 LxWxH: 58x50x10 474 1085 565
Plush dice 340 L: 22 149 1259 567
Plush moon 151 D: 17 366 959 517
Plush octopus 130 LxWxH: 22x22x11 325 1085 525
Plush volleyball 303 D: 22 323 1099 604
Plush turtle 194 LxWxH: 35x30x10 1035 930 427
Sponge 28 LxWxH: 22x12x6.1 1045 1237 772
Toilet paper roll 134 DxH: 10.5x9.5 2156 600 295
3D printed bunny 105 LxWxH:13x9x15 950 1127 593
3D printed cylinder 223 DxH: 10x20 585 1020 574
3D printed heart 100 LxWxH: 16x9x10 1198 940 444
3D printed pizza 68 LxWxH:18x15x3 3879 680 288
3D printed pyramid 48 LxWxH: 14.5x14.5x7 861 420 193

The PokeFlex dataset consists of 18 objects, whose rest-state reconstructed meshes are shown in
Figure 7. For each of the object, we summarize the physical properties and the number of frames in
Table 6. The Frames column of the table presents the total captured frames of the poking sequences
for each object, and the Deformations column gives the number of active poking frames after the
data curation, i.e., discarding the frames where the robot arm is not in contact with the objects. It is
worth noting that we report only the effective number of paired time frames in our table, in contrast
to the total number of samples, which is computed as the number of time frames multiplied by the
number of cameras.

For the dropping protocol, we recorded 3 sequences of 1 second at 60 fps for each object, summing
up to 180 time frames per object. Figure 8 shows two reconstructed deformed mesh sequences for
poking a foam dice and dropping the plush octopus, respectively.
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#1Frame: #4 #7 #10 #13 #16 #19

#1Frame: #2 #3 #4 #5 #6 #7

30 Hz

60 Hz

Figure 8: Top: Mesh reconstructions of foam dice for a poking sequence shown in every third frame.
Bottom: Mesh reconstructions of plush octopus for a dropping sequence.

F Training Details

The hyperparameters used to train the models in Section 3 are listed in Table 7.

Table 7: Training hyperparameters.

Hyperparameters Value

Learning rate 1e-4
Batch size 16 (5 objects) / 8 (1 object)
Optimizer Adam
Weight decay 5e-6
Learning rate scheduler Cosine
Minimum learning rate 1e-7
Epochs 200

G Inference Speed for Different Input Data Modalities

Table 8 shows the measured inference rates for our five proposed models with different input data
modalities. The rate is tested with an AMD Ryzen 7900 x 12 Core Processor CPU and NVIDIA
GeForce RTX 4090 GPU with 24GB memory.

Table 8: Inference rate for proposed model configurations.

Input Inference Speed

Images 115 Hz
Forces 215 Hz
Images + forces 110 Hz
Point clouds (5000 points) 106 Hz
Point clouds (100 points) 195 Hz
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H Additional Experiment

Table 9: Prediction performance for four models trained on a single viewpoint from different cam-
eras for a single object. Arrows indicate that a better performance is either higher ↑ or lower ↓.

Input LPFD · 103 ↓ LROI · 103 ↓ RPFD ↓ CDUL1[mm] ↓ J(MP,MGT) ↑
Volucam 2.98 3.92 0.646 5.392 0.892
RealSense 3.04 4.98 0.494 5.221 0.899
Kinect 4.21 6.32 0.752 6.456 0.845
Rendered 2.15 3.47 0.350 4.700 0.914

Learning from RGB images of different cameras. In this experiment, we train different models
to predict meshes using sequences of RGB images only. Each model was trained for a specific cam-
era, namely Volucam (capture system), Intel RealSense D405, Azure Kinect, and a Virtual camera
(Images rendered from ground truth mesh). The viewpoint of each camera is different. For training,
we use only deformation sequences of the foam dice. The performance of the different models is
reported in Table 9. The training hyperparameters used for this and the following experiments are
reported in Appendix F.

I Discussion

12cm

15
cm

11
cm

22cm

Figure 9: Examples of reconstructed ground truth meshes for medium (Left) and small (Right) size
objects in deformed states. Reconstruction of fine-grained details is a limitation of our current setup
(close-up views on the Right).
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Figure 10: Acting force vs. end effector
displacement, shown across all frames
for three objects from PokeFlex.

Quality of ground-truth meshes. The overall geometry
of the objects in the dataset, in static configurations, is
well captured by the meshes reconstructed with the MVS
as shown in Figure 7, even though the system’s intended
use is the reconstruction of human-size objects. Further-
more, the proposed poking protocol, using a transparent
acrylic stick, helps prevent occlusions at the contact point,
leading to detailed reconstruction of objects even when
they undergo deformations, as can be seen in Figure 9
(Left). However, reconstruction of fine-grained details
for smaller objects such as the 3D-printed Stanford ar-
madillo [23] remains challenging with the current setup
of the professional capture system, as seen in Figure 9
(Right). Better fine-grained reconstruction results can be
expected by rearranging the cameras in a smaller workspace.

Estimated stiffness. The estimated stiffness that we provide for the featured objects is only in-
tended to offer insights into the range of material properties included in PokeFlex. The simple linear
interpolation method using RANSAC can successfully characterize the linear Hookean behavior of
objects such as the foam or plush dice shown in Figure 10. More sophisticated approaches, like the
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ones presented by Sundaresan et al. [24] and [25] leveraging differentiable simulation, are needed
to better characterize the nonlinear behavior exhibited by thinner objects such as the plush turtle.

Learning from RGB images of different cameras.
The results in Table 9 show that the best performance is obtained using synthetic RGB images ren-
dered from ground-truth meshes. Regarding real-world data streams, the model trained from the
Volucam cameras performs the best in terms of validation losses. However, the model trained
using the Realsense cameras performs the best in terms of additional metrics (RPFD, CDUL1,
J(MP,MGT)). The small variations in performance show that good-performing models can be
trained using camera sensors that are external to the professional capture system, even if they have
different viewpoints.

Multi-object mesh reconstruction from different modalities. Table 2 shows that the point clouds
yield the best performance among all data modalities. Specifically, the dense synthetic point clouds
perform best in terms of validation losses and RPFD, while Kinect point clouds perform best in
terms of CDUL1 and J(MP,MGT). Furthermore, Table 2 also reveals that LROI is bigger than LPFD
for most models, which can be expected since the majority of deformation occurs in the ROI, with
the exception of the model trained with the robot data. The good performance of such a model in
LROI could be attributed to the fact that the contact position is explicitly provided as part of the robot
data. The model trained with the combination of images and robot data outperforms those using
images or robot data alone, hinting at the effectiveness of our cross-attention mechanism.

To analyze the levels of accuracy across multiple objects, we focus on the image-based mesh re-
construction model. Figure 11 shows J(MP,MGT) and RPFD for only 3 objects separately, for
clarity of visualization. The horizontal axis is the Jaccard distance, which indicates the level of
deformation of the ground truth mesh with respect to the rest-state template mesh, defined as
dJ(MT,MGT) = 1 − J(MT,MGT). Figure 11 shows that the best prediction performance is
obtained for the foam dice, having the highest Jaccard Index and the lowest RPFD.

In contrast, for low deformation regimes (small values of dJ(MT,MGT)), the sponge exhibits a
lower accuracy, reaching values higher than 1 for the RPDF metric. Such high values correspond to
a performance worse than that of predicting the rest-state mesh. Both performance metrics reported
in Figure 11 show a negative correlation with the Jaccard distance, indicating that the prediction
accuracy of our models decreases for larger deformations.

Foam Dice
Sponge
Plush Moon

Foam Dice
Sponge
Plush Moon
Baseline

R
P

F
D

Figure 11: Validation accuracy for image-based mesh reconstruction, evaluated by Jaccard Index J
(Left) and RPFD (Right), plotted against the deformation level quantified by Jaccard distance dJ .
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