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ABSTRACT

While deep neural networks have shown remarkable progress in various computer
vision tasks, they often suffer from weak generalization ability on unseen domains.
To tackle performance degradation under such domain shifts, Domain General-
ization (DG) aims to learn domain invariant features applicable to unseen target
domains based only on the data in source domains. This paper presents a simple
yet effective approach for domain generalization via style perturbation using adver-
sarial attacks. Motivated by the observation that the characteristics of each domain
are captured by the feature statistics corresponding to style, we propose a novel
domain generalization technique, referred to as Randomized Adversarial Style
Perturbations (RASP). The proposed algorithm augments the styles of features
to deceive the network outputs towards randomly selected labels during training
and prevents the network from being misled by the unexpected styles observed in
unseen target domains. While RASP is effective to handle domain shifts, its naïve
integration into the training procedure might degrade the capability of learning
knowledge from source domains because it has no restriction on the perturbations
of representations. This challenge is alleviated by Normalized Feature Mixup
(NFM), which facilitates learning the original features while achieving robustness
to perturbed representations via their mixup during training. We evaluate the
proposed algorithm via extensive experiments on various benchmarks and show
that our approach improves domain generalization ability, especially in large-scale
benchmarks.

1 INTRODUCTION

One of the major drawbacks of artificial intelligence compared to human intelligence is the lack
of adaptivity to distributional shifts. While humans easily make correct decisions even on unseen
domains, deep neural networks often exhibit significant performance degradation on the data in unseen
domains. The lack of robustness to novel domains restricts the applicability of neural networks to
real-world problems since it is implausible to build a training dataset that covers all kinds of domains
and follows the true data distribution. Therefore, learning domain-invariant representations using
limited data in source domains is critical to deploying deep neural networks in practical systems.

Domain Generalization (DG) attempts to train a machine learning model that is robust to unseen
target domains using data from source domains. The most straightforward way to achieve this goal is
to make the model exposed to various domains during the training procedure. To stretch the coverage
of the source domains, recent approaches often employ data generation strategies (Shankar et al.,
2018; Zhou et al., 2020b;a; 2021b; Li et al., 2021; Nuriel et al., 2021; Yang et al., 2021; Zhong et al.,
2022). While they have shown promising results on generalization ability, many of them require
additional information of data such as domain labels for individual instances (Shankar et al., 2018;
Zhou et al., 2020b;a; 2021b) or even extra network components such as generators and domain
classifiers (Shankar et al., 2018; Zhou et al., 2020b;a; Yang et al., 2021). However, the additional
information including domain labels is unavailable in general and the need for architectural support
increases computational complexity and training burden. There exist a few approaches free from
extra information about data or additional network modules (Li et al., 2021; Nuriel et al., 2021), but
they are limited to straightforward feature augmentations by adding trivial noise stochastically.
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This paper presents a simple yet effective data augmentation technique based on adversarial attacks
in the feature space for domain generalization. The proposed approach does not require architectural
modifications or domain labels but relies on feature statistics in the intermediate layers. Our work
is motivated by the observation that each visual domain differs in its feature statistics for instance
normalization, which corresponds to the style of an input image. Based on this observation, existing
works attempt to learn style-agnostic networks robust to domain shifts via style augmentations (Zhou
et al., 2021b; Nuriel et al., 2021; Kang et al., 2022). Although they do not require additional
networks (Zhou et al., 2021b; Nuriel et al., 2021), they are limited to using simple augmentation
techniques with no feedback loop in the augmentation process, leading to suboptimal performance.
While StyleNeophile (Kang et al., 2022) augments novel styles with different distributions using the
information observed in the previous iterations, there is no guarantee of their positive behavior for
unseen styles in the target domain.

Although our approach follows the same assumption as (Zhou et al., 2021b; Nuriel et al., 2021; Kang
et al., 2022), its objective for style augmentation is to synthesize hard examples to improve trained
models. To this end, inspired by adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018;
Xie et al., 2019), the proposed method, referred to as Randomized Adversarial Style Perturbations
(RASP), adversarially attacks the styles of features so that the corresponding examples are to be
classified into the target labels different from the ground-truths. Unlike the other methods based
on adversarial attacks toward the fixed target label (Shankar et al., 2018; Zhong et al., 2022), we
employ randomized targeted attacks to diversify augmentation directions. While the features with
modified styles strengthen the generalization ability on unseen domains, they might neglect crucial
information observable in source domains since the style augmentation is prone to increase the output
discrepancy even with perturbation-free features. To compensate for this, we propose Normalized
Feature Mixup (NFM) technique based on Mixup (Zhang et al., 2018). Instead of applying the
naïve feature Mixup technique, NFM combines the normalized representations of perturbed and
perturbation-free features. By integrating normalized features given by the Mixup with augmented
styles, we successfully maintain the representations from the source domain while taking advantage
of style augmentations based on RASP.

Our contributions are summarized as follows:

• We present a unique style augmentation technique, referred to as RASP, for domain general-
ization based on adversarial attacks, which is free from any architectural modifications or
the need for the domain label of each example.

• We propose a novel feature Mixup method, NFM, which allows us to maintain knowledge
from the source domains while facilitating the adaptation to fresh data via robust domain
augmentation.

• The proposed approach consistently demonstrates the outstanding generalization ability in
the multiple standard benchmarks, especially in large-scale datasets.

The rest of this paper is organized as follows. We first review previous works about domain gener-
alization and adversarial attack in Section 2, and our main algorithm based on RASP and NFM is
discussed in Section 3. We present experimental results from the standard benchmarks in Section 4
and conclude this paper in Section 5.

2 RELATED WORKS

2.1 DOMAIN GENERALIZATION

Domain Generalization (DG) aims to obtain generalization ability on unseen target domains while
using only source domains during training. The existing line of work (Li et al., 2018; Balaji et al.,
2018; Du et al., 2020) formulates the domain generalization task as a meta-learning problem by
splitting source domains into the meta-train and meta-test sets. Adopting the learn-to-learn scheme of
the meta-learning framework, they seek to learn to generalize on unseen domains. Other works (Seo
et al., 2020; Fan et al., 2021) focus on the observation that the naive batch normalization technique
that ignores domain-specific characteristics can hurt the generalization ability on unseen domains.

Recent studies on DG (Zhou et al., 2020a;b; Shankar et al., 2018; Zhou et al., 2021b; Nuriel et al.,
2021; Li et al., 2021; Xu et al., 2021; Yang et al., 2021; Kang et al., 2022) investigate the methods
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Figure 1: Overall framework of Randomized Adversarial Style Perturbations. Our model runs parallel
paths one with our proposed Randomized Adversarial Style Perturbations (RASP), Normalized
Feature Mixup (NFM) modules and one without them. Before each block, we apply RASP module to
augment the novel styles. RASP adjust styles of each features by minimizing loss with respect to
random target class different from ground truth. After passing RASP augmented features through the
next block, we apply NFM to boost the learning of original features by utilizing perturbation-free
path features while preserving effects of novel style augmentation by RASP. Note that weights of two
paths are shared.

based on data generation and obtain domain-invariant feature extractors by introducing sufficient
quantities of novel domain data at training time. A line of data generation based methods (Zhou et al.,
2020b;a; Yang et al., 2021) rely on generator architecture which induces additional training cost and
instability. While FACT (Xu et al., 2021) and CrossGrad (Shankar et al., 2018) do not use generator
architecture, they deploy auxiliary neural networks including domain classifier and mean teacher
network (Tarvainen & Valpola, 2017) to regularize the augmentation directions.

Others (Zhou et al., 2021b; Nuriel et al., 2021; Kang et al., 2022) focus on the observation that the
feature statistics capture characteristics of the visual domains. MixStyle (Zhou et al., 2021b) generates
novel domain features by mixing feature statistics of different images while pAdaIN (Nuriel et al.,
2021) randomly permutes the statistics of each feature before every batch normalization layer. Similar
to (Zhou et al., 2021b; Nuriel et al., 2021), SFA Li et al. (2021) adopts feature-level augmentation
technique that applies simple stochastic rescaling and additive operation. Different form (Zhou et al.,
2021b; Nuriel et al., 2021), StyleNeophile (Kang et al., 2022) augments styles that have different
distribution from that of previous iterations. While StyleNeophile (Kang et al., 2022) does not
depends on simple stochasticity, there is no guarantee that the augmented styles will be useful for
generalization in target task.

2.2 ADVERSARIAL ATTACKS

Recently, the techniques that attempt to mislead the network output by injecting imperceptible
noise into the data have been actively studied in the name of adversarial attacks (Goodfellow et al.,
2015; Madry et al., 2018; Xie et al., 2019; Zhao et al., 2018; Moosavi-Dezfooli et al., 2016). Many
adversarial attack methods (Goodfellow et al., 2015; Madry et al., 2018; Xie et al., 2019) rely on
gradient-based optimization. These methods generate adversarial noise by solving an optimization
problem that aims to increase the loss corresponding to the ground-truth label.

3 PROPOSED APPROACH

This section describes the technical details of the proposed Randomized Adversarial Style Perturba-
tions (RASP) and the Normalized Feature Mixup (NFM) methods.

3.1 BACKGROUND

Instance normalization and styles Recent studies on neural style transfer (Huang & Belongie,
2017; Ulyanov et al., 2016) found that the style of an image can be captured by the instance-specific
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channel-wise mean and standard deviation. Instance Normalization (IN) (Ulyanov et al., 2016)
removes the effect of styles on images by normalizing features as follows:

IN(x) = γ
x− µ(x)
σ(x)

+ β, (1)

where γ and β are learnable affine parameters and (µ(x), σ(x)) is instance-specific channel-wise
statistics computed by

µ(x) =
1

HW

H∑
h=1

W∑
w=1

xh,w and σ(x) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(xh,w − µ(x))2. (2)

AdaIN (Huang & Belongie, 2017) allows the style of an input image y to be transferred to the content
of another input x by replacing the affine parameters of IN with feature statistics of the style input y
as follows:

AdaIN(x) = σ(y)
x− µ(x)
σ(x)

+ µ(y). (3)

Gradient-based adversarial attacks Adversarial attacks (Kurakin et al., 2016; Zhao et al., 2018;
Moosavi-Dezfooli et al., 2016; Xie et al., 2019; Madry et al., 2018; Goodfellow et al., 2015) trick a
neural network by injecting imperceptible small noise to an example. It has been actively explored in
recent years, and a popular way to generate such perturbations is to utilize the gradient information
of the network. Given an image-label pair (x, y) and model parameters θ, FGSM (Goodfellow et al.,
2015) computes the optimal perturbation of a linearized cost function, which is given by

x = x+ ε sign(∇xJθ(x, y)), (4)

where ε is the magnitude of perturbation and Jθ(·, ·) is a task-specific loss function. I-FGSM (Kurakin
et al., 2016) extends FGSM (Goodfellow et al., 2015) by using multiple iterations as

x0 = x (5)
xt+1 = clipx,ε [xt + α sign(∇xJθ(xt, y))] , (6)

where α is the step size for each iteration and clipx,ε[·] is a clipping operation that restricts the
magnitude of perturbation from the original image only up to ε. We adopt an unclipped and targeted
version of I-FGSM as our baseline for adversarial attacks.

3.2 OVERALL FRAMEWORK

Let (x, y) denote an image and class label pair from an arbitrary source domain. We adopt Empirical
Risk Minimization (ERM) using the standard classification loss denoted by `cls as our baseline.
Our goal is to train a feature extractor fθ and a classifier gφ parameterized by θ and φ, respectively
which are robust to domain shifts. To apply our methods, we divide fθ into L residual blocks as
fθ := fLθ ◦ f

L−1
θ ◦ · · · ◦ f1θ . When we train the proposed network, we employ a parallel forwarding

path with shared weights called a perturbation-free path and make two paths interact with each other.

To enhance the generalization ability on unseen visual domains, we incorporate the Randomized
Adversarial Style Perturbations (RASP) module, which will be discussed in Section 3.3, before each
block with a probability of 0.5. Although adversarial style augmentation is effective to generate
challenging styles, we also perform Normalized Feature Mixup (NFM) after each block with a
probability of 0.5, when RASP is applied, to prevent the augmented styles from being deviated too
much from the original features. Figure 1 illustrates the overall framework of the proposed approach.

3.3 RANDOMIZED ADVERSARIAL STYLE PERTURBATIONS (RASP)

The goal of RASP is to augment the styles of features in each block and enhance the robustness of
the features regardless of their styles. We achieve the objective by transforming features using the
styles that have the potential to mislead the network outputs at training time. While the existing
style perturbation methods (Zhou et al., 2021b; Nuriel et al., 2021; Kang et al., 2022) are helpful for
learning style-agnostic feature extractors, we argue that the target direction of style augmentation is
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Algorithm 1 Randomized Adversarial Style Perturbations (RASP): before the ith block

1: Input: feature extractor fLθ , · · · , f
i+1
θ , f iθ, classifier gφ, number of iterations T , step size ε, target

label ytarget, ground-truth label y, feature from (i− 1)st block xi−1, threshold τ
2: µ0 = µ(xi−1), σ0 = σ(xi−1)

3: x̃i−1 =
xi−1 − µ0

σ0
4: for t = 0, · · · , T − 1 do
5: xi−1

t = x̃i−1 · σt + µt
6: zt = gφ ◦ fLθ ◦ · · · ◦ f iθ(x

i−1
t )

7: if softmax(zt)y ≥ τ then
8: Lstyle = `cls(zt, ytarget)
9: µt+1 = µt − ε · ‖µ0‖2 · sign(∇µtLstyle)

10: σt+1 = σt − ε · ‖σ0‖2 · sign(∇σt
Lstyle)

11: else
12: µT = µt, σT = σt
13: break
14: end if
15: end for
16: Output: xi−1

T = x̃i−1 · σT + µT

essential since we aim to employ new styles effective for learning domain-agnostic models with a
limited number of style-augmented examples instead of simply populating diverse but pointless data.

The style augmentation given by RASP has three characteristics, which are prediction disturbance,
style diversity, and plausibility. Prediction disturbance reflects our main assumption that adversarial
style augmentation prevents a network from being deceived by style changes in unseen target domains.
Although attaining prediction disturbance, attacks towards predetermined targets may result in weak
diversity of augmented styles. Hence, to resolve this issue, we introduce a randomized target selection
strategy that guarantees the diversity of generated styles. For plausibility, we employ a threshold τ to
terminate the RASP process when the confidence of the ground-truth label falls below the threshold;
it ensures augmented styles are within realistic ranges.

To be specific, given a feature xi−1 after the (i − 1)st block and a randomly sampled target label
ytarget different from the original label, we compute the style loss Lstyle at each attack iteration t as

Lstyle = `cls
(
gφ ◦ fLθ ◦ · · · ◦ f iθ(xi−1

t ), ytarget
)
, (7)

where xi−1
t = x̃i−1 · σt + µt is the denormalized vector and `cls is standard classification loss. Note

that x̃i−1 is the instance normalized feature derived from xi−1 and (µt, σt) defines the style at the tth
iteration where (µ0, σ0) = (µ(xi−1), σ(xi−1)). Given step size ε, the style of a feature is updated in
a way that decreases Lstyle as follows,

µt+1 = µt − ε · ‖µ0‖2 · sign(∇µt
Lstyle) (8)

σt+1 = σt − ε · ‖σ0‖2 · sign(∇σtLstyle), (9)

as long as the following condition is met:

softmax(gφ ◦ fLθ ◦ · · · ◦ f iθ(xt))y ≥ τ. (10)

Note that the ratio of the distribution shift on style in RASP tends to be preserved by scaling the
learning rate using the norm of mean or standard deviation as in (9). Algorithm 1 presents the detailed
procedure and mathematical formulation of RASP.

3.4 NORMALIZED FEATURE MIXUP (NFM)

Although RASP provides plentiful novel styles that strengthen generalization performance on unseen
domains, it degrades the capability of learning features from source domains since perturbed styles
may excessively diverge from the styles without perturbations. To make up for this phenomenon,
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we propose Normalized Feature Mixup technique (NFM) that ensembles instance normalized fea-
tures from both the perturbation-free path and the RASP path. By doing this, NFM preserves the
knowledge from source domains while learning robust representations by taking advantage of style
augmentations.

For NFM, instead of using the features that may change the augmented styles back into the original
one, we perform Mixup with the normalized feature and integrate augmented style into the mixed
normalized features. Given feature from the ith block xiin, we obtain a feature after instance normaliza-
tion with augmented style in the RASP path, x̃iin. NFM module mixes x̃iin with instance-normalized
feature from the perturbation-free path in the ith block, x̂i, to get mixed normalized feature, x̃imix, and
denormalize it with the augmented style (µ(xiin), σ(x

i
in)) to obtain the final output, xiout, as follows:

x̃imix = α · x̂i + (1− α) · x̃iin, (11)

xiout = x̃imix · σ(xiin) + µ(xiin), (12)

where α ∼ Beta(0.1, 0.1) determines the Mixup ratio.

3.5 INFERENCE

While our method utilizes an additional forwarding path and optimization steps during training, we
use the perturbation-free path for inference and its computational complexity depends on the baseline
algorithm.

4 EXPERIMENTS

We demonstrate the performance of the proposed algorithm on the standard benchmarks for domain
generalization and analyze the characteristics of our approach in comparison with existing techniques.

4.1 DATASETS AND EVALUATION PROTOCOL

We evaluate the proposed algorithm on DomainNet (Peng et al., 2019), Office-Home (Venkateswara
et al., 2017), and PACS (Li et al., 2017), which are standard benchmarks for domain generalization.
Our primary target benchmark is DomainNet because it is a large-scale dataset in terms of the number
of classes and examples; it contains 586,475 images of 6 domains (Clipart, Infograph, Painting,
Quickdraw, Real, Sketch) and 345 classes. Office-Home contains 15,558 images of 65 classes from
4 different domains (Artistic, Clipart, Product and Real world) while PACS, the smallest dataset,
consists of 9,991 images of 4 domains (Photo, Art paint, Cartoon, Sketches) and 7 classes (dog,
elephant, giraffe, guitar, horse, house and person).

For evaluation, we follow the same leave-one-domain-out protocols as previous works (Zhou et al.,
2021b; Huang et al., 2020; Zhou et al., 2020a). We select the final model using the validation set from
all source domains. All the results are average classification accuracy over five runs with different
random seeds.

4.2 IMPLEMENTATION DETAILS

We employ ResNet18 and ResNet50 pre-trained on ImageNet (Deng et al., 2009) as our backbone
network architectures. We use the SGD optimizer with a learning rate of 0.0005 decayed by 0.1 after
30 epochs. The Batch size is set to 32 and the number of epoch is set to 60. For our approach, we set
the threshold of the ground-truth class probability τ to 0.8, the step size ε to 2/255, and the number
of attack iterations to 5 for all datasets. RASP and NFM are applied to the 2nd, 3rd, and 4th residual
blocks, before and after each block, respectively. All of the experiments are performed on a single
TITAN-XP GPU.

4.3 RESULTS ON DOMAINNET

Quantitative results on DomainNet with RASP and NFM are presented in Table 1. DomainNet is the
most challenging dataset for DG since it is the largest dataset and there is a large gap between the
domains it contains compared to other datasets. Despite these difficulties, the proposed algorithm
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Table 1: Performance on DomainNet (Peng et al., 2019). RASP presents outstanding accuracy in this
large-scale dataset. The bold-faced numbers indicate the best performance.

(a) Results of ResNet18 on DomainNet
Method Clipart Infograph Painting Quickdraw Real Sketch Avg.

ERM 56.6 18.4 45.3 12.5 57.9 38.8 38.3
MetaReg (Balaji et al., 2018) 53.7 21.1 45.3 10.6 58.5 42.3 38.6

DMG (Chattopadhyay et al., 2020) 60.1 18.8 44.5 14.2 54.7 41.7 39.0
StyleNeophile (Kang et al., 2022) 60.1 17.8 46.5 14.6 55.4 45.3 40.0

RASP+NFM (ours) 60.4 ± 0.2 22.6± 0.1 50.2± 0.2 17.2± 0.3 56.8± 0.3 48.5± 0.4 42.6

(b) Results of ResNet50 on DomainNet
Method Clipart Infograph Painting Quickdraw Real Sketch Avg.

ERM 64.0 23.6 51.0 13.1 64.5 47.8 44.0
MetaReg (Balaji et al., 2018) 59.8 25.6 50.2 11.5 65.5 50.1 43.6

DMG (Chattopadhyay et al., 2020) 65.2 22.2 50.0 15.7 59.6 49.0 43.6
StyleNeophile (Kang et al., 2022) 66.1 21.4 51.4 15.3 61.7 51.8 44.6

RASP+NFM (ours) 66.5± 0.2 27.4± 0.2 55.2± 0.2 16.9± 0.3 63.7± 0.1 53.8± 0.3 47.2

Table 2: Performance on Office-Home (Venkateswara et al., 2017). Note that the shaded rows
are for the algorithms that use different hyperparameters for individual target domains. The bold-
faced numbers indicate the best performance among the methods evaluated without domain-specific
hyperparameters.

(a) Results of ResNet18 on Office-Home
Method Art Clipart Product Real Avg.

ERM 59.0 48.4 72.5 75.5 63.9
CrossGrad (Shankar et al., 2018) 58.4 49.4 73.9 75.8 64.4

MixStyle (Zhou et al., 2021b) 58.7 53.4 74.2 75.9 65.5
StyleNeophile (Kang et al., 2022) 59.6 55.0 73.6 75.5 65.9

RASP+NFM (ours) 59.7 ± 0.4 57.6± 0.9 75.2± 0.3 76.7± 0.4 67.3
DDAIG (Zhou et al., 2020a) 59.2 52.3 74.6 76.0 65.5

ADVTSRL (Yang et al., 2021) 60.7 52.9 75.8 77.2 66.7

(b) Results of ResNet50 on Office-Home
Method Art Clipart Product Real Avg.

ERM 64.7 58.8 77.9 79.0 70.1
CrossGrad (Shankar et al., 2018) 67.7 57.7 79.1 80.4 71.2

MixStyle (Zhou et al., 2021b) 64.9 58.8 78.3 78.7 70.2
RASP+NFM (ours) 68.8± 0.4 61.7± 1.0 79.8± 0.2 80.9± 0.3 72.8

DDAIG (Zhou et al., 2020a) 65.2 59.2 77.7 76.7 69.7
ADVTSRL (Yang et al., 2021) 69.3 60.1 81.5 82.1 73.3

shows significant improvements in averaged accuracy with ResNet18 and ResNet50. As depicted
in Table 1, our method boosts baseline (ERM) with a remarkable margin in all domains except
Real domain with both ResNet18 and ResNet50. Not only improving the baseline, but our method
also shows better performance than existing methods. Table 1 demonstrates that improvements in
challenging domains (Infograph, Painting, Quickdraw, Sketch) are outstanding compared to easy
domains (Clipart, Real). This illustrates that the proposed method, optimizing worst-case styles, can
achieve more significant improvements when there is a large domain gap between source domains
and target domains.

4.4 RESULTS ON OFFICE-HOME

To validate the effectiveness of our algorithm, we conducted experiments on Office-Home. Table 2
clearly shows that the proposed algorithm achieves better accuracy than existing methods on Office-
Home. Similar to DomainNet, the proposed method exhibits stronger performance improvement in
difficult target domains. This is consistent with the observation in DomainNet that RASP is more
useful when there exists a larger discrepancy between source domains and target domains. Note that
ADVTSRL (Yang et al., 2021) and DDAIG (Zhou et al., 2020a) adopt different hyper-parameters for
each target domain, which makes direct comparison with those methods unfair.
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Table 3: DG performance on ResNet18 for our model and the existing works on PACS (Li et al.,
2017) Note that the shaded rows of the table denote the algorithms that use different hyper-parameters
for each target domain. The bold-faced numbers indicate the best performance among the methods
that do not require target-domain-specific hyper-parameters.

Results of ResNet18 on PACS
Method Art Cartoon Photo Sketch Avg.

ERM 75.1 74.2 95.6 68.4 78.3
CrossGrad (Shankar et al., 2018) 79.8. 76.8 96.0 70.2 80.7

MixStyle (Zhou et al., 2021b) 84.1 78.8 96.1 75.9 83.7
StyleNeophile (Kang et al., 2022) 84.4 78.4 94.9 83.3 85.5

RASP+NFM (ours) 84.6± 0.5 79.8± 0.5 94.1± 0.4 80.1± 1.1 84.7

DDAIG (Zhou et al., 2020a) 84.2 78.1 95.3 74.7 83.1
ADVTSRL (Yang et al., 2021) 85.8 80.7 97.3 77.3 85.3

Table 4: Ablation study results on the variations of our algorithm. The bold-faced numbers indicate
the best performance.

Ablation types Variations Art Cartoon Photo Sketch Avg.

(a) Augmentation Objective Ours 84.6 79.8 94.1 80.1 84.7
Ground-truth 84.3 78.1 93.3 80.6 84.1

(b) NFM

w/o NFM 82.6 79.3 92.9 80.1 83.7
Style Mixup 83.4 79.0 93.5 79.5 83.9

Mixup 84.1 78.7 93.7 79.1 83.9
Ours 84.6 79.8 94.1 80.1 84.7

(c) Attack Iterations (T )

3 83.6 78.8 94.9 77.6 83.7
4 84.4 79.7 94.5 78.4 84.3
5 84.6 79.8 94.1 80.1 84.7
6 84.2 80.0 93.6 80.4 84.5

(d) Thresholding (τ )

0.0 83.0 79.0 92.1 77.7 83.0
0.2 83.1 79.0 93.1 78.5 83.4
0.4 83.5 79.6 93.0 81.0 84.3
0.6 84.3 79.8 93.3 80.8 84.6
0.8 84.6 79.8 94.1 80.1 84.7

4.5 RESULTS ON PACS

We evaluate our proposed modules RASP and NFM on PACS dataset. Table 3 presents the results
on PACS. While the most of methods utilize domain labels or additional architectures, our method
outperforms most of the existing methods in most of the domains. It can be seen that the performance
gain from the proposed method is most significant in the most challenging domains including Sketch
and Cartoon. On the other hand, in the case of the easy domains including Art painting and Photo,
it is possible to learn useful information for the target domains only by learning from the source
domains. Therefore, in this case, the role of NFM that preserves the important information from
source domains becomes a critical issue. A detailed analysis of the role of NFM modules can be
found in Section 4.6. Note that ADVTSRL (Yang et al., 2021) and DDAIG (Zhou et al., 2020a)
adopt different hyper-parameters for each target domain, which makes direct comparison with those
methods unfair.

4.6 ABLATION STUDIES

To validate our algorithm, we perform various ablation studies, which include the analysis of hyper-
parameters, objective functions, and implementation variations. All of the experiments were done in
ResNet18 on PACS.

Effects of attack objectives To show that our choice of augmentation direction is optimal, we
investigate the results with varying augmentation directions. One simple way to achieve prediction
disturbance might be increasing the classification loss with respect to the ground truth label. As
we can see in Table 4 (a), such direction clearly shows inferior results to the proposed direction,
which is increasing loss with respect to the randomly sampled target classes. We conjecture that this
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Table 5: Ablation study results on the location our method is applied. The bold-faced numbers
indicate the best performance.

RGB Res2 Res3 Res4 Art Cartoon Photo Sketch Avg.

75.1 74.2 95.6 68.4 78.3
X 79.3 76.7 96.0 73.5 81.4

X 82.2 77.9 95.1 76.9 83.0
X 82.1 77.3 94.7 77.7 83.0

X 80.1 78.0 95.5 68.2 80.5
X X 83.2 78.0 94.2 80.2 83.9
X X 84.5 79.2 94.7 76.4 83.7

X X 83.4 79.5 94.4 77.6 83.7
X X X 84.6 79.8 94.1 80.1 84.7

phenomenon occurs because randomly selected target classes guarantee more diverse augmentation
in the style space.

Effects of variation on NFM Table 4 (b) presents the results with variations on NFM modules.
When Mixup is applied to the styles or features instead of normalized features, classification accuracy
significantly drops. We infer this is due to such Mixup strategies weaken the advantages of the RASP
that provide novel styles by integrating normal styles into the augmented styles.

Effects of attack iterations To further investigate the effects of RASP, we analyze the influence of
attack iteration T . Table 4 (c) shows the evaluation results on PACS with varying attack iteration.
As more iterations produce more challenging styles for networks, we can see that classification
accuracy on the comparably easy target domain, e.g., photo, decreases as iteration increases while the
classification accuracy in the comparably difficult target domain, e.g. sketch, increases as iteration
increases.

Effects of thresholding We evaluate our proposed algorithms with different thresholds. Table 4 (d)
shows the varying results with different thresholds. The threshold is a hyper-parameter that balances
the diversity and plausibility of the synthesized styles. By avoiding the generation of implausible
styles, large thresholds aid in the learning of sufficient information from the source domain in a
situation with a relatively small domain gap. On the other hand, if the domain gap is substantial,
small thresholds can improve performance by enabling the generation of novel styles. Conversely, if
the threshold is too low, it may degrade performance by generating harmfully diverse styles.

Effects on where to apply the proposed algorithm We evaluate our proposed algorithms mul-
tiple times while applying our method to different levels of the network. Table 5 shows that the
performance of the proposed method varies greatly depending on the location where it is applied. In
particular, it can be seen that when the proposed module is applied to the very early or late blocks, the
performance improvement is negligible compared to when it is applied to the middle-level blocks.

5 CONCLUSION

We presented a simple yet effective style augmentation framework for domain generalization which is
based on adversarial attacks. The proposed method augments the styles that can deceive the network
by attacking the model itself. The augmented styles achieve the generalization ability on unseen
domains by making feature extractors robust to the style changes that might mislead the network
outputs. Proposed RASP and NFM, since they do not require any architectural modifications or
domain labels, can be easily attached to the existing baselines. The extensive experimental shows
that the proposed algorithm consistently improves generalization ability on unseen target domains on
multiple datasets.

5.1 LIMITATIONS

While the proposed algorithm does not require additional architectures, it also requires additional
computations to augment the styles of the features compared to vanilla training of convolutional
neural networks at training time.

9
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Ethics Statement Domain Generalization is related with fairness issue since neural architectures
without domain generalization ability will make unexpected decisions, which might be unfair deci-
sions, on unseen domains. By achieving domain generalization, our method contributes to resolving
in-nature unfairness of deep learning models.

Reproducibility We present detailed procedure of the proposed algorithm in Section 3. Following
the procedure, the results can be reproduced by using hyper-parameters in Section 4.2 We will release
our codes soon.
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