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Abstract

2D Freehand echocardiography remains the primary imaging modality for routine fetal
cardiac care, essential in the antenatal detection of Congenital Heart Disease (CHD). How-
ever, there is a lack of spatial context which requires 3D imaging. Current 3D methods, such
as Spatio-Temporal Image Correlation (STIC), face limitations in success rate, image qual-
ity, and ease of use, and come at the cost of lower spatial and temporal resolution compared
to 2D acquisitions. This work studies the feasibility of aligning real high spatial and tem-
poral resolution 2D fetal echocardiography into a reference 3D space defined by lower reso-
lution 3D STIC. FERN, a Fetal Echocardiography Registration Network, employs trans-
formers for standard fetal echocardiography view alignment. The network is trained on sim-
ulated 2D slices derived from 3D volumes at end-diastole, and validated on real 2D acquisi-
tions from fetuses with Coarctation of the Aorta and Right Aortic Arch diagnoses, achieving
a mean Euclidean distance of 2.98 ± 1.27 mm on cardiac region-of-interest points between
predicted and manually selected planes. Compared to manually aligned planes, improved
image similarity to an average atlas is achieved, confirmed by blinded best plane selection.
This work demonstrates that high spatial and temporal resolution 2D fetal echocardiogra-
phy can be integrated into a 3D context provided by lower-resolution 3D acquisitions or
fetal cardiac atlases, potentially resulting in a new 3D visualisation tool for enhanced CHD
diagnosis. Code will be available at: https://github.com/PaulaRamirezGilliland/FERN

Keywords: Fetal echocardiography, 3D Fetal ultrasound, STIC, Congenital Heart Disease,
3D plane localisation, Fetal cardiology, Fetal cardiac imaging

1. Introduction

Congenital Heart Disease (CHD) is the most common group of malformations in fetuses
and infants, with an incidence of around 6 per 1000 live births for moderate and severe
forms (Hoffman and Kaplan, 2002). Antenatal diagnosis highly impacts patient prognosis,
reducing mortality and morbidity (Tworetzky et al., 2000; Bonnet et al., 1999).

2D fetal echocardiography, the primary modality for antenatal CHD detection, offers
high spatial and temporal resolution at a low cost. However, it lacks 3D context, requiring
sonographers to mentally reconstruct 3D anatomy. Spatio-Temporal Image Correlation
(STIC) (DeVore et al., 2003) offers 3D+time ultrasound for fetal cardiac evaluation via
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automatic volume sweeps reordered by the cardiac cycle. However, despite over 20 years of
availability, it is underused due to significant technological limitations.

STIC is challenging to acquire, with a limited success rate (Inamura et al., 2020) which
may lengthen examination times. STIC is anisotropic, with lower spatial and temporal
resolution than 2D acquisitions and susceptibility to motion-induced synchronisation errors.

2D Fetal echocardiography acquisitions cover different cross-sectional levels of the car-
diac anatomy using a standardised protocol (Carvalho et al., 2023) at an approximately
axial position, avoiding shadowing from the fetal ribs. The standard views encompassing
the cardiac anatomy include: 4 Chamber view (4CH), Left Ventricle Outflow Tract (LVOT),
Right Ventricle Outflow Tract (RVOT), 3 Vessel/3 Vessel and Trachea Views (3VV/3VT).

Aligning standard views into a 3D space is clinically valuable for assessing view quality
and distinguishing between anatomical variability, pathological features, probe and fetal
motion. This is particularly relevant given the prevalence of the standard view acquisition
protocol and the high anatomical variability in CHD, and may be achieved by comparing
the estimated plane locations with the corresponding location in an average 3D atlas. This
work endeavours to align 2D standard views into an average 3D space using deep learning,
to provide 3D context to these high-resolution acquisitions during clinical examinations.

1.1. Related Works

Hou et al. (2018) introduced a CNN-based method for 2D to 3D fetal MRI slice localisation
into a canonical atlas space, forming the foundation for later approaches using anchor points,
point loss, and Fibonacci sphere sampling (Xu et al., 2022; Yeung et al., 2021). Alternative
works explored geodesic loss functions (Mohseni Salehi et al., 2019). The most relevant prior
work in the literature is PlaneInVol (Yeung et al., 2021), addressing the 3D localisation of
2D Ultrasound brain planes. PlaneInVol utilises a CNN architecture, computing attention
across input slices to predict slice transformations. It is trained on dense inputs, i.e. for
each case, the spatial context of multiple slices (N=32) is used to generate the prediction
and learn the transformations. For this reason, it is sensitive to low numbers of input slices
(< 10 slices). Unlike a transformer architecture, where positional tokens are an inherent
part of the structure, PlaneInVol does not leverage any prior positional information, such as
the view type. QAERTS (Ramesh et al., 2024) builds on PlaneInVol, enhancing accuracy
and efficiency via a multi-head architecture, where different geometric transformations and
their associated variances are learnt. Inputs with low variances are given higher weight.

Slice-to-Volume Registration Transformer (SVoRT) (Xu et al., 2022) is a transformer-
based method for reconstructing fetal brain MRI volumes from stacks of slices using an
iterative approach, proceeding from classical methods (Kuklisova-Murgasova et al., 2012).
In SVoRT, the slices within a given stack are assumed to have highly correlated positions,
due to the acquisition protocols of fetal MRI. This work builds on SVoRT and PlaneInVol,
adapting the framework for sparse fetal echocardiography data. Such approaches have not
been developed for fetal echocardiography data.

1.2. Contributions

This study presents and validates FERN, a Fetal Echocardiography Registration Network
for 2D-to-3D alignment, see Fig. 1, combining the spatial context of 3D imaging with the
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superior resolution and accessibility of 2D echocardiography. FERN is validated on real
CHD cases, laying the foundation for a novel 3D fetal cardiac visualisation tool.

Two novel technical contributions are introduced compared to prior works: (1) the use of
a view positional indicator and a transformer architecture for ultrasound plane localization,
contrasting with the CNN from Yeung et al. (2021), and (2) the ability to handle sparse
inputs consisting of only 1-5 standard view slices in any orientation. In contrast, SVoRT
(Xu et al., 2022) requires dense inputs comprising multiple highly correlated slice stacks.
Dense inputs means that multiple slices, densely sampling the anatomy of each case, are
needed to generate the transformation predictions, rather than 1-5 independent slices.
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Figure 1: End-diastole frames from standard views of one subject are localised in a standard
3D space via a Fetal Echocardiography Registration Network. There is no restriction on
the number of input slices. Atlas from Uus et al. (2022b).

2. Methods

FERN automates the alignment of 2D fetal echocardiography standard views in an average
3D space. Using a Slice-to-Volume Registration Transformer (Xu et al., 2022), it can localise
1-5 standard views in a predefined 3D space (Fig. 1). The network is trained in a supervised
manner, simulating 2D slices from real 3D STIC volumes. Random transformations for N
slices are sampled from each volume (see Sec. 2.2). FERN predicts transformations aligning
2D slices to 3D space using spatial context across all N slices.

Figure 2 details the transformer architecture (Xu et al., 2022) used for predicting the
transformations for each slice.

The main modifications to SVoRT framework are summarised in Table 1. Due to the
sparse input, components designed for the full reconstruction are omitted (Xu et al., 2022).

2.1. Loss Functions

Predicted transformations are parameterised by three anchor points in a plane (Hou et al.,
2018). A plane in 3D may be defined by any three non-collinear points. Here, they are
defined as the bottom-left (P1) and bottom-right (P2) corners, and the centre (P3) of the
frame. Appendix A includes further details. The network is trained using an L2 loss between
predicted (P̂ ) and target (P ) anchor points (point loss). The impact of an image loss
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Figure 2: Simplified SVoRT architecture (Xu et al., 2022) used in FERN.

Table 1: Comparison of the Original SVoRT Framework (Xu et al., 2022) and FERN

Aspect SVoRT FERN

Dataset Fetal brain MRI Fetal echocardiography
Transformation Sampling Any orientation Approx. standard view
Slice Transformations in a stack Correlated Independent
Positional Information Stack and slice index View indicator
Input Sparsity Dense, stacks of slices Sparse, 1-5 views
Output 3D reconstruction 3D slice

transformations

is also studied via a smooth L1 loss (Appendix B) between the input yin and slices ypred,
predicted from the original 3D volumes instead of the reconstructions used in the original
SVoRT method. The total loss function is

Llocalisation = ∥P̂1 − P1∥22 + ∥P̂2 − P2∥22 + ∥P̂3 − P3∥22 + λL1smooth(yin, ypred), (1)

2.2. Training Transformation Sampling and Positional Embedding

FERN is designed for standard fetal echocardiography views, which are taken at an ap-
proximate axial position (see Fig. 3). Therefore, the slice sampling of the 2D training slices
from the 3D STIC volumes should reflect this. The coordinate system is centred on the
aligned 3D STIC volume origin, with the z-axis aligned axially. Azimuth (θ) and polar (ϕ)
angles capture in-plane and through-plane rotations, respectively. Instead of evenly sam-
pling across a sphere (Hou et al., 2018), the spherical coordinates (azimuth θ and polar ϕ
angles) in this approach are:

θ = 2π ·Uniform(0, 1), (2)

ϕ ∼ N
(
0,
( π

12

)2
)
, with ϕ ∈

[
−π

4
,
π

4

]
rad. (3)
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Here, ϕ is sampled from a normal distribution centred at 0 (no through-plane rotation)
with σ = 15◦. Angles > 45◦ are rejected as these represent unrealistic standard views. The
full 360◦ in-plane rotations θ are sampled. See Appendix C for further details.
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Figure 3: Schematic diagram of the coarse standard view positions: a range of slices are
assigned the same position. Atlas from Uus et al. (2022b).

For training, multiple axial slices are sampled from a 3D volume and are independently
transformed using in-plane rotations and translations, and through-plane rotations as de-
scribed above. The initial axial slice position is used to assign a coarse position to each
slice, corresponding to a standard view label, as depicted in Fig. 3. The standard view label
spans a range of plane positions near the atlas view location, and may be automatically
extracted (Baumgartner et al., 2017). To clarify, each axially sampled slice gets assigned a
positional label based on proximity to atlas-defined view locations. Proximity is given by
the axial slice index before applying 3D transformations (e.g. slices 30-40 get label 3).

2.3. Training

The network is trained on dense inputs of up to 94 slices per case, with a 30% chance of
randomly switching to 1–5 slices at expected standard view locations, enabling it to learn full
spatial context while handling sparse inputs during inference. Data augmentation includes
random noise, contrast adjustments, affine transformations, and heart and thorax masking.
For this, training slices are randomly multiplied by either a tight heart ROI mask, a dilated
heart ROI mask or a mask around the fetal thorax, to ensure robustness to shadows and
extracardiac features (see Appendix D).

All experiments are trained for 800000 iterations, using an AdamW optimizer (Loshchilov
and Hutter, 2019). Each experiment is repeated five times to improve reliability and ac-
count for variability caused by random weight initialisation, stochastic training processes,
and data augmentation. Model ensembling is also studied, where the predicted points of
all five networks are averaged. The batch size=8, with a linearly decaying learning rate
initialised at 2× 10−4. For the image loss, λ = 1000 (Eqn. 1).
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2.4. Ablation study

An ablation study is performed to evaluate the impact of SVoRT components. TheBaseline
uses 3 SVT iterations (Xu et al., 2022) with view positional embedding (PE) and image
loss (setting λ in Eqn. 1 to 0 for No image loss or 1000). Components are individually
removed: PE, image loss, reduced number of iterations, and the transformer, replaced by a
CNN (Yeung et al., 2021).

2.5. Training Dataset

The training dataset consists of 3D US (STIC) acquired with a Phillips X6-1 matrix probe.
Of an initial 128 volumes from 85 subjects, only 31 volumes from 19 subjects (including 7
for testing) were used due to poor image quality, highlighting the limitations of current 3D
acquisitions. The dataset includes 15 Right Aortic Arch (RAA), 8 Coarctation of the Aorta
(CoA), and 1 Tetralogy of Fallot case. Despite the small dataset, random slice sampling with
through-plane and in-plane rotations and translations greatly increases data variability.

End-diastole 3D STIC frames were rigidly registered to the atlas space (see Appendix
E), manually quality-checked, and resampled to 94× 94× 94.

2.6. Testing Datasets

The testing dataset includes 24 real 2D scans from 7 subjects, each subject having a paired
3D STIC (Paired real 2D) and 54 unpaired 2D images from 15 cases (Unpaired real 2D),
comprising 10 CoA and 12 RAA cases. The 2D paired scans, acquired with a Phillips C9-2
curvilinear probe, include standard views manually aligned to STIC volumes, which were
registered to the reference 3D space (Appendix E, F). Paired T2-weighted MRI reconstruc-
tions (Uus et al., 2020, 2022a) for these cases were also aligned to their respective 3D STIC
volumes. The average gestational age = 31.17±1.24 weeks. An average atlas was created
from high-quality 3D STIC volumes (Appendix G) and used as an evaluation reference.

2.7. Evaluation

Five random in-plane transformations are applied to each 2D image in the Paired real 2D
dataset, generating 120 test instances (24 slices × 5 transformations). Each experiment is
repeated five times and evaluated using Euclidean Distance on a heart ROI mask (EDmask),
RMSE of translation components (RMSEtrans), and Geodesic Distance (GD, Appendix H).
Statistical significance is evaluated using a Wilcoxon signed-rank test against the Baseline.
Sec. 3.2 includes a similarity analysis, comparing the real 2D scans to the planes selected
from their paired 3D volume (STIC and MRI), given either the manual or predicted transfor-
mations, including Multi-Scale Structural Similarity Index (MS-SSIM (Wang et al., 2003)),
Normalised Cross-Correlation (NCC) and Normalised Mutual Information (NMI).

For the Unpaired real 2D dataset, 2D slices are passed through the network at their
acquired orientation, with predicted transformations used to extract corresponding atlas
slices, enabling a similarity comparison (Sec. 3.3). Results for the Paired real 2D dataset
are also included, comparing acquired 2D slices to slices extracted from the atlas using the
predicted or manually selected transformation.
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An experienced fetal cardiac researcher conducted a blinded qualitative analysis (Sec. 3.4),
evaluating predicted and manually selected 3D US (STIC) and atlas planes for feature con-
sistency and presence compared to the 2D input scan, selecting the best plane. For this,
expert-annotated anatomical landmarks of high quality STIC were used as references.

3. Results

3.1. Transformation Accuracy on Paired Real 2D dataset

Table 2: Mean results on manually aligned 2D data. ED = Euclidean Distance, GD =
Geodesic Distance. P-values (compared to baseline): *< 0.05, **< 0.005, ***< 0.0005,

n.s.=non-significant

Experiment EDmask (mm) RMSEtrans (mm) GD (deg.) Params.

3 Iters.
(Baseline) 3.264 ± 1.384 1.4 ± 0.756 9.749 ± 4.917

74M
(≈ 38.12 h)

No PE 3.748 ± 1.964*** 1.7 ± 1.024*** 10.657 ± 5.802*

No Image Loss 3.548 ± 1.486** 1.576 ± 0.802*** 10.146 ± 5.309 n.s.

CNN 3.996 ± 1.555*** 1.875 ± 0.921*** 10.177 ± 5.663 n.s. 17M
(≈ 15.38 h)

1 Iter. 3.198 ± 1.405 n.s. 1.357 ± 0.714 n.s. 9.847 ± 5.345 n.s. 32M
(≈ 13.4 h)

1 Iter. Ensemble 2.979 ± 1.269 1.284 ± 0.677 9.074 ± 4.691 150M

Table 2 presents mean error metrics for the Paired real 2D dataset. Training with both
coarse PE and image loss improves localisation accuracy, while using 3 iterations shows no
significant improvement over 1 iteration. However, all average ED and translation errors
remain under 4 mm, the maximum inter-subject longitudinal displacement in the manual
alignment of 4CH views of the test set. As expected, model ensembling boosts performance
significantly, decreasing ED errors by 8.7%, albeit increasing computational cost fivefold.
Detailed ensemble results for other ablations are in I, showing similar trends.

The CNN architecture yields higher errors likely due to a lack of positional information,
while the transformer, despite fewer parameters, trains ∼2 hours faster via task parallelisa-
tion. The chosen model is the ensemble transformer with 1 SVT iteration, PE, and
image loss. Competitive results are also achievable without PE.

3.2. Similarity to Paired 3D Acquisition (STIC)

Fig. 4 presents similarity metrics for the Paired real 2D dataset, comparing 2D slices to those
from the 3D dataset (STIC/MRI) using predicted or manual transformations. Comparable
median and mean values are seen across metrics, with no significant difference between
manual alignment and GT, indicating competitive network performance.
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STIC STIC

Figure 4: Similarity metrics comparing predicted/manual STIC slices to the 2D.

3.3. Similarity to Average Atlas

Figure 5: Similarity metrics comparing atlas and 2D US slices.

Fig. 5 compares 2D slices to their corresponding slices in the average atlas, extracted
using the predicted transformations. Both Unpaired real 2D and Paired real 2D datasets
are included, with manually aligned results for the latter. Predicted slices show higher mean
and median metrics than manually aligned ones (higher=better), with significant differences
(tested for paired cases), indicating better alignment to the average 3D space, as seen in
Fig. 6, though further validation is needed for clinical landmark correlation.

3.4. Qualitative Analysis

The blinded preferred plane selection results are included in Fig. 6, where the closest plane
to the 2D is selected. These suggest a similar trend to the similarity metrics reported in
Sec. 3.2 and 3.3, where performance between 3D STIC manual or predicted planes is roughly
matched, and network alignment to the average atlas space is more accurate than manual
alignment. Examples of this are also depicted in Fig. 6 for atlas alignment and 3D STIC.
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2D Atlas ManualAtlas Predicted

2D STIC ManualSTIC Predicted

Figure 6: Histogram of the blindly selected preferred slice for the 3D US (STIC) and average
atlas based on anatomical similarity to the input 2D slice, with example cases included.

4. Discussion

This study proposed a deep learning-based technique for 2D-3D fetal echocardiography
alignment, to view high spatio-temporal resolution 2D echocardiography in a lower reso-
lution 3D context. While primarily designed for approximately standard views, in fact, a
range of plane angles is captured (see Appendix J.1), and this range could be extended by
adapting the orientation sampling during training.

Our motivation for focusing on standard views is their widespread availability, allowing
FERN’s application within a clinical setting and on retrospective data. By obtaining an
accurate alignment into a 3D reference space, deviation from the standard plane can be
quantified. The technique could also be used prospectively to provide users with feedback on
plane quality. Additionally, a comparison of the standard views with an aligned 3D volume
(e.g., an atlas) could provide diagnostic information via case and group-wise comparisons.

The registration network is designed for end-diastole frames. However, given the rapid
fetal heart rate, the resulting transformation may be applied to a sequence of frames display-
ing the whole cardiac cycle within the 3D context. In the future, integrating this method
with an automated end-diastole detection tool may allow alignment of approximately axial
sweeps with inter-slice motion (see Appendix J.2). Further, modelling direction-dependent
artefacts and overcoming cross-modality differences between 2D/3D US may be necessary
to build a robust tool suitable for clinical applications, though at present this is alleviated
by the use of augmentation during training.

5. Conclusion

This study demonstrates the feasibility of aligning sparse standard fetal echocardiography
views into an average 3D space using a transformer network, allowing the inclusion of a view
positional indicator to improve localisation confidence. FERN enables the combination of
high resolution 2D fetal echocardiography with the low resolution 3D acquisitions or atlases
to provide 3D context during fetal cardiac examinations.
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Appendix A. Transformation Parametrisation: Anchor Points

The Anchor Points used in this work follow from Hou et al. (2018), which defined a plane
using points at the centre, bottom left and bottom right locations of a slice. Parametrising
the transformation this way is particularly advantageous for the loss function computation
(point loss); which accounts for both rotation and translation parameters, without hav-
ing to balance out terms from different loss functions in separate losses. Anchor Point
parametrisation additionally overcomes challenges present using alternative transformation
representations such as Euler Angles, which suffer from non-uniqueness of representation,
meaning that the same final rotation may be represented by multiple combinations of dif-
ferent Euler angles. This could lead to optimisation problems and training instability.

To recover the transformation from the Anchor Points, the central Anchor Point P2

defines the Tz translation, i.e. the slice positioning, while the Anchor Points together define
the rotation. Given this, the rotation matrix may be computed by finding the x, y, and
z-axis normal vectors as

1. X-axis normal vector: v1 = P3 − P1

2. Z-axis normal vector: n1 = v1 × v2, where v2 = P2 − P1

3. Y-axis normal vector: n2 = n1 × v1

This ensures all axes are orthogonal to each other, to yield the final Rotation matrix by
concatenating vectors R = [v1, v2, n1] (Hou et al., 2018).

Appendix B. Smooth L1 Loss

The smooth L1 Loss used as image loss is given by

L1smooth(yin, ypred) =

{
0.5(xn−yn)2

β , if |xn − yn| < β (β = 0.01)

|xn − yn| − 0.5 · β, otherwise
(4)

where yin are the input slices, and ypred are the predicted slices (simulated from the
training STIC volumes). Therefore, instead of using the reconstructed volume and GT
volume in the loss function computation, as is done in Xu et al. (2022), this image loss
compares each slice at a time, extracted from the volume using either predicted or GT
transformations.

Appendix C. Transformation Sampling

Fig. 7 shows random transformations applied to the unit X, Y and Z-axes vectors (collinear
to each axis). Each data point is representative of a plane after applying a random trans-
formation, using the sampling strategy described in 2.2, plotted on a unit sphere.
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These are represented as transformed unit vectors. The original vector location with no
transformation applied corresponds to the location (1, 0, 0) in the X-axis plot, (0, 1, 0) in
the Y-axis plot, and (0, 0, 1) in the Z-axis plot.

The plane surface normals are captured in the Z-axis rotation plot, which displays the
through-plane rotations. The X and Y-axis plots also display the in-plane rotation, as each
data point represents unit vectors parallel to the X and Y axes.

Figure 7: Standard view transformation sampling applied to unit axis vectors (across a unit
sphere, covering the range [-1, 1], so unitless), reflecting in-plane rotations (X and Y-axis),
and through-plane (Z-axis).

Appendix D. Random Masking

Fig. 8 illustrates the random masking augmentation strategy. With an equal probability,
slices are masked during training using either:

1. No mask

2. Heart ROI mask, Fig. 8, left

3. Dilated heart ROI mask, to encompass further anatomical features

4. Thorax mask, Fig. 8, right.

This masking random augmentation is included as a simple solution to help the network
become invariant to extracardiac features, shadows, and the imaging ROI plane. This,
coupled with random Gaussian noise, random contrast adjustments and random affine de-
formations including shearing and scaling, should assist in bridging the gap between the
different modalities used for training (3D acquisitions) against the test data (real 2D scans).

Appendix E. Anatomical Landmarks

The following anatomical landmarks were used for rigid alignment of the 3D STIC volumes
used for training:

• Inferior vena cava at the level of the diaphragm
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Figure 8: Left: Heart ROI masking, as seen on a 4CH view. Right: Thorax Masking.

• Descending aorta at the level of the diaphragm

• Descending aorta at the level of the left atrium

• Descending aorta at the level of the left atrium

• Left ventricle apex, transverse plane

• Ascending aorta at the level of the right pulmonary artery

• Right ventricular outflow tract (RVOT) just before bifurcation

• Superior vena cava at the level of the 3 vessel view (3VV), right side only

• Crux of the heart

• Carina

• Spine at the level of the three vessel view

Appendix F. Paired real 2D test set

The Paired real 2D dataset consists of 7 unseen cases. Each case consists of a 3D STIC
volume, 2D standard view scans and paired MRI volumes (Kuklisova-Murgasova et al., 2012;
Uus et al., 2020). The standard view scans were inspected and a high-quality End-Diastole
frame was selected.

The corresponding STIC volume slices were examined, and the closest slice to the 2D
frame was selected. If the standard view was not visible in the STIC volume, it was excluded,
leading to variation in the number of 2D views across the 7 cases (24 slices across 7 subjects).

Corresponding landmarks were recorded for the paired 2D and 3D slices. The 2D slice
was then rigidly registered to the matching 3D slice (2D-to-2D registration), allowing to
generate a pseudo-volume of 2D slices, by placing the registered 2D slices at the selected
3D slice index location.

Random in-plane transformations can then be applied to the slices in this volume, and
a 3D ground truth transformation recovered, used to quantify network performance.

A limitation of this method is the assumption that the selected 2D slice aligns perfectly
with an axial slice in the 3D volume, whereas a slight tilt (through-plane rotation) may be
present in practice. For this reason, an additional qualitative assessment was performed.

The MRI scans were rigidly aligned to the STIC, which is in the average atlas space,
using the same landmarks as described in Appendix E.
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Appendix G. Average Atlas

The average atlas was created using 20 high-quality pre-aligned 3D STIC volumes. The
atlas construction steps include:

1. Selection of high-quality initial target image.

2. Rigid, Affine and Free-form deformation of all volumes using MIRTK (Schnabel et al.,
2001) to target image. A control point spacing of 6 voxels is used.

3. Spatial average of the registered volumes.

4. Registration bias correction, by averaging all transformations and applying the inverse
average transform to the spatial average image.

5. Inspection of results and quality control.

6. Rerun steps 2-5 for 3 iterations, using the corrected average image as the updated
target image.

Fig. 9 depicts the resulting atlas across all three dimensions.

Figure 9: 3D US atlas. The atlas is used for evaluation inside the thorax ROI only (within
the fetal ribs).

Appendix H. Evaluation: Quantitative Metrics

The Euclidean Distance within the masked heart region is calculated as

EDmask =
1

N

N∑
j=1

∥P̂j − Pj∥2,

where N are the total number of points within the mask, P̂j are the predicted points,
i.e. the points in the mask after being transformed using the predicted matrix; and Pj are
the GT points, obtained using the manually aligned transformation matrix.

The Geodesic Distance is calculated as

GD = arccos

(
Tr(R)− 1

2

)
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where R is the rotation matrix from the predicted plane to the target, i.e. the compo-
sition of the inverse GT rotation matrix with the predicted rotation matrix.

The RMSE of the translation components using

RMSEtrans =

√
1

3

[
(t̂x − tx)2 + (t̂y − ty)2 + (t̂z − tz)2

]
,

where t̂x, t̂y, t̂z are the predicted translation components, and tx, ty, tz are the GT trans-
lation components for each slice.

Appendix I. Model Ensembling

A similar performance trend is found compared to non-ensemble, with a decrease in the
significance of the results, likely influenced by the reduction in data points after ensembling.
The results for 1 Iteration achieving comparable performance to using 3 Iterations remain,
despite more than doubling the number of parameters for the latter. Ensembling inference
time for a case with four input slices is 0.814 s for 1 Iteration; a fivefold increase compared
to a single model pass, at 0.163 s.

Table 3: Mean ± standard deviation test set results on manually aligned 2D data, after
ensembling models from five training rounds.

Experiment EDmask (mm) RMSEtrans (mm) GD (deg.) Params.

3 Iters.
(Baseline) 2.951 ± 1.231 1.275 ± 0.714 8.712 ± 4.028

74M ×5
(≈ 38.12 h ×5)

No PE 3.298 ± 1.562 1.508 ± 0.785 9.574 ± 4.939

p-value 0.101 0.646 0.128

No Image Loss 3.118 ± 1.305 1.379 ± 0.74* 9.099 ± 4.363

p-value 0.107 0.019 0.240

1 Iter. 2.979 ± 1.269 1.284 ± 0.677 9.074 ± 4.691 32M ×5
(≈ 13.4 h ×5)

p-value 0.643 0.921 0.277

CNN 3.599 ± 1.245** 1.666 ± 0.749 ** 9.145 ± 5.127 17M
(≈ 15.38 h)

p-value 0.000650 0.00124 0.966

Appendix J. Simulated experiments

J.1. Standard View Variability

Here, the network performance is tested on unseen STIC (3D US) volumes of variable
quality. For this, Fig. 10 displays the impact of applying different through-plane angles,
which changes the anatomical features.
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The network performance remains stable, with an average Euclidean Distance (ED)
error of 2.1 mm for no through-plane rotations, 2.1 mm and 2.8 mm after rotating about
the X-axis and Y-axis, respectively.

J.2. Axial Sweep Simulation

Here, a simulated test-time experiment is carried out on 7 unseen 3D volumes of varying
image qualities. For this, slices are sampled axially and random inter-slice transformations
are applied, as in training. That is, each slice gets randomly rotated (in-plane and through-
plane) and translated in-plane up to 30 mm. Slices belonging to a given case are passed
through the network, simulating a roughly axial sweep, with significant probe motion.

This is repeated 5 times (i.e. 5 random transformations are applied to each slice)
to increase the testing set. Fig. 11 illustrates an example of the aligned sampled slices
using the simulated transformations (GT) against the aligned slices using the predicted
transformations. There are holes present due to the random rotations applied to each slice,
where certain 3D locations may not be sampled (randomly each time). The purpose of this
study is to achieve rigid registration, not reconstruction. However, reconstruction methods
exist which could be used to reconstruct similar data, filling in the holes (Xu et al., 2023;
Kuklisova-Murgasova et al., 2012). This experiment yields a mean Euclidean Distance of
2.3± 1.2 mm.

18



Fetal Echocardiography 2D-to-3D Registration

Case 1) 

Case 2) 

No through -plane rot Rx = 30º Ry = 30º

Figure 10: Simulated 4CH and LVOT views from an acquired 3D scan (STIC). Results
illustrate the predicted slice (top row) against the GT (bottom row) for two unseen cases.
Each column displays the effect of applying a through-plane rotation of 30◦ about the X-axis
(Rx, centre), and the Y-axis (Ry, right).
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GT

Axial Sagittal Coronal

Pred GT Pred GT Pred

Figure 11: Simulated sweep reconstructions on four unseen cases, displaying the alignment
and resulting volumes after registering randomly transformed input slices using the GT
transformations (left); and the predicted transformations (right).
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