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Abstract

The task of model editing becomes popular for001
correcting inaccurate or outdated parametric002
knowledge in Large Language Models (LLMs).003
However, there are major limitations of state of004
the art (SOTA) model editing methods, includ-005
ing the excessive memorization issue caused006
by the direct editing methods, as well as the007
error propagation and knowledge conflict is-008
sues from the memory enhancement methods,009
resulting in hindering models’ portability, e.g.,010
the ability to transfer the new knowledge to re-011
lated one-hop or multi-hop content. To address012
these issues, we propose the InstructEd method,013
the idea of which is to insert soft instructions014
into the attention module so as to facilitate in-015
teractions between instructions and questions016
and to understand and utilize new facts. Our017
main findings are: (i) InstructEd has achieved018
SOTA performance on three datasets for one-019
hop/multi-hop evaluation with LLaMAs and020
GPT2, achieving 10% (5%) improvement in021
one-hop (multi-hop) model editing. (ii) Differ-022
ent from earlier methods on editing parameters023
in FFN, we show that editing attention can also024
help. (iii) Model editing is highly related to025
retrieval augmented methods, which can help026
improve the locality of model editing while027
slightly decrease the editing performance with028
hops.029

1 Introduction030

Large Language Models (LLMs) have accumulated031

substantial parametric knowledge, showcasing re-032

markable progress in knowledge-driven tasks such033

as question answering (Kwiatkowski et al., 2019;034

Chen et al., 2021, 2022; Hu et al., 2023) and rea-035

soning (Mihaylov et al., 2018; He et al., 2023).036

However, LLMs are susceptible to errors stemming037

from inaccurate or outdated parametric knowledge,038

restricting the reliability of these models. Previ-039

ous research has introduced Model Editing (ME)040

(De Cao et al., 2021; Mitchell et al., 2022b) to rec-041

tify or update parametric knowledge in LLMs with- 042

out the need for expensive re-training processes. 043

In general, these methods either update the 044

parametric knowledge within LLMs with either 045

some given factual knowledge (called ‘modifica- 046

tion based setting’) or some external knowledge 047

repository (called ‘memory based setting’). In this 048

paper, we propose a method that can address both 049

settings. 050

In order to assess ME methods’ effectiveness 051

in understanding and application of related factual 052

knowledge, Yao et al. (2023); Zhong et al. (2023) 053

proposed two new benchmarks, introducing the no- 054

tion of portability, e.g., the ability to apply the new 055

knowledge to related one-hop (Yao et al. (2023)) 056

or multi-hop (Zhong et al. (2023)) content. 057

As illustrated in Fig.1, modification-based meth- 058

ods (Mitchell et al., 2022a; Meng et al., 2022, 059

2023a) calculate the parameter shift θ based on the 060

new fact, which can only used to recall modified 061

knowledge (Q-ED). Once the facts are discrepant 062

with the new fact (such as Re-ED1), they cannot 063

answer these questions based on the modified facts. 064

As for the memory-based methods (Zheng et al., 065

2023; Mitchell et al., 2022b) maintain LLMs pa- 066

rameters unchanged and retrieve knowledge rel- 067

evant to the current edit from a pre-constructed 068

memory to achieve editing. Some recent memory 069

based methods like MeLLo (Zhong et al., 2023) 070

and PokeMQA (Gu et al., 2023) have been pro- 071

posed to address multi-hop question editing. These 072

methods rely on the retrieval results and neces- 073

sitate decomposing multi-hop questions into sub- 074

problems. However, the knowledge conflict issue2 075

between retrieved results and LLMs, and error prop- 076

agation issue caused by decomposition, make these 077

methods unstable to handle Q-ED and Re-ED. 078

1Before addressing the question "What city is Messi’s team
in?" we need to know "Messi is playing for Inter Miami."

2LLMs prioritize their own parametric knowledge and
overlook retrieved non-parametric knowledge
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Figure 1: The existing methods fail to leverage knowledge effectively. They either overlook whether the question is
relevant to the facts, resulting in excessive memorization and inability to resolve Re-ED; or they neglect whether the
facts are accurate and applicable due to factors error propagation and knowledge conflicts. Q-ED represents the
questioning of a modified fact, Re-ED represents the questioning related but un-equivalent to the modified facts.

Recently, instruction-tuning (Zhang et al., 2023)079

has emerged as a new paradigm for tuning LLMs080

to generate responses based on natural language081

instruction, which has been extensively researched082

in language (Gupta et al., 2023; Li et al., 2023a)083

and vision domains (Brooks et al., 2023; Liu et al.,084

2023a,b). These methods enhance LLMs by fine-085

tuning them using high-quality (instruction, output)086

pairs, boosting the model to comprehend user in-087

tentions and follow instructions more accurately.088

In this paper, we present InstructEd, a novel089

approach for the challenging task of model edit-090

ing with hops, by using soft instruction tuning.091

We construct an instruction dataset based on ex-092

isting editing data to facilitate training. Unlike093

previous methods, we augment a set of learnable094

soft-instruction prompts as prefixes to the input095

instruction tokens in the attention module (rather096

FFN). We use a relevance score between the in-097

struction and inputs to learn how to use knowledge098

and inject new knowledge (instructions) into the099

frozen LLMs.100

Experimental results on three datasets demon-101

strate that our approach achieves superior porta-102

bility of edits while maintaining stability in other103

essential properties. The main contributions of our104

work are as follows:105

1) We propose a novel method InstructEd, en-106

hancing the capability of LLMs to effectively uti-107

lize knowledge by adaptively modifying the atten-108

tion module in LLMs, in both modification based109

and memory based settings. This is different from110

previous model editing efforts focusing on the FFN 111

module. 112

2) Experimental on three datasets demonstrate 113

that InstructEd exhibits excellent ability to under- 114

stand and use instructions, achieving SOTA editing 115

performance, achieving 10% (5%) improvement in 116

one-hop (multi-hop) model editing over previous 117

SOTA. 118

3) We investigated the feasibility of retrieval aug- 119

mentation on model editing with hops and found 120

that it can help improve the locality of model edit- 121

ing while slightly decrease the editing performance 122

with hops. 123

2 Realted work 124

2.1 Model Editing 125

Model Editing emerges as a viable strategy for 126

precisely updating LLMs without the expensive 127

resources (Wang et al., 2023; Zhang et al., 2024). 128

Recent studies on model editing can be divided 129

into two categories based on whether the original 130

parameters of the edited model are modified (Yao 131

et al., 2023). One category involves directly mod- 132

ifying model parameters, exemplified by hyper- 133

networks (De Cao et al., 2021; Mitchell et al., 134

2022a; Han et al., 2023a) and located-and-edit 135

techniques (Meng et al., 2022, 2023a; Li et al., 136

2023b). The other incorporates additional modules 137

to LLMs (Mitchell et al., 2022b; Han et al., 2023b; 138

Hartvigsen et al., 2022). Recently, in-context-based 139

editing methods have gained attention. These meth- 140
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ods guide the model in learning knowledge up-141

dates by providing editing examples (Zheng et al.,142

2023; Yu et al., 2023; Gu et al., 2023), offering143

greater flexibility. Nonetheless, this approach re-144

lies on the context selection and the scale of input145

prompt data. Additionally, PMET improved editing146

performance by modifying attention mechanisms.147

Inspired by this, we believe that attention, as an148

interaction module, can better facilitate the interac-149

tion between instructions and knowledge. Building150

on these concepts, we investigate how to guide the151

model in learning knowledge with minimal prompts152

and present an editing model grounded in instruc-153

tion learning.154

2.2 Instruction Tuning155

Instruction tuning of language models has demon-156

strated its capability to enhance model general-157

ization across unseen tasks, leveraging in-context158

learning with just a few examples (Zhang et al.,159

2023; Gupta et al., 2023; Li et al., 2023a). Recent160

works have leveraged instruction-driven fine-tuning161

methods, improving performance on previously un-162

seen tasks through supervised fine-tuning on a lim-163

ited number of examples (Li et al., 2023a; Ye et al.,164

2023). Furthermore, researchers have applied in-165

struction tuning methods to image editing. They166

discern that the intent in the instructions success-167

fully facilitates adaptive modifications to image168

content (Brooks et al., 2023; Liu et al., 2023a,b).169

In this work, we leverage the transfer ability of170

instruction to guide the model to learn how to uti-171

lize instructional knowledge adaptively, achieving172

generalization and portability in editing.173

2.3 Prompt Tuning174

Prompt (prefix) tuning (Li and Liang, 2021; Liu175

et al., 2022) is an efficient way to fine-tune LLMs.176

prompt refers to a text or instruction that guides177

the model in generating specific output types178

commonly applied in classification and question-179

answering tasks (Chan et al., 2020; Pei et al., 2023;180

Huang et al., 2023). On the other hand, prefix refers181

to specific markers or sequences of words added182

before the input text to alter or control the model’s183

behavior, with many scholars recently applying it184

in Controllable text generation (Li and Liang, 2021;185

Lester et al., 2021; Meng et al., 2023b). This paper186

explores understanding instructions and utilizing187

and editing knowledge through fine-tuning with188

inserted prefixes while freezing LLMs parameters.189

More discussion can be found in Appendix D.6.190

3 The Proposed Method 191

3.1 Problem Formulation 192

We formally define the Model Editing (ME) task. 193

In particular, we denote LLMs as f and a fact 194

to be edited as a triple e = (s, r, o), consist- 195

ing of a subject (s), a relation (r), and an ob- 196

ject (o). To convert the triple e into natural lan- 197

guage, we employ the prompt template tr(·) 3. 198

The editing task aims to update the object o to 199

o∗ in e that shares the same subject and relation 200

in LLMs f . This can be formally expressed as: 201

f(tr(e)) = o → f(tr(e); ε) = o∗, where ε repre- 202

sents the editor. 203

Simultaneously, the editing model needs to han- 204

dle both in-scope data Din, and out-scope data 205

Dout. The in-scope data includes inputs generated 206

by different templates tr for the same triple e. Out- 207

scope data refers to entities unrelated to e, such as 208

any entity distinct from either the subject s or the 209

relation r. 210

Following previous work (Yu et al., 2023; Gu 211

et al., 2023), the post-edit model f(·; ε) is designed 212

to satisfy the following properties: (1) Reliabil- 213

ity: Ensuring that f(tr(e); ε) can output the tar- 214

get answer o∗. (2) Generalization: Ensuring that 215

f(tr(ei); ε) can generate the target answer o∗ for 216

ei ∈ Din, where ei share the same subject and rela- 217

tion with e. (3) Locality: Ensuring that f(tr(eo); ε) 218

can generate the original answer o for eo ∈ Dout. 219

(4) Portability: Ensuring that the model not only 220

updates the current editing but also maintains con- 221

sistency with other facts ep relevant to the current 222

edits e. 223

Specifically, there are three aspects of Porta- 224

bility (Yao et al., 2023). (1) Hop-editing: For 225

an n-hop question constructed by a chain of 226

facts Q = {(s1, r1, o1), ..., (sn, rn, on)}, up- 227

dating any object oi ∈ Q should result 228

in the post-edit model outputting new results 229

based on the new object o∗i within the chain 230

Q∗ = {(s1, r1, o1), (si, ri, o∗i ), ..., (s∗n, rn, o∗n)}.4 231

(2) Subject Replacement: Replace the subject s in 232

the edited triple (s, r, o) with its alias s
′
, and the 233

post-edited model should maintain the answer o, 234

3For instance, given the triple (Messi, play for, Inter Miami
CF), the template tr is "subject is playing for object", resulting
in the sentence: Messi is playing for ___.

4For example, with a two-hop chain: {(Messi, play for,
PSG), (PSG, located in, Paris)}, updating the object "PSG →
Inter Miami CF" should lead to the answer for the question
"What city is Messi’s team in?" being "Miami" not "Paris," as
the new triple is (Inter Miami CF, located in, Miami).
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such as (Messi,playing for, *) and (Leo Messi, play-235

ing for, *). (3) Reversed Relation: When the target236

of a subject and relation is edited, the attribute of237

the target entity should also change, such as for an238

edit "Who is Mike’s Father? Bob → Tom", the239

answer for "Who is the son of Tom?" should update240

to "Mike".241

I Messi is playing for Inter Miami.

Q What city is Messi’s team in?

T Pairs

L Miami

C

C-Edit:
(Messi, play for, Inter Miami CF)
(Inter Miami CF, located in, Miami)
C-Trues:
(Messi, play for, PSG)
(PSG, located in, Pairs)

Table 1: Example from the Instruction Editing Dataset:
Featuring an Instruction I, a Question Q, Pre- and Post-
Editing Answers T, L, and Chains of Facts Pre- and
Post-Editing C-Trues, C-Edit.

3.2 Instruction Prompt for editing242

To train the InstructEd, we first generate instruc-243

tions based on the existing editing dataset Coun-244

terFact (Meng et al., 2022) and ZsRE (Levy et al.,245

2017). Subsequently, we design instruction tem-246

plates to construct input data.247

3.2.1 Generating instructions248

For CounterFact (Meng et al., 2022), the original249

dataset provides triple information with modified250

knowledge and offers prompt templates to convert251

these triples into natural language. Therefore, we252

directly employ the natural language of the modi-253

fied knowledge as instructions for the current data.254

As illustrated in Table 1, consider the edited triple255

in C-Edit: "(Messi, play for, Inter Miami CF)".256

Here, we utilize the natural language expression257

"Messi is playing for Inter Miami CF" as the in-258

struction for the current editing instance.259

For ZsRE (Levy et al., 2017), the original dataset260

lacks suitable prompts for transforming triplet in-261

formation into natural language. To address this,262

we concatenate the question and the target answer263

to create the instruction. For instance, the instruc-264

tion for the edited triple "(Messi, play for, Inter265

Miami CF)" is "Which team does Messi play for? 266

Inter Miami CF". 267

3.2.2 Construct Input 268

For each modified data, we concatenate the instruc- 269

tions with four distinct types of questions, forming 270

the input for the model and subsequently assessing 271

the editing model based on four metrics. The input 272

template is as follows: 273

Instructions: {Instructions} \n Input:{Input}. 274

We used the four types of input mentioned above 275

to train the editor. To adapt to real-world editing 276

scenarios, we evaluate the editing based on whether 277

the instructions for input (‘ED-Ins’ in Figure 2) are 278

known or unknown, referring to both modification 279

based and memory based settings. Appendix B 280

shows the input cases and details of two editing 281

scenarios. 282

3.3 InstructEd 283

We employ instruction editing data to train an In- 284

structEd to learn to utilize edits based on instruc- 285

tions. Figure 2 shows that we use frozen LLMs 286

with L layers. The input to the LLMs consists 287

of three components: (1) The questions in natural 288

language Q with Qn tokens. (2) The instructions 289

in natural language I with In tokens. (3) A set 290

of learnable adaption prompts P for instruction- 291

following tuning. The prompts at layer l in the 292

LLMs are represented as Pl, with a length of nl 293

and a dimension of hp which is equal to the LLMs’ 294

hidden dimension. Note that the prompts inserted 295

into N layers of the LLMs are different (N < L). 296

The input is formulated as follows: 297

[Pl; I;Q] ∈ R(nl+Qn+In)∗h (1) 298

The instruction I serves as a prompt for LLMs 299

when answering question Q. However, due to the 300

knowledge conflict, LLMs may struggle to rec- 301

oncile non-parametric instruction knowledge with 302

their own parameterized knowledge. To address 303

this, we introduce trainable prompts Pl as a prefix, 304

which offers several advantages: 305

1) Prompts facilitate interactions between ques- 306

tion Q and instruction I , enabling the model to 307

consider more contextual information during gener- 308

ation. 2) Prompts assist in handling different types 309

of instructions. For example, for Locality data, Pl 310

should guide the model to rely less on the informa- 311

tion within the instruction I . We have designed the 312

following strategies to achieve the above objectives, 313

as illustrated in Figure 2. 314
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Figure 2: Overview of InstructEd. We achieve interac-
tion between instructions and questions by inserting N
trainable prefixes, thereby endowing the LLM with the
ability to follow instructions. To mitigate the impact
of irrelevant instructions on the input, we re-weight the
attention for each layer based on the relevance scores
between instructions and input.

Insert prompts into the middle layer of the315

LLMs. In autoregressive models, tokens draw316

information solely from the above tokens (Meng317

et al., 2022, 2023a):318

hl = hl−1 +ATTl−1 + FFNl−1, (2)319

where ATT and FFN refer to the Attention and320

Feed-Forward module in transformer architecture.321

We perform prompt training in the L intermediate322

layers of LLMs (L = N/3), leveraging higher lay-323

ers to capture semantic information representation324

between Q and I .325

Editing the attention for interaction between326

Q and I . As the attention module serves as an327

interactive module in the transformer, it is crucial328

to leverage attention to facilitate interaction among329

Q, I , and Pl. Specifically, as shown in Figure 2, we330

modify the attention from layer l to l +N . In the331

attention mechanism of the preceding l layers, after332

generating M tokens (M< (Qn+In)), the attention333

score of (M + 1)-th token t at layer l − 1 is calcu-334

lated by several linear projections Linearq,k,v,o(·):335

Queryl−1 = Linearq([M, tl−1]), (3)336

Keyl−1 = Lineark([M, tl−1]), (4)337

Valuel−1 = Linearv([M, tl−1]), (5)338

Sl−1 = Queryl−1KeyTl−1/
√
C, (6)339

where Queryl−1,Keyl−1,Valuel−1 ∈ R(M+1)∗h,340

Sl−1 ∈ R1∗(M+1), finally the attention output of341

l − 1 layer is: 342

tol−1 = Linearo(Sl−1Valuel−1). (7) 343

At layer l, we incorporate the prompts Pl into 344

the attention mechanism. Subsequently, we con- 345

catenate the prompt with the (M + 1)-th token t 346

and compute the new representations for Queryl, 347

Keyl, and Valuel at layer l: 348

Queryl = Linearq([M ; tl]), (8) 349

Keyl = Linearq([Pl;M ; tl]), (9) 350

Valuel = Linearq([Pl;M ; tl]), (10) 351

where Queryl ∈ R(M+1)∗h, and Keyl,Valuel ∈ 352

R(nl+M+1)∗h. The attention score at layer l is: 353

Sl = QuerylKeyTl /
√
C, (11) 354

where Sl ∈ R1∗(nl+M+1), and Sl can be reformu- 355

lated in three parts: 356

Sl = [Snl
l ;SIn

l ;SQn

l ]T , (12) 357

where nl, In and Qn are the prefix, instruction, 358

and question length respectively. This implies that 359

the attention score comprises both the instruction 360

prompt pl, the tokens for instructions I and the 361

question Q. Consequently, tl can learn information 362

from all its preceding tokens and the prompt pl, 363

fostering interaction between the question Q and 364

the instructions I through pl: 365

tol = Linearo(SlValuel). (13) 366

Re-weight the attention score. For the editor to 367

learn how to process the Locality instruction, we 368

mitigate the impact of irrelevant instructions on the 369

output by adjusting the attention weights. More 370

precisely, we utilize the similarity scores between 371

instructions and questions: 372

sim = Cos(Enc(Q),Enc(I)), (14) 373

where we employ the Enc(·) to encode both ques- 374

tion Q and instruction I , utilizing the contriever 375

encoder as described in (Izacard et al., 2022). Sub- 376

sequently, we utilize the similarity score sim to 377

re-weight the attention score: 378

S =

{
[sim ∗ (Snl

i ;SIn
i );SQn

i ]T i ∈ [l, l +N ],

[sim ∗ SIn
i ;SQn

i ]T Else,
(15) 379

where Snl
i , SIn

i , and SQn

i represent the attention 380

scores for prompts, instruction, and questions, re- 381

spectively. 382
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Model Type Method Rel Gen Loc Porhop Score H Rel Gen Loc Porhop Score H
CounterFact (%) ZsRE (%)

LLaMA
V1 (7B)

M

FT 46.33 75.88 33.75 47.01 50.74 46.69 59.38 62.15 97.18 54.35 68.27 64.91
MEMIT 99.6 82.2 94.42 51.2 81.86 76.44 84.59 80.48 99.53 52.59 79.3 75.03
ROME 99.43 79.08 95.54 51.45 81.38 76.04 83.88 78.62 99.5 54.11 79.03 75.23
LoRA 100 55.30 65.26 48.68 67.31 62.55 66.01 63.36 96.5 54.69 70.14 67.14

P

RASE 93.40 93.40 80.89 1.60 67.32 6.07 - - - - - -
IKE 99.81 82.38 46.86 49.82 69.72 62.92 99.76 99.62 82.97 64.76 86.78 84.11

SERAC 76.58 26.20 58.00 18.00 44.69 32.25 98.81 80.75 100 11.11 72.67 32.65
InstructEd 98.01 97.59 76.46 62.43 83.62 80.73 98.16 98.24 80.73 67.72 86.21 84.17
+ Retrieval 97.81 88.91 94.32 61.60 85.66 82.80 96.84 83.30 98.66 64.92 85.93 83.56

LLaMA
V2 (7B)

M

FT 11.47 14.11 26.11 45.83 24.38 18.33 48.26 48.54 94.32 51.64 60.69 56.11
MEMIT 99.52 82.4 94.76 51.2 81.97 76.53 66.13 65.33 99.56 54.46 71.37 67.99
PMET 20.16 17.10 87.37 12.53 34.29 20.06 43.26 41.92 94.64 55.94 58.94 53.04
LoRA 99.84 60.84 64.09 52.10 69.21 65.30 70.37 67.15 91.76 54.51 70.95 68.56
ROME 15.68 22.87 97.61 47.97 46.03 28.86 64.13 63.29 99.54 52.77 69.93 66.24

P

SERAC 98.53 11.66 100 49.75 64.99 31.74 96.57 79.31 100 10.55 71.61 31.31
RASE 72.64 71.30 80.89 5.81 57.66 18.84 - - - - - -
IKE 99.63 85.77 49.64 54.11 72.29 66.31 100 99.71 82.1 65.52 86.83 84.26

InstructEd 98.77 98.32 77.74 65.85 85.17 82.74 98.70 98.29 75.57 70.02 85.65 83.65
+ Retrieval 98.07 90.72 94.38 65.21 87.09 84.83 96.93 84.48 98.40 67.38 86.80 84.82

Table 2: Results on CounterFact and ZsRE. M represents methods for modifying LLM parameters; P represents
methods for preserving LLM parameters. ‘+Retrieval’ means we use the retrieval model msmarco, ‘-’ refers to the
results that the methods fail to edit LLMs. We use the evaluation metrics in Sec.4.1.3 to assess the editor.

4 Experiments383

4.1 Experimental Setup384

4.1.1 Dataset385

We conduct comprehensive experiments on three386

widely recognized editing datasets: CounterFact387

(CT), ZsRE for one-hop evaluation, introduced in388

Yao et al. (2023), and MQUAKE for multi-hop389

evaluation, as described in (Zhong et al., 2023).390

We adopt the same data split of training and testing391

following Yao et al. (2023) and Zhong et al. (2023).392

The detail of the data is provided in Appendix A.393

4.1.2 Setup394

We conduct experiments on three autoregressive395

LLM: LLaMA1(7B,13B), LLaMA2(7B,13B) and396

GPT2-XL (1.5B) models. We compare our method397

against three classes of editors, encompassing a to-398

tal of 11 models: 1) Preserving LLMs Parameters399

as our baselines: SERAC(Mitchell et al., 2022b),400

IKE(Zheng et al., 2023), RASE(Han et al., 2023b),401

GRACE(Hartvigsen et al., 2022). 2) Modifying402

LLMs parameters: FT(Zhu et al., 2020a), LoRA,403

ROME(Meng et al., 2022), MEMIT(Meng et al.,404

2023a), PMET(Li et al., 2023b). 3) Retrieval-405

based method for Multi-hop editing method: Mello406

(Zhong et al., 2023) and PokeMQA (Gu et al.,407

2023). To train InstructEd, we sample 10000 train-408

ing instances from CT, which exclusively include409

the recall edits, and 2200 training instances from410

MQUAKE-CF-3k, which contains 2,3,4-hop edits411

in the following distribution 1000:910:290. The 412

training process spans 10 epochs, with each batch 413

comprising 6 instances of edits and 6 instances of 414

unmodified data. For additional settings, please 415

refer to Appendix B. 416

4.1.3 Metrics 417

We use Reliability (Rel), Generalization (Gen), and 418

Locality (Loc) for single editing evaluation, Porhop 419

for one-hop evaluation, PorNhop
and Hop-Acc for 420

multi-hop editing evaluation, respectively Yao et al. 421

(2023); Gu et al. (2023). Note that PorNhop
refers 422

to the results on multi-hop question answering 423

after modifying one fact, while Porhop refers to 424

the results on one-hop question answering after 425

modifying one fact. Furthermore, to examine the 426

generalization-specificity trade-off, we present the 427

mean and harmonic mean scores of Rel, Gen, Loc, 428

and Porhop as Score and Harmonic Score (H). De- 429

tails on metrics can be found in Appendix C. 430

4.2 Main Results 431

Results on CounterFact. The edits in Counter- 432

Fact are the facts that do not exist in the real world, 433

which can ensure the manipulated/modified data 434

have not occurred during the training of LLMs. 435

Consequently, evaluations on CounterFact can bet- 436

ter measure the editor’s editing capabilities. 437

InstructEd can better understand and utilize 438

edited facts, outperforming existing models of vary- 439

ing scales, showcasing a remarkable enhancement 440
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Method PorNhop
Hop-Acc

FT 47.32 -
FT-Cot 56.48 33.89

Rome-CoT 28.96 -
Rome 24.89 17.99

MEMIT-CoT 36.88 -
MEMIT 30.89 23.98

PokeMQA 75.43 60.44
InstructEd 80.62 83.35

Table 3: Results on MQuAKE-T with LLaMA-2(7B).
PorNhop

means the accuracy of multi-hop editing, and
Hop-Acc is the mean of PorNhop

for each sub-question
in a multi-hop question.

in model editing with hops. As shown in Table441

2, our approach demonstrates significant advan-442

tages in both Gen and Porhop. Compared with443

methods directly updating model parameters (M),444

our method flexibly updates various types of edit-445

ing data and applies the updated knowledge in the446

model’s inference, avoiding issues of excessive447

memorization caused by direct parameter updates.448

Furthermore, in contrast to the memory-based449

method (P), we learn and leverage instructional450

knowledge to prevent the accumulation of errors451

when solving multi-hop editing while modifying at-452

tention parameters to alleviate knowledge conflicts453

in the model effectively. Results on LLaMA (13B)454

and more analysis are in Appendix D.1.455

Results on ZsRE. In contrast to CounterFact,456

the ZsRE is specifically designed to rectify LLM457

errors. Consequently, as shown in Tabel 2, there458

is a notable enhancement in retaining LLM param-459

eters due to incorporating additional modules or460

memory to constrain the output of LLM, especially461

IKE, which encourages model editing by provid-462

ing external editing samples. However, InstructEd463

can still demonstrate greater generalization and ro-464

bustness on ZsRE, showing good performance even465

when trained only on CounterFact and tested on466

ZsRE, further indicating that enhancing a model’s467

ability to utilize knowledge can fundamentally im-468

prove model editing with hops.469

Results on MQuAKE. Table 3 shows the results470

on MQuAKE-T (Zhong et al., 2023). In multi-hop471

question answering, we retrieve instructions for472

each multi-hop question through search. For exam-473

ple, for an N-hop question, we retrieve N facts (the474

top N retrieved facts) as instructions. Our method475

demonstrates excellence in both PorNhop
and Hop-476

Acc, indicating that InstructEd can flexibly utilize 477

instructional knowledge, providing advantages in 478

multi-hop editing. Additionally, the accuracy of 479

retrieval will affect the performance of our model. 480

More discussion can be found in Appendix 4.5. 481

4.3 Further Analyses of InstructEd 482

Results for portability. InstructEd has not only 483

achieved an advantage on the Porhop but obtained 484

excellent results in the other two aspects of portabil- 485

ity: Subject Replace (Rep) and Reversed Relation 486

(Rev). As shown in Table 9, the InstructEd could 487

gain great performance on Rev. However, for Rep, 488

InstructEd is not ideal at the beginning. After we 489

add additional instruction that never occurs dur- 490

ing training and is unrelated to the edits (s is also 491

known as s
′
), the performance increases signifi- 492

cantly, demonstrating its robust understanding and 493

utilization of instructions. Details can be found in 494

Appendix D.2. 495

Sequential editing Results. InstructEd is a plug- 496

and-play model that can address both batch edit- 497

ing and sequential editing. The results in Table 2 498

are obtained by modifying one edit at a time. In- 499

structEd uses additional prefixes to achieve editing, 500

allowing it to handle varying amounts of editing 501

data flexibly and perform sequential editing while 502

maintaining the performance. Therefore, whether 503

editing a batch of data simultaneously or sequen- 504

tially, InstructEd’s performance remains unaffected. 505

In contrast, performance declines with the direct 506

modification of model parameters as the number 507

of sequential edited data increases. Details can be 508

found in Appendix D.3. 509

Results of Different Model Scales. To validate 510

the generality of our approach, we also tested it 511

on models of varying scales, including GPT2-XL 512

(1.5B) and LLaMA2 (13B). As shown in Appendix 513

D.1. We observed that our method can be flexi- 514

bly applied across models of different scales while 515

maintaining consistent performance. 516

Efficiency of InstructEd. We utilized the A100 517

(40G) GPU to train InstructEd on LLaMA (7B) 518

which took 7 hours. The inference speed is con- 519

sistent with the original LLaMA model, averaging 520

around 0.5 seconds per edit. Note that we assess 521

the modification of each data point from four data, 522

so the inference speed for each data point is 0.5/4 523

seconds. Regarding storage, InstructEd requires 524

approximately 0.8M of additional storage space. 525
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Model Method Rel Gen Loc Por Score H Rel Gen Loc Por Score H
CounterFact (%) ZsRE (%)

LLama1

InstructEd 98.01 97.59 76.46 62.43 83.62 80.73 98.16 98.24 80.73 67.72 86.21 84.17
w/o re-weight 99.52 100.00 24.73 74.62 74.72 54.14 99.38 97.02 61.80 69.87 82.02 78.64

w L:20-30 98.40 89.19 44.70 50.76 70.76 63.05 98.97 97.44 33.15 65.02 73.64 60.69
w FFN 99.60 98.74 35.79 69.82 75.99 64.07 99.73 99.18 56.64 70.13 81.42 76.88

LLama2

InstructEd 98.77 98.32 77.74 65.85 85.17 82.74 98.70 98.29 75.57 70.02 85.65 83.65
w/o re-weight 95.34 99.66 35.26 69.41 74.92 63.20 98.85 97.65 56.08 70.19 80.69 76.28

w L:20-30 98.04 92.75 55.09 55.82 75.42 70.11 97.03 95.44 33.24 66.16 72.96 60.62
w FFN 98.26 99.56 34.16 58.19 72.54 59.99 93.73 93.28 36.28 46.65 67.49 56.83

Table 4: Results of ablation experiments. re-weight indicates whether attention was re-weighted; L:20-30 represents
the results of applying the Editor on layers 20-30; FFN represents the results of editing the FFN.

4.4 Ablation experiment526

In this section, we analyze the impact of differ-527

ent modules on InstructEd’s editing performance.528

Results are shown in Table 4.529

"w/o re-weight" remove sim in Eq.15 and use530

the original attention weights, significantly reduc-531

ing the locality. Indicate that InstructEd, when532

equipped with re-weighting, can effectively learn533

how to leverage knowledge flexibility.534

"L:20-30" shows an additional ablation editing535

deep layer (20-30) in LLMs, rather than middle536

layer (10-20). The results indicate that editing537

deeper layers impedes the model’s effective use538

of knowledge (lower propagation scores) and leads539

to more pronounced negative impacts on the model540

(lower Locality scores). See Appendix D.4 for ab-541

lation experiments on editing layers.542

"FFN" shows an additional ablation editing FFN543

weights rather than the attention module. Intro-544

ducing a Adapter module to each FFN at layers545

10-20 in LLMs reveals that editing the FFN re-546

mains a viable alternative, yielding a higher propa-547

gation score while maintaining other editing met-548

rics. However, a lower Locality implies that impre-549

cise editing of the FFN could lead to substantial550

adverse consequences. This paper validates that551

editing attention can achieve comparable or even552

superior results to editing FFN. More Discussion553

about FFN can be found in Appendix D.5.554

4.5 Results with Retrieval augment555

The results (+Retrieval) in Table 2 indicate that re-556

trieval augmented can improve the performance of557

InstructEd especially on localization performance.558

To assess the effectiveness compared to using559

only retrieval-augmented methods, we conducted a560

comparison with the Self-RAG (Asai et al., 2023).561

The results in Table 5 show that the retrieval-562

augmented demonstrates great performance on563

ZsRE regarding localization. It can accurately de- 564

termine whether a query is relevant to the input. 565

However, the high correlation between the location 566

data and input in CT makes the performance on 567

CT is mediocre. For example, both edit input and 568

loc input involve queries about the team to which 569

a player belongs, leading to errors in judging rele- 570

vance. The retrieval-augmented model has shown 571

promise regarding editing, as pointed out by Pinter 572

and Elhadad (2023), directly modifying the model 573

can result in unknown and uncontrollable impacts 574

on the original LLMs, using retrieval-augmented 575

methods to achieve the model editing is safer and 576

interpretable (Gupta et al., 2024; Gu et al., 2024). 577

Rel Gen Loc Por Score H

ZsRE 77.05 73.67 96.53 29.51 69.19 56.50
CT 77.30 64.21 36.08 35.31 53.22 47.31

Table 5: Results on Self-RAG

5 Conclusion 578

In this paper, we have presented an instruction tun- 579

ing based method InstructED for modeling editing 580

with hops. We validate the effectiveness of In- 581

structEd on varying scales of LLMs under three 582

datasets, demonstrating InstructEd’s excellent gen- 583

eralization in both modification based and memory 584

based settings. Our experiments indicate that, un- 585

like previous editing methods, modifying attention 586

parameters can model editing. Last but not least, 587

we investigated the feasibility of retrieval augmen- 588

tation on model editing and found that the retrieval- 589

augmented methods can enhance the locality of 590

model editing while slightly decrease the editing 591

performance with hops. 592

8



6 Limitations593

In this paper, we introduce an effective method for594

model editing with hops. Although we achieve595

good results, there are still limitations in the fol-596

lowing aspects: 1) We only focus on model editing597

with hops. In the future, we plan to look into model598

editing with more complex reasoning involved. 2)599

We utilize the retrieval augmented model to en-600

hance InstructEd and verify the performance of601

the retrieval model Self-RAG (Asai et al., 2023)602

in editing tasks. However, novel integration of603

retrieval-augmented methods with model editing604

remains a challenge that needs further exploration605

in the future.606
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A Dataset829

We conduct comprehensive experiments on three830

widely recognized editing datasets: CounterFact831

(CT), ZsRE for portability evaluation, introduced832

in Yao et al. (2023), and MQUAKE for Multi-hop833

evaluation, as described in (Zhong et al., 2023), the834

dataset has been divided into MQ-CF (for coun-835

terfactual edits) and MQ-T (for real-world fact up-836

dates) two sub-datasets. The detail of the data is837

provided in Table 6.838

Both four datasets include single-hop and multi-839

hop editing data, while CT and ZsRE only contain840

up to 2-hop question-answer pairs, and MQ con-841

tains up to 4-hop question-answer data. ‘Overlap’842

indicates whether there is a final multi-hop question843

answer in the edited factual calm. For example, for844

a 2-hop question: "What city is Messi’s team in?"845

if the edit is "Messi is playing for Inter Miami."846

Then, the overlap is 0 because the model needs to847

know that "Inter Miami is located in Miami." But848

if the edit is "Inter Miami is located in Pairs," the849

final answer "Pairs" is present in the edits, so the850

overlap is 1.851

Dataset Edits Hops Total Overlap
ZsRE 1 2 1037 3%
CT 1 2 1031 1%

MQ-CF 1,2,3,4 2,3,4 9218 68%
MQ-T 1 2,3,4 1868 99%

Table 6: Statistics of dataset.

B Experimental Details852

Construct Input853

To train the InstructEd, we use the following input854

template as the inputs:855

Instructions: {Instructions} \n Input:{Input}.856

For example, as shown in Table 1, the instruction857

for edits is "Messi is playing for Inter Miami.".858

Accordingly, the Reliability input is "Instruc-859

tions: Messi is playing for Inter Miami. \n Input:860

Which team does Messi play for?".861

The Generalization input is "Instructions: Messi862

is playing for Inter Miami. \n Input: In which863

team does Messi play?".864

The Locality input is "Instructions: Messi is865

playing for Inter Miami. \n Input: When was the866

recent World Cup held?".867

The Portability input is "Instructions: Messi is868

playing for Inter Miami. \n Input: What city is869

Messi’s team in?. 870

Evaluate Strategy 871

During the testing phase, two strategies emerge 872

depending on whether the gold instruction informa- 873

tion is known: 874

(1) When the gold instruction for each edit is 875

known, we concatenate the instruction with the 876

corresponding data for assessment. The instruction 877

is combined with a randomly selected and unrelated 878

data point before evaluation for locality data. 879

(2) When we do not know the gold instruction for 880

each edit, we rely on retrieving relevant instructions 881

from a pre-constructed instruction memory. If no 882

instructions were found, it indicates the current 883

data point does not necessitate modification. 884

Evaluate with Retrieval 885

When the gold instructions for each data are un- 886

known, we use the retrieval model msmarco (Izac- 887

ard et al., 2022) to retrieve instructions relevant to 888

the current input from a pre-constructed instruction 889

memory. If certain conditions are met, the data 890

with the highest-ranked retrieval result is consid- 891

ered the current input instruction. Otherwise, the 892

current data is deemed unnecessary to edit, and the 893

original LLMs are used to calculate. 894

Specifically, we calculate the standard deviation 895

of the scores for the top 5 ranked retrieval results. 896

When the standard deviation is larger than 0.1, the 897

similarity score of the highest-ranking result is sig- 898

nificantly higher than the scores of the other 4 data. 899

In this case, we consider the data with the highest 900

ranking as the instruction for the input. Otherwise, 901

the input does not contain a suitable instruction and 902

does not require editing. 903

Experimental Setting 904

We follow the setting provided in Yao et al. (2023) 905

and Han et al. (2023b) for the baseline methods. 906

We training InstructEd on 2 A100 (40G) GPUs 907

for 10 epochs. The warmup epochs, batch size, 908

learning rate, and weight decay are set to 4, 6, 9e-3, 909

and 2e-2, respectively. We add 5 prefixes per layer 910

and edit 10 to 20 layers in LLM. 911

C Evaluation metrics 912

To evaluate the performance of a post-edit model, 913

following Yao et al. (2023) and Gu et al. (2023), 914

We use the following editing properties: Reliabil- 915

ity,Generalization, and Locality for single editing 916

evaluation. Portability, PorNhop
, and Acc-Hop are 917
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used for multi-hop editing evaluation. We denote I918

as the indicator function, and the post-edit model919

is fT .920

Reliability is measured as the average accuracy921

on the edited dataset (xt, yxt) ∈ Ded, T is the922

length of Ded :923

Rel =
1

T

T∑
t=0

I(fT (xt) = yxt). (16)924

Generalization is measured as the average accuracy925

on the equivalent neighbor of edit dataset Dgen, we926

denote each edit case has Nt neighbors:927

Gen =
1

TNt

T∑
t=0

Nt∑
i=0

I(fT (x
i
t) = yxi

t
). (17)928

Locality is evaluated by the rate at which the post-929

edit model fT ’s predictions are unchanged as the930

pre-edit model f0 on Dloc, L is the length of Dloc:931

Loc =
1

L

L∑
(x,y)∈Dloc

I(fT (x) = y)

I(f0(x) = y)
. (18)932

For InstructEd, the y is the output of f0(·) or the933

True label.934

portabilityhop is measured as the average accu-935

racy on the multi-hop questions of edit case on936

Dpor, note that each x ∈ Dpor is related to an edit937

xt ∈ Ded:938

Porhop =
1

T

T∑
(x,y)∈Dpor

I(fT (x) = y). (19)939

PorNhop
is measured as the average accuracy on940

the multi-hop questions of edit case on MQuAKE-941

T Dmqt :942

PorNhop
=

1

T

T∑
(x,y)∈Dmqt

I(fT (x) = y). (20)943

Hop-Acc is measured if the post-edit model can944

answer the sub-questions for multi-hop questions945

on MQuAKE-T Dmqt, suppose each multi-question946

x can be decomposed to s sub-questions xs:947

Hop-Acc =
1

T ∗ s

T∑
(x,y)

s∑
(xi,yi)

I(fT (xi) = yi).

(21)948

D Extended Discussion of Results 949

D.1 Analyse for Baselines 950

Tabel 7 and Table 8 shows the results for GPT2- 951

XL (1.5B) and LLaMA2 (13B) on two datasets. 952

Furthermore, we analyzed the results obtained by 953

different methods in Table 2 to verify the effective- 954

ness of InstructEd. 955

Fine-tuning (Zhu et al., 2020b), as the most di- 956

rect editing method, does not show ideal results, 957

resulting in lower local alignment scores while 958

achieving lower editing capabilities. LoRA im- 959

proves performance by training low-rank matrices 960

to replace parameters in FFN compared to fine- 961

tuning, but it also exhibits poor generalization. 962

Both methods directly modify parameters in LLMs 963

through gradient descent, neglecting the impact of 964

parameter changes on other aspects of the model’s 965

performance. Additionally, editing performance 966

cannot be guaranteed when there is limited editing 967

data. 968

ROME and MEMIT (Meng et al., 2022, 969

2023a), as representatives of the located-and-edit 970

methods, generally exhibit great and stable perfor- 971

mance. However, as they directly modify param- 972

eters in LLMs, there are still unknown impacts 973

on the model and the risk of overfitting caused 974

by excessive memorization resulting from edit- 975

ing(Hoelscher-Obermaier et al., 2023). 976

RASE and SERAC (Han et al., 2023b; Mitchell 977

et al., 2022b) utilize additional cache as retrieval 978

memory, training other parameters and additional 979

modules for editing. However, as the results indi- 980

cate, both approaches perform poorly on portability. 981

This is attributed to their focus on knowledge up- 982

dates during additional training modules, neglect- 983

ing how to use knowledge effectively. 984

IKE (Zheng et al., 2023), as the most compet- 985

itive method, achieves good performance on real- 986

world datasets ZsRE by providing additional edit- 987

ing examples to prompt the model to learn the cur- 988

rent task format. However, the lower performance 989

on CounterFACT reflects the significant knowl- 990

edge conflict with the LLMs, leading to unsuccess- 991

ful modifications. Additionally, the performance 992

of IKE is influenced by the number of additional 993

prompts, requiring the model to have the capability 994

to handle long texts. 995

Our approach focuses on learning how to utilize 996

knowledge for LLMs. We design instructions and 997

guide the model through the interaction of instruc- 998

tions and questions, achieving comprehensive edit- 999
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Model Type Method Rel Gen Loc Porhop Score H Rel Gen Loc Porhop Score H
CounterFact (%) ZsRE (%)

GPT2
XL (1.5B)

M
FT 97.38 10.18 81.38 41.13 57.52 27.57 56 30.49 85.31 45.51 54.33 47.42

MEMIT 80.89 46.17 98.84 43.02 67.23 59.36 67.09 52.82 99.57 47.96 66.86 61.79
ROME 99.71 77.59 86.91 41.68 76.47 68.47 99.92 88.16 94.91 47.1 82.52 75.3
LoRA 100 67.51 44.03 41.29 63.20 55.75 52.53 52.43 96.77 44.19 61.48 56.28

P
IKE 99.42 68.77 41.61 42.86 63.17 55.58 99.82 95.52 73.7 53.26 80.58 75.71

P InstructEd 100 99.51 61.16 61.31 80.49 75.88 97.88 97.19 45.10 57.07 74.31 66.44
+ Retrieval 98.20 91.35 91.45 60.68 85.42 82.40 95.90 78.37 97.55 54.44 81.56 77.21

Table 7: Results on CounterFact and ZsRE.

Rel Gen Loc Por Score H

CT 99.85 99.17 82.88 71.67 88.39 86.74
ZsRE 97.83 98.13 73.47 73.30 85.68 83.92

Table 8: Results on LLaMA2 13B.

ing performance in learning and utilizing knowl-1000

edge. Furthermore, our approach maintains the1001

parameters of LLMs, enabling application across1002

various datasets while combining with retrieval-1003

augmented methods to enhance performance.1004

InsE_v1 InsE_v2 InsE_G

ZsRE
Rev 93.27 89.43 83.86
Rep 60.69 67.42 68.08
+ins 77.52 76.63 85.95

CT
Rep 66.43 66.23 66.5
+ins 90.48 86.01 98.58

Table 9: Results for portability. InsE means our pro-
posed InstructEd, v1 and v2 mean LLaMA1-7B and
LLaMA2-7B, respectively, and G means GPT2-XL.
‘+ins’ means we add "s is also known as s

′
" into the

instruction, s and s
′

is the subject and replaced-subject.

D.2 Results for portability1005

We use the dataset in Yao et al. (2023) to evaluate1006

the results on Subject Replace (Rep) and Reversed1007

Relation (Rev). As the results in Table 9 show.1008

Regarding Reversed Relations, InstructEd can un-1009

derstand and reason based on current instructions1010

for reversed relations. In terms of Subject Replace,1011

InstructEd performs modestly without the use of1012

instructions. However, its effectiveness improves1013

when relevant instructions are provided, indicat-1014

ing that our approach can significantly enhance the1015

model’s comprehension and ability to use instruc-1016

tions.1017

Rel Gen Loc Porhop Score H

CT

MEMITv1 72.00 53.33 30.00 22.83 44.54 36.44
ROMEv1 99.50 78.50 90.50 3.17 67.92 11.45
SERACv1 92.00 4.00 100.00 4.00 50.00 7.68

InstructEdv1 98.16 100.00 79.25 67.72 86.28 84.08
MEMITv2 6.25 6.25 14.75 7.92 8.79 7.78
ROMEv2 18.75 21.92 79.42 16.42 34.13 23.20
SERACv2 100.00 11.17 100.00 12.33 55.88 20.98

InstructEdv2 99.00 96.00 73.50 62.27 82.69 79.71

ZsRE

MEMITv1 34.19 34.38 5.34 5.64 19.89 9.46
ROMEv1 85.65 82.16 94.63 53.97 79.10 75.55
GRACEv1 33.99 33.66 100 51.13 54.70 45.10
SERACv1 97.05 81.07 99.01 8.92 71.51 27.62

InstructEdv1 97.97 98.19 74.48 71.56 85.55 83.70
MEMITv2 54.89 52.31 36.94 27.09 42.81 39.48
ROMEv2 63.30 61.62 87.88 51.01 65.95 63.48
GRACEv2 38.48 37.27 100 58.29 58.51 50.02
SERACv2 97.80 78.21 100.00 10.51 71.63 31.21

InstructEdv2 98.36 98.75 81.28 67.33 86.43 84.30

Table 10: Results for Sequential editing 100 edits. v1
and v2 means the LLaMA1(7B) and LLaMA2 (7B).

D.3 Sequential editing Results. 1018

As shown in Table 10, after continuous editing of 1019

100 edits, the overall performance of MEMIT sig- 1020

nificantly deteriorates, and other methods are also 1021

heavily impacted, especially in terms of the Porhop 1022

metric. This is attributed to the continuous param- 1023

eter adjustments these methods make to the LLM, 1024

leading to an increasing difficulty in editing and 1025

gradual degradation of model performance. In con- 1026

trast, by freezing the parameters of LLMs, SERAC 1027

experiences a slower performance decline but fails 1028

to achieve satisfactory results in GEN and Porhop. 1029

D.4 Ablation experiments on editing layers 1030

The results of ablation experiments are shown in 1031

Figure 1. We tested the insertion of 5, 10, and 15 1032

layers of prefixes into LLM. The results indicate 1033

that adding additional parameters beyond the 20th 1034

layer in LLM leads to an overall performance de- 1035

crease compared to before the 20th layer, especially 1036

in terms of local performance. This suggests that 1037

modifying parameters in the higher layers of LLM 1038

is more likely to impact model performance. 1039

When modifying parameters in the lower layers 1040

of LLM, the model exhibits lower success rates in 1041
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Layer Porhop Rel Gen Loc Score

ZsRE

0:10 0.6619 0.9848 0.9832 0.6914 0.8303
0:15 0.7091 0.9758 0.9706 0.7615 0.8543
0:5 0.6957 0.9596 0.9597 0.7505 0.8414

10:15 0.6853 0.9916 0.9862 0.7097 0.8432
15:20 0.6723 0.9737 0.9787 0.6752 0.8250
15:30 0.6756 0.9744 0.9711 0.6908 0.8280
20:25 0.6682 0.9720 0.9638 0.6722 0.8190
20:30 0.6605 0.9689 0.9564 0.6480 0.8084
25:30 0.6895 0.9738 0.9585 0.7203 0.8355
5:10 0.6786 0.9605 0.9791 0.5825 0.8002

10:20 0.7023 0.9857 0.9833 0.7563 0.8569

CT

0:10 0.6769 1.0000 0.9768 0.7575 0.8528
0:15 0.7228 0.9787 0.9807 0.7919 0.8685
0:5 0.6705 0.9990 0.9540 0.7376 0.8403

10:15 0.6485 0.9922 0.9871 0.7470 0.8437
15:20 0.6334 0.9924 0.9793 0.7444 0.8374
15:30 0.6088 0.9963 0.9848 0.7884 0.8445
20:25 0.5918 0.9842 0.9176 0.7244 0.8045
20:30 0.5774 0.9801 0.9026 0.7360 0.7990
25:30 0.5767 0.9922 0.8804 0.7160 0.7913
5:10 0.6505 0.9921 0.9713 0.7528 0.8417

10:20 0.6548 0.9930 0.9964 0.7886 0.8582

Table 11: The ablation studies about patched layer. We
use the LLaMA2-7B as the base model.

editing. However, when modifying intermediate1042

layers, there is a noticeable improvement in overall1043

performance (such as 0-15 and 10-20). In order to1044

maximize editing efficiency, we chose to modify1045

layers 10-20.1046

D.5 Discussion of the role of ATT and FFN in1047

Model Editing1048

In the Large Language Model (LLM), there exists1049

a significant amount of parameterized knowledge.1050

The mechanism for storing knowledge in the LLM1051

remains an open question. Some studies have exper-1052

imentally verified that more knowledge is retained1053

in the Feedforward Neural Network (FFN). Build-1054

ing on this finding, corresponding editing models1055

have been proposed, yielding certain advantages1056

by updating parameters in the FFN.1057

However, Attention serves as a crucial module in1058

the Transformer, and its role in the knowledge stor-1059

age process still warrants investigation. Previous1060

research conducted through ablation analysis found1061

that Attention has a relatively minor impact on edit-1062

ing and that achieving knowledge editing through1063

parameter updates in Attention is challenging. This1064

perspective is one-sided, particularly given that At-1065

tention can equip the Transformer with potent in-1066

teractive capabilities, making it a vital aspect in1067

model editing. Furthermore, precise knowledge1068

updates can be achieved by controlling the Query,1069

Key, and Value (QKV) components within Atten- 1070

tion. A deeper understanding of Attention in the 1071

future can facilitate the proposal of more efficient 1072

and accurate model editing methods. 1073

D.6 Discussion of the prompt-tuning 1074

Our approach achieves understanding and utiliza- 1075

tion of instructions by inserting additionally trained 1076

prompts into different layers of attention. As shown 1077

in Table 12, when not using prefix and only apply- 1078

ing editing in the form of instructions to the original 1079

LLMs, the base model performs well on "Rel", in- 1080

dicating that instructional knowledge can provide 1081

the model with good factual support, and the model 1082

can extract knowledge from it. However, the lower 1083

performance on "Gen", "Loc" and "Por" reflects the 1084

inability of the base model to transfer new knowl- 1085

edge to relevant content, which means they fail to 1086

understand and utilize the knowledge. 1087

In addition, there are many other efficient fine- 1088

tuning methods such as Adapter, LoRA, Prompt, 1089

etc. Besides utilizing prefixes, we compared with 1090

Adapter ("w FFN" in Table 4) and LoRA ("LoRA" 1091

in Table 2), respectively. 1092

Overall, while LoRA and adapters can improve 1093

the efficiency of fine-tuned models, they add the 1094

incremental change ∆h, obtained from the feed- 1095

forward layer with the original h from the previ- 1096

ous layer, the adapter or LoRA modifies the hid- 1097

den representation calculated by the pre-trained 1098

model h = h+∆h, which is lack interaction with 1099

the information in the LLM. And the prefix re- 1100

quires fewer parameters. They can interact with 1101

the context in the LLM by adding the trainable 1102

prefix, which enables more efficient guidance for 1103

the model to perform corresponding reasoning and 1104

computations based on instruction knowledge. As 1105

shown in Table.12 1106

Model Setting Rel Gen Loc Porhop Score

V1
InstructEd 0.9791 0.9714 0.7254 0.6210 0.8242
w/o prefix 0.9514 0.6231 0.4699 0.5128 0.6393

V2
InstructEd 0.9930 0.9964 0.7886 0.6548 0.8582
w/o prefix 0.9885 0.7065 0.5045 0.5502 0.6874

GPT2
InstructEd 0.9825 0.9971 0.7515 0.6531 0.8461
w/o prefix 0.9728 0.5747 0.3834 0.4423 0.5933

Table 12: The ablation results of prefix on CT
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