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Abstract

Gaussian smoothed sliced Wasserstein distance has been recently introduced for comparing
probability distributions, while preserving privacy on the data. It has been shown that it
provides performances similar to its non-smoothed (non-private) counterpart. However, the
computational and statistical properties of such a metric have not yet been well-established.
This work investigates the theoretical properties of this distance as well as those of generalized
versions denoted as Gaussian-smoothed sliced divergences GσSDp. We first show that
smoothing and slicing preserve the metric property and the weak topology. To study
the sample complexity of such divergences, we then introduce ˆ̂µn the double empirical
distribution for the smoothed-projected µ. The distribution ˆ̂µn is a result of a double
sampling process: one from sampling according to the origin distribution µ and the second
according to the convolution of the projection of µ on the unit sphere and the Gaussian
smoothing. We particularly focus on the Gaussian smoothed sliced Wasserstein distance
GσSWp and prove that it converges with a rate O(n−1/2p). We also derive other properties,
including continuity, of different divergences with respect to the smoothing parameter. We
support our theoretical findings with empirical studies in the context of privacy-preserving
domain adaptation.

1 Introduction

Divergences for comparing two distributions have been shown to be important for achieving good performance
in the contexts of generative modeling (Arjovsky et al., 2017; Salimans et al., 2018), domain adaptation (Long
et al., 2015; Courty et al., 2016; Lee et al., 2019), and in computer vision (Bonneel et al., 2011; Solomon
et al., 2015) among many more applications (Kolouri et al., 2017; Peyré & Cuturi, 2019; Nguyen et al., 2023).
Examples of divergences that have proved useful for these tasks are the Maximum Mean Discrepancy (Gretton
et al., 2012; Long et al., 2015; Sutherland et al., 2017), the Wasserstein distance (Monge, 1781; Kantorovich,
1942; Villani, 2009) or its variant the sliced Wasserstein distance (SW) (Kolouri et al., 2016; Bonneel &
Coeurjolly, 2019; Kolouri et al., 2019b; Nguyen et al., 2021; 2022; 2024).
The SW distance has the advantage of being computationally efficient, since it uses a closed-form solution for
distributions with support on R, by computing the expectation of one-dimensional (1D) random projections
of distributions in Rd. Owing to this efficiency and the resulting scalability, this distance has been successfully
applied in several applications ranging from generative models to domain adaptation (Kolouri et al., 2019a;
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Deshpande et al., 2019; Wu et al., 2019; Lee et al., 2019) and its statistical properties have been well-studied
in Nadjahi et al. (2020).
Recently, Gaussian smoothed variants of the Wasserstein distance and the sliced Wasserstein distance have
been introduced respectively in (Nietert et al., 2021) and in Rakotomamonjy & Ralaivola (2021). One main
motivation behind these variants is to provide a privacy guarantee for the distribution comparison task as
Gaussian smoothing is known to be a mechanism for achieving differential privacy (Dwork et al., 2014). While
the properties of the Gaussian smoothed Wasserstein distance have been extensively studied by Nietert et al.
(2021), the properties of the Gaussian smoothed sliced Wasserstein distance have not been fully investigated
yet although they are known to be more computationally efficient.
In this work, we focus on the slicing of Gaussian-smoothed measure discrepancies by providing theoretical
properties of more general divergences induced by some base distances or divergences for distributions defined
in Rd. These base distances/divergences encompass Wasserstein, maximum mean discrepancy, Sinkhorn
divergence. As for a main contribution, we first establish the topological properties of these divergences in
term of a metrization of the weak topology and a semi-lower continuous property. Then we focus on the sample
complexity of such divergences by introducing the double empirical distribution ˆ̂µn for the smoothed-projected
origin distribution µ. The new empirical distribution is a result of double sampling process: one from sampling
according to the origin distribution and the second according to the convolution of the projection of µ on
the unit sphere and the Gaussian smoothing. The introducing of ˆ̂µn is inspired from the implementation
part: we sample X1, . . . , Xn from the raw distribution µ to define µ̂n then project it on the unit sphere and
smooth this projection with a Gaussian distribution. This smoothing is a continuous measure that needs to
be sampled. For that reason, we add a double sampling and then provide ˆ̂µn. We particularly focus on the
Gaussian smoothed sliced Wasserstein distance.
Given the importance of the noise level in the privacy/utility trade-off achieved by the divergence, we
investigate an order relation and a continuity result with respect to the noise level. These properties are of
high impact as it supports a computationally cheap warm-start/fine-tuning procedure when looking for a
privacy/utility compromise of the divergence. Our theoretical study is backed by some numerical experiments
on toy problems and on domain adaptation illustrating how owing to the topology induced by our metric and
its continuity, differential privacy comes almost for free (without loss of performance) and multiple models
with different level of privacy can be cheaply computed.

Comparison with previous works. Here we highlight the position of this work compared to the most
linked previous ones, in particular Nadjahi et al. (2020) and Rakotomamonjy & Ralaivola (2021). The work
of Nadjahi et al. (2020) is focused on sliced Wasserstein distance and its statistical properties, however our
work is based on the properties of the Gaussian smoothed with general divergences (e.g. Wasserstein, MMD,
Sinkhorn divergence). We argue that the properties cannot be directly derived from (Nadjahi et al., 2020),
especially the sample complexity result. In Rakotomamonjy & Ralaivola (2021), the authors investigated the
smoothed Wasserstein distance and their theoretical finding was principally on proving the metric property,
whereas we further investigate sample and projection complexities and the continuity properties w.r.t. the
smoothing noise level. We emphasize that the novelty of the present paper consists in the theoretical
properties derived from the definition of the empirical measure ˆ̂µn. The smoothing of the raw measures, from
a theoretical point view, is a continuous measure (see Lemma 3.5) that needs to be sampled. This entails to
define the second sampling step and construct ˆ̂µn, an empirical version for the smoothing projection of µ. To
the best of our knowledge, this work is the first introducing the double randomness in the case of smoothing
optimal transport discrepancies. Recent works (Goldfeld et al., 2020; Nietert et al., 2021) addressed the
smoothing Wasserstein an their theoretical results relied only on µ̂n.

Layout of the paper. The paper is organized as follows: after introducing the notation and some
background in Section 2, we detail the topological properties of Gaussian-smoothed sliced divergence in
Section 3.1 while the double sampling process and its statistical properties are established in Section 3.2. The
noise analyses are provided in Section 3.3. Experimental analyses for supporting the theory and showcasing the
relevance of our divergences in domain adaptation are depicted in Section 4. Discussions on the perspectives
and limitations are in Section 5. All the proofs of the theoretical results and some additional experiments are
postponed to the appendices in the supplementary.
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2 Preliminaries

For the reader’s convenience, we provide a brief summary of standard notations and definitions used throughout
the paper.

Notation. For d ∈ N∗, let P(Rd) be the set of Borel probability measures on Rd and Pp(Rd) ⊂ P(Rd), those
with finite moment of order p, i.e., Pp(Rd) , {µ ∈ P :

∫
‖x‖pdµ(x) < ∞}, where ‖ · ‖ is the Euclidean norm.

We denote Mp(µ) =
∫

x
‖x‖pdµ(x). For two probability distributions µ and ν, we denote their convolution

as µ ∗ ν ∈ P(Rd), namely (µ ∗ ν)(A) =
∫

x

∫
y

1A(x + y)dµ(x)dν(y), where 1A(·) is the indicator function
over A. Given two independent random variables X ∼ µ and Y ∼ ν, we remind that X + Y ∼ µ ∗ ν. The
d-dimensional unit-sphere is noted as Sd−1 , {θ ∈ Rd : ‖θ‖ = 1}. We denote by ud the uniform distribution
on Sd−1 and we use δ(·) to denote the Kronecker delta function. We note as Eµf the expectation of the
function f with respect to µ.
Let Γ : R → R be the Gamma function expressed as Γ(v) =

∫ ∞
0 tv−1e−tdt for v > 0. For k ∈ N, (·)k denoted

the Pochhammer symbol, also known in the literature as a rising factorial, namely (α)0 = 1, (α)1 = α, and
(α)k = Γ(α+k)

Γ(k) = α(α + 1) · · · (α + k − 1), for k ≥ 1. We denote by 1F1(α, γ; z) the Kummers confluent
hypergeometric function (Olver, 2010) and defined by 1F1(α, γ; z) =

∑∞
k=0

(α)k

(γ)k

zk

k! .

Sliced Wasserstein distance. We remind in this paragraph several measures of similarity between two
distributions. The Wasserstein distance of order p ∈ [1, ∞) between two measures in Pp(Rd) is given by the
relaxation of the optimal transport problem, and it is defined as

Wp(µ, ν) =
(

inf
γ∈Π(µ,ν)

∫
Rd×Rd

‖x − x′‖pγ(x, x′)dxdx′
)1/p

where Π(µ, ν) , {γ ∈ P(Rd × Rd)|π1#γ = µ, π2#γ = ν} and π1, π2 are the marginal projectors of γ on each
of its coordinates. When d = 1, the Wasserstein distance can be calculated in closed-form owing to the
cumulative distributions of µ and ν (Rachev & Rüschendorf, 1998). In practice for empirical distributions,
the closed-form solution requires only the sorting of the samples, which makes it very efficient. Because
of this efficiency, efforts have been devoted to derive a metric for high-dimensional distributions based
on 1D Wasserstein distance. The main idea is to project high-dimensional probability distributions onto
a random one-dimensional space and then to compute the Wasserstein distance. This operation can be
theoretically formalized through the use of the Radon transform, leading to the so-called sliced Wasserstein
distance (Kolouri et al., 2016; Bonneel & Coeurjolly, 2019; Kolouri et al., 2019b; Nguyen et al., 2021).
Definition 2.1. For any p ∈ [1, ∞) and two measures µ, ν ∈ Pp(Rd), the sliced Wasserstein distance (SW)
reads as

SWp(µ, ν) ,
( ∫

Sd−1
Wp

p(Ruµ, Ruν)ud(u)du
)1/p

.

where Ru is the Radon transform of a probability distribution, namely Ruµ(·) =
∫
Rd µ(s)δ(· − s>u)ds. In

practice, the integral is approximated through a Monte-Carlo simulation leading to a sum of 1D Wasserstein
distances over a fixed number of random directions u.

Gaussian-smoothed sliced Wasserstein distance. Based on this definition of SW, replacing the Radon
projected measures with their Gaussian-smoothed counterpart leads to the following definition:
Definition 2.2. The σ-Gaussian-smoothed p-Sliced Wasserstein distance between probability distributions µ
and ν in Pp(Rd) writes as

GσSWp(µ, ν) ,
( ∫

Sd−1
Wp

p(Ruµ ∗ Nσ, Ruν ∗ Nσ)ud(u)du
)1/p

,
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where Nσ = N (0, σ2) is the zero-mean σ2-variance Gaussian measure. It is important to note here that the
smoothing (convolution) operation occurs after projection onto the one-dimensional space. Hence, assuming
X ∼ µ, Y ∼ ν, for a given direction u, we compute in the integral the one-dimensional Wasserstein distance
between the probability laws of u>X + Z and u>Y + Z ′ where Z, Z ′ ∼ Nσ are independent random variables.
The metric properties of GσSWp for p ≥ 1 have been discussed in a recent work (Rakotomamonjy & Ralaivola,
2021). This latter work has also shown, in the context of differential privacy, the importance of convolving
the Radon projected distribution with a Gaussian instead of computing the SW distance of the original
distribution smoothed with a d-dimensional Gaussian µ ∗ NσId

, where Id denotes the d × d identity matrix.

Gaussian-smoothed sliced divergence. The idea of slicing high-dimensional distributions before feeding
them to a divergence between probability distributions can be extended to distances other than the Wasserstein
distance. These sliced divergences have been studied by Nadjahi et al. (2020). Similarly, we can define a
Gaussian-smoothed sliced divergence, given a divergence DRd : Pp(Rd) × Pp(Rd) → R+ for d ≥ 1 as:
Definition 2.3. The σ-Gaussian-smoothed p-Sliced Divergence between probability distributions µ and ν in
Pp(Rd) associated to the base divergence D , DR, p ≥ 1 is

GσSDp(µ, ν) ,
( ∫

Sd−1
Dp(Ruµ ∗ Nσ, Ruν ∗ Nσ)ud(u)du

)1/p

.

Typical relevant divergences are the maximum mean discrepancy (MMD) (Gretton et al., 2012) or the
Sinkhorn divergence (Genevay et al., 2018; Peyré & Cuturi, 2019). In Section 4, we report empirical findings
based on these divergences as well as on the Wasserstein distance.

3 Theoretical properties

In this section, we analyze the properties of the Gaussian-smoothed sliced divergence, in terms of topological
and statistical properties and the influence of the Gaussian smoothing parameter σ on the distance.

3.1 Topology

It has already been shown in Rakotomamonjy & Ralaivola (2021) that the Gaussian-smoothed sliced
Wasserstein is a metric on P(Rd). In the next, we extend these results to any divergence D(·, ·) under certain
assumptions.
Theorem 3.1. For any σ > 0, p ≥ 1, the following properties hold:

1. if D(·, ·) is non-negative (or symmetric), then GσSDp(·, ·) is non-negative (or symmetric);

2. if D(·, ·) satisfies the identity of indiscernibles, i.e. for µ′, ν′ ∈ P(R), D(µ′, ν′) = 0 if and only if
µ′ = ν′, then this identity also holds for GσSDp(·, ·) for any µ, ν ∈ Pp(Rd);

3. if D(·, ·) satisfies the triangle inequality then GσSDp(·, ·) satisfies the triangle inequality.

The above theorem shows that under mild hypotheses over the base divergence D, as being a metric for
instance, the metric property of its Gaussian-smoothed sliced version naturally derives. As exposed in the
appendix, the more involved property to prove is the identity of indiscernibles.
We further postponed to the appendix the proofs of the two other topological properties: (i) GσSD metrizes
the weak topology on Pp(Rd) and (ii) GσSD is lower semi-continuous with respect to the weak topology in
Pp(Rd).
Now, we establish under which conditions on the divergence D, the convergence of a sequence in GσSD
implies weak convergence in Pp(Rd). We say that {µk}k∈N converges weakly to µ and write, µk ⇒ µ, if∫

f(x)dµk(x) →
∫

f(x)dµ(x), as k → ∞, for every f in the space of all bounded continuous real functions.
Theorem 3.2. Let σ > 0, p ≥ 1, µ ∈ Pp(Rd), and {µk ∈ Pp(Rd)}k∈N a sequence of distributions. Assume
that the divergence D is bounded and metrizes the weak topology on P(R). Then, limk→∞ GσSDp(µk, µ) = 0
if and only if µk ⇒ µ.
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Note that Theorem 3.2 extends the results of Nadjahi et al. (2020) to Gaussian-smoothed distributions, as we
retrieve them as a special case for σ = 0. In addition, based on Theorem 3.2 by Lin et al. (2021) and the
above, we can also claim that the Gaussian-smoothed SWD metrizes the weak convergence.
Proposition 3.3. Let σ > 0, p ≥ 1 and assume that the base divergence D is lower semi-continuous w.r.t. the
weak topology in P(R). Then, GσSDp is lower semi-continuous with respect to the weak topology in Pp(Rd).

When the base divergence D is equal to the Wasserstein distance Wp, that is lower semi-continuous (Villani,
2009), then Proposition 3.3 shows that the smoothed sliced Wasserstein distance is semi-lower continuous too.

3.2 Statistical properties

The next theoretical question we are interested in is about the incurred error when the true distribution µ is
approximated by its empirical distribution µ̂n. Such a case is common in practical applications where only (high-
dimensional) empirical samples are at disposal. Specifically, we are interested in quantifying two key properties
of empirical Gaussian-smoothed divergence: (i) the convergence of the double empirical ĜσSDp(µ̂n, ν̂n)
(see Definition 3.6) to GσSDp(µ, ν) (ii) the convergence of ĜσSDp(µ, ν) (see (1)) to GσSDp(µ, ν), when
approximating the expectation over the random projection with sample mean.
Let µ̂n = 1

n

∑n
i=1 δXi and ν̂n = 1

n

∑n
i=1 δYi be the empirical probability measures of independent observations.

The smoothed Gaussian sliced divergence between µ̂n and ν̂n is given by

GσSDp(µ̂n, ν̂n) =
( ∫

Sd−1
Dp

(
Ruµ̂n ∗ Nσ, Ruν̂n ∗ Nσ

)
ud(u)du

)1/p

.

Remark 3.4. Remark that for a fixed u ∈ Sd−1, the distributions Ruµ̂n ∗ Nσ and Ruν̂n ∗ Nσ are continuous,
in particular they are a mixture of Gaussian distributions centered on the projected samples with variance σ2.

Lemma 3.5. Conditionally on the samples {Xi}i=1,...,n and {Yi}i=1,...,n, one has: Ruµ̂n ∗ Nσ =
1
n

∑n
i=1 N (u>Xi, σ2) and Ruν̂n ∗ Nσ = 1

n

∑n
i=1 N (u>Yi, σ2).

Note that we further need to sample with respect to the continuous mixture Gaussian measures in Lemma 3.5
in order to get a fully empirical measure version of GσSD(µ, ν). To this end, we next define the double
empirical divergence of GσSD .

3.2.1 Double empirical divergence of GσSD

Let T x
1 , . . . , T x

n and T y
1 , . . . , T y

n be i.i.d. observations of Ruµ̂n ∗Nσ and Ruν̂n ∗Nσ, respectively. Sampling i.i.d.
{T x

i }i=1,...,n is given by the following scheme: for i = 1, . . . , n, we first choose the component N (u>Xi, σ2)
from the mixture 1

n

∑n
i=1 N (u>Xi, σ2) then we generate T x

i = u>Xi + Zx
i , where Zx

i ∼ Nσ. Hence, we set,
for a given u

ˆ̂µn = 1
n

n∑
i=1

δT x
i

= 1
n

n∑
i=1

δu>Xi+Zx
i

and ˆ̂νn = 1
n

n∑
i=1

δT y
i

= 1
n

n∑
i=1

δu>Yi+Zy
i
.

The measure ˆ̂µn ∈ P(R) defines an empirical version of the continuous Ruµ̂n ∗ Nσ denoted as ̂Ruµ̂n ∗ Nσ

(similarly ˆ̂νn = ̂Ruν̂n ∗ Nσ). Using the aforementioned notation, we define.
Definition 3.6. The double empirical smoothed Gaussian sliced divergence reads as

ĜσSDp(µ̂n, ν̂n) ,
( ∫

Sd−1
Dp(ˆ̂µn, ˆ̂νn)ud(u)du

)1/p

.

Remark 3.7. (i) It is worth to comment the double randomnesses showing in the definition of ĜσSDp(µ̂n, ν̂n):
the first comes from sampling according to the original probability measure (µ or ν) whereas the second takes
place from sampling according to the mixture 1

n

∑n
i=1 N (u>Xi, σ2).

(ii) The empirical measure of the convolution ̂Ruµ ∗ Nσ could be written as 1
n

∑n
i=1 δUx

i
+Qx

i
allowing to
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sample in a one shot n i.i.d. samples Ux
i + Qx

i such that Ux
i ∼ Ruµ and Qx

i ∼ Nσ. From an empirical
view, sampling according to Ruµ ∗ Nσ is intractable. For that reason, our theoretical results and numerical
experiments are based on ˆ̂µn, ˆ̂νn, and hence with respect to ĜσSDp(µ̂n, ν̂n).

3.2.2 Sample complexity of GσSWp

Herein, our goal is to quantify the error made when approximating GσSWp(µ, ν) with ĜσSWp(µ̂n, ν̂n).
More precisely, we are interested in establishing an order of the convergence rate of ĜσSDp(µ̂n, ν̂n) towards
GσSDp(µ, ν), according to the sample size n. This rate stands for the so-called sample complexity.
The convergence results in the sequel are given in expectation. Recall that the empirical distributions
are derived from a double sampling process, which leads to consider a double expectations, wrt the origin
distribution Eµ⊗n and wrt the sampling from the Gaussian smoothing EN ⊗n

σ
where µ⊗n and N ⊗n

σ are the
n-fold product extensions of µ and Nσ, respectively. We first consider the conditional expectation given the
samples X1, . . . , Xn, i.e. EN ⊗n

σ
[·|X1, . . . , Xn], and then apply Eµ⊗n . We denote by

Eµ⊗n |N ⊗n
σ

[·] = Eµ⊗n

[
EN ⊗n

σ
[·|X1, . . . , Xn]

]
.

Next, we focus on the sample complexity for the special case of Gaussian-smoothed sliced Wasserstein
distance.

Proposition 3.8. Fix σ > 0, p ≥ 1 and ϑ >
√

2. For X ∼ µ, assume that
∫ ∞

0 e
2ξ2

σ2ϑ2 P
[
‖X‖ > ξ

]
dξ < ∞.

Then,

Eµ⊗n |N ⊗n
σ

[ĜσSWp(µ̂n, µ)] ≤ Ξp,σ,ϑ
1

n1/2p
+ Υp,σ,µ

(log n)1/p

n1/p
,

where Ξp,σ,ϑ = 2
5
2 − 5

4p

π1/2p σ1− 1
4p ϑ1+ 1

p
(
Γ

(
p + 1

2
)(√

4πσ2ϑ2

ϑ2−2 + 4
∫ ∞

0 e
2ξ2

σ2ϑ2 P[‖X‖ > ξ]dξ
))1/2p and Υp,σ,µ =

22− 1
2p Cp

π1/2p σ2(
Γ(p + 1

2 )
∑∞

k=0
(−p)k

( 1
2 )k

(−1)k

(2σ2)kk! M2k(µ)
)1/p with Cp is a positive constant depending only on p.

It is worth to note that for p ∈ N∗, e.g. p = 2 (standard choice for numerical experiments), the (pseudo)
confluent hypergeometric function

∑∞
k=0

(−p)k

( 1
2 )k

(−1)k

(2σ2)kk! M2k(µ) is only depending on the 2k-th moments of µ

for k = 1, . . . , p, since (−p)(k) = 0 for k ≥ p + 1. Now, let us sketch the proof of Proposition 3.8: we first insert
the proxy term of mixture Gaussian distribution 1

n

∑n
i=1 N (u>Xi, σ2), then by an application of the triangle

inequality on the Wasserstein distance we are faced to control two terms (i) Wp
p(ˆ̂µn, 1

n

∑n
i=1 N (u>Xi, σ2))

and (ii) Wp
p( 1

n

∑n
i=1 N (u>Xi, σ2), µ). For (i) we get a standard order of O( log n

n ), which comes from a
by-product of Fournier & Guillin (2015). For (ii), through a coupling via the maximal coupling using the total
variation distance (Theorem 6.15 in Villani (2009)), we obtain the order O(n−1/2). The control technique for
(ii) was inspired from Goldfeld et al. (2020) and Nietert et al. (2021).

Remark 3.9. The condition
∫ ∞

0 e
2ξ2

σ2ϑ2 P
[
‖X‖ > ξ

]
dξ < ∞ needs P

[
‖X‖ > ξ

]
goes to 0 faster than e−κξ2 for

κ < 2/σ2ϑ2. This can be satisfied when ‖X‖ is a ω-sub-gausssian (ω ≥ 0). Namely, E[eη>(X−E[X])] ≤ e
ω‖η‖2

2

for all η ∈ Rd. If the parameter ω verifies ω < σϑ/2, then the latter condition holds.
Remark 3.10. Note that the sample complexity depends on the amount of smoothing through the moment of
the Gaussian noise : the larger the amount of smoothing (and thus the privacy), the worse is the constant
of the complexity. Hence, a trade-off on privacy and statistical estimation appears here as a reasonable
guarantee on the differential privacy usually requires a large Gaussian variance.
Proposition 3.11. Under the same conditions of Proposition 3.8, we have

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[ĜσSWp(µ̂n, ν̂n)] ≤ 31− 1
p GσSWp(µ, ν) + 3Ξp,σ,ϑ

1
n1/2p

+ 31− 1
p (Υp,σ,µ + Υp,σ,ν) (log n)1/p

n1/p

6



Published in Transactions on Machine Learning Research (11/2024)

Figure 1: Measuring the divergence between two sets of samples in R50, of increasing size, randomly drawn
from N (0, I). We compare three sliced divergences and their Gaussian-smoothed sliced versions with a σ = 3:
(top) dimension has been set to d = 50; (bottom) sample complexity with different dimensions. This plot
confirms that the complexity is dimension-independent.

and

GσSWp(µ, ν) ≤ 31− 1
p Eµ⊗n |N ⊗n

σ
Eν⊗n |N ⊗n

σ
[ĜσSWp(µ̂n, ν̂n)] + 3Ξp,σ,ϑ

1
n1/2p

+ 31− 1
p (Υp,σ,µ + Υp,σ,ν) (log n)1/p

n1/p
.

Proof of Proposition 3.11 relies on a double application of triangle inequality satisfied by Wasserstein distance
as follows: Wp(ˆ̂µn, ˆ̂νn) ≤ Wp(ˆ̂µn, Ruµ ∗ Nσ) + Wp(Ruµ ∗ Nσ, Ruν ∗ Nσ) + Wp(Ruν ∗ Nσ, ˆ̂νn), combined
with Proposition 3.8. This gives a non sharp convergence result since we get the constant 31− 1

p in front of
Eµ⊗n |N ⊗n

σ
Eν⊗n |N ⊗n

σ
[ĜσSWp(µ̂n, ν̂n)] or GσSWp(µ, ν). However, when the power p = 1 we obtain a sharp

convergence result with O(n−1/2), namely

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[|ĜσSW(µ̂n, ν̂n) − GσSW(µ, ν)|] ≤ 3Ξ1,σ,ϑ
1√
n

+ (Υ1,σ,µ + Υ1,σ,ν) log n

n

Despite that our theoretical results hold only for Gaussian-smoothed sliced Wasserstein distance, our empirical
results show that given other base divergences D, shows that the sample complexity of GσSDp is proportional
to the one dimensional sample complexity of Dp (p = 2). Figure 1 provides an empirical illustration of this
statement.

3.2.3 Projection complexity

To compute the Gaussian-smoothed sliced divergence, one may resort to a Monte Carlo scheme to numerically
approximate the integral in GσSDp(µ, ν). Towards this, let define the following sum:

ĜσSDp(µ, ν) =
( 1

L

L∑
l=1

Dp(Rul
µ ∗ Nσ, Rul

ν ∗ Nσ)
)1/p

, (1)

where ul is a random vector uniformly drawn from Sd−1, for l = 1, . . . , L. Theorem 3.12 shows that for
a fixed dimension d, the root mean square error of Monte Carlo (MC) approximation is of order O

( 1√
L

)
,

which corresponds to the projection complexity. We denote by u⊗L

d and the L-fold product extensions of the
uniform measure ud on the unit sphere.
Proposition 3.12. Let σ > 0, p ≥ 1. Then the error related to the MC-estimation of GσSDp is bounded as
follows

E
u

⊗L
d

[|ĜσSDp

p
(µ, ν) − GσSDp

p(µ, ν)|] ≤ A(p, σ)√
L

,
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where A2(p, σ) =
∫
Sd−1

(
Dp(Ruµ ∗ Nσ, Ruν ∗ Nσ) − τ̄p

)2
ud(u)du, with τ̄p =

∫
Sd−1 Dp(Ruµ ∗ Nσ, Ruν ∗

Nσ)ud(u)du.

The term A2(p, σ) corresponds to the variance of Dp(Ruµ ∗ Nσ, Ruν ∗ Nσ) with respect to u ∼ ud. It is worth
to note that the precision of the Monte Carlo scheme approximation depends on the number of projections L
and the variance of the evaluations of the divergence Dp . The estimation error decreases at the rate L−1/2

according to the number of projections used to compute the smoothed sliced divergence.
Given the above results, we provide a finer analysis of GσSWp(µ, ν)’s sample complexity. Towards this ends,
for a fixed random projection ul, (1 ≤ l ≤ L) we define ˆ̂µn,l = 1

n

∑n
i=1 δu>

l
Xi+Zx

i
(similarly for ˆ̂νn,l) and set

ˆ̂GσSDp(µ̂n, ν̂n) =
( 1

L

L∑
l=1

Wp
p(ˆ̂µn,l, ˆ̂νn,l)

)1/p

The overall complexity of GσSDp(µ, ν) consists in its approximation by sampling and projection of the origin
probability measures µ, ν, i.e. through ˆ̂GσSDp(µ̂n, ν̂n). By application of triangle inequality, one has

| ˆ̂GσSWp

p

(µ̂n, ν̂n) − GσSWp
p(µ, ν)| ≤ | ˆ̂GσSWp

p

(µ̂n, ν̂n) − ĜσSWp

p(µ̂n, ν̂n)| + | ĜσSWp

p(µ̂n, ν̂n) − GσSWp(µ, ν)|.

The first term in the right-hand-side (RHS) of the latter decomposition can be controlled by Proposition 3.12
in the following way:

E
u

⊗L
d

[
| ˆ̂GσSWp

p

(µ̂n, ν̂n) − ĜσSWp

p(µ̂n, ν̂n)|
]

≤ Â(p, σ)√
L

,
{Vu∼ud

[Wp
p(ˆ̂µn, ˆ̂νn)]}1/2
√

L
.

However we don’t have a proper control for p ≥ 2 of the second term in the RHS, | ĜσSWp

p(µ̂n, ν̂n) −
GσSWp(µ, ν)|, as it can be seen from Proposition 3.11. For that reason, we derive an overall complexity in
the case of p = 1.

Corollary 3.13. The sample and projection complexities of GσSW(µ, ν) reads as complexity(GσSW) =
O(n−1/2 + L−1/2). If we consider the number of projections as L = bnβc for some β ∈ (0, 1) then the overall
complexity complexity(GσSW(µ, ν)) = O(n−β/2).

3.3 Noise-level dependencies

The parameter σ of the Gaussian smoothing function Nσ may significantly influence the attained privacy level.
Hence, we provide theoretical results analyzing the effect of the noise level σ on the induced Gaussian-smoothed
sliced divergence.

3.4 Order relation

We first show that the noise level tends to reduce the difference between two distributions as measured using
GσSDp(µ, ν) provided the base divergence D satisfies some mild assumptions.
Proposition 3.14. Let µ, ν ∈ Pp(Rd) and consider the noise levels σ1, σ2 such that 0 ≤ σ1 ≤ σ2 < ∞.
Assume that the base divergence D satisfies D(µ′ ∗Nσ2 , ν′ ∗Nσ2) ≤ D(µ′ ∗Nσ1 , ν′ ∗Nσ1), for any µ′, ν′ ∈ P(R).
Then, Gσ2SDp(µ, ν) ≤ Gσ1SDp(µ, ν).

Note that the assumption for the base divergence inequality holds for the Gaussian-smoothed Wasserstein
distance Nietert et al. (2021). While we conjecture that it holds also for smoothed Sinkhorn and MMD, we
leave the proofs for future works. Based on the property in Proposition 3.14, we show some specific properties
of the metric with respect to the noise level σ.
Proposition 3.15. GσSDp(µ, ν) is decreasing with respect to σ and we have limσ→0 GσSDp(µ, ν) = Dp(µ, ν).

The proof of Proposition 3.15 comes straightforwardly from Proposition 3.14 by taking σ2 = σ and letting
σ1 → 0. This property interestingly states that the GσSDp recovers the sliced divergence when the noise
level vanishes. We end up this section by providing a relation between Gaussian-smoothed sliced Wasserstein
distances under two noise levels.
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Figure 2: Absolute difference between the approximated Monte Carlo approximation of all divergences
compared to the true one (evaluated with 10, 000 number of projections). The two sets of 500 samples in R50

are randomly drawn from N (0, I). The Gaussian-smoothed sliced divergences are parameterized with σ = 3.

Proposition 3.16. Let 0 ≤ σ1 ≤ σ2 be two noise levels. Then, one has Gσ2SWp(µ, ν) ≤ Gσ1SWp(µ, ν) and

| Gσ1SWp(µ, ν) − Gσ2SWp(µ, ν)| ≤ (21− 1
p − 1) Gσ2SWp(µ, ν) + 2 5

2 (σ2
2 − σ2

1),

in particular for p = 1, | GσSW(µ, ν) − Gσ2SW(µ, ν)| ≤ 2 5
2 (σ2

2 − σ2
1).

3.4.1 Continuity

Now we analyze the continuity properties of some GσSDp(µ, ν) w.r.t. the noise level.
Proposition 3.17. For any two distributions µ and ν for which the sliced Wasserstein is well-defined, the
Gaussian-smoothed sliced Wasserstein distance is continuous w.r.t. to σ.
Proposition 3.18. Assume that the kernel defining the maximum mean discrepancy (MMD) divergence is
bounded. Then the Gaussian-smoothed sliced GσMMD is continuous w.r.t. to σ.

The above propositions show that most distribution divergences are continuous with respect to σ under mild
conditions.

4 Numerical Experiments

In this section, we report on a series of experiments that support the established theoretical results. We also
highlight the usefulness of the findings in a context of privacy-preserving domain adaptation problem.

4.1 Supporting the theoretical results

Sample complexity. The first experiment (see Figure 1) analyzes the sample complexity of different
base divergences. It shows that the sample complexity stays similar to the one of their original and sliced
counterparts up to a constant (see Proposition 3.8). For this purpose, we have considered samples in Rd

randomly drawn from a Normal distribution N (0, I). For the Sinkhorn divergence, the entropy regularization
has been set to 0.1 and for MMD, we used a Gaussian kernel for which the bandwidth has been set to the
mean of all pairwise distances between samples. The number of projections has been fixed to L = 50 and we
perform 20 runs per experiment. For the first study, the convergence rate has been evaluated by increasing the
samples number up to 25,000 with fixed dimension d = 50. For the second one, we vary both the dimension
and the number of samples.
Figure 1 shows the sample complexity of some sliced divergences, respectively noted as SWD, SKD and
MMD for Sliced Wasserstein distance, Sinkhorn divergence and Maximum Mean discrepancy and their
Gaussian-smoothed sliced versions, named as GS SWD, GS SKD and GS MMD. On the top plot, we can see
that all Gaussian-smoothed sliced divergences preserve the complexity rate with just a slight to moderate
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Figure 3: Measuring the divergence between two sets of samples in R50 drawn from N (0, I). We plot the
sample complexity for different Gaussian-smoothed sliced divergence at different level of noises.

overhead. The worst difference is for Sinkhorn divergence, while MMD almost comes for free in term of
complexity. From the bottom plot where sample complexities for different dimensions d are given, we confirm
the finding that Gaussian smoothing keeps the independence of the convergence rate to the dimension of
sliced divergences.
Two other experiments on the sample complexity and identity of indiscernibles are also reported in the
supplementary material.

Projection complexity. We have also investigated the impact of the number of projections when estimating
the distance between two sets of 500 samples drawn from the same distribution, N (0, I). Figure 2 plots
the approximation error between the true expectation of the sliced divergences (computed for a number of
L = 10, 000 projections) and its approximated versions. We remark that, for all methods, the error ranges
within 10-fold when approximating with 50 projections and decreases with the number of projections.

Performance path on the impact of the noise parameter. Since the Gaussian smoothing parameter
σ is key in a privacy preserving context, as it impacts on the level of privacy of the Gaussian mechanism, we
have analyzed its impact on the smoothed sliced divergence. We have reproduced the experiment for the
sample complexity but with different values of σ. The number of projections has been set to 50. Figure 3
shows these sample complexities. The first very interesting point to note is that the smoothing parameter has
almost no effect on the GS MMD sample complexity. For the GS SWD and GS SKD divergences, instead,
the smoothing tends to increase the divergence at fixed number of samples. Another interpretation is that
to achieve a given value of divergence, one needs more far samples when the smoothing is larger (i.e. for
getting a given divergence value at σ = 5, one needs almost 10-fold more samples for σ = 15). This overhead
of samples needed when smoothing increases is properly described, for the Gaussian-smoothed sliced SWD in
our Proposition 3.8, as the sample complexity depends on the moments of the Gaussian.
As for conclusion from these analyses, we highlight that the Gaussian-smoothed sliced MMD seems to present
several strong benefits: its sample complexity does not depend on the dimension and seems to be the best
one among the divergence we considered. More interestingly, it is not impacted by the amount of Gaussian
smoothing and thus not impacted by a desired privacy level.

4.2 Domain adaptation with GσSW

As an application, we have considered the problem of unsupervised domain adaptation for a classification task.
In this context, given source examples Xs and their label ys and unlabeled target examples Xt, our goal is to
design a classifier h(·) learned from the source examples that generalizes well on the target ones. A classical
approach consists in learning a representation mapping g(·) that leads to invariant latent representations,
invariance being measured as a distance between empirical distributions of mapped source and target samples.

10
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Figure 4: Domain adaptation performances using different divergences on distributions with respect to
the Gaussian smoothing. (Left) USPS to MNIST. (Middle) Office-31 Webcam to DSLR. (Right) Office-31
Amazon to Webcam.

Figure 5: Domain adaptation performances using different divergences on distributions with respect to
the Gaussian smoothing using one-epoch-fine-tuned models. (Left) USPS to MNIST. (Middle) Office-31
Webcam to DSLR. (Right) Office-31 Amazon to Webcam.

Formally, this leads to the following problem

min
g,h

{
Lc(h(g(Xs)), ys) + D(g(Xs), g(Xt))

}
where Lc can be the cross-entropy loss or a quadratic loss and D a divergence between empirical distributions,
in our case, D will be any Gaussian-smoothed sliced divergence. We solve this problem through stochastic
gradient descent, similarly to many approaches that use sliced Wasserstein distance as a distribution
distance Lee et al. (2019). Note that, in practice, using a smoothed divergence preserves the privacy of the
target samples as shown by (Rakotomamonjy & Ralaivola, 2021).
When performing such model adaptation, a privacy/utility trade-off that has to be handled. In practice, one
would prefer the most private model while not hurting its performance. Hence, one would seek the largest
noise level σ > 0 to use while preserving accuracy on target domain. Hence, it is useful to evaluate how the
model performs on a range of noise level (hence, privacy level). This can be computationally expensive at it
requires to fully train several models on hundreds of epochs. Instead, we leverage on the continuity of our
GσSD to employ a fine-tuning strategy: we train a domain adaptation model for the largest desired value of
σ (over the full number of epochs) and when σ is decreased, we just fine-tune the lasted model by training on
only one epoch.
Our experiments evaluate the studied Gaussian-smoothed sliced divergences in classical unsupervised domain
adaptation. We have considered two datasets: a handwritten digit recognition (USPS/MNIST) and Office 31
datasets.
In our first analysis, we have compared our GσSD performances with non-smoothed divergences. The first
one is the sliced Wasserstein distance (SWD) Lee et al. (2019) and the second one is the Jenssen-Shannon
approximation based on adversarial approach, known as DANN Ganin & Lempitsky (2015). For all methods
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and for each dataset, we used the same neural network architecture for representation mapping and for
classification. Approaches differ only on how distance between distributions have been computed. Here for
each noise value σ, we have trained the model from scratch for 100 epochs. Results are depicted in Figure 4.
For the two problems, we can see that performances obtained with the Gaussian-smoothed sliced Wasserstein
or MMD divergences are similar to those obtained with DANN or SWD across all ranges of noise. The
smoothed version of Sinkhorn is less stable and induces a slight loss of performance. Owing to the metric
property and the induced weak topology, the privacy preservation comes almost without loss of performance
in this domain adaptation context.
In the second analysis, we have studied the privacy/utility trade-off when fine-tuning models, using only one
epoch, for decreasing values of σ. Results are shown in Figure 5. They highlight that depending on the data
and the used smoothed divergence, performance varies between one percent for Office 31 to four percent for
USPS to MNIST. Note that except for the largest value of σ, we are training a model using only one epoch
instead of a hundred. A very large gain in complexity is thus achieved for swiping the full range of noise level.
Hence depending on the importance this slight drop in performance will have, it is worth using a large value
of σ and preserving strong privacy or go through a validation procedure of several (cheaply obtained) models.

5 Conclusion

This work provided the properties of Gaussian-smoothed sliced divergences for comparing distributions. We
derived several theoretical results related to their topological and statistical properties and showed, under
mild conditions on their base divergences, the smoothing and slicing operations preserves the metric property.
From a statistical point of view, we introduced the double empirical distribution and focused on the sample
complexity of the smoothed sliced Wasserstein distance and we proved that it converges with a rate O(n−1/2p).
We furhter analyzed the behavior of these divergences on domain adaptation problems and confirm the fact
that using those divergences yields only to slight loss of performances while preserving privacy. Note that in
the obtained bound we use upper bound of higher moments of the smoothing distribution. An important
direction for future research is considering non Gaussian smoothing distribution enjoying this property.
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A Proofs

In the following sections, we give the proofs of the theoretical guarantees given in the main of the paper.

A.1 Proof of Theorem 3.1: GσSDp is a proper metric on Pp(Rd) × Pp(Rd)

Before starting the proof, we add this notation: the characteristic function of a probability distribution
µ ∈ P(Rd) is ϕµ(t) = Eµ[eiX>t]. Given this definition, similarly to the Fourier transform, the characteristic
function of the convolution of two probability distributions readsas ϕν∗µ(t) = ϕν(t) · ϕµ(t).
• Non-negativity (or symmetry). The non-negativity (or symmetry) follows directly from the non-negativity
(or symmetry) of Dp, see Definition 2.3.
• Identity property. If the base divergence Dp satisfies the identity property in one dimensional measures,
then for any µ ∈ Pp(Rd) and u ∈ Sd−1, one has that Dp(Ruµ ∗ Nσ, Ruµ ∗ Nσ) = 0, hence, by Definition
2.3, GσSDp(µ, µ) = 0. Let us now prove the fact that for any µ, ν ∈ Pp(Rd), GσSDp(µ, ν) = 0 entails µ = ν
a.s. On one hand, GσSDp(µ, ν) = 0 gives the fact that Dp(Ruµ ∗ Nσ, Ruν ∗ Nσ) = 0 for ud-almost every
u ∈ Sd−1, hence Ruµ ∗ Nσ = Ruν ∗ Nσ for ud-almost every u ∈ Sd−1. Following the techniques in proof
of Proposition 5.1.2 in Bonnotte (2013), for any measure η ∈ P(Rm) (with m ≥ 1), F [η](·) stands for the
Fourier transform of η and is given as F [η](v) =

∫
Rm e−is>vdη(s) for any v ∈ Rm. Then

F [Ruµ ∗ Nσ](v) =
∫
R

e−ivtd(Ruµ ∗ Nσ)(t)

=
∫
R

∫
R

e−i(r+t)vdRuµ(r)dNσ(t) (by the definition of the convolution operator)

=
∫
Rd

∫
R

e−i(〈u,s〉+t)vdµ(s)dNσ(t) (by the definition of Radon Transform)

=
∫
R

e−itvdNσ(t)
∫
Rd

e−i(〈u,s〉)vdµ(s)

= F [Nσ](v)F [µ](vu).

Since for ud-almost every u ∈ Sd−1, Ruµ ∗ Nσ = Ruν ∗ Nσ, and hence F [Ruµ ∗ Nσ] = F [Ruν ∗ Nσ] ⇔
F [Nσ]F [µ] = F [Nσ]F [ν] (by the Fourier transform of the convolution) ⇔ F [µ] = F [ν]. Since the Fourier
transform is injective, we conclude that µ = ν.
•Triangle inequality. Assume that D is a metric and let µ, ν, η ∈ Pp(Rd). We then have

GσSDp(µ, ν) =
( ∫

Sd−1
Dp(Ruµ ∗ Nσ, Ruν ∗ Nσ)ud(u)du

)1/p

≤
( ∫

Sd−1

(
D(Ruµ ∗ Nσ, Ruη ∗ Nσ) + D(Ruη ∗ Nσ, Ruν ∗ Nσ)

)p

ud(u)du
)1/p

≤︸︷︷︸
(?)

( ∫
Sd−1

(
Dp(Ruµ ∗ Nσ, Ruη ∗ Nσ)ud(u)du

)1/p

+
( ∫

Sd−1
Dp(Ruη ∗ Nσ, Ruν ∗ Nσ)

)p

ud(u)du
)1/p

= GσSDp(µ, η) + GσSDp(η, ν),

where inequality in (?) follows from the application of Minkowski inequality.

A.2 Proof of Theorem 3.2: GσSDp metrizes the weak topology

The proof is done by double implications and the technical material relies on the continuous mapping
theorem (Athreya & Lahiri, 2006) and bounded convergence theorem for the first direct implication “⇒”. The
second one, “⇐”, is based on the fact that weak convergence is equivalent to the convergence corresponding
to Lévy-Prokhorov distance (Huber, 2011)
“⇒” Assume that µk ⇒ µ. Fix u ∈ Sd−1, the mapping u 7→ Ru is continuous from Rd to R, then an application
of continuous mapping theorem (Athreya & Lahiri, 2006) entails that Ruµk ⇒ Ruµ. By Lévy’s continuity
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theorem (Athreya & Lahiri, 2006) Ruµk ∗ Nσ ⇒ Ruµ ∗ Nσ. Therefore, limk→∞ D(Ruµk, Ruµ ∗ Nσ) =
0. Since we suppose that the divergence D is bounded, then there exists K ≥ 0 such that for any k,
Dp(Ruµk, Ruµ ∗ Nσ) ≤ K. An application of bounded convergence theorem yields

lim
k→∞

GσSDp(µk, µ) =
( ∫

Sd−1
lim

k→∞
Dp(Ruµk ∗ Nσ, Ruµ ∗ Nσ)ud(u)du

)1/p

= 0.

“⇐” (By contrapositive). Suppose that µk doesn’t converge weakly to µ and assume that
limk→∞ GσSDp(µk, µ) = 0. On one hand, since Rd is a complete separable space then the weak con-
vergence is equivalent to the convergence corresponding to Lévy-Prokhorov distance Λ defined as: The
Lévy-Prokhorov distance Λ(η, ζ) between η, ζ ∈ P((E, ρ), T ) (space of probability measures on a measurable
metric space) is given by:

Λ(η, ζ) = inf
ε>0

{η(A) < ζ(Aε) + ε, ζ(A) < η(Aε) + ε, for all A ∈ T }, where Aε = {x ∈ E : ρ(x, A) < ε}.

Hence there exists ε > 0 and a subsequence {µs(k)}k∈N such that Λ(µs(k), µ) > ε. One the other
hand, we have limk→∞ GσSDp(µs(k), µ) = 0, that is equivalent to {D(Ruµs(k) ∗ Nσ, Ruν ∗ Nσ)}k con-
verges to 0 in Lp(Sd−1) = {f : Sd−1 → R|

∫
Sd−1 f(u)ud(u)du < ∞}. Since the Lp-convergence en-

tails the point-wise convergence (Khoshnevisan, 2007), there exists a subsequence {µs(t(k))}k such that
lim

k→∞
D(Ruµs(t(k)) ∗ Nσ, Ruµ ∗ Nσ) = 0 almost everywhere for all u ∈ Sd−1. Recall that the divergence D

metrizes the weak convergence in P(R) then Ruµs(t(k)) ∗ Nσ ⇒ Ruµ ∗ Nσ almost everywhere for all u ∈ Sd−1.

Therefore, Ruµs(t(k)) ⇒ Ruµ almost everywhere for all u ∈ Sd−1. Using Cramér-Wold device (Huber, 2011),
we get µs(t(k)) ⇒ µ. Since the Lévy-Prokhorov distance metrizes the weak convergence, it entails that
lim

k→∞
Λ(µs(t(k)), µk) = 0, that contradicts the fact that Λ(µs(k), µ) > ε. We then conclude by contrapositive

that µk ⇒ µ.

A.3 Proof of Proposition 3.3: GσSDp is lower semi-continuous

Recall that the base divergence D is lower semi-continuous w.r.t. the weak topology in P(R), namely
for every sequence of measures {µ′

k}k∈N and {ν′
k}k∈N in P(R) such that µ′

k ⇒ µ′ and ν′
k ⇒ ν′, one has

D(µ′, ν′) ≤ lim inf
k→∞

D(µ′
k, ν′

k).
Now, let {µk}k∈N and {νk}k∈N are two sequences of measure in Pp(Rd) such that µk ⇒ µ and νk ⇒ ν.
By continuous mapping theorem (Bowers & Kalton, 2014) and Levy’s continuity theorem, we obtain
Ruµk ∗ Nσ ⇒ Ruµ ∗ Nσ and Ruνk ∗ Nσ ⇒ Ruν ∗ Nσ for all u ∈ Sd−1. Since the base divergence D is a lower
semi-continuous with respect to weak topology in P(R), then

Dp(Ruµ ∗ Nσ, Ruν ∗ Nσ) ≤
(

lim inf
k→∞

D(Ruµk ∗ Nσ, Ruνk ∗ Nσ)
)p ≤ lim inf

k→∞
Dp(Ruµk ∗ Nσ, Ruνk ∗ Nσ).

It gives

GσSDp(µ, ν) ≤
( ∫

Sd−1
lim inf
k→∞

Dp(Ruµk ∗ Nσ, Ruνk ∗ Nσ)ud(u)du
)1/p

.

Furthermore, by application of Fatou’s lemma (Bowers & Kalton, 2014), we get

GσSDp(µ, ν) ≤ lim inf
k→∞

( ∫
Sd−1

Dp(Ruµk ∗ Nσ, Ruνk ∗ Nσ)ud(u)du
)1/p

= lim inf
k→∞

GσSDp(µk, νk),

which is the desired result.
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A.4 Proofs of statistical properties

A.4.1 Proof of Lemma 3.5: Ruµ̂n ∗ Nσ is an average of Gaussian mixture

Straighforwardly, for every Borelian I ∈ B(R), we have

Ruµ̂n ∗ Nσ(I) =
∫

r

∫
s

1I(r + s)d{ 1
n

n∑
i=1

δu>Xi
}(r)dNσ(s)

= 1
n

n∑
i=1

∫
s

1I(u>Xi + s)fNσ
(s)ds

= 1
n

n∑
i=1

∫
s′

1I(s′)fNσ
(s′ − u>Xi)ds′

= 1
n

n∑
i=1

∫
s′

1I(s′)fN (u>Xi,σ2)(s′)ds′ (since fNσ
(s′ − u>Xi) = fN (u>Xi,σ2)(s′))

= 1
n

n∑
i=1

N (u>Xi, σ2)(I).

Thanks to Theorem of Cramér and Wold (Cramér & Wold, 1936), we conclude the equality between the
measures Ruµ̂n ∗ Nσ = 1

n

∑n
i=1 N (u>Xi, σ2).

A.4.2 Proof of Proposition 3.8

Let us give first the overall structure of the proof. We we use frequently the triangle inequality for Wasserstein
distances between the quantities ˆ̂µn, 1

n Nσ(u>Xi, σ2) and Ruµ ∗ Nσ. We then obtain two quantities, I and
II (see below for explicit), bounding Eµ⊗n |N ⊗n

σ
[ĜσSWp(µ̂n, µ)]. To control I bound, we use a well known

converging bound in Fournier & Guillin (2015) of Wasserstein distance between empirical and true measure.
For II bound, we consider maximal TV-coupling in Villani (2009)] and use result of the 2p-moment of absolute
Gaussian random variable founded in Winkelbauer (2014).
On one hand, using triangle inequality of Wasserstein distance, we have

Eµ⊗n |N ⊗n
σ

[ĜσSWp(µ̂n, µ)] = Eµ⊗n |N ⊗n
σ

[( ∫
Sd−1

Wp
p(ˆ̂µn, Ruµ ∗ Nσ)ud(u)du

)1/p]
≤

(
Eµ⊗n |N ⊗n

σ

[ ∫
Sd−1

Wp
p(ˆ̂µn, Ruµ ∗ Nσ)ud(u)du

])1/p

≤
( ∫

Sd−1
Eµ⊗n |N ⊗n

σ
[Wp

p(ˆ̂µn, Ruµ ∗ Nσ)]ud(u)du
)1/p

≤ (I + II)1/p

where

I , 2p−1
∫
Sd−1

Eµ⊗n |N ⊗n
σ

[
Wp

p

(
ˆ̂µn,

1
n

n∑
i=1

N (u>Xi, σ2)
)]

ud(u)du

and

II , 2p−1
∫
Sd−1

Eµ⊗n |N ⊗n
σ

[
Wp

p

( 1
n

n∑
i=1

N (u>Xi, σ2), Ruµ ∗ Nσ)
)]

ud(u)du

The proof is based on two steps to control the quantities I and II.
Step 1: Control of I.
Let us state the following lemma:
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Lemma A.1 (See proof of Theorem 1 in Fournier & Guillin (2015)). Let η ∈ P(R) and let p ≥ 1. Assume
that Mq(η) < ∞ for some q > p. There exists a constant Cp,q depending only on p, q such that, for all n ≥ 1,

E[Wp
p(η̂n, η)] ≤ Cp,qMq(η)p/q∆n(p, q),

where

∆n(p, q) =


n−1/21q>2p,

n−1/2 log(n)1q=2p

n−(q−p)/q1p<q<2p.

.

We note that ˆ̂µn is an empirical version of the Gausian mixture 1
n

∑n
i=1 Nσ(u>Xi, σ2). Then, by application

of Lemma A.1, we get

Eµ⊗n |N ⊗n
σ

[
Wp

p

( ˆ̂µn,
1
n

n∑
i=1

N (u>Xi, σ2)
)]

≤ Cp,qEµ⊗n

[
Mp/q

q

( 1
n

n∑
i=1

N (u>Xi, σ2)
)]

∆n(p, q).

Let us first upper bound the q-th moment of Mq

(
1
n

∑n
i=1 N (u>Xi, σ2)

)
, for all q ≥ 1. For all u ∈ Sd−1, we

have

Mq

( 1
n

n∑
i=1

N (u>Xi, σ2)
)

=
∫
R

|t|qd( 1
n

n∑
i=1

N (u>Xi, σ2))(t) = 1
n

n∑
i=1

Mq(|Zi,u|q),

where Zi,u ∼ N (u>Xi, σ2)). By Equation (17) in Winkelbauer (2014) we have

Mq

( 1
n

n∑
i=1

N (u>Xi, σ2)
)

= 1
n

2q/2σq

√
π

Γ(q + 1
2 )

n∑
i=1

1F1
(

− q

2 ,
1
2 ; −(u>Xi)2

2σ2

)
.

Since X1, . . . , Xn are i.i.d samples from µ, it yields

Eµ⊗n

[
Mp/q

q

( 1
n

n∑
i=1

N (u>Xi, σ2)
)]

= 2q/2σq

√
π

Γ(q + 1
2 )Eµ

[
1F1

(
− q

2 ,
1
2 ; −(u>X)2

2σ2

)]
(X ∼ µ)

= 2q/2σq

√
π

Γ(q + 1
2 )

∞∑
k=0

(− q
2 )k

( 1
2 )k

(−1)k

(2σ2)kk!Eµ [(u>X)2k]

≤ 2q/2σq

√
π

Γ(q + 1
2 )

∞∑
k=0

(− q
2 )k

( 1
2 )k

(−1)k

(2σ2)kk!M2k(µ).

Setting q = 2p we have ∆n(p, q) = log n
n , then

I ≤ 22p−1Cp
σ2p

√
π

Γ(2p + 1
2 )

∞∑
k=0

(−p)k

( 1
2 )k

(−1)k

(2σ2)kk!M2k(µ) log(n)
n

.

Step 2: Control of II.

We follow the lines of proofs of Proposition 1 in Goldfeld et al. (2020) and Theorem 2 in Nietert et al. (2021).
Using a coupling ˆ̂µn and Ruµ ∗ Nσ) via the maximal TV-coupling (see Theorem 6.15 in Villani (2009)]), the
control of the total variation of the Wasserstein distance, we get for any fixed u ∈ Sd−1

Wp
p

( 1
n

n∑
i=1

N (u>Xi, σ2), Ruµ ∗ Nσ)
)

≤ 2p−1
∫
R

|t|p|hn,u(t) − gu(t)|dt,
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where hn,u and gu are the densities associated with µn and Ruµ ∗ Nσ, respectively. Let fσ,ϑ the probability
density function of Nσ,ϑ, i.e, fσ,ϑ(t) = 1√

2π(σϑ)2
e

− t2
2(σϑ)2 for ϑ > 0 to be specified later. An application of

Cauchy-Schwarz inequality gives

Eµ⊗n |N ⊗n
σ

[
Wp

p

( 1
n

n∑
i=1

N (u>Xi, σ2), Ruµ ∗ Nσ)
)]

≤ 2p−1Eµ⊗n |N ⊗n
σ

∫
R

|t|p
√

fσ,ϑ(t) |hn,u(t) − gu(t)|√
fσ,ϑ(t)

dt

≤ 2p−1Eµ⊗n |N ⊗n
σ

( ∫
R

|t|2pfσ,ϑ(t)dt
) 1

2
( ∫

R

(hn,u(t) − gu(t))2

fσ,ϑ(t) dt
) 1

2

≤ 2p−1
( ∫

R
|t|2pfσ,ϑ(t)dt

) 1
2
( ∫

R
Eµ⊗n |N ⊗n

σ

(hn,u(t) − gu(t))2

fσ,ϑ(t) dt
) 1

2
.

Note that
∫
R |t|2pfσ,ϑ(t)dt is the 2p-th moment of |Nσ,ϑ(t)| equals to (see Equation (18) in Winkelbauer

(2014)) ∫
R

|t|2pfσ,ϑ(t)dt = (σϑ)2p2p

√
π

Γ
(2p + 1

2
)
.

Moreover,

hn,u(t) = 1
n

n∑
i=1

dN (u>Xi, σ2)(t) = 1
n

n∑
i=1

fσ,ϑ(t − u>Xi),

It is clear to see that hn,u(t) is a sum of i.i.d. terms with expectation gu(t), which implies

Eµ⊗n |N ⊗n
σ

[
(hn,u(t) − gu(t))2]

= Vµ⊗n

[ 1
n

n∑
i=1

fσ,ϑ(t − u>Xi)
]

= 1
n

Vµ [fσ,ϑ(t − u>X]

≤ 1
n

Eµ [(fσ,ϑ(t − u>X)2]

≤ (2πσ2)−1

n
Eµ [e

−1
σ2 (t−u>X)2

].

Now

Eµ [e
−(t−u>X)2

σ2 ] =
∫

‖x‖≤ |t|
2

e
−1
σ2 (t−u>x)2

dµ(x) +
∫

‖x‖>
|t|
2

e
−1
σ2 (t−u>x)2

dµ(x).

Remark that when ‖x‖ ≤ |t|
2 , then (t − u>X)2 ≥ |t|2 − |u>x|2 ≥ |t|2 − ‖x‖2 (since ‖u‖2 = 1). We get

(t − u>X)2 ≥ |t|2

4 and hence∫
‖x‖≤ |t|

2

e
−1
σ2 (t−u>x)2

dµ(x) ≤ e
−t2

4σ2 and
∫

‖x‖>
|t|
2

e
−1
σ2 (t−u>x)2

dµ(x) ≤ P
[
‖X‖ >

|t|
2

]
This gives,∫

R
Eµ⊗n |N ⊗n

σ

(hn,u(t) − gu(t))2

fσ,ϑ(t) dt ≤ (2πσ2)−1(
√

2πσϑ)
n

( ∫
R

e
t2

2(σϑ)2 e
−t2

4σ2 dt +
∫
R

e
t2

2(σϑ)2 P
[
‖X‖ >

|t|
2

]
dt

)
.
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Note that the integral
∫
R e

t2
2(σϑ)2 e

−t2

4σ2 dt =
∫
R e−

(
1
2 − 1

ϑ2

)
t2

2σ2 dt is finite if and only if 1
2 − 1

ϑ2 > 0 namely ϑ >
√

2
and its value is given by ∫

R
e

t2
2(σϑ)2 e

−t2

4σ2 dt =
√

2πσ2

1
2 − 1

ϑ2

=
√

4πσ2ϑ2

ϑ2 − 2 .

For the second integral∫
R

e
t2

2(σϑ)2 P
[
‖X‖ >

|t|
2

]
dt = 2

∫ ∞

0
e

t2
2(σϑ)2 P

[
‖X‖ >

t

2
]
dt = 4

∫ ∞

0
e

2ξ2

σ2ϑ2 P
[
‖X‖ > ξ

]
dξ

Then,

II ≤ n−1/24p−1
{

(2πσ2)−1(
√

2πσϑ) (σϑ)2p2p

√
π

Γ
(2p + 1

2
)} 1

2
(√

4πσ2ϑ2

ϑ2 − 2 + 4
∫ ∞

0
e

2ξ2

σ2ϑ2 P
[
‖X‖ > ξ

]
dξ

) 1
2
.

this gives the desired result using the fact that (a + b)1/p ≤ a1/p + b1/p, for a, b ≥ 0.

A.4.3 Proof of Proposition 3.11

Using triangle inequality, we have

Wp(ˆ̂µn, ˆ̂νn) ≤ Wp(ˆ̂µn, Ruµ ∗ Nσ) + Wp(Ruµ ∗ Nσ, Ruν ∗ Nσ) + Wp(Ruν ∗ Nσ, ˆ̂νn).

and then

Wp
p(ˆ̂µn, ˆ̂νn) ≤ 3p−1{

Wp
p(ˆ̂µn, Ruµ ∗ Nσ) + Wp

p(Ruµ ∗ Nσ, Ruν ∗ Nσ) + Wp
p(Ruν ∗ Nσ, ˆ̂νn)

}
.

This implies that

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[ĜσSWp(µ̂n, ν̂n)]

≤ 31− 1
p GσSWp(µ, ν) + 31− 1

p Eµ⊗n |N ⊗n
σ

[ĜσSWp(µ̂n, µ)] + 31− 1
p Eν⊗n |N ⊗n

σ
[ĜσSWp(ν̂n, ν)].

By application of Proposition 3.8, it yields This gives that

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[ĜσSWp(µ̂n, ν̂n)] ≤ 31− 1
p GσSWp(µ, ν) + 3Ξp,σ,ϑ

1
n1/2p

+ 31− 1
p (Υp,σ,µ + Υp,σ,ν) (log n)1/p

n1/p

This ends the proof of the first statement in Proposition 3.11. For the second one, we also use a triangle
inequality

Wp
p(Ruµ ∗ Nσ, Ruν ∗ Nσ) ≤ 3p−1{

Wp
p(Ruµ ∗ Nσ, ˆ̂µn) + Wp

p(ˆ̂µn, ˆ̂νn) + Wp
p(ˆ̂νn), Ruν ∗ Nσ

}
.

Then we control each term as we did before.

A.5 Proof of Proposition 3.12: projection complexity

Using Holder’s inequality, we have

E
u

⊗L
d

[∣∣ĜσSDp

p
(µ, ν) − GσSDp

p(µ, ν)
∣∣] ≤

(
E

u
⊗L
d

[
[∣∣ĜσSDp

p
(µ, ν) − GσSDp

p(µ, ν)
∣∣2])1/2

=
(

V
u

⊗L
d

[
[
ĜσSDp

p
(µ, ν)

])1/2

= A(p, σ)
L1/2 .
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A.6 Proof of Corollary 3.13: overall complexity (p = 1)

By application of triangle inequality, one has

| ˆ̂GσSW(µ̂n, ν̂n) − GσSW(µ, ν)| ≤ | ̂̂GσSW(µ̂n, ν̂n) − ĜσSW(µ̂n, ν̂n)| + | ĜσSW(µ̂n, ν̂n) − GσSW(µ, ν)|

Using Proposition 3.12, we have

E
u

⊗L
d

[
| ̂̂GσSW(µ̂n, ν̂n) − ĜσSW(µ̂n, ν̂n)|

]
≤ Âσ√

L
:= {Vu∼ud

[W(ˆ̂µn, ˆ̂νn)]}1/2
√

L
.

Using Proposition 3.11 for p = 1 we get,

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[|ĜσSW(µ̂n, ν̂n) − GσSW(µ, ν)|] ≤ 3Ξ1,σ,ϑ
1√
n

+ (Υ1,σ,µ + Υ1,σ,ν) log n

n
.

Therefore, by applying the expectations with respect to the projection and sampling we obtain

E
u

⊗L
d

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[
| ̂̂GσSW(µ̂n, ν̂n) − GσSW(µ, ν)|

]
≤ 1√

L
Eµ⊗n |N ⊗n

σ
Eν⊗n |N ⊗n

σ
[Âσ] + 3Ξ1,σ,ϑ

1√
n

+ (Υ1,σ,µ + Υ1,σ,ν) log n

n
.

By Jensen inequality, we have

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[Âσ] ≤
{

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[Vu∼ud
[W(ˆ̂µn, ˆ̂νn)]]

}1/2
.

A.7 Proof of Proposition 3.14

For all u ∈ Sd−1 we have Ruµ, Ruν ∈ P(R). By application of the inequality of noise level satisfied by D in
one dimension we get

Dp(Ruµ ∗ Nσ2 , Ruν ∗ Nσ2) ≤ Dp(Ruµ ∗ Nσ1 , Ruν ∗ Nσ1).

Then, computing the expectation over the projections u since the divergence is non-negative concludes the
proof.

A.8 Proof of Proposition 3.16: relation between GσSWp(µ, ν) under two noise levels

First, using the contractive property of convolution (see Lemma 3 in Nietert et al. (2021)), stating that for any
probability measure α ∈ P(R), Wp(µ∗α, ν∗α) ≤ Wp(µ, ν). Hence Wp

p(µ∗Nσ2 , ν∗Nσ2) ≤ Wp
p(µ∗Nσ1 , ν∗Nσ1).

Now using Proposition 3.14 of the oreder relation satisfied by GσSWp yields

Gσ2SWp(µ, ν) ≤ Gσ1SWp(µ, ν).

In the other direction, we have that Nσ2 = Nσ1 ∗ N√
σ2

2−σ2
1

(similarly for Nσ1). Setting the following random
variables: Xu ∼ Ruµ, Yu ∼ Ruν, ZX ∼ Nσ1 , ZY ∼ Nσ1 , Z ′

X ∼ N√
σ2

2−σ2
1
, Z ′

Y ∼ N√
σ2

2−σ2
1
. The sliced

Wasserstein distance Wp
p(Ruµ ∗ Nσ2 , Ruν ∗ Nσ2) is given as a minimization over couplings (Xu, ZX , Z ′

X) and
(Yu, ZY , Z ′

Y ), namely

Wp
p(Ruµ ∗ Nσ2 , Ruν ∗ Nσ2) = inf

Xu,ZX ,Z′
X

Yu,ZY ,Z′
Y

E
[∣∣((Xu + ZX) − (Yu + ZY )

)
+ (Z ′

X − Z ′
Y )

∣∣p]
Using the inequality E[|U +V |p]−2p−1E[|W |p] ≤ 2p−1E[|U +V +W |p] for any random variables U, V, W ∈ Lp

integrable, we obtain,

2p−1E
[
|(Xu + ZX) − (Yu + ZY ) + (Z ′

X + Z ′
Y )|p

]
≥ E

[
|(Xu + ZX) − (Yu + ZY )|p

]
− 2p−1E

[
|(Z ′

X − Z ′
Y )|p

])
.
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Hence,

2p−1Wp
p(Ruµ ∗ Nσ2 , Ruν ∗ Nσ2) ≥ inf

(
E

[
|(Xu + ZX) − (Yu + ZY )|p

]
− 2p−1E

[
|(Z ′

X − Z ′
Y )|p

]))
≥ Wp

p(Ruµ ∗ Nσ1 , Ruν ∗ Nσ1) − 2p−1 sup E
[
|(Z ′

X − Z ′
Y )|p

]
≥ Wp

p(Ruµ ∗ Nσ1 , Ruν ∗ Nσ1) − 22p sup E
[
|(Z ′

X)|p
]
.

Hence,

Gσ1SWp(µ, ν) ≤ 21− 1
p Gσ2SWp(µ, ν) + 4

(
sup E

[
|(Z ′

X)|p
]
)
)1/p

.

Finally, for any p ≥ 1 the p-th moment of |Nσ| satisfies E[|Nσ|p] = 2pΓ((p+1)/2)
Γ(1/2) σ2p ≤ 2p/2σ2p, then

Gσ1SWp(µ, ν) ≤ 21− 1
p Gσ2SWp(µ, ν) + 2 5

2 (σ2
2 − σ2

1),

and concludes the proof.

A.9 Proof of Proposition 3.17: continuity of the smoothed Gaussian sliced Wasserstein w.r.t. σ

From Lemma 1 in (Nietert et al., 2021), we know that the Gaussian-smoothed Wasserstein is continuous with
respect to σ, for any distribution Ruν and Ruµ. In addition, for any u, we have Wp(Ruν ∗ Nσ, Ruµ ∗ Nσ) ≤
Wp(Ruν, Ruµ). Then by applying Lebesgue’s dominated convergence theorem (Bowers & Kalton, 2014) to
the above inequality with Wp(Ruν, Ruµ) as a dominating function, that is ud-almost everywhere integrable
because both measures are in Pp(Rd), we then conclude that the Gaussian-smoothed SWD is continuous
w.r.t. σ.

A.10 Proof of Proposition 3.18: continuity of the smoothed sliced squared-MMD w.r.t. σ

Let us first recall the definition of the MMD divergence. Let k : R × R → R be a measurable bounded
kernel on R and consider the reproducing kernel Hilbert space (RKHS) Hk associated with k and equipped
with inner product < ·, · >Hk

and norm ‖ · ‖Hk
. Let PHk

(R) be the set of probability measures η such
that

∫
R

√
k(t, t)dη(x) < ∞. The kernel mean embedding is defined as Φk(η) =

∫
R k(·, t)dη(t). The squared-

maximum mean discrepancy between η, ζ ∈ P(R) denoted as MMD : PHk
(R) × PHk

(R) → R+ is expressed
as the distance between two such kernel mean embeddings. It is defined as Gretton et al. (2012)

MMD2(η, ζ) = ‖Φk(η) − Φk(ζ)‖2
Hk

= ET,T ′∼η[k(T, T ′)] − 2ET ∼η,R∼ζ [k(T, R)] + ER,R′∼ζ [k(R, R′)]

where T and T ′ are independent random variables drawn according to η, R and R′ are independent random
variables drawn according to ζ, and T is independent of R. We define the Gaussian Smoothed Sliced
squared-MMD as follows:

GσMMD2(µ, ν) =
∫
Sd−1

‖Φk(Ruµ ∗ Nσ) − Φk(Ruν ∗ Nσ)‖2
Hk

ud(u)du

=
∫
Sd−1

(
ET,T ′∼Ruµ∗Nσ

[k(T, T ′)] − 2ET ∼Ruµ∗Nσ,R∼Ruν∗Nσ
[k(T, R)]

+ ER,R′∼Ruν∗Nσ
[k(R, R′)]

)
ud(u)du.

From the definition of the smoothed sliced squared-MMD, we have

ET,T ′∼Ruµ∗Nσ [k(T, T ′)] =
∫∫

R×R
k(t, t′)dRuµ ∗ Nσ(t)dRuµ ∗ Nσ(t′)

=
∫∫

R×R

( ∫
R

k(t + z, t′)dRuµ(z)Nσ(t)
)

dRuµ ∗ Nσ(t′)

=
∫∫

R×R

( ∫
Rd

k(t + u>x, t′)dµ(x)Nσ(t)
)

dRuµ ∗ Nσ(t′)

=
∫∫

R×R

∫∫
Rd×Rd

k(t + u>x, t′ + u>x′)dµ(x)dµ(x′)dNσ(t)dNσ(t′).
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Similarly,

ER,R′∼Ruν∗Nσ [k(R, R′)] =
∫∫

R×R

∫∫
Rd×Rd

k(r + u>y, r′ + u>y′)dν(y)dν(y′)dNσ(r)dNσ(r′)

and

ET ∼Ruµ∗Nσ,R∼Ruν∗Nσ
[k(T, R)] =

∫∫
R×R

∫∫
Rd×Rd

k(t + u>x, r + u>y)dµ(x)dν(y)dNσ(t)dNσ(r).

Together the assumption of boundness of the kernel function k and the continuity of integrals, the three
latter terms are continuous functions w.r.t. σ ∈ (0, ∞). Again by the boundness of the kernel function k,
there exists a positive finite constant Ck such that

∣∣ET,T ′∼Ruµ∗Nσ
[k(T, T ′)] − 2ET ∼Ruµ∗Nσ,R∼Ruν∗Nσ

[k(T, R)] + ER,R′∼Ruν∗Nσ
[k(R, R′)]

∣∣ ≤ 4Ck.

We conclude the continuity of σ 7→ GσMMD2(µ, ν) by an application of the continuity of integrals.

B Additional experiments

B.1 Sample complexity on CIFAR dataset

We have also evaluated the sample complexity for the CIFAR dataset by sampling sets of increasing size.
Results reported in Figure 6 confirms the findings obtained from the toy dataset.

Figure 6: Measuring the divergence between two sets of samples drawn iid from the CIFAR10 dataset. We
compare three sliced divergences and their Gaussian smoothed versions with a σ = 3.

B.2 Identity of indiscernibles

The second experiment aims at checking whether our divergences converge towards a small value when the
distributions to be compared are the same. For this, we consider samples from distributions µ and ν chosen
as normal distributions with respectively mean 2 × 1d and s1d with varying s (noted as the displacement).
Results are depicted in Figure 7. We can see that all methods are able to attain their minimum when s = 2.
Interestingly, the gap between the Gaussian smoothed and non-smoothed divergences for Wasserstein and
Sinkhorn is almost indiscernible as the distance between distribution increases.
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Figure 7: Measuring the divergence between two sets of samples in R50, one with mean 21d and the other
with mean s1d with increasing s. We compare three sliced divergences and their Gaussian smoothed version
with a σ = 3.
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