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Abstract
To generate coherent responses, language mod-
els infer unobserved meaning from their input
text sequence. One potential explanation for this
capability arises from theories of delay embed-
dings in dynamical systems, which prove that
unobserved variables can be recovered from the
history of only a handful of observed variables.
To test whether language models are effectively
constructing delay embeddings, we measure the
capacities of sequence models to reconstruct un-
observed dynamics. We trained 1-layer trans-
former decoders and state-space sequence mod-
els on next-step prediction from noisy, partially-
observed time series data. We found that each se-
quence layer can learn a viable embedding of the
underlying system. However, state-space models
have a stronger inductive bias than transformers–
in particular, they more effectively reconstruct un-
observed information at initialization, leading to
more parameter-efficient models and lower error
on dynamics tasks. Our work thus forges a novel
connection between dynamical systems and deep
learning sequence models via delay embedding
theory.

1. Introduction
Neural sequence models, specifically transformers and state-
space models (SSMs) trained on next-token prediction, have
made extraordinary strides in natural language processing
(Vaswani et al., 2017; Gu et al., 2021; Orvieto et al., 2023;
Gu & Dao, 2023; Lin et al., 2021; Voelker et al., 2019; Gu
et al., 2020; 2022). More generally, these models operate
over ordered sequences of data, and thus have the poten-
tial to be learners of any temporal prediction problem. Yet,
transformers have been noted to underperform in continuous
time-series prediction (Zeng et al., 2023), an issue that sev-
eral transformer architecture variants have sought to rectify
(Wu et al., 2021; Zhou et al., 2021; Nie et al., 2022). Cer-
tain SSMs outperform transformer variants on benchmark
time-series prediction tasks (Gu et al., 2021). Furthermore,
it is unclear why transformers underperform other models
in time-series forecasting.

In this work, we present mechanistic insights into the perfor-
mance of transformers and SSMs on time-series prediction
tasks of well-characterized dynamical systems. We examine
their learned representations and quantify their alignment
to the dynamical structure of the underlying system. Our
results connect neural networks to the theory of delay em-
beddings in dynamical systems, thereby shedding light on
the inductive biases and capabilities of each architecture for
time-series prediction.

1.1. Delay Embedding Theory

Delay embedding is a well-known method for reconstructing
and characterizing the geometry of chaotic dynamical sys-
tems, when the system is only partially observed. Delay em-
bedding a time-series involves stacking time-delayed copies
of the observed data into a vector. The most famous theory
in the field, Takens’ Delay Embedding Theorem, proved that
with sufficiently many delays, a delay embedding of a single
variable in a multi-variable dynamical system is diffeomor-
phic to the original dynamics (Takens, 1981). However, this
theorem lacks two important components for practical use:
how to pick the optimal delay embedding parameters, and
an understanding of the role of observational noise (Cas-
dagli et al., 1991). While Takens provided a prescription
for a minimal number of delays to reconstruct the attractor,
this is not necessarily the optimal delay embedding. Better
embeddings integrate enough information to be robust to
observational noise, but not too much so that they are overly
distorted, thereby hampering downstream prediction. We
demonstrate these tradeoffs in Fig.1. Thus, when creating a
delay embedding, one must be selective about which com-
ponents of the history are used. Methods to pick appropriate
delays include autocorrelation analysis, mutual information,
persistent homology, and more (Packard et al., 1980; Gibson
et al., 1992; Kennel et al., 1992; Fraser & Swinney, 1986;
Tan et al., 2023).

Transformers and SSMs can both be viewed as delay embed-
dings, as they operate over a time history and are capable
of inferring latent variables (Piantadosi, 2023). However,
the behavior of these sequence models depends on how
they combine information across time. Transformer-based
language models often sparsely combine inputs represent-
ing past states via a learned attention mechanism (Li et al.,
2023) while structured state space sequence models (SSMs)
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Figure 1. Delay Embeddings. a. Noisy data from the x dimension of the Lorenz attractor, on which our models are trained. b. Visualization
of the top two Principal Components of a delay embedding with too few delays. Here, noise is amplified and the attractor is distorted.
c. As in b, with too many delays. Here the attractor is folded into too many dimensions, making the data harder to model. d. In the
intermediate, the embedding both reduces noise and has a geometry that reflects the original space (visualized in Appendix A.1).

are designed to memorize as much of the past inputs as
possible (Voelker et al., 2019; Gu et al., 2020; 2022). Here,
we apply the delay embedding perspective on transformers
and SSMs to better understand the inductive bias of each
architecture. In particular, we study the performance and
dynamics of one-layer transformers and SSMs (the Linear
Recurrent Unit (Orvieto et al., 2023)) on a noisy, partially
observed, chaotic dynamics prediction task. By forging the
connection between delay embedding theory with sequence
prediction in deep learning, we hope to establish a relation-
ship that will mutually benefit research in both deep learning
and dynamical systems theory.

1.2. Contributions

We characterize the embedding properties of 1-layer SSMs
and transformers, showing that SSMs have a stronger in-
ductive bias for delay embeddings, which leads to better
attractor reconstructions and lower error on a chaotic pre-
diction task. However, we also show that SSMs contain a
large amount of redundancy, which excessively deforms the
attractor and makes the model more sensitive to observa-
tional noise. While transformers do not have this inductive
bias, we find that they are able to successfully learn a viable
delay embedding with sufficient training.

2. Methods
We study one-layer sequence models, which consist of the
following layers, in order: an encoding matrix, layer nor-
malization, the sequence layer, layer normalization, and
a three-layer MLP. We study one form of each class for
simplicity: a GPT-style decoder-only transformer, and the
linear-recurrent unit (LRU, (Orvieto et al., 2023)). For the
fairest comparison between architectures, we study trans-
formers with positional embeddings applied only within the
softmax function of self-attention. Positional embeddings
provide temporal information, breaking the permutation
invariance of the transformer inputs to enable higher per-
formance. Not including positional embeddings outside the

softmax function, on the other hand, improves the quality of
the manifold reconstructions. Embeddings were learnable.

For a given sequence of inputs U , positional embeddings P ,
present time point T , our self-attention layer is written as

oT = SoftMax[(Ut≤T + Pt≤T )
TW qk(ut + pt)]W

ovUt≤T

(1)
Notably, taking positional embeddings out of the output
(i.e., W ov(Ut≤T + Pt≤T ) does not negatively affect the
performance, as the dynamics of the Lorenz attractor is time-
invariant (it is an autonomous system). For convenience, we
write the key and query matrices together as W qk and the
output and value matrices together as W ov .

The Linear Recurrent Unit layer (Orvieto et al., 2023) is a
discrete linear dynamical system:

xt+1 = Axt +But (2)

ot = CRe(xt) +Dut (3)

In particular, A is a diagonal matrix with complex eigenval-
ues initialized uniformly on a disk within the unit circle of
the complex plane. This gives the model rotational dynamic
properties, thereby allowing each input to be moved to a
different subspace and be preserved. Because the input and
output are real, the complex component of x is discarded
before a linear map to the output.

Our models were trained on next-step prediction for a sin-
gle observed variable of the 3-dimensional, chaotic Lorenz
attractor (see Appendix A.1). We simulated 2000 trajecto-
ries of the system for 600 timesteps using the simulation
timestep dt = 0.01 (Fig. 1a). Each trajectory had a unique
initial condition. We removed the first 100 timesteps to
eliminate transients. We added in i.i.d. Gaussian noise of
zero mean and variance 0.1 to the data at each timestep.
We trained our model with Adam for 1000 epochs. For
our analysis, we only studied models that reached a Mean
Absolute Standardized Error (MASE) < 1. The MASE is
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Figure 2. Learning curves of each architecture, inset zoomed in.
Faded area around each curve indicates standard error.
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Figure 3. Sample top 4 Principal Components after training, of each
sequence layer output, colored by trajectory.

the Absolute Error, normalized by the Persistence Baseline:

MASE(xt, x̂t) =
|xt − x̂t|

|xt − xt−1|
(4)

MASE ≥ 1 indicates that the model has captured no pre-
dictive information. At the time of submission, we trained
approximately 25 networks of each architecture and dimen-
sionality (10, 25, 50, and 100). We collected a similarly
sized dataset for different values of observed noise (0.05
and 0.0), and displays these results in Appendix 8.

2.1. Measuring Delay Embedding Quality

We quantified how well the sequence layer outputs operated
as delay embeddings via three methods (futher detailed in
Appendix 7):

Decoding hidden variables We trained linear and nonlin-
ear (MLP) decoders to predict the two unobserved dimen-
sions of the 3-dimensional attractor, and measured the test
R2.

Measuring Smoothness Because a diffeomorphism is a
smooth transformation, neighborhoods in one space should
map onto neighborhoods in the other space. We measured
this by identifying the fraction of overlap between the twenty
nearest neighbors in the embedding and the true space.

Measuring Unfolding Lastly, we measure how well the
embedding lends itself to prediction, via the conditional
variance of the future data given the embedding, σ2

τ (x) =
Var(x(t+ τ)|ot) where o(t) is the model hidden state. We
provide implementation details in the appendix. We calcu-
late the average of σ2

τ over all data points, and average over
τ from 1 to 10 steps in the future.

3. Results
We began our analysis by inspecting the learning curves of
each model, plotting the performance across training in Fig.
2. LRU models across all dimensionalities outperformed all
GPT models in terms of MASE, albeit by a small margin
(final performance in Appendix Fig. 8).

To visually inspect the quality of embeddings, we plotted
the top 4 Principal Components of two sample models that
solve the noiseless task with MASE 0.06 in Fig. 3 (LRU in
a, GPT in b). Two observations are immediately evident:
(1) The LRU embedding is more visually appealing, and (2)
the butterfly shape emerged only in the LRU–this suggests
that the LRU generated a more faithful delay embedding.
However, in the first panel, PCs 1 and 2 suggest that this
attractor is quite deformed. On the other hand, the trans-
former embedding is much less appealing. However, the two
lobes of the attractor are identifiable in the first 2 PCs, and
the dimensionality of the embedding (Participation Ratio
of 2.47) is closer to the true attractor dimension (approxi-
mately 1.93) whereas the SSM embedding’s dimension is
1.29. This larger dimensionality may lead to increased noise
robustness of the transformers (see Appendix, Fig. 9).

We applied each of the embedding metrics to the systems ev-
ery 50 epochs during training, and plotted the results in Fig.
4, averaging over runs and separated by dimensionality and
architecture. Across all metrics, we found that the LRU con-
sistently started off with superior embedding quality. This
indicates that the architecture has a powerful inductive bias
for delay embedding. Importantly, each metric improved
across training, demonstrating that the embedding can be
optimized for better performance. The transformers, on the
other hand, started off with much worse embedding met-
ric performance, but gradually approached the embedding
quality seen in the LRU models. We correlated each met-
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Figure 4. Delay embedding metrics across training, colored by architecture and dimension. a. MLP decoding of unobserved variables, test
R2. b. Linear decoding test R2. c. Neighbors overlap fraction between full dynamic state and embedding. d. Conditional variance of
future data given the embedding, averaged over future time steps from 1 to 10. Faded area around each curve indicates standard error.

ric to prediction performance, finding a robust correlation
between prediction quality and each of nonlinear decod-
ing (correlation of 0.76), linear decoding (correlation of
0.56), and nearest neighbor overlap (correlation of 0.64, see
Appendix A.4).

4. Conclusion
In this study, we demonstrated that the inductive bias of
SSMs leads to improved embedding reconstruction, which
was correlated with better performance on time series pre-
diction. We found that SSMs have slightly higher perfor-
mance on a dynamical systems prediction task, but were
more sensitive to noise. Furthermore, for similar embedding
dimensionality, the use of positional embeddings increases
the parameter count of transformers relative to SSMs. This
suggests that SSMs may be preferred in the low-data, low-
compute regime. While our models and task were simplified,
our study identifies a generic property of how time series
are combined in each architecture, which is relevant for any
application of these models to time series prediction. In fu-
ture work, we plan to study how transformers and selective
SSMs (Gu & Dao, 2023) select their delays.
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A. Supplementary Information
A.1. Lorenz attractor equations

dx

dt
= σ(y − x) (5)

dy

dt
= x(ρ− z)− y (6)

dz

dt
= xy − βz (7)

Where σ = 10, ρ = 28, β = 8/3. The fractal dimension of
the attractor, measured using the Kaplan-Yorke dimension,
is approximately 2.06. The dimension of the attractor, which
we computed via participation ratio, is 1.986.

X

Y

Z

Figure 5. 3-dimensional visualization of the Lorenz attractor. Sim-
ulated with noise, colored by time.

A.2. Embeddings before training

In Fig. 6, we visualize the embeddings of each sequence
layer before training, when driven with a noiseless input.
While neither looks much like the lorenz attractor, and are
both quite low dimensional, it is evident that the LRU has a
more similar appearance, with the two lobes evident in the
2nd plot.

A.3. Metrics

A.3.1. PARTICIPATION RATIO

The Participation Ratio is a continuous measure of dimen-
sionality, derived from Principal Components Analysis.
While it is not equivalent to the fractal dimension of an
attractor, which is typically measured via the Lyapunov ex-
ponents and is much more challenging to compute from
data, it is useful to quantify dimensionality without setting
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Figure 6. Untrained trajectories from each architecture, the same
models as in Fig. 3.

arbitrary thresholds on the explained variance. Given the
eigenvalues λi of the correlation matrix, XXT , the partici-
pation ratio is calculated as

p =
(
∑

i λi)
2∑

i(λi)2
(8)

A.3.2. CONVERGENT CROSS MAPPING

Convergent Cross Mapping (CCM, (Sugihara et al., 2012))
was developed as a measure of causality between dynamical
systems, but here we chose to use it to measure continuity
of the embedding, as it uses similar underlying principles.
Given simultaneously recorded time series data from two
dynamical systems (x and y), CCM constructs a delay em-
bedding of each, then uses the k-nearest neighbors (with
k equal to the embedding dimensionality) in one system
to predict the value of the state in the other system. More
specifically, given a particular time point x(t), the k-nearest
neighbors of the first system, U(x), are identified. These
points are then mapped to the embedding y(t) yielding an
equivalent set of neighbors, U(y), (given the one-to-one
mapping), and the prediction is made via their average:

ŷ(t) =
1

k

k∑
i∈U(y)

yi (9)

A.3.3. NEIGHBORS OVERLAP

We also implemented a stronger metric of continuity via the
k-nearest neighbors, which we call the Neighbors Overlap.
For each given point, mapped one-to-one via the embedding:
y = f(x), we compute the nearest neighbors of the true data
space and the embedding separately: U(x), V (y). Then,
we identify the time indices of each neigbor: Tu, Tv. The
metric averages the fraction of overlap between these index
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sets across each point in the dataset:

Overlap(X,Y ) =
1

n

n∑
i

|Tu(i) ∩ Tv(i)|
k

(10)

Where |Tu(i)| = |Tv(i)| = k = 20, |X| = |Y | = n.

A.3.4. UNFOLDING METRIC

We implemented the embedding complexity metric from
(Uzal et al., 2011). For noisy data, this metric characterizes
the noise robustness of the embedding, and more generally
calculates the complexity of the model required for next-step
prediction. Here, we explain the motivation for the metric
and detail the computational steps required to implement it.

In Casdagli et al. 1991 (Casdagli et al., 1991), the authors
suggest that predictive value is a good quantity to optimize
for in an embedding. The authors define the predictive value
of a reconstructed coordinate y as the conditional probability
density on the time-series values T time-steps ahead:

p(x(t+ T )|y(t))

where x ∈ RD is the observed time-series and y ∈ Rd is
the reconstructed coordinate. As noted by the authors, this
quantity is independent of the predictive estimation proce-
dure, as it captures what can be predicted about x(t + T )
from y(t) with a perfect estimation procedure. The authors
then go on to suggest that the variance of this distribution,
given by

Var(x|y) =
∫

x2p(x|y)dx−
(∫

xp(x|y)dx
)2

is a reasonable quantity to optimize for. Given that the ideal
predictor is given by x̂ = E(x|y), the above variance is the
mean-square prediction error of the ideal predictor, and thus
presents a lower bound on the mean-square prediction error
of any predictor.

Building on this idea, Uzal et. al. (Uzal et al., 2011) define
the unfolding metric, which aims to estimate this variance.
Given a time series dataset, the unfolding metric calculates
two values for each time step based on its k-nearest neigh-
bors. The first measures the variance of these points in the
input space as time progresses. The latter is the volume of
these points in the embedding space.

The conditional variance of future time steps, given the
embedding, is approximated using the nearest neighbors:

E2
k(T, x̃) ≡

1

k + 1

∑
x̃′∈Uk(x̃)

[x′(T )− uk(T, x̃)]
2 (11)

where x̃ is the delay embedded initial condition, x′(T ) is the
future value of the true time series x corresponding to initial

delay embedded condition x̃, Bϵ(x̃) is a Gaussian ball with
standard deviation ϵ around x̃, Uk(x̃) is the neighborhood
of k + 1 points containing x̃ and its k neighbors (and is an
approximation of Bϵ(x̃), and the mean of the embedding is
computed as:

uk(T, x̃) =
1

k + 1

∑
x̃′∈Uk(x̃)

x′(T ) (12)

Then, the overall conditional variance is computed by aver-
aging E2

k over the first p timesteps after the initial condition:

σ2
k(x̃) =

1

p

p∑
j=1

E2
k(Tj , x̃) (13)

where the Tj’s index the timesteps.

This is done for each individual data point, and we report
the average across the attractor. We can also normalize
this by the average volume of the whole attractor, which is
equivalent to weighting the metric by the ergodic measure
of the attractor. As suggested by Uzal et al. (2011), we used
k = 3 and p = 10.

A.4. Relation of each metric to performance

Here, we demonstrate that in the noisy case, multiple embed-
ding metrics are related to the model’s predictive capacity.
In Fig. 7, we scatter each metric for the noisy data, with
noise variance σ2 = 0.1. We observe a robust correlation
for the nonlinear decoding accuracy, linear decoding accu-
racy, and neighbors overlap. This strengthens our hypothesis
that a stronger embedding improves prediction performance,
and provides insight into the superior predictive capabilities
of the LRU models.

As can be seen in Fig. 7f, we do not observe any correlation
between performance and embedding complexity. This is
likely because we utilize sufficiently wide MLPs for pre-
diction, implicitly limiting the necessary complexity of the
hidden embeddings. In future work, we will restrict the
model expressivity and seek to identify a connection be-
tween embedding complexity and prediction performance.

A.5. Change in performance due to noise

To assess the robustness of each model architecture to ob-
servational noise applied i.i.d to each time point, we trained
models with noise variances of σ2 ∈ {0.0, 0.05, 0.1}. We
display the performance of each model in Fig. 8. We also
train baseline models which we call ’Delay MLPs’–these
are MLPs that operate over explicit delay embeddings. We
simulated these with MLP widths ranging from 10 to 100,
with a delay interval of 1 and a number of delays of sizes
{10, 25, 50, 100}. We find that the LRU models perform
comparably to the Delay MLPs, and significantly better
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Figure 7. Relation of each embedding metric with performance. Each dot is an individual trained neural network, colored by architecture
and dimensionality. x-axis on all plots is the validation Mean Absolute Standardized Error (MASE) after training. Dotted line indicates
regression line of best fit, with R2 coefficient listed in each legend a. MASE against nonlinear decoding accuracy R2, plotted as 1−
accuracy, due to logarithmic improvement. b. Likewise, MASE against linear decoding accuracy, demonstrating that better unfolding
also improves performance. c. Relationship of MASE with fractional overlap of the 20 nearest neighbors in each embedding space (full
data space versus output of the sequence layer). d. Relationship of the MASE with the local volume of the embedding, measured as the
average distance of the 20 nearest neighbors in the embedding space from the present point. e. Relationship with the Convergent Cross
Mapping Score, detailed in Appendix 7. f. Relationship with conditional variance, a measure of the unfolding complexity of the attractor,
detailed in Appendix .
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Figure 8. Performance of each model across different dimensionalities and variance of observational noise. On the right, the baseline
MLP over the delay embedding is displayed. Bars indicate standard error

than GPTs across all noise levels. However, in Fig. 9, we
measure the percent change in MASE when the noise is
increased from 0.0 to 0.1, which shows that the LRU is
more susceptible to noise than the transformer. This corrob-
orates with results from Fig. 3 which show that the LRU
model is more highly folded and lower dimensional than the
transformer.
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Figure 9. The percent growth in the MASE for the LRU and
GPT when noise is increased to 0.1 from 0.0. Bars indicate
standard error.
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