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Abstract

We propose DocVXQA, a novel framework for
visually self-explainable document question an-
swering. The framework is designed not only to
produce accurate answers to questions but also
to learn visual heatmaps that highlight contextu-
ally critical regions, thereby offering interpretable
justifications for the model’s decisions. To inte-
grate explanations into the learning process, we
quantitatively formulate explainability principles
as explicit learning objectives. Unlike conven-
tional methods that emphasize only the regions
pertinent to the answer, our framework delivers ex-
planations that are contextually sufficient while re-
maining representation-efficient. This fosters user
trust while achieving a balance between predic-
tive performance and interpretability in DocVQA
applications. Extensive experiments, including
human evaluation, provide strong evidence sup-
porting the effectiveness of our method. The
code is available at https://github.com/
dali92002/DocVXQA.

1. Introduction
Document visual question answering (DocVQA) is essen-
tial for automatically extracting information from visually
complex, multi-modal documents including invoices, re-
ports, and contracts (Appalaraju et al., 2024; Blau et al.,
2024; Tito et al., 2023; Mathew et al., 2021). This task
requires interpreting the question and generating an answer
through natural language, given a specific document. Re-
cently, DocVQA models have increasingly leveraged large
vision-language models for their ability to process both tex-
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Figure 1. An illustration of the relevant regions in a DocVQA
model (highlighted zones), produced by extracting the raw at-
tention maps from the last layer (top) and by using our method
(bottom) for the question “ ‘Pleasure to burn since 1913’, Which
cigarette’s tagline is this?”. Here, the answer given correctly by
the model is “Camel”.

tual and visual modalities at scale (Wang et al., 2024; Zhao
et al., 2024; Rasheed et al., 2024; Parashar et al., 2024).

Despite these promising advances in terms of utility,
DocVQA relies on large, opaque neural network archi-
tectures that function as “black boxes,” offering limited
transparency into how they generate answers. This lack
of transparency is particularly concerning in high-stakes
domains such as finance (Wu et al., 2023), healthcare (Li
et al., 2024), and law (Abdallah et al., 2023), where trust
in AI-driven decision-making is crucial. In addition, ex-
isting explainable methods for DocVQA primarily rely on
visualizing attention maps to highlight relevant regions in-
fluencing the model’s predictions. However, as illustrated
in Figure 1 (above), these attention-based explanations are
often noisy or imprecise, failing to justify the reasoning be-
hind the answer. Instead of offering clear insights, they tend
to broadly highlight all occurrences of the answer without
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contextualizing why it was selected.

To address this limitation and enhance the transparency
of DocVQA models, we propose a novel self-explainable
framework called DocVXQA, which learns to provide
context-aware explanations to the answers in the form of
relevance maps. Note that self-explainable models generate
interpretable outputs by design, in contrast to post-hoc ap-
proaches that provide explanations retrospectively (Møller
et al., 2024; Choi et al., 2024; Gautam et al., 2023; 2022).
While these methods have been explored from a methodolog-
ical perspective, their application in the context of DocVQA
remains largely unexplored. To the best of our knowledge,
our framework is the first self-explainable DocVQA model
designed to generate visual explanations that align with tex-
tual answers. This approach enhances both transparency
and user trust in model predictions.

To enhance transparency without disrupting established
DocVQA models, we propose a strategy that learns gen-
erating explanations while maintaining compatibility with
available pretrained models. We build upon the widely used
Pix2Struct (Lee et al., 2023) model, trained for DocVQA
task. With minimal alterations to the existing architecture–
thus avoiding significant impacts on performance or the
need for extensive retraining–our method first learns a mask
over the document image as an explanation, and then uses
the masked image as an input to the same network to answer
the question. This sequential learning process ensures that
the generated explanations directly contribute to the answer.

The core contribution of our DocVXQA lies in learning an
effective mask designed to enhance human understanding.
Grounded in a philosophical foundation of good explana-
tion (Choi et al., 2024; Sokol & Flach, 2020), our approach
aims to develop a method that learns mask representations
that are both contextually sufficient and representation-
efficient. To achieve this, we frame the trade-off between
these objectives within the information bottleneck princi-
ple (Tishby & Zaslavsky, 2015), ensuring a balance between
retaining relevant contextual information and minimizing
redundancy in the representation. Additionally, to prevent
overfitting in mask learning and to enhance the generalizabil-
ity of the explanations, we integrate additional pretrained
models (Faysse et al., 2024; Yu et al., 2024a), which infer
the mask representation as a prior and interact with the main
model to refine the explanation learning process, ensuring
robust and reliable outcomes. This approach offers more
precise and contextually relevant justifications. Notably,
although our focus is on Pix2Struct (Lee et al., 2023), our
method is inherently model-agnostic, allowing seamless
integration with various DocVQA architectures.

Our main contributions are as follows: (1) We introduce
DocVXQA, the first self-explainable DocVQA framework
that learns to generate visually grounded context-aware ex-

planations along with answer predictions. (2) We formalize
explainability as an explicit learning objective with the in-
formation bottleneck principle. (3) We make our design
model-agnostic and lightweight, thus, compatible with ex-
isting pretrained DocVQA models and requiring minimal ar-
chitectural changes. (4) We conduct extensive experiments,
including human evaluations, to validate the effectiveness
of the proposed approach.

2. Related Work
2.1. Document visual question answering

Typical DocVQA models are reaching good performances
using visual and textual features within transformer-based
encoder-decoder architectures to generate answers (Ap-
palaraju et al., 2024; Tito et al., 2023; Powalski et al., 2021;
Xu et al., 2020). In this setup, text is extrtacted with OCR
systems. However, despite their strong best-case perfor-
mance, these methods are prone to errors introduced by
OCR inaccuracies and face difficulty in domains that are
more reliant on visual features.

In contrast, OCR-free end-to-end models (Lee et al., 2023;
Aggarwal et al., 2023; Kim et al., 2022; Davis et al., 2022;
Kim et al., 2021) predict answers directly from document im-
ages, utilizing pre-training objectives to interpret text with-
out relying on OCR. More recently, Large Vision-Language
Models (VLMs) like GPT-4 (Achiam et al., 2023) set new
benchmarks in DocVQA performance, but their high com-
putational requirements and closed-source nature limit their
accessibility. There has also been a gradual emergence of
smaller, open source models trained with instruction tuning
(Wang et al., 2024; Zhang et al., 2023; Ye et al., 2023), but
all these models fall short in providing explanations that
support the reason behind their predictions. Among the
OCR-free models, Pix2Struct (Lee et al., 2023) is designed
for visually-situated language understanding tasks. It uses
a pretraining strategy called screenshot parsing, converting
masked web page screenshots into simplified HTML rep-
resentations. The model incorporates variable-resolution
input, preserving the aspect ratios for diverse document lay-
outs. Thus, avoiding the significant reduction in original
image resolution, which make it successful in performing
DocVQA without requiring external OCR systems.

2.2. Explainability in vision and language

Current vision-and-language model explanations rely heav-
ily on self-attention mechanisms to generate relevance maps,
highlighting the regions that contribute to the model’s de-
cision (Bousselham et al., 2024; Chefer et al., 2021b;a).
However, attention maps are often noisy (Abnar & Zuidema,
2020), making it challenging to extract meaningful insights
into the model’s reasoning. Recently, in the domain of

2



DocVXQA: Context-Aware Visual Explanations for Document Question Answering

DocVQA, new approaches have been introduced to pro-
vide more fine-grained grounding by explicitly localizing
answer regions (Mohammadshirazi et al., 2024; Zhou et al.,
2024). These methods, however, require annotated answer
locations during training, leading to the development of
new datasets containing such annotations (Giovannini et al.,
2025). While effective in the case of extractive DocVQA
tasks (where the answer string is found explicitly in the doc-
ument), these approaches introduce a significant annotation
cost and remain limited in their ability to capture the con-
text that explain why an answer is correct. Consequently,
there remains a need for explanation techniques that not
only identify specific answer locations but also provide a
reasoning context beyond simple spatial answer grounding.

2.3. Learning to explain

Model explainability has gained significant attention in
recent years, aiming to provide insights into neural net-
work decision-making (Covert et al., 2021). A common
approach is to generate saliency maps that highlight input
regions relevant to predictions (Schulz et al., 2020; Selvaraju
et al., 2017). In this context, the saliency map is a set of
relevance scores over input pixels, intended to reveal the
model’s reasoning. Earlier explainability methods provide
post-hoc explanations, i.e., get explanation without chang-
ing the trained model weights or architecture (Shrikumar
et al., 2017; Selvaraju et al., 2017; Ribeiro et al., 2016;
Bach et al., 2015). Gradient-based methods such as Grad-
CAM (Selvaraju et al., 2017), LRP (Bach et al., 2015), and
DeepLIFT (Shrikumar et al., 2017) calculate saliency maps
through backpropagation of model output gradients to the
input or feature space. While these methods are easy to
implement, they often suffer from gradient shattering, lead-
ing to noisy and imprecise explanations. Another line of
post-hoc explanation research is perturbation-based meth-
ods. This approach observes output changes by processing
a set of perturbed images, each occluding different regions
of the original image. Examples include LIME (Ribeiro
et al., 2016), Occlusion (Zeiler & Fergus, 2014), and RISE
(Petsiuk, 2018). While these methods often produce more
reliable attributions, their effectiveness is constrained by the
high computational cost of sampling a sufficient number of
meaningful perturbations.

Unlike post-hoc approaches, self-explainable methods (Choi
et al., 2024; Møller et al., 2024; Rudin, 2019; Alvarez Melis
& Jaakkola, 2018) embed explainability directly into the
training process, ensuring that models learn to generate in-
terpretable explanations alongside predictions. Instead of
relying on external attribution techniques, these models are
designed to provide built-in reasoning. Among the vari-
ous approaches to self-explainable deep learning methods,
two main strategies stand out: the integration of mathemati-
cally formulated explainability principles into the objective

function (Bang et al., 2021; Rudin, 2019; Alvarez Melis &
Jaakkola, 2018), and architectural adjustments of the net-
work to enhance transparency (Gautam et al., 2023; 2022;
Alvarez Melis & Jaakkola, 2018). These approaches mark a
shift from the traditionally opaque ’black-box’ neural net-
works to a more transparent and understandable framework.

2.4. Information theoretic learning

Information theory provides a robust foundation for quanti-
fying data representation through metrics such as entropy,
divergence, and mutual information (Principe, 2010; Shan-
non, 1948). Building on this foundation, recent learning
systems have embraced these principles (Skean et al., 2025;
Yu et al., 2024b; 2019; Tishby & Zaslavsky, 2015) and
evolved through various innovative approaches (Jenssen,
2024; Choi et al., 2024).

3. Method
3.1. Visually self-explainable DocVQA: Enhancing

context awareness through a learnable mask

We propose DocVXQA, a novel framework for visually
self-explainable document question answering. At a high
level, this framework provides not only the answer to a ques-
tion but also a visual explanation in the form of a relevance
map (Müller, 2024; Zhang et al., 2024). The core innovation
of our method lies in learning the relevance map-based ex-
planations while simultaneously improving their reliability.
To achieve this, we quantitatively formalize philosophically
defined explainability principles (Sokol & Flach, 2020) and
integrate them into a unified objective function, enabling
end-to-end training. Our framework builds upon the widely
recognized Pix2Struct architecture (Lee et al., 2023), adapt-
ing it effectively for this domain.

Minimality-sufficiency trade-off In formulating explain-
ability principles, DocVXQA draws inspiration from the in-
formation bottleneck (IB) framework (Tishby & Zaslavsky,
2015), which seeks to construct a compact representation
T of input data X that preserves only the information
essential for predicting a target variable Y . This frame-
work balances the trade-off between reducing the mutual
information I(X;T ) to compress irrelevant data and max-
imizing I(T ;Y ) to retain predictive power. To implement
self-explainability within the conventional DocVQA setting,
we strategically define the bottleneck representation T as
the masked input, T = X ⊙ M , where ⊙ represents the
Hadamard product that masks out irrelevant information
within X , and M is a learnable mask. This formulation pro-
vides a self-explaining mask in the form of region discovery,
highlighting the most relevant regions of the input (Choi
et al., 2024; Zhmoginov et al., 2021). With these terms, the
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Figure 2. Overview of the proposed DocVXQA framework: ① The input question and the full document image are sent to both the
pretrained Pix2Struct ENC-DEC and a pretrained ColPali model. ② The mask head (MASK) generates a learnable mask based on the
decoder output and positional embeddings. ③ ColPali provides a mask prior, highlighting the relevant regions of the input document in
relation to the question. ④ The learnable mask, guided by the mask prior, is combined with the original document to create the masked
image, where only the highlighted parts are kept visible. ⑤ The masked image is processed through the Pix2Struct network. ⑥ The text
head (TEXT) predicts the answer to the question based on the masked input.

objective function LIB is expressed as:

minLIB = βI(X;X ⊙M)− I(X ⊙M ;Y ), (1)

with hyperparameter β balancing the contrasting terms.

These two terms reflect the philosophical foundation of ex-
planation, and the principles that define what an effective
explanation should be (Choi et al., 2024; Sokol & Flach,
2020). We frame these principles as minimality and suffi-
ciency, using them as learning criteria to guide the model
as direct learning signals. Minimality emphasizes present-
ing only the most pertinent information for understanding a
model’s decision, while sufficiency ensures that explanations
remain consistent and contribute decisively to predicting a
correct answer.

Figure 2 provides an overview of our framework. We build
on a pretrained Pix2Struct model as the baseline, updating
the encoder, the newly added mask head, and the text head
to enable the learning of a self-explainable mask representa-
tion. When a question and a document image are provided
as inputs, the model first predicts a mask, introducing the
minimality term I(X;X ⊙M) to encourage the removal of
irrelevant information. The masked input is then processed
by the model, together with the same question, to predict
the answer based on the masked representation, captured
by I(X ⊙M ;Y ). Note that the decoder of the Pix2Struct
model remains frozen to ensure consistent text prediction.

As shown in the figure, our framework also incorporates a
pretrained ColPali model (Faysse et al., 2024). The details
of its role and integration are discussed in Sec. 3.4.

3.2. Learning sufficient explanation via cross-entropy

Upon learning the bottleneck representation, the mask M
must forward contextually sufficient information to the
model to answer the question by maximizing the mutual
information I(X ⊙ M ;Y ). Following (Amjad & Geiger,
2019), we approximate this by minimizing the cross-entropy
loss CE(Ŷ , Y ),

max I(X ⊙M ;Y ) = H(Y )︸ ︷︷ ︸
constant

−H(Y | X ⊙M)

⇐⇒ minH(Y | X ⊙M) ≃ CE(Y ; Ŷ ),

(2)

where H(Y ) and H(Y | X ⊙ M) are the marginal and
conditional entropies of Y , respectively. Ŷ denotes the
model prediction. Note that H(Y ) is constant because the
label Y is fixed.

3.3. Learning minimal explanation via continuity loss
with L1 norm

Minimality is achieved by reducing the mutual informa-
tion between the full document input X and the masked
input X ⊙M , resulting in a representation-efficient mask.
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Contrary to the belief that estimating mutual information is
inherently challenging (Poole et al., 2019; Belghazi et al.,
2018), recent studies (Skean et al., 2024; Yu et al., 2019)
have demonstrated that it can be computed deterministically
when combined with kernel density estimation (Yu et al.,
2019; Giraldo et al., 2014). This approach to quantifying
mutual information is deterministic and integrates seam-
lessly with gradient descent over mini-batches. However,
despite extensive experimentation, this approach did not
yield the expected results. A potential limitation may stem
from the model’s sensitivity to hyperparameter tuning, par-
ticularly when dealing with high-dimensional image data,
which could have restricted its capacity to reach optimal
performance.

As an alternative, we propose a novel step by integrating a
continuity loss, as known as anisotropic total variation (Bui
et al., 2023; Johnson et al., 2016) combined with the L1
norm to enforce sparsity and smoothness in the generated
relevance masks. The L1 norm promotes sparsity by penal-
izing the magnitude of mask values, ensuring that only the
most essential regions of the input are highlighted, thereby
producing concise and focused explanations. In parallel,
the continuity loss enhances spatial coherence by minimiz-
ing abrupt transitions between adjacent regions in the mask.
This is achieved by penalizing the L1 norm of horizontal
and vertical differences in the reconstructed 2D relevance
mask. Together, these complementary objectives enable
the model to highlight minimal yet structurally coherent
regions of importance. By fostering smoothness and mini-
mality, this approach mitigates the risk of producing noisy
or fragmented masks, ensuring that the explanations are not
only interpretable but also intuitively aligned with human
understanding.

3.4. Learning context-aware explanations through token
interactions

Through our experiments with training the model using
the objective function in Equation (1), we identified that
the learned mask often overfits to regions directly corre-
sponding to the answer (see Figure 7 in Appendix). This
overfitting reduces the mask’s utility, rendering it a mere
visual reproduction of the textual answer rather than provid-
ing meaningful, context-aware insights. Such masks lack
the ability to highlight broader, equally relevant information
related to the question, leading to unreliable explanations.

To address this issue, we emphasize the need to regularize
the mask-learning process, not only to mitigate overfitting
but also to enable learning more generalizable explanations.
Specifically, we aim to create context-aware explanations
that identify and integrate the most relevant information
across the broader input space. To achieve this, we incor-
porate a publicly available, pretrained vision-language un-

derstanding model as a source of prior knowledge to guide
mask learning. We utilize its inference results of this model
as prior information to facilitate interactive mask learning
within our framework. While many models can be used for
this purpose, we employ ColPali (Faysse et al., 2024) in
our implementation. ColPali is a vision-language retrieval
model. Its architecture integrates visual patches and textual
tokens to generate multi-vector representations. These rep-
resentations are then subjected to a late interaction matching
mechanism (Liu et al., 2024; Khattab & Zaharia, 2020),
which maximizes the interaction between each question to-
ken and its corresponding relevant tokens in the document
image. This provides a degree of explainability by visu-
alizing question-document interactions through heatmaps,
offering insights into the model’s decision-making process.
Although these visualizations often fail to align with human
intuition or provide comprehensive explanations due to their
reliance on attention distributions, we use them as a prior
mask and refine them within our DocVXQA framework to
enhance relevance and interpretability.

3.5. Proposed learning objective

Our model achieves the following: (1) it learns to make
predictions with masked input documents via cross-entropy
loss LCE (Sec.3.2), (2) it minimizes the highlighted re-
gions to ensure concise and focused explanations via LL1

(Sec.3.3), and (3) it generates more context-aware explana-
tions through tokens interaction with the ColPali signals via
LMSE (Sec.3.4). The complete objective function LVXQA is
defined as:

minLVXQA =γLMSE(Mp;M)

+ βLL1(X;X ⊙M) + LCE(Y ; Ŷ ),
(3)

where LMSE aligns the learned mask with the prior Mp

derived from ColPali, LL1 encourages sparsity in the high-
lighted regions, and LCE represents the cross-entropy loss
for prediction accuracy. The hyperparameters γ and β bal-
ance the contributions of each term. All components of
the objective function are optimized simultaneously in an
end-to-end fashion. As explanations M emerge naturally
through this integrated optimization process, our framework
inherently exhibits self-explainability.

3.6. Postprocessing

For a more human understandable relevance maps, a postpro-
cessing stage is applied, consists in enclosing the connected
relevance regions with bounding boxes and keep only k
boxes with high relevance score. This step, applied only in
the inference stage, is further detailed in Appendix A.1.
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METHOD MASK THRESH. DOCVQA (MATHEW ET AL., 2021) PFL-DOCVQA (TITO ET AL., 2024)

ACC. ↑ ANLS ↑ PIX. RATIO ↓ ACC. ↑ ANLS ↑ PIX. RATIO ↓
PIX2STRUCT, UNMASKED

(LEE ET AL., 2023) – 0.56 0.68 1 0.80 0.92 1

OUR MODEL, UNMASKED – 0.51 0.65 1 0.57 0.79 1

RAW ATTENTION

0.05 0.34 0.46 0.38 0.06 0.13 0.27
0.10 0.20 0.32 0.20 0.04 0.10 0.17
0.25 0.07 0.13 0.08 0.01 0.04 0.09
0.50 0.03 0.08 0.04 0.00 0.01 0.05

ATTENTION ROLLOUT
(ABNAR & ZUIDEMA, 2020)

0.01 0.03 0.07 0.04 0.00 0.02 0.03
1× 10−5 0.06 0.11 0.07 0.00 0.03 0.05

GRAD-CAM
(SELVARAJU ET AL., 2017) 0.50 0.01 0.05 0.18 0.00 0.03 0.16

COLPALI+PIX2STRUCT
(FAYSSE ET AL., 2024) 0.50 0.38 0.50 0.23 0.28 0.39 0.18

OURS
0.70 0.38 0.54 0.23 0.43 0.66 0.22
0.80 0.30 0.46 0.11 0.33 0.54 0.13

Table 1. Evaluation of various explainability methods under different mask threshold settings on the DocVQA task. The results demonstrate
the trade-offs between the interpretability and utility of the different approaches. The unmasked approaches are set for reference as upper
bounds for utility.

4. Experiments and Results
4.1. Experimental Setup

We posit that a good explanation map should highlight all
the critical regions necessary to answer a question while
minimizing irrelevant areas correctly, thus being both suffi-
cient and minimal. We experimentally compare our method
against several baseline techniques to evaluate both qualities.
The evaluation process is structured as follows: explanation
masks are generated using different methods, then postpro-
cessed and binarized to keep only the relevant information
when applied to the original document image. After that,
masks are applied and the resulting image is passed to our
fine-tuned Pix2Struct to predict the answer. Predicted an-
swer is compared with the ground truth (GT) using accuracy
and average normalized Levenshtein similarity (ANLS) to
assess the sufficiency. Furthermore, the proportion of high-
lighted relevant regions in the mask relative to the total
image area, referred to as the pixel ratio, is calculated to
measure mask minimality. An ideal method achieves a fa-
vorable trade-off between explanation utility (accuracy and
ANLS) and minimality (pixel ratio). The experiments are
done on two datasets, DocVQA (Mathew et al., 2021) and
PFL-DocVQA (Tito et al., 2024).

4.2. Baselines

We compare our approach against three categories of base-
line methods:

• Attention Baselines: In this category, we include both

raw attention (obtained from Pix2Struct’s last layer) and
attention rollout (Abnar & Zuidema, 2020), which use
aggregated attention weights across all layers to provide a
more holistic view of the model’s focus.

• Gradient Baselines: We implemented Grad-CAM (Sel-
varaju et al., 2017), adapting it for the autoregressive
sequence output layer by applying it to each output token
from the decoder and aggregating the resulting maps.

• Retrieval Baseline: This approach utilizes ColPali (Faysse
et al., 2024), a retrieval-based framework. Here, the in-
put (question + answer) is first processed by ColPali on
its own to generate a heatmap as the explanation. This
heatmap is then applied to the image, which is subse-
quently passed to the Pix2Struct model for prediction. We
call this baseline ColPali+Pix2Struct.

4.3. Results

Quantitative Evaluation The results obtained are sum-
marized in Table 1, where different methods are evaluated to
balance utility and explainability. As a reference for upper
bound utility, we include results for unmasked images using
the original Pix2Struct model and our trained model. Al-
though our model exhibits a slight decrease in performance,
this can be attributed to the challenge of simultaneously
managing both masked and clear images during training.

Our approach stands out among the explainable methods,
achieving the best utility in terms of accuracy and ANLS
while maintaining a modest pixel ratio. This highlights the
method’s ability to focus on the most critical regions of the
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Original Image Raw Attention (0.5) Raw Attention (0.1) Raw Attention (0.05)

ColPali+Pix2Struct Att. rollout Grad-CAM Ours (0.7)

Figure 3. A comparison of explanations generated by different methods for the question “What is the total amount?” with the model’s
answer being “$180,000”. Relevance maps with different (thresholds) are applied to the input image to keep only the relevant regions.
Best viewed at high zoom. Additional qualitative results across diverse contextual scenarios are provided in Appendix B.3.

input image, providing concise yet effective explanations.
In contrast, raw attention exhibits reasonable performance
when the mask threshold is set very low, as this results in
large pixel ratios that cover a significant portion of the im-
age. However, as the threshold increases, raw attention’s
utility metrics degrade significantly, suggesting it strug-
gles to maintain performance when forced to operate with
smaller, more answer-overfitted explanations. Attention
rollout, while offering a more comprehensive aggregation
of attention weights across layers, performs poorly overall.
Its failure to accurately localize relevant regions is likely
due to the propagation of errors (missing the contextual
regions) across layers, which focused the relevant regions
only around the answer. Grad-CAM, despite its popularity,
also shows weak performance in this context. This can be
attributed to the challenges of adapting Grad-CAM to autore-
gressive sequence models, where token-level aggregation
may reduce its ability to generate precise explanations. Fi-
nally, the ColPali+Pix2Struct approach demonstrates com-
petitive utility metrics with reasonable pixel ratios on the
DocVQA dataset, however, our method achieves even bet-

ter utility at the same ratio, as well as significantly better
performance on the PFL-DocVQA dataset, which further
shows the efficacy of our approach.

Qualitative Evaluation To reflect the results presented
in Table 1, we illustrate the relevance masks generated by
different methods in Figure 3. Each method was tasked with
explaining the model’s response to the question “What is the
total amount?”, where the predicted answer is “$180,000”.
The explanation masks are overlaid on the input image to
highlight regions deemed relevant for the prediction. From
the visualizations, it is evident that our method produces
explanations that are both precise and comprehensive. Com-
pared to baseline methods, such as ColPali+Pix2Struct,
Attention Rollout, and Raw Attention, our approach suc-
cessfully isolates all the textual elements contributing to the
final answer in a relevance map that is easy to visually pro-
cess by a human, while avoiding irrelevant regions. Notably,
Grad-CAM focuses on certain parts of the document that
do not contain all the required information to answer the
question by the model.
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Figure 4. Performance of our method with and without postpro-
cessing, under different thresholds applied to the relevance masks.

When these masked images were fed back into the model,
all methods except Grad-CAM produced the correct answer.
However, this does not necessarily indicate good relevance
maps. In such scenarios, highlighting only any number
will lead the DocVQA to use it as an answer, even without
evidence that it corresponds to the “total”. Our method lever-
ages the most clear and context-aware explanation. This
results in an accurate visualization of the reasoning process,
which enhances users’ ability to understand the model’s
decision-making, and fosters greater trust and confidence in
the system.

Effect of Post-processing To study the impact of postpro-
cessing and thresholding on the resultant masks, we perform
the experiment presented in Figure 4. The experiment high-
light the trade-offs between precision and coverage when ap-
plying different thresholds and when using postprocessing.
Lower thresholds achieve higher Accuracy and ANLS but at
the cost of significantly larger Pixel Ratios, indicating less
precise localization of relevance regions. As the threshold
increases, Pixel Ratio decreases, leading to more focused
masks but with a corresponding decline in Accuracy and
ANLS. When postprocessing is applied, the results show an
improvement in the accuracy and ANLS with a reduction in
Pixel ratio with a threshold ≥ 0.7. This improvement under-
scores the importance of postprocessing as a critical step in
refining the outputs of our method, balancing relevance and
mask quality.

Learning Objectives In our method, three learning objec-
tives are used during training: Sufficiency (S), Minimality
(M), and Token Interactions (TI). To evaluate their individ-
ual and combined contributions to performance, we con-
ducted an ablation study, as shown in Table 2. The first
row, where only the sufficiency loss is applied, achieves the
highest Accuracy and ANLS but has the largest Pixel Ratio.

S M TI ACC. ↑ ANLS ↑ PIXEL RATIO ↓

0.51 0.65 1
0.19 0.36 0.02
0.38 0.54 0.23

Table 2. Ablation study on the impact of different learning objec-
tives. S: sufficiency, M: minimality, TI: Token Interactions.

METHOD CONTEXT ↑ CLARITY ↑
RAW ATTENTION (0.25) 2.90 ± 0.48 2.75 ± 0.42

RAW ATTENTION (0.50) 2.26 ± 0.54 2.34 ± 0.60

COLPALI+PIX2STRUCT 3.97 ± 0.25 3.02 ± 0.42

OURS (0.7) 4.49 ± 0.26 3.56 ± 0.41

Table 3. Results of the human evaluation of the explanation quality
for different methods. Participants rated on a scale of 1 to 5.

This indicates that the model identifies the entire image as
relevant, maximizing coverage but lacking precision. When
both sufficiency and minimality losses are employed, the
Pixel Ratio drastically decreases to 0.02, demonstrating the
effectiveness of minimality in constraining the mask to small
regions that are necessary to answer the question. However,
this extreme reduction leads to overfitting, as the model
disregards accompanying context that may be important for
generalization. Consequently, both Accuracy and ANLS sig-
nificantly decrease on the test data, highlighting a trade-off
between precision and informativeness. Finally, the inclu-
sion of token interactions loss (S+M+TI) balances these
trade-offs, improving mask coverage on the context leading
to achieving significant gains in Accuracy and ANLS.

Human Evaluation The goal of developing explainable
DocVQA models is to enhance human trust in these systems.
To experimentally assess the quality of the explanations, we
conducted a human evaluation study with 42 impartial par-
ticipants, blind to the details of our method. We used 10
example document images. For each image, participants
were shown a corresponding question, the ground truth (GT)
answer, and four different explanation masks generated from
relevance maps of the top-performing methods seen in Ta-
ble 1, based on the trade-offs between Accuracy, ANLS,
and Pixel Ratio–this includes ColPali, raw attention, and
our own method. Participants were asked to evaluate each
explanation on two key criteria, rated on a scale of 1 to 5:

• Context-awareness of the explanation: Participants re-
sponded to the question: “How confident are you (1-5)
to answer the question using only this masked image?”
This question assesses whether the explanation directly
supports the answer and provides all the necessary context
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to answer.
• Clarity of the explanation: Participants responded to the

question: “Does the masked image include only all the
necessary information in a clear, concise, and comprehen-
sive way to fully explain the model’s reasoning? Rate on
a scale (1-5).” This question evaluates the extent to which
the explanation provides thorough, focused and human
comprehensive coverage of the relevant content.

The results of the human evaluation are presented in Table 3.
As shown, our method outperforms all baselines in both
context-awareness and clarity, achieving the highest scores,
compared to ColPali and Raw Attention variants. These
results highlight our method’s ability to generate clear ex-
planations that enable participants to confidently answer
questions without the original image, while also providing
comprehensive and focused masks that include only the nec-
essary information. Thus, using our method enhances user
trust and understanding of the model’s predictions.

Furthermore, we conducted another human preference study
to directly compare the masks of our method against the
top-performing baseline in the previous study, that is Col-
Pali+Pix2Struct. In total, 12 participants evaluated 21 ran-
domly selected question-answer pairs (252 trials in total).
As a result, our method was preferred in 163 trials (64.7%;
95% CI [58.4%, 70.6%], p << 0.001), with all participants
(12/12) favoring our approach overall. Thus, our method
is offering a significantly more compact and interpretable
explanations than ColPali+Pix2Struct.

Model Agnosticity Our DocVXQA framework is de-
signed to be model-agnostic. To demonstrate its architec-
tural flexibility, we implemented it with Donut (Kim et al.,
2021) as an alternative to Pix2Struct. Notably, Donut and
Pix2Struct differ fundamentally in how they incorporate the
question. Pix2Struct renders the question directly onto the
input image, while Donut tokenizes the question and uses it
to condition the decoder during generation. To accommo-
date this difference, we adapt our method by modifying the
mask head to also incorporate the encoded question. Quali-
tative results presented in Appendix B.4 illustrate that our
method consistently identifies relevant regions across both
backbones, validating its model-agnostic design.

5. Conclusion
This paper introduced DocVXQA, the first self-explainable
model for DocVQA, enhancing interpretability by learn-
ing relevance maps that elucidate the model’s decisions.
Unlike conventional approaches that rely on post-hoc ex-
planations or merely justify answers without deep contex-
tual grounding, DocVXQA inherently generates visual and
context-aware explanations to the answers, ensuring that
the model’s process remains transparent, interpretable, and

aligned with human reasoning. This is achieved by formu-
lating and including fundamental explainability principles
directly into the learning process. Our extensive evaluations
demonstrate the effectiveness of our framework.

Future research will explore the generalization of our
method across diverse DocVQA architectures and datasets,
as well as optimizing the trade-off between explainability
and task performance. We envision DocVXQA as a step-
ping stone toward robust, transparent, and user-centric AI
solutions in document intelligence.

Acknowledgments
We thank all participants for their contributions to the hu-
man preference study. This work has been supported by the
Consolidated Research Group 2021 SGR 01559 from the
Research and University Department of the Catalan Gov-
ernment, and by project PID2023-146426NB-100 funded
by MCIU/AEI/10.13039/501100011033 and FSE+. This
work has been funded by the European Lighthouse on Safe
and Secure AI (ELSA) from the European Union’s Horizon
Europe programme under grant agreement No 101070617.
The work of Changkyu Choi is supported by Visual Intelli-
gence, a centre for research-based innovation funded by the
Research Council of Norway and its consortium partners
(RCN grant no. 309439).

Impact Statement
To the best of our knowledge, this work is the first to
introduce explainability into the DocVQA applications.
As DocVQA systems are increasingly deployed in high-
stakes domains such as banking, healthcare, and public
administration–where automated document understanding
aims to reduce human involvement–the demand for trans-
parent and trustworthy models becomes paramount. Our
approach addresses this urgent gap by enabling interpretabil-
ity of DocVQA models, which is essential for ensuring re-
liability, fostering user trust, and facilitating responsible
deployment of AI in sensitive real-world contexts.

References
Abdallah, A., Piryani, B., and Jatowt, A. Exploring the state

of the art in legal qa systems. Journal of Big Data, 10(1):
127, 2023.

Abnar, S. and Zuidema, W. Quantifying attention flow in
transformers. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp.
4190–4197, 2020.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,

9



DocVXQA: Context-Aware Visual Explanations for Document Question Answering

Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Aggarwal, K., Khandelwal, A., Tanmay, K., Khan, O. M.,
Liu, Q., Choudhury, M., Chauhan, H. H., Som, S.,
Chaudhary, V., and Tiwary, S. Dublin–document un-
derstanding by language-image network. arXiv preprint
arXiv:2305.14218, 2023.

Alvarez Melis, D. and Jaakkola, T. Towards robust in-
terpretability with self-explaining neural networks. Ad-
vances in neural information processing systems, 31,
2018.

Amjad, R. A. and Geiger, B. C. Learning representations for
neural network-based classification using the information
bottleneck principle. IEEE transactions on pattern analy-
sis and machine intelligence, 42(9):2225–2239, 2019.

Appalaraju, S., Tang, P., Dong, Q., Sankaran, N., Zhou,
Y., and Manmatha, R. Docformerv2: Local features for
document understanding. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 709–
718, 2024.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,
K.-R., and Samek, W. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 10(7):e0130140, 2015.

Bang, S., Xie, P., Lee, H., Wu, W., and Xing, E. Explaining
a black-box by using a deep variational information bot-
tleneck approach. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pp. 11396–11404,
2021.

Belghazi, I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio,
Y., Courville, A., and Hjelm, R. D. Mine: Mutual in-
formation neural estimation. In Proceedings of the 35th
International Conference on Machine Learning (ICML),
volume 80, pp. 531–540. PMLR, 2018.

Blau, T., Fogel, S., Ronen, R., Golts, A., Ganz, R., Ben Avra-
ham, E., Aberdam, A., Tsiper, S., and Litman, R. Gram:
Global reasoning for multi-page vqa. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15598–15607, 2024.

Bousselham, W., Petersen, F., Ferrari, V., and Kuehne, H.
Grounding everything: Emerging localization properties
in vision-language transformers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3828–3837, 2024.

Bui, K., Lou, Y., Park, F., and Xin, J. Weighted anisotropic–
isotropic total variation for poisson denoising. In 2023
IEEE International Conference on Image Processing
(ICIP), pp. 1020–1024. IEEE, 2023.

Chefer, H., Gur, S., and Wolf, L. Generic attention-model
explainability for interpreting bi-modal and encoder-
decoder transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 397–
406, 2021a.

Chefer, H., Gur, S., and Wolf, L. Transformer interpretabil-
ity beyond attention visualization. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 782–791, 2021b.

Choi, C., Yu, S., Kampffmeyer, M., Salberg, A.-B., Hande-
gard, N. O., and Jenssen, R. Dib-x: Formulating explain-
ability principles for a self-explainable model through
information theoretic learning. In ICASSP 2024-2024
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 7170–7174. IEEE, 2024.

Covert, I., Lundberg, S., and Lee, S.-I. Explaining by remov-
ing: A unified framework for model explanation. Journal
of Machine Learning Research, 22(209):1–90, 2021.

Davis, B., Morse, B., Price, B., Tensmeyer, C., Wigington,
C., and Morariu, V. End-to-end document recognition
and understanding with dessurt. In European Conference
on Computer Vision, pp. 280–296. Springer, 2022.

Faysse, M., Sibille, H., Wu, T., Omrani, B., Viaud, G.,
Hudelot, C., and Colombo, P. Colpali: Efficient document
retrieval with vision language models. arXiv preprint
arXiv:2407.01449, 2024.

Gautam, S., Boubekki, A., Hansen, S., Salahuddin, S.,
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Appendix

To ensure consistency, we continue the numbering of figures and tables from the main paper. The first references in the
Appendix begin with Figure 5 and Table 4.

A. Implementation Details
A.1. Postprocessing

The relevance map produced by our method is passed throught a postprocessing step that envolve 2 stages: (1) background
removal, (2) connected region bounding. In the following we detail each step, noting that for a fair comparison, these three
steps are applied to all the methods presented in Table 1:

Background Removal. Since the output mask may highlight irrelevant background regions, we first filter out the
highlighted regions that fall input image tokens that represent background. In other words, we discard tokens whose encoded
patch variance are below a threshold of 0.01, as they are considered background in the document images, where in this
domain the background is usually blank. This step ensures that only informative regions contribute to the final relevance
map. In Figure 5, we show an extreme case of this scenario, where the produced relevance map contain a lot of background
regions, after applying this postprocessing step, we can see that the quality of the map is significantly improved.

Original
Predicted Mask

(with bg regions)
Predicted Mask

(without bg regions)

Figure 5. Visualization of the background removal step in our methods. Question: “What is the estimated budget of ‘conduct analysis of
decision makers/ information targets’ in research and development?”. Model answer “$ 7,000.00”.

Bounding connected regions. After filtering out background regions, the remaining mask effectively highlights relevant
information, as shown in Figure 5. However, the raw mask may still appear fragmented and less intuitive for users.
To enhance interpretability, we apply an additional postprocessing step that identifies connected components within the
relevance map and encloses them in bounding boxes. We chose this approach because text in documents is best highlighted
using bounding boxes, ensuring clear visibility and structured localization. Unlike other forms of heatmaps, which may
appear vague or ambiguous, bounding boxes provide a precise, easily interpretable representation of the model’s focus
which facilitate its processing by human users.
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After that, we rank these regions based on their confidence scores and retain only the top k most relevant boxes. This step,
shown in Figure 6, ensures that the final explanation is both compact and user-friendly. In our study, we experimented with
different values of k and found that k = 3 provided the best balance between conciseness and completeness.

Original Predicted Mask
Predicted Mask

(with full postprocessing)

Figure 6. Visualization of connecting the relevance regions in the heatmap and keeping only 1 region with top confidence score (k = 1).
Question: “What is the estimated budget of ‘conduct analysis of decision makers/ information targets’ in research and development?”.
Model answer “$ 7,000.00”.

A.2. Mask head

The implemented mask head is a fully connected neural network (MLP-based decoder) designed to process an input consists
of the concatenation of the encoded tokens (features), decoder attentions and the positional encoding. The mask head
generates a relevance score for each token, producing a relevance map that highlights the most important regions in terms of
influence on the final answer. During training, the output of the mask head is passed through a Sigmoid activation function
to ensure that the values are normalized between 0 and 1, applied to the input image, and then passed to the Pix2Struct
component for the masked image prediction.

A.3. Hyperparameters

We summarize the values of the hyperparameters used in this paper. We not that the Pix2Struct component is first fine-tuned
on the DocVQA dataset (Mathew et al., 2021), then our proposed model is trained according to the settings presented in
Table 4. Note that in our work, we use the base version of Pix2Struct with 282M parameters. The model is composed of 12
encoder and 12 decoder layers with a hidden size of 768.

HYPERPARAMETER VALUE

LEARNING RATE 1× 10−7

BATCH SIZE 5
OPTIMIZER ADAMW
γ 0.5
β 5
THRESHOLD (k) FOR POSTPROCESSING 3

Table 4. HYPERPARAMETER SETTINGS
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B. Additional Results
B.1. Selection of k.

As illustrated in Figure 6, during the post-processing step, we retain only the top-k most relevant boxes. We conducted an
ablation study to evaluate the impact of different k values and found that k = 3 offers the best trade-off between conciseness
and completeness. The full results across various k values are reported in Table 5. As shown, k = 3 is considered the best
choice for a good trade-off between interpretability and utility.

k ACCURACY ANLS PIXEL RATIO

1 0.36 0.52 0.21
2 0.38 0.53 0.23
3 0.38 0.54 0.24
4 0.39 0.55 0.25
5 0.39 0.55 0.26
8 0.40 0.56 0.28

10 0.41 0.57 0.29
15 0.42 0.58 0.31
20 0.43 0.58 0.32
50 0.45 0.59 0.38

100 0.45 0.60 0.40

Table 5. A study on varying the number of top relevant boxes during post-processing.

B.2. The effect of using token interactions.

As we discussed in Section 3.4, training the model using the objective function in Equation (1) (without the use of token
interactivity loss), lead to overfitting to the regions that directly corresponding to the answer. This overfitting reduces the
mask’s utility, rendering it a mere visual reproduction of the textual answer rather than providing meaningful, context-aware
insights. This can be seen in Figure 7, where we show qualitative results of our method.
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What is the total foreign exchange
used for raw materials(Rs.lac)?? Clear Answer: “450.4” Clear Answer: “450.4”

Answer: “450.4” Masked Answer: “450.4” Masked Answer: “450.4”

What is the equipment
maintenance expenses? Clear Answer: “6,000” Clear Answer: “6,000”

Answer: “6,000” Masked Answer: “6,000” Masked Answer: “6,000”

What is the delivery point
mentioned in the form? Clear Answer: “philips bank” Clear Answer: “miops Reid”

GT Answer: “phipps bend” Masked Answer: “philips bank” Masked Answer: “shipping pound”

Figure 7. Visualization of the effect of using token interactions in our method. Left: Original Image. Middle: Masked image with
relevance map learned without token interactions loss. Right: Masked image with relevance map learned with token interactions loss.
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B.3. Additional qualitative results

In this section, we present the results of the applied relevant regions masks on the images (right) across diverse contextual
scenarios, in comparison to the corresponding full images (left).

Complex layouts We test our approach on documents with complex layouts from the InfographicVQA dataset (Mathew
et al., 2022).

Figure 8. Question: What is the total percentage of Palestinians residing at places other than West Bank and Arab countries?
Answer: 32.6 % (correct).

Figure 9. Question: What is the percentage of women with disabilities in low income countries?
Answer: 22.1 % (correct).
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Densely populated documents We present results on documents containing dense textual content.

Figure 10. Question: Under Private service how many patients were discharged in Neurology? Answer: 696 (correct).

Figure 11. Question: What is the estimated cost of Space costs and Rentals? Answer: 700 (correct).
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Degraded quality We present results on documents with degraded visual quality.

Figure 12. Question: What is the page number? Answer: 9 (correct).

Figure 13. Question: How many cases of artworks are there in the shipment? Answer: 1 (correct).

Figure 14. Question: Which bank’s check is this? Answer: The chase manhattan bank (correct).

19



DocVXQA: Context-Aware Visual Explanations for Document Question Answering

B.4. Results with a different backbone

In this section, we show the results of DocVXQA using the Donut backbone (Kim et al., 2021), and compare it with the
Pix2Struct backbone. The obtained results are given in Figure 15, Figure 16 and Figure 17, demonstrating the model-agnostic
capability of our method. These figures highlight the relevant regions produced by DocVXQA using two different backbones
while answering the same questions.

Figure 15. Question: Who is this question addressed to? Answer: bob bexon (correct).

Figure 16. Question: What is the amount for publising one poster / abstract? Answer: $8,500 (correct).
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Figure 17. Question: what type of communication is issued by Biomet, inc.? Answer: royalty payment form (correct).
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