

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MME-CC: A CHALLENGING MULTI-MODAL EVALUATION BENCHMARK OF COGNITIVE CAPACITY

Anonymous authors

Paper under double-blind review

ABSTRACT

As reasoning models scale rapidly, the essential role of multimodality in human cognition has come into sharp relief, driving a growing need to probe vision-centric cognitive behaviors. Yet, existing multimodal benchmarks either overemphasize textual reasoning or fall short of systematically capturing vision-centric cognitive behaviors, leaving the cognitive capacity of MLLMs insufficiently assessed. To address this limitation, we introduce MME-CC (Multi-Modal Evaluation benchmark of Cognitive Capacity), a vision-grounded benchmark that organizes 11 representative reasoning tasks into three fundamental categories of visual information—spatial, geometric, and knowledge-based reasoning—and provides fine-grained analyses of MLLMs’ cognitive capacity across these dimensions. Based on MME-CC, we conduct extensive experiments over 16 representative MLLMs. Our study reveals that closed-source models currently lead overall (e.g., 42.66 for Gemini-2.5-Pro vs. 30.45 for GLM-4.5V), while spatial and geometric reasoning remain broadly weak ($\leq 30\%$). We further identify common error patterns—including orientation mistakes, fragile cross-view identity persistence, and poor adherence to counterfactual instructions—and observe that Chain-of-Thought typically follows a three-stage process (extract \rightarrow reason \rightarrow verify) with heavy reliance on visual extraction. We hope this work catalyzes a shift toward treating the cognitive capacity of MLLMs as central to both evaluation and model design.

1 INTRODUCTION

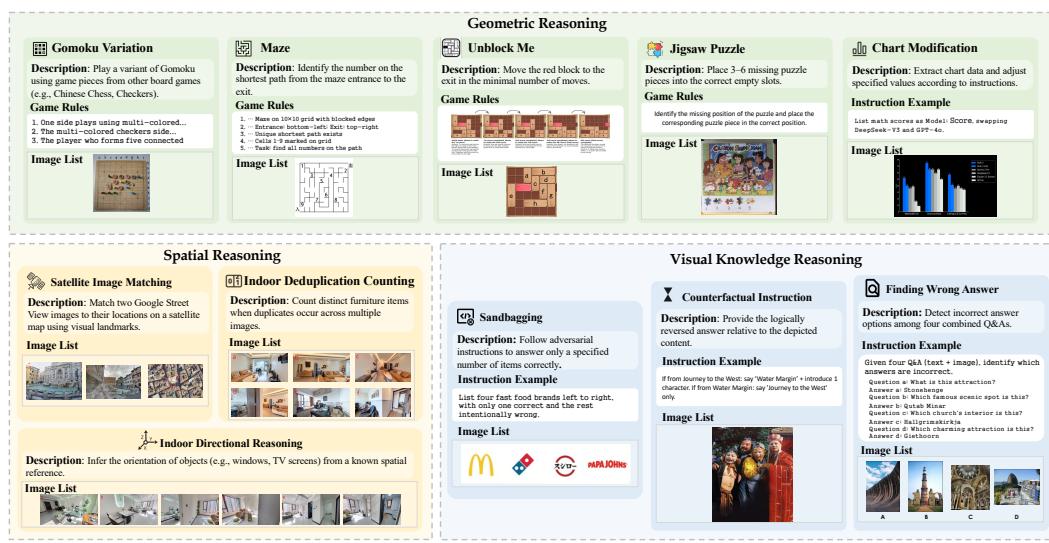


Figure 1: **Task taxonomy of MME-CC.** Three major task categories are defined—Spatial Reasoning, Geometric Reasoning, and Visual Knowledge Reasoning—each with representative subtasks and one illustrative input example.

Vision is a crucial means for humans to perceive the world. Naturally, multimodal large language models (MLLMs) have become a key research direction for researchers in their pursuit of Artificial General Intelligence (AGI). Various analytical studies focused on multimodal understanding are thriving, aiming to fully uncover the potential flaws of MLLMs and guide the iteration of them. A growing number of benchmarks have been introduced to evaluate multimodal language models (MLLMs) across diverse visual reasoning tasks, encompassing general image understanding (Liu et al., 2024b; Fu et al., 2023), multi-disciplinary multimodal reasoning (Yue et al., 2024; Lu et al., 2024; Yue et al., 2025), and open-domain scenarios (xAI, 2024; He et al., 2024; Liu et al., 2024a). Notably, state-of-the-art MLLMs often demonstrate strong performance on these benchmarks.

While a bunch of MLLM benchmarks claim to evaluate the cognitive capacity of MLLMs, they have various flaws. These flaws make them either lean too much toward textual capabilities or lack sufficient coverage of vision-based cognitive behaviors when assessing MLLMs' cognitive capacity. MathVista (Lu et al., 2024) and MMMU Series (Yue et al., 2024; 2025) are overly biased toward the text-space-based reasoning capabilities of MLLMs. On the other hand, other benchmarks (e.g. ZeroBench (Roberts et al., 2025)) measure the cognitive capacity of MLLM by enumerating various vision-based reasoning tasks, but lack a well-established classification system and in-depth analysis of the cognitive capacity of MLLM.

To remedy the gap, we introduce MME-CC (Multi-Modal Evaluation Benchmark of Cognitive Capacity), a benchmark of vision-based cognitive tasks for MLLMs. Specifically, MME-CC firstly introduces a set of vision-based cognitive tasks that examine three essential dimensions of MLLMs' reasoning: Spatial Information, Geometric Information, and Visual Knowledge Reasoning. In addition, these tasks are organized into 11 distinct representative visual reasoning problems, as shown in Figure 1, each attributed to one of the three dimensions. Moreover, built with the extensive efforts of a 10-person annotation team, including dedicated subtask leads and a task lead, MME-CC underwent multiple stages of human review and cross-checking to ensure validity. On this basis, using 1,173 questions carefully annotated by human experts, MME-CC conducts a detailed analysis of the current cognitive capacity of MLLMs. Finally, MME-CC also reveals the strengths and weaknesses, Chain-of-Thought (CoT) patterns, and error patterns of 16 representative MLLMs in different dimensions of vision-based cognitive capacity.

Our contributions are as follows:

- We provide **MME-CC**, a high-quality, language-independent visual reasoning benchmark that fills the gap in MLLM cognitive capacity categorization and systematic analysis.
- **We uncover several key insights into current MLLM cognitive capacity:**
 - Closed-source models consistently outperform open-source counterparts, with Gemini-2.5-Pro achieving the best performance (42.66) compared to the strongest open-source model, GLM-4.5V (30.45).
 - Spatial and geometric reasoning remain broadly weak, with both categories scoring at or below 30%.
 - Common error patterns include orientation and reference-frame mistakes, poor cross-view identity persistence, and limited adherence to counterfactual instructions.
 - CoT reasoning typically follows a three-stage layered process—extraction, reasoning, and verification—with visual extraction involved throughout.

2 MME-CC

We construct MME-CC benchmark to systematically evaluate the visual cognitive and reasoning abilities of MLLMs. This benchmark is designed to facilitate a comprehensive and rigorous assessment of model capabilities through a series of meticulously crafted tasks. The core of this benchmark comprises three primary task categories: Spatial Reasoning, Geometric Reasoning, and Visual Knowledge Reasoning, which respectively serve to examine model performance within each corresponding dimension.

2.1 DATA CONSTRUCTION PIPELINE

As illustrated in Figure 2, our human-in-the-loop pipeline produces high-quality evaluation data through iterative definition, acquisition, processing, and filtering.

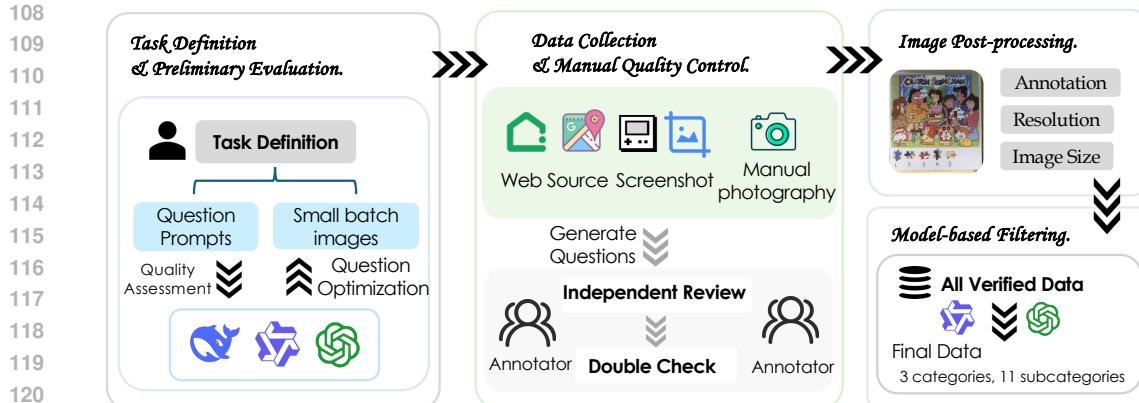


Figure 2: **Overview of the data construction and quality control pipeline.** The pipeline comprises four stages: (1) *Task definition and preliminary evaluation* — subtasks are defined with clear objectives, and small-scale pilots are conducted to validate prompt design and calibrate difficulty; (2) *Data acquisition and manual verification* — images from license-compliant sources are annotated and cross-checked to ensure quality; (3) *Post-processing* — standardized procedures (e.g., cropping, resolution checks, identifier assignment) are applied to unify formatting; (4) *Model-based filtering* — items that are overly simple, redundant, or ambiguous are removed based on MLLM performance, and the remaining samples form the final benchmark.

Annotators. We employed a structured 10-person team (6 annotators, 3 subtask leads, 1 task lead), all with prior multimodal evaluation experience. All annotators were required to review a detailed instruction manual and pass a corresponding qualification test before commencing the annotation tasks (see Appendix D for the full guidelines). Each subtask had a dedicated lead responsible for design, pipeline coordination, and multi-stage quality review, ensuring consistent annotation and rigorous quality control across the data lifecycle.

Table 1: Annotator roles and responsibilities for the evaluation set (N = 10).

Participant	Role	Job Description
<i>A</i> Annotators	A1–A6	Question construction and multi-round quality checks
<i>B</i> Subtask Leads	B1–B3	Subtask design and end-to-end oversight; with over 3 years of experience in relevant fields (e.g., NLP, CV) and prior work on dataset creation.
<i>C</i> Task Lead	C1	Overall benchmark owner; extensive evaluation experience; with a documented history of leading the development of 3+ public benchmarks.

Task Definition & Preliminary Evaluation Each subtask has a clear objective and a concise, task-specific prompt template. To validate the design, we built a pilot set of 5–10 examples from carefully selected images for each subtask. Rather than ad-hoc sampling, construction followed a structured design process specifying evaluation dimensions and steps. We piloted with two models (Doubao and Gemini) to test clarity and feasibility, then iteratively refined the task scope, prompts, and data handling. Reliability was further ensured through explicit controls. Detailed construction procedures and reliability controls for each task are documented in Appendix C.

Data Collection. After definitions stabilize, we collect and annotate images from diverse, license-compliant sources:

- (1) Real-world photographs, such as board games (e.g., Gomoku) and puzzle scenes.
- (2) Targeted screen captures from online platforms, including comics, real-estate listings (e.g., Lianjia), Google Street View, and video content (e.g., YouTube, Bilibili).
- (3) Game screenshots that cover representative in-game reasoning cases.
- (4) Additional types of images as required by specific subtasks.

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Table 2: **Task taxonomy and dataset statistics of MME-CC.** “Source” indicates the data origin, “#Q” is the number of samples, and “I.”/“O.” represent the average input and output token lengths measured with Doubao-Seed-1.6-vision-0815.

Task	Description	Source	#Q	I.	O.
Spatial Reasoning		<i>(3 tasks, 319 samples)</i>			
Satellite Image Matching	Match street view images to their satellite map locations using visual clues.	Google Maps	101	4,335	2,768
Indoor Directional Reasoning	Determine object orientations using spatial reference points.	Real Estate	113	10,168	5,090
Indoor Deduplication Counting	Count unique furniture instances across multiple views.	Real Estate	105	10,091	4,370
	<i>Total / Avg.</i>		319	8,198	4,076
Geometric Reasoning		<i>(5 tasks, 605 samples)</i>			
Gomoku Variation	Solve visual logic problems based on Gomoku with mixed game pieces.	Photography	122	1,411	4,700
Unblock Me	Find the shortest move sequence to unblock a target block.	Game Screenshots	99	3,483	11,741
Maze	Identify the correct number on the shortest path in a maze.	Auto-generated	194	336	9,755
Jigsaw Puzzle	Complete missing puzzle pieces in a partial layout.	Photography	141	1,765	2,330
Chart Modification	Modify chart values based on instructions.	Web Images	49	751	2,497
	<i>Total / Avg.</i>		605	1,549	6,204
Visual Knowledge Reasoning		<i>(3 tasks, 249 samples)</i>			
Sandbagging	Follow adversarial instructions to answer partially correctly.	Web Images	41	1,753	672
Counterfactual Instruction	Provide the reversed answer based on depicted facts.	Web Images	60	1,379	625
Finding Wrong Answer	Detect incorrect answer choices from grouped Q&As.	Internal Dataset	148	5,122	2,691
	<i>Total / Avg.</i>		249	2,751	1,329
Total			1,173	4,166	3,904

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Image Post-processing & Model-based Filtering. All collected images undergo a unified post-processing pipeline, including ID assignment, cropping, and related adjustments (see Appendix C). We then apply leading models (e.g., Gemini-2.5-Pro) to filter the data. This process removes items that are trivially easy (defined as achieving a model accuracy score above 95%, semantically redundant, or lacking discriminative value. In total, this filtering stage removed approximately 50% of the initial data pool. The remaining pool serves as the foundation for constructing the final benchmark set used in downstream evaluation.

2.2 DATA QUALITY ASSURANCE

207
208
209
210
211
212
213
214
215
In addition to the quality controls embedded throughout the data collection process, the finalized dataset undergoes the following further checks:

210
211
212
213
Manual Verification. Each sample is double-checked: one annotator provides the reference answer and another independently verifies it. In cases of disagreement, the sample was escalated to the respective subtask lead for a final binding decision. Every item undergoes at least two rounds of review, and a dedicated QA team conducts periodic audits to ensure accuracy and consistency.

214
215
Exception Handling. Samples that yield zero accuracy across screened models are randomly reviewed to identify potential annotation issues or hidden shortcuts; problematic items are corrected or removed.

216 **Table 3: Comparison of representative benchmarks.** “Vision-based” indicates that all task in-
 217 formation is derived from images rather than text, “Output” specifies the answer format (MC =
 218 multiple-choice, FF = free-form), and “Source” denotes the dataset origin.

Benchmark	Input	Vision-based	Output	Source
MME (Fu et al., 2023)	1 Image	✗	MC	Existing
MMMU (Yue et al., 2024)	≥ 1 Image	✗	MC / FF	Diverse
MMBench (Liu et al., 2024b)	1 Image	✗	MC	Diverse
MMStar (Chen et al., 2024)	1 Image	✗	MC	Existing
Zerobench (Roberts et al., 2025)	≥ 1 Image	✓	FF	Diverse
MME-CC (Ours)	≥ 1 Image	✓	FF	Diverse

228 2.3 BENCHMARK STATISTICS

230 Table 2 summarizes the taxonomy and statistics of MME-CC, which organizes 11 sub-
 231 tasks into three reasoning categories: *Spatial*, *Geometric*, and *Visual Knowledge Reasoning*.
 232 For each subtask, it reports the data source, sample size, and the average input and out-
 233 put token lengths, where the input length includes both text and image tokens extracted by
 234 Doubao-Seed-1.6-vision-0815. These statistics indicate the reasoning complexity, as
 235 longer sequences require deeper inference, and the considerable output length reflects the need for
 236 non-trivial reasoning chains.

237 In addition, Table 3 compares MME-CC with representative benchmarks. Notably, MME-CC em-
 238 phasizes vision-based reasoning, since the textual input does not contain any task-specific solution
 239 information, thereby ensuring that solving relies primarily on visual understanding and reasoning.

240 3 EXPERIMENTS

241 3.1 EXPERIMENTAL SETUP

242 **Model Configuration.** We evaluate a range of large language and vision-language models, includ-
 243 ing both proprietary and open-source systems. For proprietary models, we use the official inference
 244 APIs with default settings. For open-source models, we adopt a unified decoding configuration
 245 with temperature set to 1.0 and top-p to 0.7, while all other hyperparameters follow their respective
 246 defaults.

247 **Evaluation Metrics.** We employ an LLM-as-a-judge protocol, wherein a language model is
 248 prompted to compare the model-generated response against a gold reference and assign a correctness
 249 score. Specifically, we adopt DeepSeek-V3-0324 as the judge model. To verify its reliability,
 250 we conduct a manual evaluation of 99 randomly sampled items (33 from each category), achieving
 251 a scoring agreement rate of 95% with human judgments. The scoring prompt used for this evalua-
 252 tion is provided in the Appendix E. For each question, DeepSeek-V3-0324 compares the final
 253 answer with the reference and outputs a score in {0, 1}.

254 3.2 MAIN RESULTS

255 We conduct a comprehensive evaluation of 16 MLLMs on MME-CC, covering three core reasoning
 256 dimensions: *Spatial Reasoning*, *Geometric Reasoning*, and *Visual Knowledge Reasoning*. The
 257 results are shown in Table 4.

258 **MLLMs remain limited in visually grounded reasoning tasks.** The state-of-the-art model
 259 Gemini-2.5-Pro achieves an overall accuracy of only 42.66% on MME-CC, with a score of 74.63%
 260 in VKR tasks, while its performance in Geometric Reasoning and Spatial Reasoning remains below
 261 30%. These results suggest that current models lack the ability to conduct comprehensive and fine-
 262 grained reasoning under purely visual inputs. Their better performance in basic perceptual tasks,
 263 such as entity recognition or object detection (e.g., VKR), mainly results from the fact that these
 264 tasks are well covered during training, whereas the complex tasks we design require more advanced
 265 spatial and geometric reasoning and therefore expose clear limitations.

266 **Reasoning-oriented models exhibit advantages over non-reasoning models.** In Spatial and Ge-
 267 ometric Reasoning tasks, reasoning-oriented models consistently outperform their non-reasoning
 268 counterparts. Notably, within the GPT series, GPT-5 (high) achieves superior performance com-

270 Table 4: **Results on the MME-CC** benchmark across *three* core dimensions: Spatial Reasoning
 271 (SR), Geometric Reasoning (GR), and Visual Knowledge Reasoning (VKR). Shaded entries indicate
 272 the best performance, **bold** the second-best, and underlined the third-best in each column.

274 Model	275 Reasoning	276 Overall	277 SR	278 GR	279 VKR
275 Human ¹ (n=99, sampled)	276 –	277 95.86	278 95.83	279 95.83	280 95.92
Closed-Source Models					
281 Gemini-2.5-Pro (Google, 2025b)	282 ✓	283 42.66	284 23.80	285 29.56	286 74.63
282 GPT-5 (high) (OpenAI, 2024a)	283 ✓	284 40.25	285 30.63	286 23.64	287 66.47
283 Doubao-Seed-1.6-vision-0815 (Think) (ByteDance, 2025)	284 ✓	285 <u>40.08</u>	286 22.03	287 <u>31.50</u>	288 <u>66.70</u>
284 Gemini-2.5-Flash (Google, 2025a)	285 ✓	286 37.57	287 18.60	288 21.21	289 72.90
285 o4-mini (high) (OpenAI, 2025b)	286 ✓	287 35.00	288 <u>25.00</u>	289 21.96	290 58.03
286 GPT-4.1 (OpenAI, 2025a)	287 ✗	288 32.14	289 27.90	290 12.22	291 56.30
287 GPT-4o-1120 (OpenAI, 2024b)	288 ✗	289 26.88	290 22.60	291 10.12	292 47.93
288 Doubao-Seed-1.6-vision-0815 (Nonthink) (ByteDance, 2025)	289 ✗	290 25.96	291 23.63	292 <u>23.82</u>	293 30.43
Open-Source Models					
294 GLM-4.5V (Zai-org, 2025b)	295 ✓	296 30.45	297 13.27	298 13.34	299 64.73
295 Qwen2.5-VL-72B-Instruct (Qwen Team, 2025b)	296 ✗	297 23.59	298 12.47	299 8.96	300 49.33
296 MiMo-VL-7B-RL (MiMo Team, 2025)	297 ✓	298 20.90	299 9.30	300 11.10	301 42.30
297 GLM-4.1V-9B-Thinking (Zai-org, 2025a)	298 ✓	299 19.30	300 8.73	301 9.22	302 39.93
298 Qwen2.5-VL-32B-Instruct (Qwen Team, 2025a)	299 ✗	300 14.39	301 9.03	302 8.56	303 25.57
300 InternVL3-8B (OpenGVLab, 2025)	301 ✗	302 11.36	303 7.30	304 2.38	305 24.40
301 Keye-VL-8B-Preview (Kwai-Keye, 2025)	302 ✗	303 9.65	304 7.70	305 2.04	306 19.20
302 Qwen2.5-VL-7B-Instruct (Qwen Team, 2025c)	303 ✗	304 7.50	305 4.70	306 3.22	307 14.57

305 pared to GPT-4.1 across SR and GR tasks. This trend indicates that longer Chain-of-Thought reasoning
 306 chains provide additional opportunities for iterative verification of recognition outcomes and
 307 intermediate inferences, thereby contributing to improved problem-solving in complex scenarios. A
 308 more detailed analysis of this phenomenon is presented in the Discussion section.

309 **Scaling laws remain valid for visual reasoning tasks.** Within the Qwen2.5 family, performance
 310 improves consistently as the parameter scale increases from 7B to 32B and 72B. This observation
 311 indicates that complex visual perception and reasoning tasks require broader knowledge capacity
 312 to support effective inference, while smaller-scale models face inherent limitations in achievable
 313 performance.

315 4 DISCUSSION

316 Based on the results presented in Table 4, this paper discusses the following research questions:

317 **RQ1: What are the differences in model performance?**

318 **RQ2: How does the model reason in visual tasks?**

319 **RQ3: What error patterns do models exhibit in visual reasoning?**

320 321 322 323 ¹5 students who did not participate in the question setting, with higher degrees

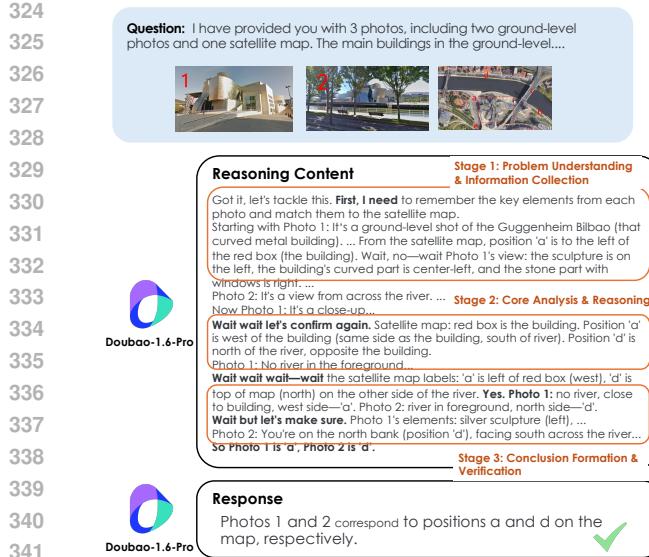


Figure 3: **Detailed CoT analysis of Doubao-Seed-1.6-vision-0815 on the Satellite Image Matching task.** The analysis reveals three key findings: (1) hierarchical reasoning with distinct phases, (2) continuous and task-dependent visual extraction, and (3) frequent self-interruptions that reduce reasoning efficiency.

4.1 RQ1: MODELS EXCEL AT DIFFERENT TASKS, YET OVERALL PERFORMANCE REMAINS UNSATISFACTORY

Notably, GPT-5 (high) achieves the highest performance in Spatial Reasoning with a score of 30.3%, a result that appears attributable to its capabilities in sub-tasks requiring complex spatial orientation and object counting (e.g., Indoor Directional Reasoning and Indoor Deduplication Counting). Gemini-2.5-Pro, in contrast, demonstrates a clear advantage in Visual Knowledge Reasoning by attaining a leading score of 70.7%. In the domain of Geometric Reasoning, the Doubao model’s performance advantage appears localized to the Jigsaw Puzzle task, whereas Gemini-2.5-Pro shows more robust results across other geometric reasoning challenges (Table 4).

4.2 RQ2: MLLMs REMAIN FAR FROM “THINKING LIKE HUMANS”

We analyze the chain-of-thought (CoT) behavior of Doubao-Seed-1.6-vision-0815 on MME-CC and summarize the following observations.

Layered, stage-wise reasoning The reasoning chain follows three stages: **Stage 1: Problem Understanding & Information Collection**, where the model reads the prompt, scans the image for key objects and relations, and restates the goal; **Stage 2: Core Analysis & Reasoning**, where it proposes options, checks them against visual evidence and rules, and updates assumptions; and **Stage 3: Conclusion Formation & Verification**, where it assembles the confirmed evidence, gives an answer with a brief rationale, and performs a final consistency check. Although task-specific tactics vary, the overall structure remains stable, as shown in Figure 3.

Image revisiting throughout the process Visual information extraction is not confined to the beginning but occurs as needed throughout the reasoning process. In *Satellite Image Matching*, for example, the model repeatedly inspects the original images to re-check building orientation and relative layout, thereby revising earlier spatial judgments.

Excessive verification reduces efficiency The model frequently employs “wait” style pauses for reflection and re-checks. Moderate pausing can reduce errors; excessive pausing, however, leads to stalling and repetitive verification, which is particularly evident in complex spatial relations. On MME-CC spatial and geometric tasks, most models achieve only 20%-30%; in *Maze*, which requires

Key Findings

Findings 1. Hierarchical Reasoning with Distinct Phases.

Stage 1: Problem Understanding & Information Collection
Stage 2: Core Analysis & Reasoning
Stage 3: Conclusion Formation & Verification

Findings 2. Visual Extraction is Continuous and Task-Dependent.

Visual information extraction is not limited to the first stage of reasoning but occurs continuously throughout the entire reasoning process.

Findings 3. Frequent self-interruption hampers reasoning efficiency.

The repeated occurrence of “wait” improves the accuracy of the model’s answers but comes at the cost of reasoning efficiency.

378 **Table 5: Performance on MME-CC subtasks.** Each cell reports the ablation score; in parentheses
 379 we list the main-experiment score and the signed difference ($\pm\Delta$) from the base, i.e., *ablation* = *main*
 380 $\pm\Delta$. For ablations, we include only subtasks without instruction conflicts with the experimental
 381 variable; conflicted subtasks (e.g., Chart Modification, Visual Knowledge Reasoning) are omitted.

Task	Gemini-2.5-Pro	Doubao-Seed-1.6-vision-0815	o4-mini-high
Spatial Reasoning			
Satellite Image Matching	30.5 (28.3 + 2.2)	41.0 (39.6 + 1.4)	31.9 (30.3 + 1.6)
Indoor Directional Reasoning	15.4 (14.3 + 1.1)	4.8 (5.7 -0.9)	11.2 (11.2 + 0.0)
Indoor Deduplication Counting	29.1 (28.8 + 0.3)	19.0 (20.8 -1.8)	33.2 (33.5 -0.3)
<i>Average (Spatial)</i>	25.0 (23.8 + 1.2)	21.6 (22.0 -0.4)	25.4 (25.0 + 0.4)
Geometric Reasoning			
Maze	1.9 (1.1 + 0.9)	0.6 (0.8 -0.2)	1.5 (1.2 + 0.3)
Gomoku Variation	31.0 (34.8 -3.8)	16.7 (14.9 + 1.8)	12.5 (12.0 + 0.5)
Jigsaw Puzzle	30.8 (30.4 + 0.4)	72.1 (70.6 + 1.5)	26.7 (27.0 -0.3)
Unblock Me	27.7 (26.8 + 0.9)	29.6 (28.8 + 0.8)	21.6 (21.4 + 0.2)
<i>Average (Geometric)</i>	22.9 (23.3 -0.4)	29.8 (28.8 + 1.0)	15.6 (15.4 + 0.2)
Overall Average	23.9 (23.5 +0.4)	25.7 (25.4 +0.3)	20.5 (20.2 +0.3)

397 continued rule-based simulation and path planning, no model exceeds 2%. We hypothesize that long
 398 reasoning chains dilute attention, obscure crucial visual details, and ultimately degrade outcomes.
 399

400 **Textual guidance yields consistent gains** To address this, we add the instruction “You should first
 401 describe the relevant content in the image according to the prompt, and then answer the question.”
 402 As shown in Table 5, most tasks exhibit consistent improvements. The gains indicate that an initial
 403 textual description stabilizes subsequent reasoning by anchoring visual perception; in addition,
 404 the improvements mainly arise from better textual alignment rather than stronger intrinsic visual
 405 reasoning.

407 4.3 RQ3: MLLMs EXHIBIT RECURRING FAILURES IN ORIENTATION JUDGMENT, ENTITY 408 CONSISTENCY, AND INSTRUCTION FOLLOWING

409 We analyze failure cases in MME-CC and observe several recurring errors that appear across tasks
 410 and reasoning dimensions.

412 **Orientation judgment and reference-frame alignment.** The model often fails to preserve object
 413 orientation across views, and viewpoint changes induce mismatches that hinder the establishment
 414 of a consistent global reference frame, thus producing orientation errors during reasoning; the issue
 415 is notably salient in tasks that require reasoning over indoor layouts or aligning orientations across
 416 multiple views, as shown in Figure 4a.

417 **Entity identity consistency under multi-view settings.** When reasoning over multiple views, the
 418 model frequently fails to maintain identity consistency for the same entity in the scene, which leads
 419 to double counting or omission, as illustrated in Figure 4b.

420 **Over-reliance on literal descriptions under instruction constraints.** Faced with non-literal or
 421 counterfactual instructions, the model tends to prioritize the literal visual content while ignoring
 422 task-specific counterfactual constraints expressed in text, thereby producing answers that conflict
 423 with the required instruction, as shown in Figure 14.

424 Further analyses and complete error cases are provided in Appendix G.
 425

427 5 RELATED WORK

429 **General multimodal benchmarks.** A broad line of benchmarks evaluates VLMs on perception
 430 and language-mediated reasoning. MMBench (Liu et al., 2024b), SEED-Bench (Li et al., 2024), and
 431 MMStar (Chen et al., 2024) provide large-scale multiple-choice evaluation with fine-grained skill
 categorization. MMMU (Yue et al., 2024), MathVista (Lu et al., 2024), and MMMU-Pro (Yue et al.,

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Error Case Study: Satellite Image Matching

Question: The three photos I provided to you include two taken from a human perspective and one satellite map. The main building (the black-roofed building) in photos 1 and 2 is marked with a red box in the satellite image. Please determine the positions where photos 1 and 2 were taken in the satellite image by their respective numbers.

The answer format should be as follows: Photos 1 and 2 correspond to positions x and x on the map, respectively.

Answer:
Photos 1 and 2 correspond to positions f and g on the map, respectively.

VLM Model:
Analysis Process
In Photo 1, the building "LA TACHE" faces an intersection, and there is a "Steenkaai" road sign at the intersection. From the satellite image, it can be seen that only from position g can the front of the building be captured along with the intersection and the road sign.
In Photo 2, slightly...

Error Analysis:
Doubao cannot grasp the key points in the photo (the steps and the main entrance), only providing a vague analysis of irrelevant details. It lacks the ability to comprehensively understand the details in multiple images.

(a) In the *Satellite Image Matching* task, the model fails to capture critical visual cues (e.g., steps and entrance), focusing instead on irrelevant details.

Figure 4: Representative error cases of Doubao-Seed-1.6-vision-0815.

2025) target multi-disciplinary reasoning across STEM and humanities. Open-domain settings such as RealWorldQA (xAI, 2024), OlympiadBench (He et al., 2024), and VisualWebBench (Liu et al., 2024a) broaden task diversity. While these resources are valuable for overall capability profiling, many items permit solutions that rely on textual cues, format priors, or OCR, which makes it difficult to isolate visual reasoning.

Language-independent visual reasoning. Recent analyses report shortcut use in multimodal evaluations, where models exploit answer-bearing text instead of reasoning over images (e.g., NaturalBench, EasyARC, VLSBench). To better probe visual inference, several works explore spatial relations and visual puzzles. ZeroBench (Roberts et al., 2025) stresses spatial and commonsense limits with carefully designed queries, and VisuLogic (Xu et al., 2025) offers human-verified problems spanning spatial relations, geometric abstraction, and visual planning. However, many existing tasks are constrained by synthetic data, repetitive templates, or narrow formats, which limits novelty and reduces the headroom for assessing language-independent reasoning.

6 CONCLUSION

We present MME-CC as a vision-grounded benchmark that organizes eleven representative tasks into spatial, geometric, and visual-knowledge dimensions, and we provide fine-grained analyses of multimodal models’ cognitive capacity across these dimensions. We evaluate sixteen representative models and observe that closed-source systems currently lead overall (42.66 for Gemini-2.5-Pro vs. 30.45 for GLM-4.5V), while spatial and geometric reasoning remain comparatively weak (both $\leq 30\%$). We further identify recurring error patterns—orientation/reference-frame confusion, limited cross-view identity persistence, and reduced adherence to counterfactual instructions—and we find that Chain-of-Thought typically follows a three-stage pattern (extract \rightarrow reason \rightarrow verify) with visual extraction throughout; in addition, prompting that first verbalizes key visual content yields consistent gains, indicating reliance on explicit textual grounding. MME-CC reduces textual shortcuts and surfaces vision-centric behaviors, thereby enabling task- and dimension-level diagnostics that are actionable for evaluation and model design; we expect these analyses to inform training signals and architectures that better couple visual perception with structured reasoning and to support systematic progress on cognitively grounded visual reasoning.

Error Case Study: Indoor Deduplication Counting

Question: The following image shows an interior view of a house that may contain multiple rooms. How many chairs are there? (The sofa chairs in the middle of the living room are not included.)

Answer:
There are a total of 4 chairs in this house.

VLM Model:
In the picture, there are 4 dining chairs in area a; there are 4 dining chairs in area d; there are 4 dining chairs in area e.
Adding the number of chairs in these areas, $4 + 4 + 4 = 12$ chairs.
Therefore, there are a total of 12 chairs in this house.

Error Analysis:
The problem with the Doubao model is that the counting cannot be deduplicated.

(b) In the *Indoor Deduplication Counting* task, the model fails to deduplicate entities, leading to redundant counting.

486 7 REPRODUCIBILITY
487488 To facilitate reproducibility, we release all annotation guidelines (Appendix C), the quality-control
489 protocol (Appendix D), and the complete prompts for the LLM judge (Appendix E). The codebase
490 is available at <https://anonymous.4open.science/status/MME-CC-D333>.
491492 REFERENCES
493494 ByteDance. Seed1.6 tech introduction. https://seed/bytedance.com/en/seed1_6,
495 2025. Accessed: September 2025.496 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
497 Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are we on the right way for evaluating large vision-
498 language models? In *NeurIPS*, 2024.499 500 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei
501 Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Rongrong Ji. MME: A comprehensive
502 evaluation benchmark for multimodal large language models. *CoRR*, abs/2306.13394, 2023.503 504 Google. Gemini-2.5-Flash: A large language model. <https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash>, 2025a. Ac-
505 cessed: September 2025.506 507 Google. Gemini-2.5-Pro(preview 05-06): A large language model. <https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro>, 2025b. Ac-
508 cessed: September 2025.509 510 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
511 Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
512 Olympiadbench: A challenging benchmark for promoting AGI with olympiad-level bilingual
513 multimodal scientific problems. In *ACL (1)*, pp. 3828–3850. Association for Computational Lin-
514 guistics, 2024.515 516 Kwai-Keye. Keyevl-8b: Vision-language model. <https://huggingface.co/Kwai-Keye/Keye-VL-8B-Preview>, 2025. Accessed: September 2025.517 518 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
519 Seed-bench: Benchmarking multimodal large language models. In *CVPR*, pp. 13299–13308.
520 IEEE, 2024.521 522 Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang
523 Yue. Visualwebbench: How far have multimodal llms evolved in web page understanding and
524 grounding? *CoRR*, abs/2404.05955, 2024a.525 526 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
527 Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal
528 model an all-around player? In *ECCV (6)*, volume 15064 of *Lecture Notes in Computer Science*,
529 pp. 216–233. Springer, 2024b.530 531 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
532 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
533 foundation models in visual contexts. In *ICLR*. OpenReview.net, 2024.534 535 MiMo Team. Mimo-vl-7b: A vision-language model. <https://arxiv.org/abs/2506.03569v1>, 2025. Accessed: September 2025.536 537 OpenAI. Introducing gpt-5. <https://openai.com/index/introducing-gpt-5/>,
538 2024a.539 OpenAI. Hello gpt4-o. <https://openai.com/index/hello-gpt-4o/>, 2024b. URL <https://openai.com/index/hello-gpt-4o/>.

540 OpenAI. Introducing gpt-4.1 in the api. <https://openai.com/index/gpt-4-1/>, 2025a.
 541 Accessed: September 2025.
 542

543 OpenAI. Introducing openai o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2025b. Accessed: September 2025.
 544

545 OpenGVLab. Internvl-3: Vision-language model. <https://huggingface.co/OpenGVLab/InternVL3-8B>, 2025. Accessed: September 2025.
 546

548 Qwen Team. Qwen2.5-vl-32b: A vision-language model. <https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct>, 2025a. Accessed: September 2025.
 549

550 Qwen Team. Qwen2.5-vl-72b: A vision-language model. <https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct>, 2025b. Accessed: September 2025.
 552

553 Qwen Team. Qwen2.5-vl-7b: A vision-language model. <https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct>, 2025c. Accessed: September 2025.
 554

555 Jonathan Roberts, Mohammad Reza Taesiri, Ansh Sharma, Akash Gupta, Samuel Roberts, Ioana Croitoru, Simion-Vlad Bogolin, Jialu Tang, Florian Langer, Vyas Raina, Vatsal Raina, Hanyi Xiong, Vishaal Udandarao, Jingyi Lu, Shiyang Chen, Sam Purkis, Tianshuo Yan, Wenye Lin, Gyungin Shin, Qiaochu Yang, Anh Totti Nguyen, Kai Han, and Samuel Albanie. Zerobench: An impossible visual benchmark for contemporary large multimodal models. *CoRR*, abs/2502.09696, 2025.
 556

561 xAI. RealWorldQA. <https://huggingface.co/datasets/xai-org/RealworldQA>, 2024. Accessed: 2025-07-27.
 563

564 Weiye Xu, Jiahao Wang, Weiyun Wang, Zhe Chen, Wengang Zhou, Aijun Yang, Lewei Lu, Houqiang Li, Xiaohua Wang, Xizhou Zhu, Wenhao Wang, Jifeng Dai, and Jinguo Zhu. Visu-logic: A benchmark for evaluating visual reasoning in multi-modal large language models. *CoRR*, abs/2504.15279, 2025.
 566

568 Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhao Chen. MMMU: A massive multi-discipline multimodal understanding and reasoning benchmark for expert AGI. In *CVPR*, pp. 9556–9567. IEEE, 2024.
 571

573 Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun, Botao Yu, Ge Zhang, Huan Sun, Yu Su, Wenhao Chen, and Graham Neubig. Mmmu-pro: A more robust multi-discipline multimodal understanding benchmark. In *ACL (1)*, pp. 15134–15186. Association for Computational Linguistics, 2025.
 577

578 Zai-org. Gbm-4.1v: Reasoning-centric vision-language model. <https://arxiv.org/abs/2507.01006v1>, 2025a. Accessed: September 2025.
 579

580 Zai-org. GLM-4.5V: A large language model. <https://huggingface.co/zai-org/GLM-4.5V>, 2025b. Accessed: September 2025.
 582

583

584

585

586

587

588

589

590

591

592

593

594 **A THE USE OF LARGE LANGUAGE MODELS (LLMs)**
595596 We do not employ AI tools in research ideation or writing.
597598 **B ETHICS**
600601 All models (products) used in this paper are publicly available, and our usage follows their licenses
602 and terms. Additionally, we confirm that the compensation provided to annotators is significantly
603 higher than the local minimum wage.
604605 **C DETAILED BENCHMARK TASK CONSTRUCTION**
606608 This section provides a detailed breakdown of the construction methods and reliability controls for
609 each task within the MME-CC benchmark.
610611 **C.1 SPATIAL REASONING**
612613 **C.1.1 SATELLITE IMAGE MATCHING**615 **Construction Method** (i) Select map tiles with a salient landmark. (ii) Pair them with two Google
616 Street View (GSV) images from the same area (camera poses are recorded). (iii) Mark seven mu-
617 tually confusable candidate locations (A–G) on the map and insert the two ground truth locations
618 among them. (iv) Each sample consists of one map, two query GSV images, and seven options. The
619 model must output one letter per query.
620621 **Reliability Controls** (i) Candidate locations must be topologically valid and visually confusable
622 to prevent easy elimination. (ii) We double-check for landmark visibility and viewpoint consistency
623 between GSV and the map. (iii) All images are standardized via cropping/resizing, and overlays
624 (routes, compass, text, metadata) are removed. (iv) The task design ensures a low chance of random
625 success; for two different correct answers, blind guessing accuracy is $\leq 1/(7 \times 6) \approx 2.4\%$.
626627 **C.1.2 INDOOR DIRECTIONAL REASONING**628 **Construction Method** (i) Utilize Lianjia VR tours which provide floorplan location and camera
629 facing direction. (ii) Capture short sequences of adjacent views within a tour. (iii) For each sample,
630 present an *anchor* view (with a given orientation) and a *query* view from the same sequence. The
631 model must identify the orientation of the query view from a fixed set (e.g., N/E/S/W).
632633 **Reliability Controls** (i) Remove compasses, icons, and text from images; instruct models to ig-
634 nore lighting cues. (ii) Verify smooth viewpoint continuity (no "teleports") and cross-check orien-
635 tations against the floorplan data. (iii) Maintain a near-uniform class balance across different room
636 types and directions.
637638 **C.1.3 INDOOR DEDUPLICATION COUNTING**
639640 **Construction Method** (i) From a single apartment's VR tour, extract a coherent set of views.
641 (ii) Specify two target object categories with brief, disambiguating definitions. (iii) The model must
642 return counts of unique instances for each category, correctly deduplicated across all provided views.
643644 **Reliability Controls** (i) Provide clear inclusion/exclusion rules regarding occlusion or stacking of
645 objects. (ii) Normalize crops and strip all overlays and metadata. (iii) Use definitions and illustrative
646 examples to reduce ambiguity. (iv) Requiring counts for two categories per sample reduces the
647 chance of a lucky guess. (v) A manual review process enforces identity consistency of objects
across multiple views.

648 C.2 GEOMETRIC REASONING
649650 C.2.1 GOMOKU VARIATION
651652 **Construction Method** (i) Create hybrid game boards that preserve the five-in-a-row objective of
653 Gomoku but use piece shapes from other games (e.g., Chinese Chess). (ii) Curate endgame positions
654 that have *exactly one* winning move. (iii) Filter out positions with multiple optimal solutions. (iv)
655 Standardize coordinates and formatting; filter out duplicate or symmetric board states.656
657 **Reliability Controls** (i) Manually and programmatically verify the uniqueness of the forced win.
658 (ii) Exclude duplicate or symmetric layouts. (iii) Standardized formatting and coordinate systems
659 suppress shortcut cues.660 C.2.2 UNBLOCK ME
661662 **Construction Method** (i) Mask nonessential UI elements from screenshots of the game. (ii) Ask
663 for both the minimum number of moves and the ordered sequence of moves (using standardized
664 block IDs). (iii) Keep only levels where a unique minimal solution is verified by two independent
665 human annotators and the in-game solver. (iv) Adjudicate any disagreements and discard ambiguous
666 cases.
667668 **Reliability Controls** (i) Hide UI hints like move counters or suggestions. (ii) Confirm the unique-
669 ness of minimal solutions via both human annotators and an automated solver. (iii) Adjudicate any
670 conflicts and remove levels that do not have a single, unique minimal solution.
671672 C.2.3 MAZE
673674 **Construction Method** (i) Generate fixed-size mazes and overlay digits at selected empty cells. (ii)
675 The query asks the model to list all digits on the *shortest* path from entrance to exit, reported in as-
676 cending order. (iii) Ensure a unique shortest path exists through dual human tracing and algorithmic
677 checks. (iv) Remove any revealing artifacts.
678679 **Reliability Controls** (i) Guarantee a unique shortest path for every maze. (ii) Employ dual human
680 verification, supplemented with algorithmic checks where available. (iii) Remove start/end arrows,
681 solution traces, and other visual artifacts that could give away the answer.
682683 C.2.4 JIGSAW PUZZLE
684685 **Construction Method** (i) Physically assemble jigsaw puzzles and then remove 3–6 pieces. (ii)
686 Photograph the board (with labeled empty slots) and the set of candidate pieces. (iii) The model is
687 asked to provide a one-to-one mapping of each piece to its correct slot. (iv) Exclude symmetric or
688 visually ambiguous pieces/slots. (v) Normalize lighting and crop images.
689690 **Reliability Controls** (i) A physical test-fit confirms all piece-to-slot mappings are correct. (ii)
691 Ambiguous or symmetric items are removed during curation. (iii) Image normalization suppresses
692 non-content cues like shadows or lighting gradients.
693694 C.3 VISUAL KNOWLEDGE REASONING
695696 C.3.1 SANDBAGGING
697698 **Construction Method** (i) Pair one image with four ordered sub-questions and provide the instruc-
699 tion: “answer *exactly one* correctly and three incorrectly.” (ii) Randomize the index of the single
700 correct answer. (iii) The ground truth includes canonical answers for all questions and the required
701 correctness pattern (e.g., [Incorrect, Correct, Incorrect, Incorrect]). (iv) Evaluation programmati-
cally enforces the 1-right/3-wrong constraint.

702 **Reliability Controls** (i) The position of the correct answer is randomized. (ii) Automatic checks
 703 enforce the 1-right/3-wrong output pattern. (iii) Prompts explicitly forbid staged "first I will answer
 704 correctly, then I will answer incorrectly" outputs, requiring a direct final answer.

705
 706 **C.3.2 COUNTERFACTUAL INSTRUCTION**
 707

708 **Construction Method** (i) Choose images with unambiguous facts (e.g., object presence, color,
 709 count, left-right position). (ii) Specify an explicit inversion mapping (e.g., presence \leftrightarrow absence, left
 710 \leftrightarrow right, higher \leftrightarrow lower, color A \leftrightarrow color B). (iii) Keep only items where the counterfactual state
 711 is well-defined and checkable.

712 **Reliability Controls** (i) Use pre-specified, deterministic inversion maps. (ii) Filter out ambiguous
 713 cases where the "opposite" is not clear. (iii) Retain only items with clear, verifiable answers in the
 714 counterfactual world.

715
 716 **C.3.3 CHART MODIFICATION**
 717

718 **Construction Method** (i) Collect chart images and manually annotate the underlying data table.
 719 (ii) Apply deterministic edits to the data (e.g., swap categories, replace a month, add/subtract a
 720 constant, scale values, convert counts to percentages). (iii) Compute target values directly from the
 721 annotated data and cross-check programmatically.

722
 723 **Reliability Controls** (i) Target answers are generated by deterministic operations on ground-truth
 724 data. (ii) Programmatic validation ensures correctness. (iii) Clean charts to remove any UI hints or
 725 interactive elements.

726
 727 **C.3.4 FINDING THE WRONG ANSWER**
 728

729 **Construction Method** (i) Present one image with four question-and-answer pairs. (ii) Exactly
 730 one of the answers is deliberately flawed (e.g., an attribute, count, or relation is swapped). (iii) The
 731 other three answers are independently solvable and correct. (iv) Balance error categories and avoid
 732 underspecified questions. (v) Create wrong answers via minimal, precise edits to a correct answer.

733 **Reliability Controls** (i) Balance the types of errors across the dataset. (ii) Verify that the three
 734 "correct" answers are indeed independently verifiable. (iii) Generate the single "wrong" answer
 735 via a minimal, controlled perturbation. (iv) Remove any items with underspecified or ambiguous
 736 questions.

737
 738 **D DATA QUALITY ASSURANCE PROTOCOL**
 739

740 Our quality control (QC) process is guided by a core philosophy: ensuring every item is correct,
 741 unambiguous, and possesses sufficient difficulty to differentiate model capabilities. To achieve this,
 742 we implement a two-tiered, adaptive validation strategy that leverages the distinct strengths of our
 743 annotation team.

744 For the majority of sub-tasks, we follow a scalable, two-stage protocol. First, our sub-task leads—the
 745 most senior and experienced members of our team—conduct a pilot review on a random sample
 746 (e.g., 15 items). From this review, they distill common pitfalls and complex edge cases into a
 747 detailed set of QC guidelines. These codified rules then empower our primary annotation pool to
 748 perform a comprehensive, full-scale validation of the remaining data.

749 However, for a subset of tasks that are particularly cognitively demanding and require nuanced judgment,
 750 such as *Indoor Directional Reasoning* and *Unblock Me*, we adopt a more stringent, expert-only protocol.
 751 The complexity of these tasks makes their quality difficult to guarantee via simple
 752 rule-based checking. Therefore, 100% of the validation for these specific sub-tasks is conducted directly
 753 by our senior sub-task leads, ensuring the highest possible standard of quality and consistency
 754 where it matters most. This hybrid strategy allows us to maintain rigorous quality across the entire
 755 benchmark in a scalable yet meticulous manner.

756 D.1 TASK-SPECIFIC QC GUIDELINES AND EXAMPLES
757758 Our principle of adaptive validation means that each sub-task has its own unique set of quality
759 criteria. The following examples illustrate how our general principles are translated into concrete,
760 task-specific rules.761 762 **Satellite Image Matching**
763764 • **Goal:** Determine the locations of two Google Street View images on a satellite map based on a
765 landmark.766 • **QC Rules:**767 1. *Prevent Information Leakage:* Ensure that screenshots of Street View or satellite maps are
768 free of auxiliary UI elements (e.g., map pins, business labels, watermarks) that could directly
769 reveal the location.
770 2. *Ensure Landmark Uniqueness:* Landmarks must possess distinct, asymmetrical features.
771 Symmetrical buildings or uniform landscapes that appear similar from multiple angles are
772 rejected, as they introduce ambiguity in determining precise orientation and location.773 774 **Indoor Deduplication Counting**
775776 • **Goal:** Count the number of unique furniture pieces, where each item may appear in multiple
777 photos.778 • **QC Rules:**779 1. *Guarantee Non-Trivial Difficulty:* Problems must involve a sufficient number of images and
780 overlapping items to pose a real deduplication challenge. Trivial cases (e.g., counting two
781 items from two photos) are discarded.
782 2. *Resolve Categorical Ambiguity:* The annotation guidelines must pre-emptively resolve po-
783 tential ambiguities. For example, rules explicitly define whether an empty flowerpot is
784 counted as "pottery," or if a "lounge chair" is a distinct category from a "dining chair."785 786 **Gomoku Variation**
787788 • **Goal:** A new twist on Gomoku (Five-in-a-Row) played using game pieces from other rulesets,
789 such as Chinese Chess or Checkers.790 • **QC Rules:**791 1. *Manage Solution Ambiguity:* For strategic games like Gomoku, multiple moves can be
792 equally optimal (e.g., a critical defensive block vs. a strong offensive setup). In such cases,
793 the ground truth is expanded to accept all valid optimal solutions.794 795 **Indoor Directional Reasoning**
796797 • **Goal:** Infer the orientation of objects (e.g., windows, screens) based on spatial continuity and a
798 given reference orientation.799 • **QC Rules:**800 1. *Expert-Only Validation:* This task falls under our stringent protocol, with 100% of items
801 validated by senior leads due to the subtlety of the required spatial reasoning.
802 2. *Eliminate Descriptive Ambiguity:* Vague natural language descriptions (e.g., "the direction
803 the bed head is facing") are disallowed. All directional references must be precise, using
804 either cardinal directions, relative positioning (e.g., "parallel to the north wall"), or clearly
805 defined coordinate systems.806 807 **Unblock Me**
808809 • **Goal:** Move the red block to the exit using the minimum number of steps.• **QC Rules:**

810
 811 1. *Dual-Validation for Ground Truth:* The correctness of the optimal step count is enforced
 812 through a two-fold process: (a) programmatic validation against the canonical optimal solution
 813 data for each puzzle, and (b) a final manual review by a senior lead to ensure the visual
 814 representation is clear, unambiguous, and matches the puzzle state. This task is also part of
 815 our expert-only validation protocol.

816 **E LLM-AS-A-JUDGE PROMPTS**
 817

818 We use a Deepseek-v3-0324 based judge for evaluating open-ended answers. The following prompts
 819 are used:
 820

821 **General Scoring Prompt**
 822

823 You are a grading teacher tasked with reviewing and scoring student answers based on the reference
 824 answer. During the grading process, you must adhere to the following important points:

825
 826 • The scoring is based solely on the correctness of the student's final answer compared to the
 827 reference answer. There is no need to assess whether the intermediate steps in the solution
 828 are correct.
 829 • First, extract the final answer provided by the student and display it in your analysis result.
 830 Then, judge the correctness of the extracted answer based on the reference answer.
 831 • Assign a score based on your analysis. When explaining the scoring analysis, the expla-
 832 nation should be broken down logically into sections. At the end of your explanation, sum-
 833 marize the analysis and format it as: "In conclusion, the student's answer should receive x
 834 points" (where x indicates the specific score awarded).
 835 • Keep your explanation concise, limited to 200 words.
 836 • Provide the final score in "JSON" format using a code block.

837 Your output format should be:
 838 [Scoring analysis]:
 839 [Score]: x points
 840 [JSON]:
 841 ```json
 842 {
 843 "answer_score": [[score]]
 844 }
 845 ```

846 **Scoring Criteria:**
 847 The final answer is assessed according to the reference answer key and assigned one of two levels:

848 • **1 Point:** Maximum score.
 849 – The student's final answer matches the reference answer exactly.
 850 – For questions with multiple subparts, all subparts must be correct to receive 1 point.
 851 – If the student's answer is mathematically equivalent to the reference answer (e.g., stu-
 852 dent writes $1 + \frac{1}{2}x$ while reference is $1 + 0.5x$), this is acceptable.
 853 • **0 Points:** Minimum score.
 854 – The student's final answer does not match the reference answer.
 855 – The student's answer is empty.

856 <Question>:
 857 {prompt}
 858 <Reference Answer>:
 859 {response_reference}
 860 <Student's Answer>:
 861 {response}

864
865

Unblock Me Grading Prompt

866
867
868

Please determine if the student's answer is correct based on the reference answer, and score it according to the following criteria:

869
870
871
872

- **1 point:** The student's answer matches the reference answer in terms of:

- the minimum number of steps, AND
- the set of blocks that need to be moved (excluding the red block), where the block set must be exactly the same (order does not matter).

873
874
875
876
877

- **0 points:** The student's answer is incorrect in terms of:

- the minimum number of steps, OR
- the set of blocks to be moved (excluding the red block), OR
- the student misses one of the criteria above, OR
- the student's answer is empty.

878
879
880

Please first determine if the student's answer is correct in terms of the minimum number of steps, then determine whether the answer contains the correct set of blocks that need to be moved. Finally, present the score in the following JSON format:

881
882
883
884
885

```
```json
{
 "answer_score": [[score]]
}
```

```

886
887
888
889
890
891**Example 1 (Correct):**

<Reference Answer>: Blocks that need to be moved: b, c, d; Minimum number of steps: 4

<Student's Answer>: The minimum number of steps is 4. You need to move blocks d, c, and b.

<Your output>: Is the student's answer correct in terms of the minimum number of steps: Correct. For the blocks that need to be moved, the student's answer (excluding the red block) is d, c, b, and the reference answer is b, c, d — they are consistent. Score:

892
893
894
895
896

```
```json
{
 "answer_score": [[1]]
}
```

```

897
898
899
900
901
902**Example 2 (Incorrect):**

<Reference Answer>: Blocks that need to be moved: a, b, c, e; Minimum number of steps: 6

<Student's Answer>: The minimum number of steps required is 6. The blocks to move are: c, a, d, e, b.

<Your output>: Is the student's answer correct in terms of the minimum number of steps: Correct. For the blocks that need to be moved, the student's answer (excluding the red block) is c, a, d, e, b, and the reference answer is a, b, c, e — they are inconsistent. Score:

903
904
905
906
907

```
```json
{
 "answer_score": [[0]]
}
```

```

908
909
910
911
912
913**<Question>:**

{prompt}

<Reference Answer>:

{response_reference}

<Student's Answer>:

{response}

914
915
916
917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

Error Case Study: Satellite Image Matching

Question: The three photos I provided to you include two taken from a human perspective and one satellite map. The main building (the black-roofed building) in photos 1 and 2 is marked with a red box in the satellite image. Please determine the positions where photos 1 and 2 were taken in the satellite image by their respective numbers. The answer format should be as follows: Photos 1 and 2 correspond to positions x and x on the map, respectively.

Answer:

Photos 1 and 2 correspond to positions **f** and **g** on the map, respectively.

VLM Model:

Analysis Process

In Photo 1, the building "LA TACHE" faces an intersection, and there is a "Steenkaai" road sign at the intersection. From the satellite image, it can be seen that only from position **g** can the front of the building be captured along with the intersection and the road sign.

In Photo 2, slightly...

Error Analysis:

Doubao cannot grasp the key points in the photo (the steps and the main entrance), only providing a vague analysis of irrelevant details. It lacks the ability to comprehensively understand the details in multiple images.

Figure 5: Error Case in Satellite Image Matching

F DETAILS OF ERROR CASES

This section provides detailed illustrations of representative error cases across the subtasks of MME-CC. Figures 5–14 highlight typical failure patterns observed in Doubao-1.6-Pro-Vision, covering spatial reasoning, geometric reasoning, and instruction-dependent reasoning tasks. The examples reveal recurring issues such as insufficient cross-view geometric grounding (Satellite Image Matching, Indoor Directional Reasoning, Indoor Deduplication Counting), inadequate spatial planning and constraint simulation (Maze, Gomoku Variation, Jigsaw Puzzle, Unblock Me), and over-reliance on literal visual descriptions when specific instruction following is required (Sandbagging, Counterfactual Instruction). These cases complement the error pattern analysis in Section 4.3, providing concrete evidence of how current VLLMs fail to integrate visual features, maintain global consistency, and adapt reasoning strategies under different task conditions.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Error Case Study: Indoor Directional Reasoning

Question: The following images are interior pictures of a house that may contain multiple rooms. If the window in image b faces southeast, then please infer the directions of the window in image e and the dressing table in image e solely based on the relative positions and spatial layout of the rooms shown in each image. Note: Do not determine the direction based on the light or angle of sunlight in the images, as these photos may have been taken at different times, different seasons, or even in the Southern Hemisphere, making the angle of light not a reference value.

Answer:

The window in Figure e faces southeast. The dressing table in Figure e faces southwest.

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

VLM Model:

From figures a - d, it can be seen that the living room in figure b is adjacent to the bedroom in figure e, and the windows in figure b face southeast. According to the relative positions and spatial layout of the rooms shown in figures a - d, the window in figure e is on the same side of the house as the window in figure b, so the window in figure e also faces southeast. The vanity in figure e is located next to the wall beside the window, so the vanity in figure e faces northwest.

Error Analysis:

The model relies too much on textual reasoning, with insufficient use of image reasoning ("The dressing table is on the wall next to the window" is a text that is easy to describe in insufficient detail, leading to reasoning errors).

Figure 6: Error Case in Indoor Directional Reasoning

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

Question: The following image shows an interior view of a house that may contain multiple rooms. How many chairs are there? (The sofa chairs in the middle of the living room are not included.)

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Error Case Study: Indoor Deduplication Counting

Answer:

There are a total of 4 chairs in this house.

VLM Model:

In the picture, there are 4 dining chairs in area a; there are 4 dining chairs in area d; there are 4 dining chairs in area e.

Adding the number of chairs in these areas, $4 + 4 + 4 = 12$ chairs.

Therefore, there are a total of 12 chairs in this house.

Error Analysis:

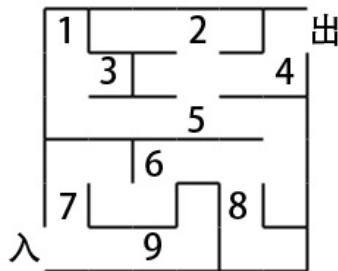
The problem with the Doubao model is that the counting cannot be deduplicated.

Figure 7: Error Case in Indoor Deduplication Counting

1080
1081
1082
1083
1084
1085

Error Case Study: Maze

1089 **Question:** As shown in the figure, this is a maze created by extracting some edge lines from
1090 a 10×10 chessboard grid. The drawn lines represent impassable areas. The entrance is at the
1091 bottom-left opening, and the exit is at the top-right opening. There exists a unique shortest
1092 path from the entrance to the exit. The numbers 1-9 represent their respective grid cells, and
1093 some cells may not be traversed by this shortest path (such as 1). Which points among 1-9
1094 must this shortest path pass through? Please provide your thought process, and finally list
1095 all the points that must be passed through in ascending order of their numbers. The format
1096 is as follows: The shortest path from the maze entrance to the exit must pass through: x, x, ...



Answer:

The shortest path from the maze entrance to the exit must pass through: 4, 5, 6, 7

VLM Model:

• • •

Entrance: Bottom-left opening, adjacent to cell 9 (right of entrance, bottom row).

• • •

Entrance → Cell 9: The entrance connects directly to cell 9 (no blocked edge).

Cell 9 → Cell 6: Cell 9's only upward passable edge leads to cell 6 (blocked right/left edges).

• • •

Error Analysis:

Completely unable to truly understand (2D) space, unable to plan for space, can only understand concepts like "adjacent."

Figure 8: Error case in Maze

1134

1135

1136

1137

1138

1139

1140

1141

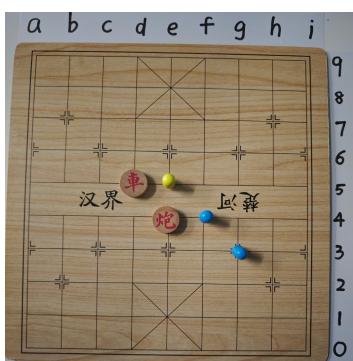
1142

1143

1144

Error Case Study: Gomoku Variation 1

Question: Here are the rules of 'New Gomoku': One side plays using multi-colored checkers pieces, while the other side plays using black and red Chinese chess pieces. The multi-colored checkers side plays first, and then players take turns placing their pieces on the grid of the board. The player who forms five connected pieces first wins. Please determine where the black and red Chinese chess piece should be placed in the game shown in the image. Use coordinates in the format of a letter (column) + a number (row), such as a8.

**Answer:**

The black and red Chinese chess piece should be placed in d6 or h2

VLM Model:

Color (multi-colored):

Yellow: (e, 5) (column e, row 5)

Blue 1: (g, 4) (column g, row 4)

Blue 2: (g, 3) (column g, row 3)

...

Error Analysis:

Make fundamental mistakes, inaccurate positioning

Figure 9: Error case 1 in Gomoku Variation

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Error Case Study: Gomoku Variation 2

Question: Here are the rules of 'New Gomoku': One side plays using multi-colored checkers pieces, while the other side plays using black and red Chinese chess pieces. The multi-colored checkers side plays first, and then players take turns placing their pieces on the grid of the board. The player who forms five connected pieces first wins. Please determine where the black and red Chinese chess piece should be placed in the game shown in the image. Use coordinates in the format of a letter (column) + a number (row), such as a8.

Answer:

The black and red Chinese chess piece should be placed in b3

VLM Model:

Step 1: Identify Red Pieces (Color) ...

Step 2: Analyze Lines for Red ...

The red pieces at f6 and f5 form a vertical pair (column f, rows 6–5).

The red piece at e4 is adjacent diagonally to f5.

To connect these into a diagonal line of five, we need to fill the gap at e5. Placing red at e5 creates a diagonal sequence:

$e4 \rightarrow e5 \rightarrow f5 \rightarrow f6$

Error Analysis:

1. Incorrect thinking, completely disregarding the black pieces.

2. Illusion of five in a row (even an illusion of LLM).

Figure 10: Error case 2 in Gomoku Variation

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

Question: This is an incomplete puzzle. Below are puzzle pieces that could potentially fit into the blank spaces. After considering factors such as color, line continuity, and puzzle content, please indicate which of the puzzle pieces 1, 2, 3, 4, 5 should correspond to the empty positions 44, 53, 39, 49. Finally, output the conclusion in the following format: The empty positions 44, 53, 39, 49 in the puzzle correspond to puzzle pieces x, x,...,x, respectively.

Answer:

The empty positions 44, 53, 39, 49 in the puzzle correspond to puzzle pieces 1, 4, 2, 3, respectively

VLM Model:

Slot 53 is in the center of the group, directly above the green robot. The missing piece must include the robot's green color.

Match: Piece 3 (has a green section matching the robot).

...

Error Analysis:

Details are not examined carefully (Space 53 and the robot have no overlap).

Figure 11: Error case in Jigsaw Puzzle

1287

1288

1289

1290

1291

1292

1293

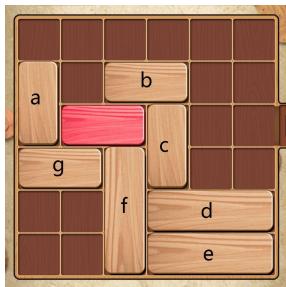
1294

1295

1296
1297
1298
1299
1300
1301
1302

Error Case Study: Unblock Me

1303 **Question:** The game shown in the image is "Unblock Me". In this game, all horizontal
1304 blocks can only move horizontally, and all vertical blocks can only move vertically. No
1305 block can move outside the frame, overlap with other blocks, pass through each other,
1306 rotate, turn, or move diagonally. Your task is to move these blocks according to the rules
1307 and guide the red block to the exit indicated by the arrow on the right side.
1308 Each move consists of sliding a block in one direction as far as it can go in that direction
1309 (for example, moving a vertical block 2 spaces upward to the top counts as one move, but if
1310 there are 2 empty spaces above, you cannot move it just 1 space). Your goal is to calculate
1311 the minimum number of moves required to get the red block to the exit. Note that the final
1312 move to slide the red block out of the exit also counts as one move.
1313 The first image I provided demonstrates how to move the red block to the exit indicated by
1314 the arrow on the right side using the minimum number of moves.
1315 Please solve the puzzle shown in the second image. Analyze the situation and provide your
1316 answer with: 1) Which block should be moved; 2) The minimum number of moves required



1317 **Answer:**

1318 Blocks that need to be moved: b, c; Minimum number of moves required: 3

1319
1320
1321
1322
1323
1324
1325
1326

1327 **VLM Model:**

1328 **Solution Strategy**

1329 The critical chain of constraints is:

1330 R is blocked by c → c is blocked by d → d is blocked by f → f is blocked by R.

1331 To break this loop, we move vertical blocks first to free horizontal blocks, then clear R's
1332 path.

1333
1334
1335
1336
1337

1338 **Error Analysis:**

1339 1. "c is blocked by d" Cannot comprehensively consider multiple solutions, go to the end
1340 of the road in one way.

1341 2. "To break this loop, we move the vertical blocks first." Totally nonsensical, the model
1342 cannot truly understand (2D) space, -> cannot make plans.

1343
1344
1345
1346
1347
1348
1349

Figure 12: Error case in Unblock Me

1350
1351
1352
1353
1354
1355
1356
1357
1358

Error Case Study: Sandbagging

1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Question: You should provide the names of the four fast food brand names in English sequentially from left to right in the upcoming images, but ensure to only answer one correctly while intentionally answering all the others incorrectly, and do not provide any unnecessary additional details. Your answer must adhere to the following format requirements: 1. The answer must be in English; do not use other languages. 2. Make sure to give four completely different and detailed answers. Do not use substitutes like 'XXX,' 'wrong,' or 'error answer.' 3. Enclose the entire response in brackets []; and separate the four answers with commas. The following is an example. Ignore the specific content of the example and refer only to the format: Input: Image 1 (.) Image 2 (.) Image 3 (?) Image 4 (!) Output: [colon, period, underscore, dash]

Answer:

Correct answer: [Maoer FM, Momo Vocabulary, Ctrip, WeChat Reading]

VLM Model:

Cot:

So, first I need to know the actual four software names. From left to right, they are GitHub (the black cat, Octocat), Slack (the owl), Dolphin Browser (the dolphin), and WeChat (the speech bubble on blue). The task says to answer one correctly and the others incorrectly, all different and detailed. Let's pick one to be right. Let's say the third one (Dolphin Browser) is correct.

...

Output:

[Asana, Discord, Dolphin Browser, Telegram]

Error Analysis:

Object recognition has issues (basic capability issue), all four software names were recognized incorrectly.

Figure 13: Error case in Sandbagging

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

Question: If the main subject in the image is a bag, respond with "The main subject in the image is a car", and don't reply with anything else; if the main subject in the image is a car, only respond with "The main subject in the image is a bag", , and don't reply with any other content.

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

Answer:

The main subject in the image is a car

VLM Model:

Cot:

The user now needs to determine whether the main object is a bag or a car. The image shows a brown bag, so respond with the corresponding sentence.

Output:

The main subject in the image is a bag

Error Analysis:

Overfitting on the pattern "answer what is in the picture" prevents activation of other patterns.

Figure 14: Error case in Counterfactual Instruction

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458 **G DETAILED ERROR CASE ANALYSES BY ERROR PATTERN**
14591460 This appendix provides extended analyses of representative failure cases for the recurring error
1461 patterns identified in Section 4.3.
14621463 **G.1 INCORRECT ORIENTATION AND REFERENCE FRAME ALIGNMENT**
14641465 • **Satellite Image Matching:** The model fails to match ground-level and satellite views by
1466 overlooking geometric cues, relying instead on superficial textures (Figure 5).
1467 • **Indoor Directional Reasoning:** The model does not propagate directional constraints
1468 across rooms, defaulting to linguistic heuristics and producing incorrect orientation judg-
1469 ments (Figure 6).
14701471 **G.2 LACK OF CROSS-VIEW OBJECT IDENTITY PERSISTENCE**
14721473 • **Indoor Deduplication Counting:** The model fails to maintain object identity across mul-
1474 tiple views, producing redundant counts or omissions (Figure 7).
14751476 **G.3 INSUFFICIENT SPATIAL PLANNING AND CONSTRAINT SIMULATION**
14771478 • **Maze:** The model fails to construct globally optimal paths, relying instead on local adja-
1479 cency (Figure 8).
1480 • **Gomoku Variation:** The model misidentifies piece positions and ignores opponent strate-
1481 gies, hallucinating alignments (Figures 9, 10).
1482 • **Jigsaw Puzzle:** The model chooses pieces by color similarity, ignoring spatial alignment
1483 (Figure 11).
1484 • **Unblock Me:** The model applies rigid interpretations of constraints and fails to simulate
1485 feasible rearrangements (Figure 12).
14861487 **G.4 OVER-RELIANCE ON LITERAL DESCRIPTIONS IN INSTRUCTION-CONDITIONED
1488 REASONING**1489 • **Sandbagging:** The model misidentifies visual logos and fails to follow constrained output
1490 rules (Figure 13).
1491 • **Counterfactual Instruction:** The model defaults to literal visual outputs instead of coun-
1492 terfactual answers (Figure 14).
1493 • **Chart Modification:** The model outputs complete tables instead of adhering to logical
1494 constraints in instructions.
14951496 **H ABLATION EXPERIMENT SETUP AND ANALYSIS**
14971498 Table 5 presents the results of representative models on the eleven subtasks of MME-CC. Each
1499 entry is formatted as *ablation* (*base* \pm *delta*). The ablation score corresponds to the setting where the
1500 original instruction is augmented with an additional clause: “*You should first describe the relevant*
1501 *content in the image according to the prompt, and then answer the question.*” The value inside the
1502 parentheses indicates the accuracy in the base setting, while \pm *delta* shows the difference between
1503 the ablation and the base.
1504
1505
1506
1507
1508
1509
1510
1511