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ABSTRACT

As reasoning models scale rapidly, the essential role of multimodality in hu-
man cognition has come into sharp relief, driving a growing need to probe
vision-centric cognitive behaviors. Yet, existing multimodal benchmarks either
overemphasize textual reasoning or fall short of systematically capturing vision-
centric cognitive behaviors, leaving the cognitive capacity of MLLMs insuffi-
ciently assessed. To address this limitation, we introduce MME-CC (Multi-Modal
Evaluation benchmark of Cognitive Capacity), a vision-grounded benchmark that
organizes 11 representative reasoning tasks into three fundamental categories
of visual information—spatial, geometric, and knowledge-based reasoning—and
provides fine-grained analyses of MLLMs’ cognitive capacity across these dimen-
sions. Based on MME-CC, we conduct extensive experiments over 16 representa-
tive MLLMs. Our study reveals that closed-source models currently lead overall
(e.g., 42.66 for Gemini-2.5-Pro vs. 30.45 for GLM-4.5V), while spatial and geo-
metric reasoning remain broadly weak (≤30%). We further identify common error
patterns—including orientation mistakes, fragile cross-view identity persistence,
and poor adherence to counterfactual instructions—and observe that Chain-of-
Thought typically follows a three-stage process (extract → reason → verify) with
heavy reliance on visual extraction. We hope this work catalyzes a shift toward
treating the cognitive capacity of MLLMs as central to both evaluation and model
design.

1 INTRODUCTION

Spatial Reasoning

Satellite Image Matching

Description: Match two Google Street 
View images to their locations on a satellite 
map using visual landmarks.

Image List

Indoor Deduplication Counting
Description: Count distinct furniture items 
when duplicates occur across multiple 
images.

Image List

Indoor Directional Reasoning
Description: Infer the orientation of objects (e.g., windows, TV screens) from a known spatial 
reference.
Image List

Sandbagging

Description: Follow adversarial 
instructions to answer only a specified 
number of items correctly.

Image List

Instruction Example
List four fast food brands left to right, 
with only one correct and the rest 
intentionally wrong.

Counterfactual Instruction

Description: Provide the logically 
reversed answer relative to the depicted 
content.

Image List

Instruction Example
If from Journey to the West: say ‘Water Margin’ + introduce 1 
character. If from Water Margin: say 'Journey to the West' 
only.

Finding Wrong Answer

Description: Detect incorrect answer 
options among four combined Q&As.

Image List

Instruction Example
Given four Q&A (text + image), identify which 
answers are incorrect.

Question a: What is this attraction?
Answer a: Stonehenge
Question b: Which famous scenic spot is this?

Answer b: Qutab Minar
Question c: Which church's interior is this?

Answer c: Hallgrímskirkja
Question d: Which charming attraction is this?
Answer d: Giethoorn

A B C D

Visual Knowledge Reasoning

Gomoku Variation
Description: Play a variant of Gomoku 
using game pieces from other board games 
(e.g., Chinese Chess, Checkers).

Image List

Game Rules
1. One side plays using multi-colored...
2. The multi-colored checkers side...

3. The player who forms five connected

Maze 
Description: Identify the number on the 
shortest path from the maze entrance to the 
exit.

Image List

Game Rules
1. … Maze on 10×10 grid with blocked edges
2. … Entrance: bottom-left; Exit: top-right
3. … Unique shortest path exists
4. … Cells 1–9 marked on grid
5. … Task: find all numbers on the path

Unblock Me
Description: Move the red block to the 
exit in the minimal number of moves.

Image List

Game Rules

Jigsaw Puzzle
Description: Place 3–6 missing puzzle 
pieces into the correct empty slots.

Image List

Geometric Reasoning
Chart Modification

Description: Extract chart data and adjust 
specified values according to instructions.

Instruction Example
List math scores as Model: Score, swapping 

DeepSeek-V3 and GPT-4o.

Game Rules
Identify the missing position of the puzzle and place the 

corresponding puzzle piece in the correct position.

Image List

Figure 1: Task taxonomy of MME-CC. Three major task categories are defined—Spatial Reason-
ing, Geometric Reasoning, and Visual Knowledge Reasoning—each with representative subtasks
and one illustrative input example.
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Vision is a crucial means for humans to perceive the world. Naturally, multimodal large language
models (MLLMs) have become a key research direction for researchers in their pursuit of Artificial
General Intelligence (AGI). Various analytical studies focused on multimodal understanding are
thriving, aiming to fully uncover the potential flaws of MLLMs and guide the iteration of them.
A growing number of benchmarks have been introduced to evaluate multimodal language models
(MLLMs) across diverse visual reasoning tasks, encompassing general image understanding (Liu
et al., 2024b; Fu et al., 2023), multi-disciplinary multimodal reasoning (Yue et al., 2024; Lu et al.,
2024; Yue et al., 2025), and open-domain scenarios (xAI, 2024; He et al., 2024; Liu et al., 2024a).
Notably, state-of-the-art MLLMs often demonstrate strong performance on these benchmarks.

While a bunch of MLLM benchmarks claim to evaluate the cognitive capacity of MLLMs, they
have various flaws. These flaws make them either lean too much toward textual capabilities or lack
sufficient coverage of vision-based cognitive behaviors when assessing MLLMs’ cognitive capacity.
MathVista (Lu et al., 2024) and MMMU Series (Yue et al., 2024; 2025) are overly biased toward
the text-space-based reasoning capabilities of MLLMs. On the other hand, other benchmarks (e.g.
ZeroBench (Roberts et al., 2025)) measure the cognitive capacity of MLLM by enumerating various
vision-based reasoning tasks, but lack a well-established classification system and in-depth analysis
of the cognitive capacity of MLLM.

To remedy the gap, we introduce MME-CC (Multi-Modal Evaluation Benchmark of Cognitive Ca-
pacity), a benchmark of vision-based cognitive tasks for MLLMs. Specifically, MME-CC firstly
introduces a set of vision-based cognitive tasks that examine three essential dimensions of MLLMs’
reasoning: Spatial Information, Geometric Information, and Visual Knowledge Reasoning. In addi-
tion, these tasks are organized into 11 distinct representative visual reasoning problems, as shown
in Figure 1, each attributed to one of the three dimensions. Moreover, built with the extensive ef-
forts of a 10-person annotation team, including dedicated subtask leads and a task lead, MME-CC
underwent multiple stages of human review and cross-checking to ensure validity. On this basis,
using 1,173 questions carefully annotated by human experts, MME-CC conducts a detailed analy-
sis of the current cognitive capacity of MLLMs. Finally, MME-CC also reveals the strengths and
weaknesses, Chain-of-Thought (CoT) patterns, and error patterns of 16 representative MLLMs in
different dimensions of vision-based cognitive capacity.

Our contributions are as follows:

• We provide MME-CC, a high-quality, language-independent visual reasoning benchmark that
fills the gap in MLLM cognitive capacity categorization and systematic analysis.

• We uncover several key insights into current MLLM cognitive capacity:
– Closed-source models consistently outperform open-source counterparts, with Gemini-2.5-Pro

achieving the best performance (42.66) compared to the strongest open-source model, GLM-
4.5V (30.45).

– Spatial and geometric reasoning remain broadly weak, with both categories scoring at or below
30%.

– Common error patterns include orientation and reference-frame mistakes, poor cross-view iden-
tity persistence, and limited adherence to counterfactual instructions.

– CoT reasoning typically follows a three-stage layered process—extraction, reasoning, and ver-
ification—with visual extraction involved throughout.

2 MME-CC

We construct MME-CC benchmark to systematically evaluate the visual cognitive and reasoning
abilities of MLLMs. This benchmark is designed to facilitate a comprehensive and rigorous as-
sessment of model capabilities through a series of meticulously crafted tasks. The core of this
benchmark comprises three primary task categories: Spatial Reasoning, Geometric Reasoning, and
Visual Knowledge Reasoning, which respectively serve to examine model performance within each
corresponding dimension.

2.1 DATA CONSTRUCTION PIPELINE

As illustrated in Figure 2, our human-in-the-loop pipeline produces high-quality evaluation data
through iterative definition, acquisition, processing, and filtering.
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Task Definition
& Preliminary Evaluation.

Task Definition

Question
Prompts

Small batch 
images

Quality
Assessment

Question 
Optimization

Data Collection
& Manual Quality Control.

Web Source Screenshot Manual
photography

Generate
Questions

Independent Review

Annotator AnnotatorDouble Check

Image Post-processing.

Annotation

Resolution

Image Size

Model-based Filtering.

All Verified Data

Final Data
3 categories, 11 subcategories

Figure 2: Overview of the data construction and quality control pipeline. The pipeline com-
prises four stages: (1) Task definition and preliminary evaluation — subtasks are defined with clear
objectives, and small-scale pilots are conducted to validate prompt design and calibrate difficulty;
(2) Data acquisition and manual verification — images from license-compliant sources are anno-
tated and cross-checked to ensure quality; (3) Post-processing — standardized procedures (e.g.,
cropping, resolution checks, identifier assignment) are applied to unify formatting; (4) Model-based
filtering — items that are overly simple, redundant, or ambiguous are removed based on MLLM
performance, and the remaining samples form the final benchmark.

Annotators. We employed a structured 10-person team (6 annotators, 3 subtask leads, 1 task lead),
all with prior multimodal evaluation experience. All annotators were required to review a detailed
instruction manual and pass a corresponding qualification test before commencing the annotation
tasks (see Appendix D for the full guidelines). Each subtask had a dedicated lead responsible for
design, pipeline coordination, and multi-stage quality review, ensuring consistent annotation and
rigorous quality control across the data lifecycle.

Table 1: Annotator roles and responsibilities for the evaluation set (N = 10).

Participant Role Job Description

A Annotators A1–A6 Question construction and multi-round quality checks

B Subtask Leads B1–B3
Subtask design and end-to-end oversight; with over 3 years
of experience in relevant fields (e.g., NLP, CV) and prior
work on dataset creation.

C Task Lead C1
Overall benchmark owner; extensive evaluation experience;
with a documented history of leading the development of 3+
public benchmarks.

Task Definition & Preliminary Evaluation Each subtask has a clear objective and a concise,
task-specific prompt template. To validate the design, we built a pilot set of 5–10 examples from
carefully selected images for each subtask. Rather than ad-hoc sampling, construction followed a
structured design process specifying evaluation dimensions and steps. We piloted with two models
(Doubao and Gemini) to test clarity and feasibility, then iteratively refined the task scope, prompts,
and data handling. Reliability was further ensured through explicit controls. Detailed construction
procedures and reliability controls for each task are documented in Appendix C.

Data Collection. After definitions stabilize, we collect and annotate images from diverse, license-
compliant sources:

(1) Real-world photographs, such as board games (e.g., Gomoku) and puzzle scenes.
(2) Targeted screen captures from online platforms, including comics, real-estate listings (e.g.,

Lianjia), Google Street View, and video content (e.g., YouTube, Bilibili).
(3) Game screenshots that cover representative in-game reasoning cases.
(4) Additional types of images as required by specific subtasks.
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Table 2: Task taxonomy and dataset statistics of MME-CC. “Source” indicates the data origin,
“#Q” is the number of samples, and “I.”/“O.” represent the average input and output token lengths
measured with Doubao-Seed-1.6-vision-0815.

Task Description Source #Q I. O.

Spatial Reasoning (3 tasks, 319 samples)

Satellite Image
Matching

Match street view images to their
satellite map locations using visual
clues.

Google
Maps 101 4,335 2,768

Indoor Directional
Reasoning

Determine object orientations
using spatial reference points. Real Estate 113 10,168 5,090

Indoor Deduplication
Counting

Count unique furniture instances
across multiple views. Real Estate 105 10,091 4,370

Total / Avg. 319 8,198 4,076
Geometric Reasoning (5 tasks, 605 samples)

Gomoku Variation
Solve visual logic problems based
on Gomoku with mixed game
pieces.

Photography 122 1,411 4,700

Unblock Me Find the shortest move sequence to
unblock a target block.

Game
Screenshots 99 3,483 11,741

Maze Identify the correct number on the
shortest path in a maze.

Auto-
generated 194 336 9,755

Jigsaw Puzzle Complete missing puzzle pieces in
a partial layout. Photography 141 1,765 2,330

Chart Modification Modify chart values based on
instructions. Web Images 49 751 2,497

Total / Avg. 605 1,549 6,204
Visual Knowledge Reasoning (3 tasks, 249 samples)

Sandbagging Follow adversarial instructions to
answer partially correctly. Web Images 41 1,753 672

Counterfactual
Instruction

Provide the reversed answer based
on depicted facts. Web Images 60 1,379 625

Finding Wrong
Answer

Detect incorrect answer choices
from grouped Q&As.

Internal
Dataset 148 5,122 2,691

Total / Avg. 249 2,751 1,329

Total 1,173 4,166 3,904

Image Post-processing & Model-based Filtering. All collected images undergo a unified post-
processing pipeline, including ID assignment, cropping, and related adjustments (see Appendix C).
We then apply leading models (e.g., Gemini-2.5-Pro) to filter the data. This process removes items
that are trivially easy (defined as achieving a model accuracy score above 95%, semantically redun-
dant, or lacking discriminative value. In total, this filtering stage removed approximately 50% of the
initial data pool. The remaining pool serves as the foundation for constructing the final benchmark
set used in downstream evaluation.

2.2 DATA QUALITY ASSURANCE

In addition to the quality controls embedded throughout the data collection process, the finalized
dataset undergoes the following further checks:

Manual Verification. Each sample is double-checked: one annotator provides the reference answer
and another independently verifies it. In cases of disagreement, the sample was escalated to the
respective subtask lead for a final binding decision. Every item undergoes at least two rounds of
review, and a dedicated QA team conducts periodic audits to ensure accuracy and consistency.

Exception Handling. Samples that yield zero accuracy across screened models are randomly re-
viewed to identify potential annotation issues or hidden shortcuts; problematic items are corrected
or removed.
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Table 3: Comparison of representative benchmarks. “Vision-based” indicates that all task in-
formation is derived from images rather than text, “Output” specifies the answer format (MC =
multiple-choice, FF = free-form), and “Source” denotes the dataset origin.

Benchmark Input Vision-based Output Source

MME (Fu et al., 2023) 1 Image ✗ MC Existing
MMMU (Yue et al., 2024) ≥1 Image ✗ MC / FF Diverse
MMBench (Liu et al., 2024b) 1 Image ✗ MC Diverse
MMStar (Chen et al., 2024) 1 Image ✗ MC Existing
Zerobench (Roberts et al., 2025) ≥1 Image ✓ FF Diverse

MME-CC (Ours) ≥1 Image ✓ FF Diverse

2.3 BENCHMARK STATISTICS

Table 2 summarizes the taxonomy and statistics of MME-CC, which organizes 11 sub-
tasks into three reasoning categories: Spatial, Geometric, and Visual Knowledge Reasoning.
For each subtask, it reports the data source, sample size, and the average input and out-
put token lengths, where the input length includes both text and image tokens extracted by
Doubao-Seed-1.6-vision-0815. These statistics indicate the reasoning complexity, as
longer sequences require deeper inference, and the considerable output length reflects the need for
non-trivial reasoning chains.

In addition, Table 3 compares MME-CC with representative benchmarks. Notably, MME-CC em-
phasizes vision-based reasoning, since the textual input does not contain any task-specific solution
information, thereby ensuring that solving relies primarily on visual understanding and reasoning.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Model Configuration. We evaluate a range of large language and vision–language models, includ-
ing both proprietary and open-source systems. For proprietary models, we use the official inference
APIs with default settings. For open-source models, we adopt a unified decoding configuration
with temperature set to 1.0 and top-p to 0.7, while all other hyperparameters follow their respective
defaults.

Evaluation Metrics. We employ an LLM-as-a-judge protocol, wherein a language model is
prompted to compare the model-generated response against a gold reference and assign a correctness
score. Specifically, we adopt DeepSeek-V3-0324 as the judge model. To verify its reliability,
we conduct a manual evaluation of 99 randomly sampled items (33 from each category), achieving
a scoring agreement rate of 95% with human judgments. The scoring prompt used for this evalua-
tion is provided in the Appendix E. For each question, DeepSeek-V3-0324 compares the final
answer with the reference and outputs a score in {0, 1}.

3.2 MAIN RESULTS

We conduct a comprehensive evaluation of 16 MLLMs on MME-CC, covering three core reason-
ing dimensions: Spatial Reasoning, Geometric Reasoning, and Visual Knowledge Reasoning. The
results are shown in Table 4.

MLLMs remain limited in visually grounded reasoning tasks. The state-of-the-art model
Gemini-2.5-Pro achieves an overall accuracy of only 42.66% on MME-CC, with a score of 74.63%
in VKR tasks, while its performance in Geometric Reasoning and Spatial Reasoning remains below
30%. These results suggest that current models lack the ability to conduct comprehensive and fine-
grained reasoning under purely visual inputs. Their better performance in basic perceptual tasks,
such as entity recognition or object detection (e.g., VKR), mainly results from the fact that these
tasks are well covered during training, whereas the complex tasks we design require more advanced
spatial and geometric reasoning and therefore expose clear limitations.

Reasoning-oriented models exhibit advantages over non-reasoning models. In Spatial and Ge-
ometric Reasoning tasks, reasoning-oriented models consistently outperform their non-reasoning
counterparts. Notably, within the GPT series, GPT-5 (high) achieves superior performance com-
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Table 4: Results on the MME-CC benchmark across three core dimensions: Spatial Reasoning
(SR), Geometric Reasoning (GR), and Visual Knowledge Reasoning (VKR). Shaded entries indi-
cate the best performance, bold the second-best, and underlined the third-best in each column.

Model Reasoning Overall SR GR VKR

Human1 (n=99, sampled) – 95.86 95.83 95.83 95.92

Closed-Source Models

Gemini-2.5-Pro (Google, 2025b) ✓ 42.66 23.80 29.56 74.63
GPT-5 (high) (OpenAI, 2024a) ✓ 40.25 30.63 23.64 66.47
Doubao-Seed-1.6-vision-0815
(Think) (ByteDance, 2025)

✓ 40.08 22.03 31.50 66.70

Gemini-2.5-Flash (Google, 2025a) ✓ 37.57 18.60 21.21 72.90
o4-mini (high) (OpenAI, 2025b) ✓ 35.00 25.00 21.96 58.03
GPT-4.1 (OpenAI, 2025a) ✗ 32.14 27.90 12.22 56.30
GPT-4o-1120 (OpenAI, 2024b) ✗ 26.88 22.60 10.12 47.93
Doubao-Seed-1.6-vision-0815
(Nonthink) (ByteDance, 2025)

✗ 25.96 23.63 23.82 30.43

Open-Source Models

GLM-4.5V (Zai-org, 2025b) ✓ 30.45 13.27 13.34 64.73
Qwen2.5-VL-72B-Instruct (Qwen Team,
2025b)

✗ 23.59 12.47 8.96 49.33

MiMo-VL-7B-RL (MiMo Team, 2025) ✓ 20.90 9.30 11.10 42.30
GLM-4.1V-9B-Thinking (Zai-org, 2025a) ✓ 19.30 8.73 9.22 39.93
Qwen2.5-VL-32B-Instruct (Qwen Team,
2025a)

✗ 14.39 9.03 8.56 25.57

InternVL3-8B (OpenGVLab, 2025) ✗ 11.36 7.30 2.38 24.40
Keye-VL-8B-Preview (Kwai-Keye, 2025) ✗ 9.65 7.70 2.04 19.20
Qwen2.5-VL-7B-Instruct (Qwen Team,
2025c)

✗ 7.50 4.70 3.22 14.57

pared to GPT-4.1 across SR and GR tasks. This trend indicates that longer Chain-of-Thought rea-
soning chains provide additional opportunities for iterative verification of recognition outcomes and
intermediate inferences, thereby contributing to improved problem-solving in complex scenarios. A
more detailed analysis of this phenomenon is presented in the Discussion section.

Scaling laws remain valid for visual reasoning tasks. Within the Qwen2.5 family, performance
improves consistently as the parameter scale increases from 7B to 32B and 72B. This observation
indicates that complex visual perception and reasoning tasks require broader knowledge capacity
to support effective inference, while smaller-scale models face inherent limitations in achievable
performance.

4 DISCUSSION

Based on the results presented in Table 4, this paper discusses the following research questions:

RQ1: What are the differences in model performance?

RQ2: How does the model reason in visual tasks?

RQ3: What error patterns do models exhibit in visual reasoning?

15 students who did not participate in the question setting, with higher degrees
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Question:  I have provided you with 3 photos, including two ground-level 
photos and one satellite map. The main buildings in the ground-level....

2

Got it, let's tackle this. First, I need to remember the key elements from each 
photo and match them to the satellite map. 
Starting with Photo 1: It‘s a ground-level shot of the Guggenheim Bilbao (that 
curved metal building). ... From the satellite map, position 'a' is to the left of 
the red box (the building). Wait, no—wait Photo 1's view: the sculpture is on 
the left, the building's curved part is center-left, and the stone part with 
windows is right. ...
Photo 2: It's a view from across the river. ...
Now Photo 1: It's a close-up...
Wait wait let's confirm again. Satellite map: red box is the building. Position 'a' 
is west of the building (same side as the building, south of river). Position 'd' is 
north of the river, opposite the building. 
Photo 1: No river in the foreground...
Wait wait wait—wait the satellite map labels: 'a' is left of red box (west), 'd' is 
top of map (north) on the other side of the river. Yes. Photo 1: no river, close 
to building, west side—'a'. Photo 2: river in foreground, north side—'d'. 
Wait but let's make sure. Photo 1's elements: silver sculpture (left), ...
Photo 2: You're on the north bank (position 'd'), facing south across the river...
So Photo 1 is 'a', Photo 2 is 'd’.

Doubao-1.6-Pro

Doubao-1.6-Pro

Response

Reasoning Content

Photos 1 and 2 correspond to positions a and d on the 
map, respectively.

Key Findings

Stage 1: Problem Understanding 
& Information Collection

Stage 2: Core Analysis & Reasoning

Stage 3: Conclusion Formation & 
Verification

Findings 1. Hierarchical Reasoning with Distinct Phases.

3-Stage
Stage 1: Problem Understanding & Information Collection
Stage 2: Core Analysis & Reasoning
Stage 3: Conclusion Formation & Verification

Findings 2. Visual Extraction is Continuous and Task-
Dependent.

Visual information extraction is not limited to the first 
stage of reasoning but occurs continuously throughout 
the entire reasoning process.

Findings 3. Frequent self-interruption hampers 
reasoning efficiency.

The repeated occurrence of “wait” improves the 
accuracy of the model’s answers but comes at the 
cost of reasoning efficiency.

Figure 3: Detailed CoT analysis of Doubao-Seed-1.6-vision-0815 on the Satellite Image
Matching task. The analysis reveals three key findings: (1) hierarchical reasoning with distinct
phases, (2) continuous and task-dependent visual extraction, and (3) frequent self-interruptions that
reduce reasoning efficiency.

4.1 RQ1: MODELS EXCEL AT DIFFERENT TASKS, YET OVERALL PERFORMANCE REMAINS
UNSATISFACTORY

Notably, GPT-5 (high) achieves the highest performance in Spatial Reasoning with a score of 30.3%,
a result that appears attributable to its capabilities in sub-tasks requiring complex spatial orienta-
tion and object counting (e.g., Indoor Directional Reasoning and Indoor Deduplication Counting).
Gemini-2.5-Pro, in contrast, demonstrates a clear advantage in Visual Knowledge Reasoning by
attaining a leading score of 70.7%. In the domain of Geometric Reasoning, the Doubao model’s
performance advantage appears localized to the Jigsaw Puzzle task, whereas Gemini-2.5-Pro shows
more robust results across other geometric reasoning challenges (Table 4).

4.2 RQ2: MLLMS REMAIN FAR FROM “THINKING LIKE HUMANS”

We analyze the chain-of-thought (CoT) behavior of Doubao-Seed-1.6-vision-0815 on
MME-CC and summarize the following observations.

Layered, stage-wise reasoning The reasoning chain follows three stages: Stage 1: Problem
Understanding & Information Collection, where the model reads the prompt, scans the image
for key objects and relations, and restates the goal; Stage 2: Core Analysis & Reasoning, where
it proposes options, checks them against visual evidence and rules, and updates assumptions; and
Stage 3: Conclusion Formation & Verification, where it assembles the confirmed evidence, gives
an answer with a brief rationale, and performs a final consistency check. Although task-specific
tactics vary, the overall structure remains stable, as shown in Figure 3.

Image revisiting throughout the process Visual information extraction is not confined to the
beginning but occurs as needed throughout the reasoning process. In Satellite Image Matching, for
example, the model repeatedly inspects the original images to re-check building orientation and
relative layout, thereby revising earlier spatial judgments.

Excessive verification reduces efficiency The model frequently employs “wait” style pauses for
reflection and re-checks. Moderate pausing can reduce errors; excessive pausing, however, leads
to stalling and repetitive verification, which is particularly evident in complex spatial relations. On
MME-CC spatial and geometric tasks, most models achieve only 20%-30%; in Maze, which requires
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Table 5: Performance on MME-CC subtasks. Each cell reports the ablation score; in parentheses
we list the main-experiment score and the signed difference (±∆) from the base, i.e., ablation = main
±∆. For ablations, we include only subtasks without instruction conflicts with the experimental
variable; conflicted subtasks (e.g., Chart Modification, Visual Knowledge Reasoning) are omitted.

Task Gemini-2.5-Pro Doubao-Seed-1.6-vision-0815 o4-mini-high

Spatial Reasoning
Satellite Image Matching 30.5 (28.3 + 2.2) 41.0 (39.6 + 1.4) 31.9 (30.3 + 1.6)
Indoor Directional Reasoning 15.4 (14.3 + 1.1) 4.8 (5.7 −0.9) 11.2 (11.2 + 0.0)
Indoor Deduplication Counting 29.1 (28.8 + 0.3) 19.0 (20.8 −1.8) 33.2 (33.5 −0.3)
Average (Spatial) 25.0 (23.8 + 1.2) 21.6 (22.0 −0.4) 25.4 (25.0 + 0.4)

Geometric Reasoning
Maze 1.9 (1.1 + 0.9) 0.6 (0.8 −0.2) 1.5 (1.2 + 0.3)
Gomoku Variation 31.0 (34.8 −3.8) 16.7 (14.9 + 1.8) 12.5 (12.0 + 0.5)
Jigsaw Puzzle 30.8 (30.4 + 0.4) 72.1 (70.6 + 1.5) 26.7 (27.0 −0.3)
Unblock Me 27.7 (26.8 + 0.9) 29.6 (28.8 + 0.8) 21.6 (21.4 + 0.2)
Average (Geometric) 22.9 (23.3 −0.4) 29.8 (28.8 + 1.0) 15.6 (15.4 + 0.2)

Overall Average 23.9 (23.5 +0.4) 25.7 (25.4 +0.3) 20.5 (20.2 +0.3)

continued rule-based simulation and path planning, no model exceeds 2%. We hypothesize that long
reasoning chains dilute attention, obscure crucial visual details, and ultimately degrade outcomes.

Textual guidance yields consistent gains To address this, we add the instruction “You should first
describe the relevant content in the image according to the prompt, and then answer the question.”
As shown in Table 5, most tasks exhibit consistent improvements. The gains indicate that an ini-
tial textual description stabilizes subsequent reasoning by anchoring visual perception; in addition,
the improvements mainly arise from better textual alignment rather than stronger intrinsic visual
reasoning.

4.3 RQ3: MLLMS EXHIBIT RECURRING FAILURES IN ORIENTATION JUDGMENT, ENTITY
CONSISTENCY, AND INSTRUCTION FOLLOWING

We analyze failure cases in MME-CC and observe several recurring errors that appear across tasks
and reasoning dimensions.

Orientation judgment and reference-frame alignment. The model often fails to preserve object
orientation across views, and viewpoint changes induce mismatches that hinder the establishment
of a consistent global reference frame, thus producing orientation errors during reasoning; the issue
is notably salient in tasks that require reasoning over indoor layouts or aligning orientations across
multiple views, as shown in Figure 4a.

Entity identity consistency under multi-view settings. When reasoning over multiple views, the
model frequently fails to maintain identity consistency for the same entity in the scene, which leads
to double counting or omission, as illustrated in Figure 4b.

Over-reliance on literal descriptions under instruction constraints. Faced with non-literal or
counterfactual instructions, the model tends to prioritize the literal visual content while ignoring
task-specific counterfactual constraints expressed in text, thereby producing answers that conflict
with the required instruction, as shown in Figure 14.

Further analyses and complete error cases are provided in Appendix G.

5 RELATED WORK

General multimodal benchmarks. A broad line of benchmarks evaluates VLMs on perception
and language-mediated reasoning. MMBench (Liu et al., 2024b), SEED-Bench (Li et al., 2024), and
MMStar (Chen et al., 2024) provide large-scale multiple-choice evaluation with fine-grained skill
categorization. MMMU (Yue et al., 2024), MathVista (Lu et al., 2024), and MMMU-Pro (Yue et al.,
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(a) In the Satellite Image Matching task, the model
fails to capture critical visual cues (e.g., steps and en-
trance), focusing instead on irrelevant details.

(b) In the Indoor Deduplication Counting task, the
model fails to deduplicate entities, leading to redun-
dant counting.

Figure 4: Representative error cases of Doubao-Seed-1.6-vision-0815.

2025) target multi-disciplinary reasoning across STEM and humanities. Open-domain settings such
as RealWorldQA (xAI, 2024), OlympiadBench (He et al., 2024), and VisualWebBench (Liu et al.,
2024a) broaden task diversity. While these resources are valuable for overall capability profiling,
many items permit solutions that rely on textual cues, format priors, or OCR, which makes it difficult
to isolate visual reasoning.

Language-independent visual reasoning. Recent analyses report shortcut use in multimodal
evaluations, where models exploit answer-bearing text instead of reasoning over images (e.g., Nat-
uralBench, EasyARC, VLSBench). To better probe visual inference, several works explore spatial
relations and visual puzzles. ZeroBench (Roberts et al., 2025) stresses spatial and commonsense
limits with carefully designed queries, and VisuLogic (Xu et al., 2025) offers human-verified prob-
lems spanning spatial relations, geometric abstraction, and visual planning. However, many existing
tasks are constrained by synthetic data, repetitive templates, or narrow formats, which limits novelty
and reduces the headroom for assessing language-independent reasoning.

6 CONCLUSION

We present MME-CC as a vision-grounded benchmark that organizes eleven representative tasks
into spatial, geometric, and visual-knowledge dimensions, and we provide fine-grained analyses of
multimodal models’ cognitive capacity across these dimensions. We evaluate sixteen representative
models and observe that closed-source systems currently lead overall (42.66 for Gemini-2.5-Pro
vs. 30.45 for GLM-4.5V), while spatial and geometric reasoning remain comparatively weak (both
≤30%). We further identify recurring error patterns—orientation/reference-frame confusion, lim-
ited cross-view identity persistence, and reduced adherence to counterfactual instructions—and we
find that Chain-of-Thought typically follows a three-stage pattern (extract → reason → verify) with
visual extraction throughout; in addition, prompting that first verbalizes key visual content yields
consistent gains, indicating reliance on explicit textual grounding. MME-CC reduces textual short-
cuts and surfaces vision-centric behaviors, thereby enabling task- and dimension-level diagnostics
that are actionable for evaluation and model design; we expect these analyses to inform training sig-
nals and architectures that better couple visual perception with structured reasoning and to support
systematic progress on cognitively grounded visual reasoning.

9
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7 REPRODUCIBILITY

To facilitate reproducibility, we release all annotation guidelines (Appendix C), the quality-control
protocol (Appendix D), and the complete prompts for the LLM judge (Appendix E). The codebase
is available at https://anonymous.4open.science/status/MME-CC-D333.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We do not employ AI tools in research ideation or writing.

B ETHICS

All models (products) used in this paper are publicly available, and our usage follows their licenses
and terms. Additionally, we confirm that the compensation provided to annotators is significantly
higher than the local minimum wage.

C DETAILED BENCHMARK TASK CONSTRUCTION

This section provides a detailed breakdown of the construction methods and reliability controls for
each task within the MME-CC benchmark.

C.1 SPATIAL REASONING

C.1.1 SATELLITE IMAGE MATCHING

Construction Method (i) Select map tiles with a salient landmark. (ii) Pair them with two Google
Street View (GSV) images from the same area (camera poses are recorded). (iii) Mark seven mu-
tually confusable candidate locations (A–G) on the map and insert the two ground truth locations
among them. (iv) Each sample consists of one map, two query GSV images, and seven options. The
model must output one letter per query.

Reliability Controls (i) Candidate locations must be topologically valid and visually confusable
to prevent easy elimination. (ii) We double-check for landmark visibility and viewpoint consistency
between GSV and the map. (iii) All images are standardized via cropping/resizing, and overlays
(routes, compass, text, metadata) are removed. (iv) The task design ensures a low chance of random
success; for two different correct answers, blind guessing accuracy is ≤ 1/(7× 6) ≈ 2.4%.

C.1.2 INDOOR DIRECTIONAL REASONING

Construction Method (i) Utilize Lianjia VR tours which provide floorplan location and camera
facing direction. (ii) Capture short sequences of adjacent views within a tour. (iii) For each sample,
present an anchor view (with a given orientation) and a query view from the same sequence. The
model must identify the orientation of the query view from a fixed set (e.g., N/E/S/W).

Reliability Controls (i) Remove compasses, icons, and text from images; instruct models to ig-
nore lighting cues. (ii) Verify smooth viewpoint continuity (no ”teleports”) and cross-check orien-
tations against the floorplan data. (iii) Maintain a near-uniform class balance across different room
types and directions.

C.1.3 INDOOR DEDUPLICATION COUNTING

Construction Method (i) From a single apartment’s VR tour, extract a coherent set of views.
(ii) Specify two target object categories with brief, disambiguating definitions. (iii) The model must
return counts of unique instances for each category, correctly deduplicated across all provided views.

Reliability Controls (i) Provide clear inclusion/exclusion rules regarding occlusion or stacking of
objects. (ii) Normalize crops and strip all overlays and metadata. (iii) Use definitions and illustrative
examples to reduce ambiguity. (iv) Requiring counts for two categories per sample reduces the
chance of a lucky guess. (v) A manual review process enforces identity consistency of objects
across multiple views.
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C.2 GEOMETRIC REASONING

C.2.1 GOMOKU VARIATION

Construction Method (i) Create hybrid game boards that preserve the five-in-a-row objective of
Gomoku but use piece shapes from other games (e.g., Chinese Chess). (ii) Curate endgame positions
that have exactly one winning move. (iii) Filter out positions with multiple optimal solutions. (iv)
Standardize coordinates and formatting; filter out duplicate or symmetric board states.

Reliability Controls (i) Manually and programmatically verify the uniqueness of the forced win.
(ii) Exclude duplicate or symmetric layouts. (iii) Standardized formatting and coordinate systems
suppress shortcut cues.

C.2.2 UNBLOCK ME

Construction Method (i) Mask nonessential UI elements from screenshots of the game. (ii) Ask
for both the minimum number of moves and the ordered sequence of moves (using standardized
block IDs). (iii) Keep only levels where a unique minimal solution is verified by two independent
human annotators and the in-game solver. (iv) Adjudicate any disagreements and discard ambiguous
cases.

Reliability Controls (i) Hide UI hints like move counters or suggestions. (ii) Confirm the unique-
ness of minimal solutions via both human annotators and an automated solver. (iii) Adjudicate any
conflicts and remove levels that do not have a single, unique minimal solution.

C.2.3 MAZE

Construction Method (i) Generate fixed-size mazes and overlay digits at selected empty cells. (ii)
The query asks the model to list all digits on the shortest path from entrance to exit, reported in as-
cending order. (iii) Ensure a unique shortest path exists through dual human tracing and algorithmic
checks. (iv) Remove any revealing artifacts.

Reliability Controls (i) Guarantee a unique shortest path for every maze. (ii) Employ dual human
verification, supplemented with algorithmic checks where available. (iii) Remove start/end arrows,
solution traces, and other visual artifacts that could give away the answer.

C.2.4 JIGSAW PUZZLE

Construction Method (i) Physically assemble jigsaw puzzles and then remove 3–6 pieces. (ii)
Photograph the board (with labeled empty slots) and the set of candidate pieces. (iii) The model is
asked to provide a one-to-one mapping of each piece to its correct slot. (iv) Exclude symmetric or
visually ambiguous pieces/slots. (v) Normalize lighting and crop images.

Reliability Controls (i) A physical test-fit confirms all piece-to-slot mappings are correct. (ii)
Ambiguous or symmetric items are removed during curation. (iii) Image normalization suppresses
non-content cues like shadows or lighting gradients.

C.3 VISUAL KNOWLEDGE REASONING

C.3.1 SANDBAGGING

Construction Method (i) Pair one image with four ordered sub-questions and provide the instruc-
tion: “answer exactly one correctly and three incorrectly.” (ii) Randomize the index of the single
correct answer. (iii) The ground truth includes canonical answers for all questions and the required
correctness pattern (e.g., [Incorrect, Correct, Incorrect, Incorrect]). (iv) Evaluation programmati-
cally enforces the 1-right/3-wrong constraint.

13
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Reliability Controls (i) The position of the correct answer is randomized. (ii) Automatic checks
enforce the 1-right/3-wrong output pattern. (iii) Prompts explicitly forbid staged ”first I will answer
correctly, then I will answer incorrectly” outputs, requiring a direct final answer.

C.3.2 COUNTERFACTUAL INSTRUCTION

Construction Method (i) Choose images with unambiguous facts (e.g., object presence, color,
count, left-right position). (ii) Specify an explicit inversion mapping (e.g., presence ↔ absence, left
↔ right, higher ↔ lower, color A ↔ color B). (iii) Keep only items where the counterfactual state
is well-defined and checkable.

Reliability Controls (i) Use pre-specified, deterministic inversion maps. (ii) Filter out ambiguous
cases where the ”opposite” is not clear. (iii) Retain only items with clear, verifiable answers in the
counterfactual world.

C.3.3 CHART MODIFICATION

Construction Method (i) Collect chart images and manually annotate the underlying data table.
(ii) Apply deterministic edits to the data (e.g., swap categories, replace a month, add/subtract a
constant, scale values, convert counts to percentages). (iii) Compute target values directly from the
annotated data and cross-check programmatically.

Reliability Controls (i) Target answers are generated by deterministic operations on ground-truth
data. (ii) Programmatic validation ensures correctness. (iii) Clean charts to remove any UI hints or
interactive elements.

C.3.4 FINDING THE WRONG ANSWER

Construction Method (i) Present one image with four question-and-answer pairs. (ii) Exactly
one of the answers is deliberately flawed (e.g., an attribute, count, or relation is swapped). (iii) The
other three answers are independently solvable and correct. (iv) Balance error categories and avoid
underspecified questions. (v) Create wrong answers via minimal, precise edits to a correct answer.

Reliability Controls (i) Balance the types of errors across the dataset. (ii) Verify that the three
”correct” answers are indeed independently verifiable. (iii) Generate the single ”wrong” answer
via a minimal, controlled perturbation. (iv) Remove any items with underspecified or ambiguous
questions.

D DATA QUALITY ASSURANCE PROTOCOL

Our quality control (QC) process is guided by a core philosophy: ensuring every item is correct,
unambiguous, and possesses sufficient difficulty to differentiate model capabilities. To achieve this,
we implement a two-tiered, adaptive validation strategy that leverages the distinct strengths of our
annotation team.

For the majority of sub-tasks, we follow a scalable, two-stage protocol. First, our sub-task leads—the
most senior and experienced members of our team—conduct a pilot review on a random sample
(e.g., 15 items). From this review, they distill common pitfalls and complex edge cases into a
detailed set of QC guidelines. These codified rules then empower our primary annotation pool to
perform a comprehensive, full-scale validation of the remaining data.

However, for a subset of tasks that are particularly cognitively demanding and require nuanced judg-
ment, such as Indoor Directional Reasoning and Unblock Me, we adopt a more stringent, expert-
only protocol. The complexity of these tasks makes their quality difficult to guarantee via simple
rule-based checking. Therefore, 100% of the validation for these specific sub-tasks is conducted di-
rectly by our senior sub-task leads, ensuring the highest possible standard of quality and consistency
where it matters most. This hybrid strategy allows us to maintain rigorous quality across the entire
benchmark in a scalable yet meticulous manner.
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D.1 TASK-SPECIFIC QC GUIDELINES AND EXAMPLES

Our principle of adaptive validation means that each sub-task has its own unique set of quality
criteria. The following examples illustrate how our general principles are translated into concrete,
task-specific rules.

Satellite Image Matching

• Goal: Determine the locations of two Google Street View images on a satellite map based on a
landmark.

• QC Rules:
1. Prevent Information Leakage: Ensure that screenshots of Street View or satellite maps are

free of auxiliary UI elements (e.g., map pins, business labels, watermarks) that could directly
reveal the location.

2. Ensure Landmark Uniqueness: Landmarks must possess distinct, asymmetrical features.
Symmetrical buildings or uniform landscapes that appear similar from multiple angles are
rejected, as they introduce ambiguity in determining precise orientation and location.

Indoor Deduplication Counting

• Goal: Count the number of unique furniture pieces, where each item may appear in multiple
photos.

• QC Rules:
1. Guarantee Non-Trivial Difficulty: Problems must involve a sufficient number of images and

overlapping items to pose a real deduplication challenge. Trivial cases (e.g., counting two
items from two photos) are discarded.

2. Resolve Categorical Ambiguity: The annotation guidelines must pre-emptively resolve po-
tential ambiguities. For example, rules explicitly define whether an empty flowerpot is
counted as ”pottery,” or if a ”lounge chair” is a distinct category from a ”dining chair.”

Gomoku Variation

• Goal: A new twist on Gomoku (Five-in-a-Row) played using game pieces from other rulesets,
such as Chinese Chess or Checkers.

• QC Rules:
1. Manage Solution Ambiguity: For strategic games like Gomoku, multiple moves can be

equally optimal (e.g., a critical defensive block vs. a strong offensive setup). In such cases,
the ground truth is expanded to accept all valid optimal solutions.

Indoor Directional Reasoning

• Goal: Infer the orientation of objects (e.g., windows, screens) based on spatial continuity and a
given reference orientation.

• QC Rules:
1. Expert-Only Validation: This task falls under our stringent protocol, with 100% of items

validated by senior leads due to the subtlety of the required spatial reasoning.
2. Eliminate Descriptive Ambiguity: Vague natural language descriptions (e.g., ”the direction

the bed head is facing”) are disallowed. All directional references must be precise, using
either cardinal directions, relative positioning (e.g., ”parallel to the north wall”), or clearly
defined coordinate systems.

Unblock Me

• Goal: Move the red block to the exit using the minimum number of steps.

• QC Rules:
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1. Dual-Validation for Ground Truth: The correctness of the optimal step count is enforced
through a two-fold process: (a) programmatic validation against the canonical optimal solu-
tion data for each puzzle, and (b) a final manual review by a senior lead to ensure the visual
representation is clear, unambiguous, and matches the puzzle state. This task is also part of
our expert-only validation protocol.

E LLM-AS-A-JUDGE PROMPTS

We use a Deepseek-v3-0324 based judge for evaluating open-ended answers. The following prompts
are used:

General Scoring Prompt

You are a grading teacher tasked with reviewing and scoring student answers based on the reference
answer. During the grading process, you must adhere to the following important points:

• The scoring is based solely on the correctness of the student’s final answer compared to the
reference answer. There is no need to assess whether the intermediate steps in the solution
are correct.

• First, extract the final answer provided by the student and display it in your analysis result.
Then, judge the correctness of the extracted answer based on the reference answer.

• Assign a score based on your analysis. When explaining the scoring analysis, the explana-
tion should be broken down logically into sections. At the end of your explanation, sum-
marize the analysis and format it as: ”In conclusion, the student’s answer should receive x
points” (where x indicates the specific score awarded).

• Keep your explanation concise, limited to 200 words.

• Provide the final score in ”JSON” format using a code block.

Your output format should be:
[Scoring analysis]:
[Score]: x points
[JSON]:

‘‘‘json
{
"answer_score": [[score]]

}
‘‘‘

Scoring Criteria:
The final answer is assessed according to the reference answer key and assigned one of two levels:

• 1 Point: Maximum score.

– The student’s final answer matches the reference answer exactly.
– For questions with multiple subparts, all subparts must be correct to receive 1 point.
– If the student’s answer is mathematically equivalent to the reference answer (e.g., stu-

dent writes 1 + 1
2
x while reference is 1 + 0.5x), this is acceptable.

• 0 Points: Minimum score.

– The student’s final answer does not match the reference answer.
– The student’s answer is empty.

<Question>:
{prompt}
<Reference Answer>:
{response reference}
<Student’s Answer>:
{response}
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Unblock Me Grading Prompt

Please determine if the student’s answer is correct based on the reference answer, and score it accord-
ing to the following criteria:

• 1 point: The student’s answer matches the reference answer in terms of:

– the minimum number of steps, AND
– the set of blocks that need to be moved (excluding the red block), where the block set

must be exactly the same (order does not matter).

• 0 points: The student’s answer is incorrect in terms of:

– the minimum number of steps, OR
– the set of blocks to be moved (excluding the red block), OR
– the student misses one of the criteria above, OR
– the student’s answer is empty.

Please first determine if the student’s answer is correct in terms of the minimum number of steps,
then determine whether the answer contains the correct set of blocks that need to be moved. Finally,
present the score in the following JSON format:

‘‘‘json
{
"answer_score": [[score]]

}
‘‘‘

Example 1 (Correct):
<Reference Answer>: Blocks that need to be moved: b, c, d; Minimum number of steps: 4
<Student’s Answer>: The minimum number of steps is 4. You need to move blocks d, c, and b.
<Your output>: Is the student’s answer correct in terms of the minimum number of steps: Correct.
For the blocks that need to be moved, the student’s answer (excluding the red block) is d, c, b, and the
reference answer is b, c, d — they are consistent. Score:

‘‘‘json
{

"answer_score": [[1]]
}
‘‘‘

Example 2 (Incorrect):
<Reference Answer>: Blocks that need to be moved: a, b, c, e; Minimum number of steps: 6
<Student’s Answer>: The minimum number of steps required is 6. The blocks to move are: c, a, d,
e, b.
<Your output>: Is the student’s answer correct in terms of the minimum number of steps: Correct.
For the blocks that need to be moved, the student’s answer (excluding the red block) is c, a, d, e, b,
and the reference answer is a, b, c, e — they are inconsistent. Score:

‘‘‘json
{

"answer_score": [[0]]
}
‘‘‘

<Question>:
{prompt}
<Reference Answer>:
{response reference}
<Student’s Answer>:
{response}
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Figure 5: Error Case in Satellite Image Matching

F DETAILS OF ERROR CASES

This section provides detailed illustrations of representative error cases across the subtasks of MME-
CC. Figures 5–14 highlight typical failure patterns observed in Doubao-1.6-Pro-Vision,
covering spatial reasoning, geometric reasoning, and instruction-dependent reasoning tasks. The
examples reveal recurring issues such as insufficient cross-view geometric grounding (Satellite Im-
age Matching, Indoor Directional Reasoning, Indoor Deduplication Counting), inadequate spatial
planning and constraint simulation (Maze, Gomoku Variation, Jigsaw Puzzle, Unblock Me), and
over-reliance on literal visual descriptions when specific instruction following is required (Sandbag-
ging, Counterfactual Instruction). These cases complement the error pattern analysis in Section 4.3,
providing concrete evidence of how current VLLMs fail to integrate visual features, maintain global
consistency, and adapt reasoning strategies under different task conditions.
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Figure 6: Error Case in Indoor Directional Reasoning
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Figure 7: Error Case in Indoor Deduplication Counting
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Figure 8: Error case in Maze
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Figure 9: Error case 1 in Gomoku Variation
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Figure 10: Error case 2 in Gomoku Variation
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Figure 11: Error case in Jigsaw Puzzle
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Figure 12: Error case in Unblock Me
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Figure 13: Error case in Sandbagging
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Figure 14: Error case in Counterfactual Instruction
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G DETAILED ERROR CASE ANALYSES BY ERROR PATTERN

This appendix provides extended analyses of representative failure cases for the recurring error
patterns identified in Section 4.3.

G.1 INCORRECT ORIENTATION AND REFERENCE FRAME ALIGNMENT

• Satellite Image Matching: The model fails to match ground-level and satellite views by
overlooking geometric cues, relying instead on superficial textures (Figure 5).

• Indoor Directional Reasoning: The model does not propagate directional constraints
across rooms, defaulting to linguistic heuristics and producing incorrect orientation judg-
ments (Figure 6).

G.2 LACK OF CROSS-VIEW OBJECT IDENTITY PERSISTENCE

• Indoor Deduplication Counting: The model fails to maintain object identity across mul-
tiple views, producing redundant counts or omissions (Figure 7).

G.3 INSUFFICIENT SPATIAL PLANNING AND CONSTRAINT SIMULATION

• Maze: The model fails to construct globally optimal paths, relying instead on local adja-
cency (Figure 8).

• Gomoku Variation: The model misidentifies piece positions and ignores opponent strate-
gies, hallucinating alignments (Figures 9, 10).

• Jigsaw Puzzle: The model chooses pieces by color similarity, ignoring spatial alignment
(Figure 11).

• Unblock Me: The model applies rigid interpretations of constraints and fails to simulate
feasible rearrangements (Figure 12).

G.4 OVER-RELIANCE ON LITERAL DESCRIPTIONS IN INSTRUCTION-CONDITIONED
REASONING

• Sandbagging: The model misidentifies visual logos and fails to follow constrained output
rules (Figure 13).

• Counterfactual Instruction: The model defaults to literal visual outputs instead of coun-
terfactual answers (Figure 14).

• Chart Modification: The model outputs complete tables instead of adhering to logical
constraints in instructions.

H ABLATION EXPERIMENT SETUP AND ANALYSIS

Table 5 presents the results of representative models on the eleven subtasks of MME-CC. Each
entry is formatted as ablation (base ± delta). The ablation score corresponds to the setting where the
original instruction is augmented with an additional clause: “You should first describe the relevant
content in the image according to the prompt, and then answer the question.” The value inside the
parentheses indicates the accuracy in the base setting, while ± delta shows the difference between
the ablation and the base.
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