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Abstract
The widespread use of social media platforms001
has resulted in the swift dissemination of misin-002
formation and fake news, creating a critical003
need for the development of computational004
models for automated fact-checking. Exist-005
ing work on claim verification mainly relies006
on supervised learning from manually anno-007
tated claim-evidence pairs, which is resource-008
intensive and prone to biases, limiting their gen-009
eralization across domains. To address this gap,010
we investigate zero-shot domain adaptation for011
claim verification, where no labeled training012
data is available for the target domain. We pro-013
pose a hybrid approach that combines utilizing014
labeled training data from a source domain via015
in-context learning, along with topically rele-016
vant contexts from target document collections017
such as Wikipedia by means of RAG. We con-018
duct experiments to evaluate zero-shot domain019
adaptation of claim verification for three tar-020
get domains, namely climate change, scientific021
publications, and COVID-19 with the training022
set of the FEVER dataset as the source do-023
main. We find that our proposed approach out-024
performs supervised models for domain adap-025
tation, several LLM prompting-based models026
including zero-shot, and few-shot prompting027
from the source domain, and an RAG-based028
approach over a target collection of Wikipedia.029

1 Introduction030

While on one hand, the social media provide plat-031

forms for individuals to access, contribute, and dis-032

seminate information, on the other hand, they also033

act as breeding grounds for rapid and widespread034

transmission of misinformation and fake news (Ku-035

mar et al., 2016; Chen et al., 2015). This has ne-036

cessitated development of computational models of037

‘claim verification’ or ‘fact checking’ with capabil-038

ities of automatically estimating the truthfulness or039

falsity of claims (Schuster et al., 2019, 2021; Jiang040

et al., 2021) by retrieving evidences for or against041

them (Asai et al., 2023).042

The advent of large language models (LLMs) 043

(Touvron et al., 2023; Wang and Komatsuzaki, 044

2022) has further aggravated the situation of fake 045

news production at scale, because it is mostly 046

straightforward to programmatically generating 047

misinformation via LLMs with the help of suit- 048

ably crafted adversarial prompts (Zou et al., 2023). 049

The topically coherent and fluent nature of an LLM- 050

generated text (Liu et al., 2021b) potentially makes 051

it even harder to detect any injected misinformation 052

(Parry et al., 2024). Moreover, LLMs, due to the in- 053

herent stochastic nature of their generative process, 054

are reported to inadvertently generate factually in- 055

correct content - a phenomenon commonly referred 056

as hallucinations (Zhang et al., 2023); this LLM- 057

hallucinated content, when published without fact 058

checking on online platforms, further contributes 059

to the volume of misinformation. 060

Standard computational approaches for claim 061

verification involve pairwise supervised learning 062

from claim-evidence pairs (Gururangan et al., 063

2018), which means that training these models re- 064

quires manual annotation of relevant evidence for 065

or against each claim (Poliak et al., 2018). The 066

standard practice to obtain a test collection of man- 067

ual annotated claim-evidence pairs is as follows: 068

given a claim, a top-retrieved set of text segments 069

(e.g., with BM25) is obtained from an indexed col- 070

lection, such as Wikipedia, and subsequently the 071

relevance of these segments is assessed manually 072

as evidences to support or refute the claim (Thorne 073

et al., 2018a). Not only does it cost time, effort, and 074

financial resources to compile such a dataset large 075

enough to train supervised models, but the dataset 076

constructed this way is also likely to exhibit pool- 077

ing biases (Buckley et al., 2007; Gao et al., 2022) 078

due to a small number of top-documents used to 079

decide the truth of a claim. 080

Due to an inherent anchoring effect of relat- 081

ing a claim only to a small subset of evidences 082

means that supervised models trained on such 083
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claim-evidence pairs (Stammbach and Neumann,084

2019a; Krishna et al., 2022) are likely to be exhibit-085

ing biases and thus generalize poorly to a differ-086

ent domain (Pan et al., 2023; Talmor and Berant,087

2019; Hardalov et al., 2021). While investigation088

of out-of-domain (OOD) generalization of predic-089

tive models has been extensively carried out for a090

range of diverse tasks, such as information retrieval091

(Thakur et al., 2021; Kim et al., 2023), named en-092

tity recognition (NER) (Long et al., 2022), question093

answering (Labruna et al., 2024), speech emotion094

recognition (Lashkarashvili et al., 2024), several095

prediction tasks in the clinical domain, such as pre-096

dicting the treatment, diagnosis, in-hospital mor-097

tality etc. (Gema et al., 2024), to the best of our098

knowledge there exists no work that has explored099

OOD claim verification.100

To bridge this research gap, in this paper we101

explore the task of zero-shot domain adaptation102

for claim verification, i.e., we assume that labeled103

training data exists only for a source domain, and104

that the target domain is devoid of any training105

data. The core hypothesis underlying our work is106

that a parametric memory acquired from a source107

domain may not yield effective results for a tar-108

get domain, in which case non-parametric memory,109

e.g., via the use of in-context learning (ICL) (Izac-110

ard et al., 2023; Liu et al., 2022; Lu et al., 2022),111

may help improve OOD effectiveness.112

Our Contributions. Following is a list of contri-113

butions of this paper.114

• To the best of our knowledge, this work of ours115

is the first to investigate zero-shot out-of-domain116

claim verification via in-context learning (ICL)117

and retrieval augmented generation (RAG).118

• We propose to combine the two sources of in-119

formation - one from a training set of a (source)120

domain - which is different from the target one,121

and the other from an external collection of doc-122

uments (specifically Wikipedia), to improve the123

effectiveness of claim verification.124

• An extensive set of experiments on three differ-125

ent claim verification tasks on climate, scien-126

tific publications, and the Covid disease, with127

zero-shot OOD transfer from FEVER (Thorne128

et al., 2018b) (generic domain labeled examples129

of claims and evidences) shows the efficacy of130

our proposed approach.131

We also make our source code1 available for132

1https://anonymous.4open.science/r/
Misture_of_Experts-DC6A/

research purposes. 133

2 Related Work 134

In-Context Learning. The effectiveness of pre- 135

trained language models (PLMs) for few-shot learn- 136

ing is suboptimal due to the gap between pre- 137

training and downstream tasks. GPT-3 introduced 138

prompt tuning, using natural language prompts and 139

demonstrations (Brown et al., 2020). Recently, 140

large language models like GPT-3.5 have excelled 141

in various tasks (Wei et al., 2022; Zhou et al., 2022). 142

In-context learning (ICL) provides an alternative by 143

conditioning on demonstration examples without 144

training (Brown et al., 2020), enabling tasks like 145

fact verification through Chain-of-Thought (CoT) 146

reasoning (Wei et al., 2022; Zhang and Gao, 2023). 147

Fact Checking. Fact-checking methodologies of- 148

ten verify trustworthy sources, retrieve evidence, 149

and assess the veracity of claims. Recent research 150

on Fact Extraction and Verification (FEVER) in- 151

cludes supervised approaches using pre-trained 152

models (Stammbach and Neumann, 2019b; Kr- 153

ishna et al., 2022), multitask learning (Hidey and 154

Diab, 2018), and retrieval models (Lewis et al., 155

2020). Some studies use Graph Neural Networks 156

for verification (Zhao et al., 2020; Zhong et al., 157

2019). There is also a focus on using the web for 158

evidence retrieval and unsupervised methods to re- 159

duce annotation costs (Subramanian and Lee, 2020; 160

Stammbach, 2021). 161

Our work differentiates from existing litera- 162

ture by combining closed-domain in-context learn- 163

ing (CICL) with open-domain in-context learning 164

(OICL), leveraging both annotated examples and 165

external contextual information, to achieve better 166

zero-shot domain adaptation in fact verification 167

tasks. 168

3 LLM-based Claim Verification 169

The task of fact verification involves assessing the 170

truthfulness or falsity of a claim by retrieving con- 171

texts for or against it (Thorne et al., 2018b). Our 172

objective is to analyze the impact of domain adap- 173

tation on the downstream fact verification task, 174

specifically aiming to adapt the knowledge ac- 175

quired from labeled examples of claim evidence 176

pairs from the source domain towards an effective 177

generalization in the target domain. 178

In this section, we first provide a brief overview 179

of existing supervised approaches for the claim ver- 180

ification task. This is followed by an overview of 181
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Figure 1: Schematic diagram of our proposed framework for downstream claim verification task. After a given
claim-evidence pair is passed through a query formulator, the top-k labeled instances from the training corpus and
the top-m documents retrieved from the external corpus are combined to determine the validity of that particular
claim. Here, both k and m depend on two parameters - α – the relative proportion of unlabelled data to labelled
one), and M – the maximum number of data units (either labelled or unlabelled) to consider (see Equation 4). The
diagram shows different possible combinations with which our model can be instantiated as the different sets of
values for the (k,m) pair.

in-context learning (ICL) based approach of lever-182

aging labeled examples, and also that of retrieval183

augmented generation (RAG), which utilizes addi-184

tional context (unlabelled data) from collections,185

such as the Wikipedia. We then describe how we186

combine the two approaches of ICL and RAG – we187

call the former closed-domain ICL (CICL), and the188

latter open-domain ICL (OICL) – for the task of189

claim verification.190

3.1 Background191

Supervised approach. Given a claim x (bag-of-192

words representation of text, or its dense vector em-193

bedding, e.g., as obtained by an encoder, such as194

BERT (Devlin et al., 2019)), and a collection C of195

documents, the task of (closed-domain) claim veri-196

fication is that of a 3-way classification one, i.e., the 197

task requires predicting a label y(x) ∈ {0, 1, 2}, 198

where the labels map to the three possibilities of 199

whether the claim is ‘support’ or ‘refute’ by rele- 200

vant evidences from the collection, or there is not 201

enough evidence in the collection to arrive at one 202

of these two decisions about the claim. Retrieving 203

a set of topically relevant candidate evidences with 204

a query formulated from the claim is an intermedi- 205

ate task for claim verification. More formally, the 206

prediction function takes the form 207

ϕ : (x,Rm(x)) 7→ ∆3, (1) 208

where each e ∈ Rm(x) is a set of m candidate 209

evidences retrieved from the collection, and ∆3 de- 210
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notes the posterior probability distribution simplex211

of the three output classes.212

To learn this function ϕ, in a supervised man-213

ner, existing supervised approaches either make214

use of an already available training set of man-215

ually labeled ground-truth claim-evidence pairs216

(Thorne et al., 2018b), or make use only of the217

claim-level annotations associating them to the top-218

retrieved evidences to infer weak labels for training219

(Atanasova et al., 2022).220

Closed-Domain In-context Learning (CICL).221

Since supervised models require a large quantity of222

data for effective training, and is also likely to not223

generalize well to specific domains, researchers224

have started to explore the potential benefits of225

the semantic capabilities of large language models226

(LLMs) for this task of claim verification. Un-227

like learning a parameterized representation of the228

function ϕ(x,Rm(x)), an ICL-based workflow re-229

trieves a small number of examples that are similar230

to the current claim from a training set T of claim-231

evidence pairs eventually including these as a part232

of an input prompt to an LLM (Liu et al., 2021a;233

Agrawal et al., 2022; Huang et al., 2022). Formally,234

ϕLLM(x,Nk(x)) 7→ <MASK>, (2)235

where <MASK> is the output generated by an LLM236

indicating the name of the output class (i.e., one237

of ‘support’, ‘refute’, or ‘not enough information’),238

and Nk(x) ⊂ T is the set of claim-evidence pairs239

from the training set T that are most similar (in240

terms of lexical or semantic similarity) to the input241

claim x.242

Open-Domain In-context Learning (OICL).243

Different from CICL, where similar examples are244

prompted to an LLM, in open-domain ICL, an245

additional context in the form of candidate evi-246

dences retrieved from the collection C is fed as a247

part of the input prompt to an LLM. This means248

that OICL does not require any training set T of249

labeled examples. Stated explicitly,250

ϕLLM(x,Rm(x)) 7→ <MASK>. (3)251

3.2 Proposed Methodology252

We now describe our proposed methodology which253

utilizes the best of both worlds by combining both254

the labeled data via CICL (Equation 2) and unla-255

beled data in the form of potentially relevant can-256

didate evidences via OICL (Equation 3). Both the257

approaches use individual hyper-parameters to con- 258

trol the quantity of information fed as input to an 259

LLM prompt, i.e., k to control the number of ex- 260

amples in few-shot prompting, vs. m to control 261

the number of candidate evidences. To allow a 262

general combination of the two approaches in vary- 263

ing proportions, we define a hyper-parameter as 264

α ∈ [0, 1]. The combined methodology then uses 265

an α : 1−α proportion of data for OICL and CICL. 266

More formally, 267

ϕLLM(x,N⌊(1−α)M⌋(x),R⌊αM⌋(x)) 7→ <MASK>,
(4) 268

where ⌊x⌋ denotes the floor function, i.e., the 269

largest integer not greater than x, and M is an upper 270

bound on the number of sentences over which the 271

relative proportions are defined. Equation 4 implies 272

that instead of being functions of k (CICL) and m 273

(OICL), the predictor uses variable contributions 274

from both, as parameterized by α and M . To make 275

Equation 4, consistent with Equations 2 and 3, call 276

the number of example sentences for CICL and 277

OICL, k and m, respectively, with k ≡ ⌊(1−α)M⌋ 278

and m ≡ ⌊αM⌋. We call our methodology Mix- 279

ture of Experts (MoE). The prompt used in the 280

MoE method along with an example claim instance 281

is shown in Figure 2. 282

4 Evaluation 283

4.1 Experiment Setup 284

We hypothesize that our proposed approach of 285

MoE-based ICL is particularly suitable for out- 286

of-domain OOD generalization tasks. As such, 287

we conduct experiments to evaluate the quality of 288

zero-shot transfer from a source domain to a tar- 289

get domain, i.e., the target domain is devoid of 290

any training data. To this end, we compare our ap- 291

proach with standard non-parametric approaches of 292

LLM-based prompting (0-shot and few-shot), and 293

also with supervised models involving low rank 294

adaptation for domain transfer. 295

For our experiments, as the target domain we 296

consider the following three datasets: 297

• Climate-FEVER (Diggelmann et al., 2020; 298

Thakur et al., 2021): dataset comprised of claims 299

and evidences related to the climate change; 300

• SciFact (Wadden et al., 2020): dataset constitut- 301

ing scientific claims; 302

• COVID (Wang et al., 2023): a dataset of correct 303

and incorrect facts related to the Covid pandemic. 304

We only use the test splits of the above datasets for 305
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Input: Charles, Prince of Wales has tried to raise world awareness of the
dangers facing the natural environment, such as climate change.
Supportive sentence: Charles has sought to raise world awareness of the
dangers facing the natural environment, such as climate change.
Output: SUPPORTS

Input: The brown bear has not faced local extinctions.
Supportive sentence: While the brown bear's range has shrunk and it has
faced local extinctions, it remains listed as a least concern species by the
International Union for Conservation of Nature with a total population of
approximately 200,000.
Output: REFUTES

Input: Terminator Salvation is responsible for global warming and the
death of liberalism.
Supportive sentence: They are perhaps best known for acquiring the
global rights to the Terminator franchise in 2007 and for producing
Terminator Salvation, which was released worldwide in the summer of
2009.
Output: NOT ENOUGH INFORMATION

Your task as a fact verifier is to analyze claims and determine their claim label,
which can be either 'True', 'False' or 'Not Enough Information'.
Related context:

 He has written and spoken extensively about the danger posed to polar bears by
global warming.

On Thin Ice looks into the changing world of polar bears and highlights their
problems caused by global warming and disappearing Arctic ice.

You can also make use of the following Wikipedia passages to aid your
prediction:

Input: Global warming is driving polar bears toward extinction
Output:

Given a claim, you should provide a response in the format {"label": "class"}.
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Figure 2: An illustration of the prompt structure used in
our proposed approach of Mixture-of-Experts (MoE)-
based ICL. In this example, M , the total number of
example or context sources over which the relative pro-
portions are defined (see Equation 4), is 3, and α = 2/3.
This means that k = 1 (in our setting, 1 example for
each class), and m = 2. The blue segments refer to
the instructions, the white segments show the examples
being included (either retrieved from a training set in
CICL, or from the Wikipedia), and the yellow segment
shows a sample claim (the current test instance).

evaluation (since Climate-FEVER has no train:test306

split, we use the entire set for evaluation).307

As the dataset corresponding to the source do-308

main, we use the train split of FEVER (Thorne309

et al., 2018b) as the source of labeled data exam-310

ples to be used in the supervised and the in-context311

learning approaches. For all these datasets, the312

target collection, i.e., the collection of documents313

used to retrieve potentially relevant evidences, is314

the Wikipedia dump of 2018. Table 1 summarizes315

these datasets.316

3-way vs. 2-way classification. Researchers usu-317

ally treat the claim verification task as a 3-way318

classification problem (Pan et al., 2023), where319

the labels for given claim evidence pair are either320

‘Support’, ‘Refute’, or ‘Not Enough Info’; we call321

this standard setup by the name ‘SRN’.322

Dataset Usage Labels (S:R:N) #Claims

FEVER Train 52:22:26 145,327

Climate-FEVER
Test

47:18:34 1,381
SciFact 41:21:37 300
COVID-C 32:36:33 180

Table 1: Fact verification datasets used in our exper-
iments for zero-shot domain adaptation. The three
classes are abbreviated as ‘S’ (support), ‘R’ (refute),
and ‘N’ (not enough information), and their proportions
are reported as percentages.

In contrast to the 3-way (SRN) setup, some au- 323

thors, e.g., Pan et al. (2023); Jiang et al. (2020); 324

Saakyan et al. (2021) do not consider the claims 325

with label ‘NEI’ for training or evaluation. This 326

makes the experiment setup less ambiguous thus 327

likely leading to more conclusive outcomes (Poliak 328

et al., 2018). We name this setup ‘SR’. 329

LLM Details. We conduct all our experiments 330

using the LLM LLAMA-2.02 (70B) model (Tou- 331

vron et al., 2023). This choice follows a set of 332

initial experiments with various LLMs, exploring 333

different options for ϕLLM in Equation 2. LLAMA- 334

2.0 consistently outperformed the other models for 335

this task. All transformer models in our experi- 336

ments use the HuggingFace API. For the LLM- 337

based setup, we utilize the vLLM3 (Kwon et al., 338

2023) library to apply k-v cache optimization, en- 339

hancing computation speed. For finetuning the 340

supervised approaches in our experiments (specif- 341

ically, RoBERTa4 and LLaMA-LoRA5; more de- 342

tails in Section 4.2), we use source training dataset 343

for 10 epochs using AdamW (Loshchilov and Hut- 344

ter, 2019) as the optimizer with a learning rate of 345

5e − 5; the training batch size used was 8. Addi- 346

tionally, we apply a parameter efficient finetuning 347

(PEFT) (Xu et al., 2023) based strategy - specifi- 348

cally, a Low Rank Adaptation (LORA) (Hu et al., 349

2021) technique for tuning LLAMA. 350

4.2 Methods Investigated 351

We compare our proposed methodologies with the 352

following baselines. 353

Non-parametric baselines. These methods do 354

not involve any parametric training on the labeled 355

2https://huggingface.co/TheBloke/
Llama-2-70B-Chat-AWQ

3https://github.com/vllm-project/vllm.
git

4FacebookAI/roberta-base
5huggyllama/llama-7b

5

https://huggingface.co/TheBloke/Llama-2-70B-Chat-AWQ
https://huggingface.co/TheBloke/Llama-2-70B-Chat-AWQ
https://github.com/vllm-project/vllm.git
https://github.com/vllm-project/vllm.git
FacebookAI/roberta-base
huggyllama/llama-7b


SR SRN

Experiment Climate Fever SCIFACT Covid C Climate Fever SCIFACT Covid C

Setup Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

RoBERTa 0.734 0.638 0.697 0.599 0.694 0.686 0.370 0.229 0.383 0.237 0.367 0.324
Supervised

LLaMA-LoRA 0.666 0.591 0.729 0.665 0.587 0.602 0.448 0.357 0.450 0.348 0.401 0.340

Unsupervised

0-shot 0.772 0.731 0.745 0.664 0.686 0.680 0.520 0.429 0.470 0.359 0.444 0.365
CICL-E 0.469 0.469 0.649 0.622 0.645 0.643 0.442 0.343 0.480 0.378 0.406 0.389
CICL 0.798 0.741 0.676 0.564 0.645 0.635 0.519 0.456 0.440 0.352 0.422 0.398
OICL 0.749 0.718 0.819 0.809 0.835 0.833 0.514 0.450 0.557 0.473 0.551 0.449
MoE-E (Ours) 0.785 0.737 0.825 0.782 0.802 0.801 0.526 0.478 0.520 0.461 0.501 0.471
MoE(Ours) 0.783 0.742 0.840 0.810 0.826 0.826 0.542 0.509 0.583 0.550 0.502 0.454

Table 2: Macro-F1 and overall accuracy of the 3-way and the 2-way evaluation of fact verification. For these results,
the MoE approach uses α = 0.5 (Equation 4).

examples from the FEVER dataset.356

• 0-shot: Labruna et al. (2024); Kojima et al.357

(2022); Li et al. (2023) investigate the efficacy of358

leveraging the pretrained knowledge of LLMs on359

various downstream tasks. We follow a similar360

pathway by prompting the LLM for our fact veri-361

fication task in zero-shot scenario. This method362

uses the same prompt structure as shown in Fig-363

ure 2 without the closed-domain and the open-364

domain examples.365

• CICL (Long et al., 2023; Li et al., 2023): This366

refers to our closed-domain approach (Equation367

2) of the standard ICL workflow that makes use368

of the labeled data from the FEVER dataset to369

answer the validity of claims from the other three370

domains, namely Climate-FEVER, SciFact and371

Covid-C. With reference to Figure 2, this method372

uses only the top-white segment in the prompt.373

The similarity function in this method matches374

the current input claim x with only the claims375

(discarding the evidence part in the matching376

process) from the training set.377

• CICL-E: This is similar to CICL with the only378

difference that both claims and evidences (thus379

the suffix ‘-E’) are considered to compute the top-380

ical similarity used to construct the neighborhood381

Nk(x) of Equation 2. Both CICLand CICL-E382

uses BM25 as the (sparse) similarity computa-383

tion function.384

• OICL (Labruna et al., 2024): This baseline refers385

to the use of unlabeled data from Wikipedia as the386

additional context used for predicted label gen-387

eration via Llama-2 (70B). As retrievable units,388

we use sentences and employ a BM25 based re-389

trieval to obtain the top-m (Equation 3) set of390

candidate evidences for a query formulated from391

the input claim x. With reference to Figure 2,392

this method uses the bottom white segment of393

the prompt structure (not the top one). Note that 394

there is no ‘-E’ version of this method as for 395

CICL, because the retrieved text is not structured 396

as claim-evidence pairs. 397

Parametric baselines. To compare our approach 398

with the standard parametric learning approaches, 399

we employ the following baselines: 400

• RoBERTa (Long et al., 2023): We finetune 401

RoBERTa (Liu et al., 2019) on the FEVER train- 402

ing data, use this model for prediction on the 403

three target datasets for claim verification. 404

• LLaMA-LoRA (Long et al., 2023; Labruna 405

et al., 2024): We fine-tune the foundation LLM 406

of our non-parametric based approaches, i.e., 407

LLAMA-2 via the low rank domain adaptation 408

technique - LoRA, which in addition to retaining 409

the pretrained weights incorporates additional 410

trainable rank decomposition matrices into each 411

attention layer of a transformer for the purpose 412

of domain adaptation. 413

Variants of our proposed approaches. We em- 414

ploy two different variants of our proposed MoE- 415

based approach (Equation 4). Similar to CICL, the 416

first variant (which we call MoE) uses only claims 417

from the training set to match the current input, 418

whereas the other variant (which we call MoE-E) 419

computes the similarity of the current input claim 420

with both claims and their associated evidences 421

from the training set. 422

5 Results and Analysis 423

5.1 Main Observations 424

To compare our approach with the baselines, in 425

Equation 4 we set α = 0.5, i.e., we consider equal 426

contributions from both labeled and unlabelled data 427

sources we vary these parameters to see their effect 428
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Figure 3: Sensitivity of the number of examples (labeled or unlabelled) on the various LLM-based approaches for
fact verification with the 3-way SRN setup.
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Figure 4: Sensitivity of the number of examples (labeled or unlabelled) on the various LLM-based approaches for
fact verification with the 2-way SR setup.

on MoE). To obtain the upper bound on the number429

of examples (M of Equation 4), we conduct a grid430

search over a range of M = 1 to 10, and report the431

optimal results for each dataset.432

Table 2 presents the results for both the 3-way433

and the 2-way setups. In general, we observe that434

non-parametric approaches (even the baseline ones,435

e.g., OICL, CICL etc.) work more effectively for436

this task of cross-domain claim verification (which437

is a novel observation in itself). Generally speak-438

ing, using evidences is does not turn out to be ef-439

fective as can be seen by comparing the results of440

approaches with and without the suffix ‘-E’.441

We observe that the proposed MoE-based ap-442

proach mostly outperforms their individual coun-443

terparts, i.e., CICL and OICLin terms of overall444

accuracy and F-score, which indicates that there445

are useful signals that can be leveraged from both446

the labeled and the unlabeled data sources. It is447

likely that the combination method allows one of448

the approaches to help in prediction when the other449

one does not turn out to be useful.450

It is particularly interesting to see that the non-451

parametric approaches mostly outperform the su-452

pervised ones. Although low rank approximation453

(Hu et al., 2021) has been reported to work well454

with few-shot domain transfer (i.e., when a small455

amount of training data is available for the target 456

domain), in the context of our study it is found to 457

not work well for zero-shot domain transfer (i.e., 458

when no training data is available). Different from 459

parametric approaches, the labeled examples are 460

not tightly integrated to a non-parametric model, 461

which likely allows it to model the desired seman- 462

tic relationship between claims and evidences in a 463

domain-independent manner. 464

5.2 Sensitivity Analysis 465

Impact of labeled or unlabelled samples. In 466

this section, we first explore the effect of the num- 467

ber of labeled or unlabelled samples on the non- 468

parametric approaches. For this comparison, for 469

the MoE model we take equal proportion of la- 470

beled and unlabelled data as in Table 2. Figure 3 471

and Figure 4 demonstrate that OICL (unlabelled 472

data as contexts) is relatively more stable and better 473

in performance than CICL (labeled data as exam- 474

ple source). Equal contributions of both (as per the 475

MoE approach with α = 0.5) turn out to be mostly 476

outperforming the individual methods on SciFact 477

and Covid-C. 478

Impact of disproportionate contributions from 479

labeled and unlabelled data α on MoE perfor- 480
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mance. Figure 5 reports the effects of varying the481

relative proportion of labeled vs. unlabelled data on482

the performance of the mixture model (Equation 4).483

In general, we observe that the optimal value of α484

depends on the target domain itself and also largely485

on the maximum number of candidate examples486

on which the proportions are defined. For instance,487

while a high value of α close to 1 turns out to be op-488

timal with M = 10 for the SRN-based evaluation489

on the climate target domain, with M = 20 even a490

lower value of α yields effective results. A likely491

reason for this is that with higher values of M , the492

method ends up selecting more labeled data, which493

due to its out-of-domain characteristics (FEVER494

vs. Climate) may turn out to be not beneficial for495

prediction.496

Another interesting observation is that the sensi-497

tivity analysis shows that downstream performance498

of fact verification is usually better with dispropor-499

tionate contributions from labeled and unlabelled500

data (the optimal points of the plots in Figure 5501

either occur to the left or right of the mid-point of502

the x-axis). This indicates a promising research503

direction of estimating the desired proportion for504

specific target domains and even on a per-instance505

basis.506

6 Conclusions and Future work507

In this paper, we presented a novel fusion-based508

approach to combine sources of labeled examples509

from an out-of-domain training set, and of unla-510

beled data as additional contexts from a target col-511

lection of documents to address the task of zero-512

shot domain adaptation (no training data available513

for the target domain) for fact verification. Our514

method provides a general framework to combine515

these two sources of data (out-of-domain training516

vs. Wikipedia) in variable proportions. Our ex-517

periments reveal that a carefully tuned proportion518

of these two different sources of data can provide519

useful contexts for an LLM-based inference of fact520

verification.521

In the future, we would like to explore ways of522

predicting the optimal relative proportion of these523

two sources for our mixture-model for a given tar-524

get domain. As a part of the adaptation process, we525

also would like to explore a dynamic choice of this526

relative proportion based on the current instance527

(topic of a given claim).528
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Figure 5: Sensitivity of the proposed mixture model
(MoE) on the relative proportion of in-domain (labeled)
vs. out-domain (unlabelled) data. As upper bounds of
the number of examples, we use M = 10 and M = 20
(Equation 4).

7 Limitations 529

The major limitation of this work is that we have 530

not used a separate validation set to predict the op- 531

timum value of the relative proportion parameter 532

for the proposed MoE model; the reason being, 533

we wanted to investigate a completely zero-shot 534

setup with no availability of a set with ground-truth 535

data. However, we observed that the performance 536

of the MoE-based model is somewhat sensitive to 537

the optimal choice of α (although α = 0.5 still out- 538

performs the baselines). A practical application of 539

this model would ideally require a small amount of 540

ground-truth data for tuning this relative proportion 541

for a target domain. 542
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Climate Fever dataset, F1 score
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A Appendix 842

A.1 Comparative Analysis: RoBERTa vs. 843

MoE 844

Table 2 in shows that in SRN setup, our pro- 845

posed methodology MoE consistently outperforms 846

RoBERTa in terms of F1 score for all the three 847

datasets. More specifically MoE shows a substan- 848

tial improvement of 55.01% F1 score indicating 849

MoE’s enhanced ability to adapt to climate-related 850

claims through dynamic context selection. To fur- 851

ther substantiate the advantages of our proposed 852

method over RoBERTa, we present Table 4 which 853

showcases specific claims where MoE successfully 854

validates the information, whereas RoBERTa fails. 855

A possible intuition is that RoBERTa shows limited 856

generalizability for our downstream task due to its 857

dependence on domain-specific training data. 858

A.2 Sensitivity Analysis 859

More detailed results of the sensitivity of MoE 860

performance to different α values, representing the 861

balance between CICL and OICL contexts, in SRN 862

and SR setups on the SciFact and Covid C datasets 863

in terms of F1 scores and accuracy are depicted in 864

Table 5. 865

A.3 Performance of ICL-based frameworks 866

with Randomly Selected Demonstrations 867

To concretely conclude, we additionally investigate 868

whether the randomly selected demonstrations can 869
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Index Climate Fever - Claim GT label MoE RoBERTa

1 Global warming is driving polar bears toward extinction. Supports Supports NEI
2 Ice berg melts, ocean level remains the same. Refutes Refutes NEI
3 Sea level rise is not going to happen. Refutes Refutes NEI
4 CO2 changes are closely related to temperature. Supports Supports NEI
5 The ovary is an organ involved in the creation of new

life.
Supports Supports NEI

6 The contribution of waste heat to the global climate is
0.028 W/m2.

Supports Supports NEI

7 Venus is not hot because of a runaway greenhouse. Refutes Refutes Supports

Table 4: Examples showcasing our proposed methodology MoE’s superior performance over supervised baseline
RoBERTa for Climate Fever dataset in OOD fact verification task.

SRN settings SR settings

Climate FEVER SciFact COVID C Climate FEVER SciFact COVID C

α Metric ↓ M → 10 20 10 20 10 20 10 20 10 20 10 20

0.0
Acc 0.5220 0.5033 0.4433 0.4367 0.3833 0.0.3722 0.7949 0.7839 0.6862 0.6755 0.5868 0.5454
F1 0.4383 0.3941 0.3283 0.3110 0.3330 0.3083 0.7299 0.6912 0.5439 0.4920 0.5577 0.4957

0.1
Acc 0.5206 0.5308 0.5167 0.4967 0.4667 0.4889 0.7883 0.7905 0.7766 0.7713 0.7107 0.6859
F1 0.4219 0.4379 0.4527 0.4001 0.4299 0.4433 0.7243 0.7132 0.7063 0.6928 0.7068 0.6742

0.2
Acc 0.5314 0.5185 0.5567 0.5102 0.4556 0.4778 0.7861 0.7246 0.7926 0.7979 0.7438 0.7107
F1 0.4302 0.4101 0.5054 0.4307 0.4162 0.4368 0.7181 0.8004 0.7360 0.7412 0.7403 0.7042

0.3
Acc 0.5170 0.5278 0.5633 0.5100 0.4556 0.4778 0.7795 0.8037 0.8085 0.8032 0.7603 0.7438
F1 0.4398 0.4255 0.5214 0.4306 0.4077 0.4252 0.7197 0.7270 0.7687 0.7526 0.7587 0.7380

0.4
Acc 0.5272 0.5257 0.5333 0.5310 0.4833 0.4778 0.7828 0.8049 0.8351 0.8032 0.7934 0.7438
F1 0.4462 0.4206 0.4829 0.4617 0.4474 0.4317 0.7290 0.7365 0.7997 0.7496 0.7925 0.7380

0.5
Acc 0.5177 0.5358 0.5333 0.5233 0.5011 0.4667 0.7872 0.8060 0.8245 0.7979 0.7924 0.7521
F1 0.4316 0.4324 0.4829 0.4435 0.4544 0.4146 0.7358 0.7326 0.7891 0.7444 0.7925 0.7471

0.6
Acc 0.5156 0.5344 0.5467 0.5302 0.4833 0.4833 0.7806 0.8049 0.8298 0.8085 0.8099 0.7686
F1 0.4346 0.4286 0.5022 0.4595 0.4422 0.4328 0.7283 0.7365 0.7965 0.7607 0.8097 0.7650

0.7
Acc 0.5127 0.5243 0.5401 0.5101 0.5056 0.4833 0.7850 0.7949 0.8404 0.8032 0.7851 0.7438
F1 0.4374 0.4170 0.4909 0.4227 0.4699 0.4286 0.7386 0.7260 0.8072 0.7526 0.7848 0.7366

0.8
Acc 0.5177 0.5344 0.5500 0.5200 0.5111 0.4778 0.7927 0.8082 0.8457 0.8032 0.7924 0.7421
F1 0.4464 0.4283 0.5029 0.4410 0.4614 0.4025 0.7505 0.7502 0.8165 0.7496 0.7929 0.7471

0.9
Acc 0.5185 0.5315 0.5300 0.5133 0.5167 0.4944 0.7828 0.7982 0.8457 0.8032 0.7686 0.7355
F1 0.4463 0.4311 0.4753 0.4325 0.4598 0.4340 0.7399 0.7464 0.8165 0.7555 0.7678 0.7289

1.0
Acc 0.4989 0.5040 0.5303 0.5267 0.5722 0.4589 0.7354 0.7663 0.8297 0.8138 0.8182 0.8264
F1 0.4127 0.4298 0.4318 0.4562 0.4566 0.4334 0.7099 0.7360 0.8168 0.7867 0.8153 0.8264

Table 5: Detailed results of MoEperformance varying the value of α across all the 3 datasets in SRN and SR
Setups. The best results are shown in bold and the dataset-specific best results in each setup SR and SRN have been
underlined.

enhance the prediction performances of CICL and870

OICL based frameworks. From Table 5 we can871

observe that CICL and OICL with randomly se-872

lected examples setups perform worse compared873

to their specific counterparts (CICL and OICL).874

This is evident in both SRN and SR settings where875

the F1 scores are lower for randomly selected exam-876

ples. The likely reason behind this performance is877

that randomly selected examples may not provide878

the most relevant context or may include irrelevant879

information. This lack of targeted context likely880

contributes to the lower F1 scores. The model ben-881

efits more from carefully selected examples that882

are specifically relevant to the claims being ver-883

ified. Additionally, from Table 5 we can get an- 884

other finding that evidence-aware setup tends to 885

result in better performance than evidence-agnostic 886

setup, but the improvement is not substantial for 887

randomly selected setups. The general perception 888

behind it is that an evidence-aware setup generally 889

helps the model by providing additional context 890

that is directly relevant to the claim. This context 891

aids in better understanding and verification of the 892

claims, leading to improved performance in ran- 893

dom CICL set up. Hence, the presence of evidence 894

helps in grounding the model’s predictions more 895

firmly in random CICL and OICL setups. 896
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A.4 Information of our Annotated data897

Table 6 explains that during annotations, experts898

labeled the claims as NEI, however, we have an-899

notated those NEI claims as support/refute, which900

proves the existence of noisy data in their annota-901

tions.902
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FEVER - Claim Evidence GT label Annotated

The television series Fringe is
available on DVD.

"Fringe," the television series, was available on
DVD. However, availability can vary by region and
over time, so it’s recommended to check with local
retailers or online platforms to confirm current
availability in your area.

NEI Supports

Soul Food is the only comedy
film to ever exist.

Certainly not! While "Soul Food" is a popular
comedy-drama film, it’s just one among thousands
of comedy films that have been produced over the
years.

NEI Refutes

Mary of Teck’s son abdicated
the throne in 1902.

Opposition to her third husband Bothwell led to the
formation of a coalition of nobles, who captured
Mary and forced her to abdicate in favor of her son,
who came to the throne as James VI in 1567.

NEI Refutes

Ragtime features Samuel L.
Jackson as a dancer.

In the movie "Ragtime" released in 1981, Samuel
L. Jackson did appear in a role, but he was not
specifically cast as a dancer in that film.

NEI Refutes

Black Canary is a character in
Batman comic books.

Black Canary has been adapted into various media,
including direct-to-video animated films, video
games, and both live-action and animated televi-
sion series, featuring as a main or recurring char-
acter in the shows Birds of Prey, Justice League
Unlimited, Smallville, Batman: The Brave and the
Bold, Young Justice and Arrow.

NEI Supports

The ovary is an organ involved
in the creation of new life.

It is an inflammatory mass involving the fallopian
tube, ovary and, occasionally, other adjacent pelvic
organs.

NEI Supports

There are stripes on the Bengal
tiger.

Such a tiger has the black stripes typical of the
Bengal tiger, but carries a white or near-white coat.

NEI Supports

Saturn Corporation is a sub-
sidiary of Disney.

The Saturn Corporation, also known as Saturn
LLC, is a registered trademark established on Jan-
uary 7, 1985, as a subsidiary of General Motors

NEI Refutes

Table 6: Comparison between the ground truth (GT) annotations and our actual annotations (Annotated) for claims
labelled as ’Unverifiable,’ extracted from the FEVER dataset.
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