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Abstract

We propose a new regularization scheme for the optimization of deep learning architectures,
G-TRACER ("Geometric TRACE Ratio"), which promotes generalization by seeking min-
ima with low mean curvature, and which has a sound theoretical basis as an approximation
to a natural gradient-descent based optimization of a generalized Bayes objective. By aug-
menting the loss function with a G-TRACER penalty, which can be interpreted as the metric
trace of the Hessian (the Laplace-Beltrami operator) with respect to the Fisher informa-
tion metric, curvature-regularized optimizers (e.g. SGD-TRACER and Adam-TRACER)
are simple to implement as modifications to existing optimizers and don’t require extensive
tuning. We show that the method can be interpreted as penalizing, in the neighborhood a
minimum, the difference between the mean value of the loss and the value at the minimum,
in a way that adjusts for the natural geometry of the parameter space induced by the KL
divergence. We show that the method converges to a neighborhood (depending on the reg-
ularization strength) of a local minimum of the unregularized objective, and demonstrate
promising performance on a number of benchmark computer vision and NLP datasets, with
a particular focus on challenging problems characterized by low a signal-to-noise ratio, or
an absence of natural data augmentations and other regularization schemes.

1 Introduction

Contemporary neural network architectures (e.g. Llama 2: 70B parameters, GPT-4: 1.7T parameters)
are typically overparameterized, with more parameters than constraints (Liu et all [2022). The fact that
interpolating solutions with no explicit regularization can generalize well to unseen data (Zhang et al., 2016
(Belkin et all [2019) is surprising from a classical statistical learning perspective, and there is an emerging
consensus that this phenomenon is due to implicit regularization in which, in very high dimensional settings,
among all interpolating solutions, well-behaved minimum-norm solutions are preferrecﬂ (Curth et al. |2023).
Whether implicit regularization alone suffices is problem-dependent, and is influenced by, among many other
factors, the signal-to-noise ratio (Hastie et al., 2022). In practical settings, non-zero weight decay is typically
applied, and explicit regularization is key to obtaining SOTA performanceﬂ

Deep neural networks possess discrete and continuous symmetries (transformations which leave the underly-
ing function invariant (Kristiadi et al.| |2023])) as well as reparameterization invariance with respect to many
common coordinate changes (e.g. BatchNorm (loffe & Szegedyl, 2015), WeightNorm (Salimans & Kingmay,
2016))). There is a large literature relating these characteristics of deep neural networks to the geometry of
the loss surfaceﬁ (Liu et al. 2022)). [Li et al. (2018) show, under mild assumptions, that sufficiently wide
networks have no set-wise local minima that aren’t global minima. Moreover, solutions to overparameter-
ized neural networks typically form a high-dimensional manifold (Cooper, 2018) and are characterized by
degenerate Hessians (Sagun et al.| [2017)), where the bulk of the eigenvalue spectrum is clustered around 0.

The connection between the geometry of the loss surface and generalization has long been the subject of
interest and speculation, dating back to the MDL-based arguments of [Hinton & van Camp| (1993) and

!Indeed this effect can be observed even in certain linear models in the overparameterized regime p > n (Hastie et al.l [2022)

2Weight decay is equivalent ridge regularization, and it can be shown that minimum 12-norm regression is a limiting case of
ridge regression as the ridge penalty goes to 0.

3Viewing the loss, for example, as a hypersurface: {(w, L(w)),w € RPt! :w € 6}
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Hochreiter & Schmidhuber| (1997)). In particular, the connection between sharpness and generalization is an
intuitively appealing one, in that the sharp local minima of the highly nonlinear, non-convex optimization
problems associated with modern large-scale deep learning architectures are more likely to be brittle and
sensitive to perturbations in the parameters and training data, and thus lead to worse performance on unseen
data. The recent success of the SAM algorithm, which measures sharpness as maxjj aw|j,<e L(w+Aw)—L(w)
(Foret et al.l [2020) has reignited interest in geometrically-motivated regularization schemes. We propose a
novel regularization scheme, which implicitly measures Sharpness as Tr(G~'H), where H is the Hessian
of the loss and G can be interpreted as a Fisher Information Matrix, and show that the resulting scheme
penalizes curvature in a principled geometric (intrinsic and approximately coordinate-free) way, admits an
interpretation as a kernel smoothing of the loss surface, and performs competitively on benchmark vision
and NLP datasets.

1.1 Problem setting

Our problem setting is as follows: we are given a dataset D = {(x;,y;)!",} consisting of n independent
input variables &; € R% with distribution p(x), and corresponding targets (or labels) y; € R% with
distribution p(y|x) and treat the parameters w € © C R? of a deep neural network (DNN) f(-, w) :
R?% — R% as a random variable. Given a loss function I(y;, f(x;,w)), our goal is to find a w* that
minimizes the expected loss: Ey(z.4)[l(y, f(x,w))]. Writing the finite-sample version of this expected loss as
L(w) = Y7, l(ys, f(xs, w)), we can form a generalized posterior distribution (Bissiri et al., [2016) p(w|D) =
p(w)+ exp{—L(w))} (with normalizer Z and prior p(w)) over the weights, which coincides with the Bayesian
posterior in the special case that the loss is the negative log-likelihood L(w) = —1 3"  log p(y;|z;, w).

1.2 What is sharpness and why does it hurt generalization?

We first examine various notions of sharpness in the literature and then introduce the sharpness measure
used in this paper.

1.2.1 The sharpness puzzle

Much of the literature on loss surface flatness and generalization has been concerned with non-geometric
measures of sharpness and flatness, which is to say that they depend on the particular choice of coordinate
system. Notable examples include [Keskar et al. (2016), who define e-sharpness as the maximum relative
change in loss over a Euclidean norm-ball:

L(w+ Aw) — L(w)
max
|Awlj><e 1+ L(w)

(1)

and the SAM algorithm (Foret et al.| [2020]), which uses a similar notion:

HAr?ueﬁ)z{geL(w + Aw) — L(w) (2)

Since, at such a local minimum of the loss, for a perturbation Aw, we have:
L(w + Aw) — L(w) = Aw? V2 L(w)Aw + O(|| Aw|?) (3)

both these measures are essentially equivalent to the spectral norm of the HessiarEl7 which is not an invariant
quantity. In particular, at any critical point which is a minimum with non-zero Hessian, there exists a
reparameterization that leaves the underlying function of the data unchanged and which makes the spectral
norm arbitrarily large (Dinh et al,|2017)). More generally, there has been an extensive literature (Hochreiter,
& Schmidhuber} (1997) (Hinton & van Camp, |1993) attempting to characterize the loss-surface Hessian
V2 L(w) and to relate these characteristics to generalization. In many practically relevant cases, multiple
minima are associated with zero (or close to zero) training error, and explicit or implicit regularization is
needed to find solutions with the best generalization error.

L(wtAw)-L(w) . |IV2L(w)||

4
To second order, max|Aw|,<e TTL(w) N € SATLw)
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Wei & Schwab| (2020]) show that given a degenerate valley in the loss surface, stochastic gradient descent
(SGD) on average decreases the trace of the Hessian, which is suggestive of a connection between locally flat
minima, overparameterization, and generalization. The parallel works of [Sagun et al. (2017) and |Chaud-
hari et al.| (2016 examine the spectrum of the loss-function Hessian to characterize the landscape of the
loss before and after optimization, and find that overparameterization is associated with the bulk of the
Hessian spectrum lying close to zero and thus to highly degenerate minima. Observing that the clustering
of eigenvalues around 0 corresponds to wide valleys in the loss surface, |(Chaudhari et al. (2016|) propose an
algorithm, Entropy-SGD, which has parallels with this work, and which explicitly introduces an "entropic
term" which explicitly captures the width of the valley in the objective, resulting in a modified objective (to
be maximized) (Dziugaite & Royl, 2017):

log Ecpr(0,02m)[e” 2w 19)] (4)
Thus, the loss landscape is smoothed by applying a Gaussian convolution and the resulting minima are
expected to be less sharp.

Although these arguments have intuitive appeal, these notions of flatness are dependent on arbitrary choices
of parameterization, which can in general be used to arbitrarily change the flatness of the loss surface without
changing the underlying function of the input data (Dinh et al., [2017)).

1.2.2 Our approach to sharpness

In this work we will implicitly measure sharpness as Tr(G~'H) where H is the Hessian, and G can be
interpreted as a Fisher Information Matrix, which, as a Riemannian metric tensor, defines a metric on the
parameter manifold. At a critical point, Tr(G~'H) is the Laplace-Beltrami operatorﬂ which generalizes the
Laplacian to Riemannian manifolds (Leel |2019)) (Kristiadi et all, |2023), and defines an invariant, geometric
quantity which, by analogy with Tr(H) in Euclidean space, measures the average deviation from flatness,
adjusting for the curvature of the manifold. Crucially, this notion is not an assumption, but rather emerges
naturally from the variational optimization of a generalized Bayes objective using the KL-metric. In partic-
ular, for a multivariate Gaussian variational approximation, the trace penalty corresponds to a smoothing
of the loss surface using a kernel estimated online.

1.3 Penalizing sharpness: Sharpness-Aware Minimization

We first give an overview of SAM and its derivation, then highlight its strengths and weaknesses, and the
relevant recent literature.

1.3.1 SAM overview

Despite the intuitive appeal and plausible justifications for flat solutions to be a goal of DNN optimization
algorithms, there have been few practical unqualified successes in exploiting this connection to improve
generalization performance. A notable exception is a recent algorithm, Sharpness Aware Minimization
(SAM) (Foret et all 2020), which seeks to improve generalization by optimizing a saddle-point problem of
the form:
min max L(w + Aw) (5)
W lAw|<p

An approximate solution to this problem is obtained by differentiating through the inner maximization, so

k
that, given an approximate solution Aw* := p% to the inner maximization (dual norm) problem:
arg max L(w+ Aw 6
& lAwl|<p ( ) (©)

the gradient of the SAM objective is approximated as follows:

w ( max L(w + Aw)> ~ VpL(w+ Aw*) & V@ L(W) |wi Aw= (7)

[Aw| Fr<e

5Also known as the manifold Laplacian
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While the method has gained widespread attention, and state-of-the-art performance has been demonstrated
on several benchmark datasets, it remains relatively poorly understood, and the motivation and connection
to sharpness is questionable given that the Euclidean norm-ball isn’t invariant to changes in coordinates.
Given a 1-1 mapping g : ©' — O we can reparameterize our DNN f(-, w) using the "pullback" g*(f)(-,v) :=
f(-,g(v)) under which, crucially, the underlying prediction function f(-,w) : R% — R% (and therefore
the loss) itself is invariant, since, for v = g~!(w), we have f(-,w) = f(-,g(v)). Under this coordinate
transformation, however, the Hessian at a critical point transforms as (Dinh et al., [2017)):

V2L(v) = Vg(v)" VZLVg(v) (8)

In particular, [Dinh et al.| (2017) explicitly show, using layer-wise transformations T, : (wi,ws) —
(awy,a lwy), that deep rectifier feedforward networks possess large numbers of symmetries which can
be exploited to control sharpness without changing the network output. The existence of these symmetries
in the loss function, under which the geometry of the local loss can be substantially modified (and in partic-
ular, the spectral norm and trace of the Hessian) means that the relationship between the local flatness of
the loss landscape and generalization is a subtle one.

It is instructive to consider the PAC Bayes generalization bound that motivates SAM, the derivation of
which starts from a PAC-Bayesian generalization bound (McAllester}, [1999; Dziugaite & Roy, [2017):

Theorem 1. For any distribution D and prior p over the parameters w, with probability 1 — § over the
choice of the training set S ~ D, and for any posterior q over the parameters:

E#wmu&wmm+f%ﬁﬁjﬁg o)
where the KL divergence:
DKAmpL=EMw>hg(Z$3>} (10)

defines a statistical distance D [q, p] (though not a metric, as it’s symmetric only to second order) on the
space of probability distributions. Assuming an isotropic prior p = N (0,012,1 ) for some o, an isotropic
posterior ¢ = N(w,0.I), so that Ey[Lp(w)] = Een(0,021) [Lp(w + €)], applying the covering approach
of Langford & Caruanal (2001)) to select the best (closest to ¢ in the sense of KL divergence) from a set of
pre-defined data-independent prior distributions satisfying the PAC generalization bound, [Foret et al.| (2020)
show that the bound in Theorem [I] can be written in the following form:

w2
EMN@ﬁnwaw+fn<EmNmﬁmwdw+fn+g(”g”) (1)

(for a monotone function g). Then, crucially, one may apply a well-known tail-bound for a chi-square random
variable to bound | €|z, thus bounding the expectation over g (with probability 1 —1//n) by the maximum
value over a Euclidean norm-ball ball. This provides the following generalization bound:

Theorem 2. For any p > 0 and any distribution D, with probability 1 — § over the choice of the training
set S ~ D,

Lp(w) < max Ls(w+¢€)+g <||w|§)) (12)

= 2
llell2<p P

where p = ok (1 + ln(k")>, n =S|, and k is the number of parameters.

This bound justifies and motivates the SAM objective:

max L(w + Aw) + \|w||? 13
A ( ) + Allwl]3 (13)

and resulting algorithm. Although the bound in Theorem [2| suggests that the ridge penalty should vary with
the radius of the perturbation, in practice (Foret et al., 2020) the penalty term is fixed (or simply set to
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zero) even when different perturbation radii are searched over. Subsequent refinements of SAM (Kim et al.,
2022b) ignore the ridge penalty term altogether, and the choice of an optimal perturbation radius is what
drives the success of the method. It is not clear, however, why this adversarial parameter-space perturbation
should help generalization more than evaluating (and approximating) the expectation in the very bound
which motivates the SAM procedure in the first place, which would lead instead to an objective (ignoring,
for now, the ridge penalty term) of the following form:

Eew]\/’(O,ozI) [LS ('w + 6)] (14)

Moreover, the worst-case adversarial perturbation used by SAM is likely to be noisier and is also naturally
a significantly looser bound than the expectation-based bound.

1.3.2 SAM Strengths and weakness and related literature

SAM has shown great promise in some applications, particularly in its robustness to noise, where the per-
formance gains are sometimes dramatic (Baek et all [2024) (Foret et al., 2020). The method has also
reinvigorated research on flatness-promoting regularizations. There are, however, numerous weaknesses and
open questions, some of which have been addressed in the literature.

1. The Euclidean norm-ball based bound is not invariant to coordinate transformations, so that scale
changes (such as occur, for example, when applying batch-normalization or weight-normalization)
which have no effect on the output of the learned probability distribution, can nevertheless still result
in arbitrary changes to the penalty. More generally, any geometric notion of loss surface flatness
must be independent of arbitrary rescaling of the network parameters.

2. SAM performs poorly for large batch-sizes and the practical benefits of SAM are typically only seen
for very small batch sizes (even though there is nothing in the theory or deviation to suggest this)
(Andriushchenko & Flammarion) 2022).

3. SAM optimizes a loose upper-bound on an expectation in the generalization bound that motivates
the method.

Several attempts have been made to address some of these issues. [Kwon et al| (2021) focus on the inner
maximization problem and propose an ad-hoc linear node-wise rescaling to mitigate the scale dependence
of the method. Kim et al.|(2022a) address the Euclidean norm-ball limitation by preconditioning the inner
gradient step with an empirical inverse diagonal Fisher information matrix and demonstrate modest improve-
ments over SAM on CIFAR-10 and CIFAR-100 datasets. Mollenhoff & Khan| (2022) make the connection
between SAM and Bayesian methods and show that SAM can be derived as an optimal relaxation of the
Bayes objective, also demonstrating increased accuracy by improving variance estimates and using those in
the inner gradient step.

2 G-TRACER

Motivated by these considerations, our starting point is the optimization of the following generalized varia-
tional objective (Knoblauch et al.|[2019) (Bissiri et al., 2016) (related to, but more general than the objective
from which SAM is derived) over the space of probability measures P(©) on the parameter space O:
¢"(w) = arg min {Eq(u)[L(w)] + pDr g, p] } (15)
q€P(O)
where p is a positive-valued parameter which controls the strength of regularization. By assuming that

the posterior g(w) and prior p(w) belong to multivariate Gaussian parametric families, we derive a general
purpose regularization scheme which, at a high level, consists of the following simple steps:

1. Augment the loss function L(w) with a G-TRACER ("Geometric TRACE Regularizer") of the form
pTr(G~YHT), where HT is a positive definite approximation to the Hessian V2 L(w).
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2. Estimate G online using an exponential smoothing of HT

The effect is to modify the gradient from a pure descent direction V., L(w) by a direction given by
pV.Tr(G™'HT), which encourages a reduction in the preconditioned Hessian trace, in a way that, at
critical points, doesn’t depend on the parameterization of f, and, more generally, is invariant to affine coor-
dinate changes, such as the layer-wise scale transformations T, : (w1, ws) — (awha_lwz) of [Dinh et al.
(2017). The preconditionerﬂ G~ can be viewed as an approximate inverse metric tensor that captures the
geometry of the variational parameter space and the penalty term can be interpreted, in the neighbourhood
of a critical point, as an approximate metric trace of the Hessian, or Laplace-Beltrami operator, which mea-
sures the difference between the mean value of the loss over a geodesic ball (Lee, [2019) and the value at a
minimum, and which thus encourages flatness.

Starting with SGD as the base optimizer (for example), using stochastic gradients V,, Lg(w) computed on
minibatches B of the data, and choosing as a positive definite approximation to the Hessian the log-likelihood
Fisher Information Matrix{]

F, = ]Eywp(y|a:,w),:v~p(w) [*Vzu logp(y\a:, w)] (16)

which is the expectation, under the model’s output distribution, of the log-likelihood Hessian, leads to the
following general update equations:

w — w — aVy[Lg(w) 4+ pTr(G 1 Fy))

G (1- )G+ BF, (a7)

Next, we show how penalizing the objective with a G-TRACER penalizes sharpness, how to add a simple
G-TRACER in practice, and how the penalty can be derived from the generalized variational objective (L5]).

2.1 How does G-Tracer penalize sharpness?

We first examine, in a simplified setting, the interplay between the penalty parameter p and the variance of
the perturbation over which the loss is smoothed by convolution with a Gaussian kernel. We then show that,
when the expectation (or convolution) is approximated to second order, the result has a direct correspondence
with the Laplace-Beltrami operator, which establishes a rigorous link to flatness.

2.1.1 p determines generalized variance of the Gaussian kernel smoothing

Ignoring for simplicity the contribution from the prior term (which would correspond to a ridge-regularization
term under the assumption p(w) ~ N (0, 0,1I)), leads to following objective, which we seek to minimize over
w:

Eqw) [L(w)] — pH(q) (18)
where H(q) = Eg(w)[—logg(w)] is the entropy of ¢g. For the choice g(w) ~ N(w,o?I), the optimization
problem associated with the variational objective becomes (absorbing some constants into p):

1
arg mqinEq[L('w)] — pH(q) = arg min E¢[L(w)] + plog o (19)

so that we can see that p determines the variance of Gaussian perturbation over which the loss is averaged.
More generally, choosing ¢ ~ N (w, X) leads to the following variational objective:

1
arg mqin Eq[L(w)] — pH(q) = arg gug Eq[L(w)] + plog &) (20)
so that large values of p will correspond to distributions with larger volume, since for  ~ N (0,X), x lies
within the ellipsoid 273X 'z = y?(a) with probability 1 — «, with the volume of the ellipsoid proportional
to det(X)2 (Anderson, 2003). The regularization parameter p thus controls the generalized variance det(X)
of the Gaussian kernel which is used to smooth the loss when calculating the expectation E () [L(w)].

6Note that G~ is a constant in the update equation for w, whereas F = F(w)
"We will see that this choice is a natural one in section
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2.1.2 Tr(G~1H) regularization is curvature regularization and thus promotes flatness

We first examine curvature regularization from the perspective of the variational parameter space. The
geometric trace penalty arises by modeling the posterior over the parameters as a multivariate Gaussian:
q(w) ~ N(p,X), and then performing natural gradient descent on the variational objective and forming
the following second-order approximation:

VB [L(w)] ~ VL () + S TH(SH)] (21)

The Fisher Information Matrix F), of ¢, viewed as a function of the variational mean parametelﬂ u, can be
computed exactly, and is given by:

F,=E,[-V}logq] =37 (22)
(see Appendix for details). We thus have:
1 _
VuE[L(w)] = Vu[L(p) + 5 Tr(F,  H)] (23)

Comparing with the G-TRACER penalty term pTr(G~'F,,) we see that G™! o« F,;'. Thus Tr(G™'F,,) x
Tr(F,'Fy) =~ Te(F,'H) = Trp, (H), where Trg, is the metric traceﬂ (Leel, [2019)) of the Hessian, and
which, at a critical point, is exactly the Laplacian A (also known as the Laplace-Beltrami operator (Lee,
2019) Kristiadi et al. (2023)), a fundamental operator in differential geometry and analysis, which mea-
sures curvature in an intrinsic, coordinate independent way, correcting for the underlying geometry of the
manifolcﬂ In the neighborhood of a local minimum p* of L (in particular), it can be interpreted as the
difference between the mean value of L over a (geodesic) ball centered at p* and L(u*), due to the following
mean-value property for smooth functions over geodesic balls B,.(p) (Gray & Willmorel |1982) (Loustaul,
2015):

1 / N
_— L(p)dV — L(p*) = ———=r° + O(r*) (24)
vol(B,(1*)) JB, (u) 2(n+2)
so that we have the following asymptotic expression for the value of the Laplacian at p*:
. 2(n+2) 1 /
AL(p*) = lim L(p) — u(pu*)dVvV 25
( ) r—0 r2 VOI(BT(H*>) B, (u*) ( ) ( ) ( )

Since, at a minimum p* of L(p), Tr(F .M H) = AL(p*) > 0, penalizing Tr(F,, ' H) has the effect of forcing
7 Iz
the values of L(p) in a neighborhood of a minimum to be closer to the value at the minimum.

From the perspective of the parameter space © (the weight space), the final general form of the update
equations (equation consists of the G-TRACER penalty pTr(G~1F,,) (which is affine invariant, as well
as invariant to all diffeomorphic coordinate transformations at critical points), where G is an exponentially
smoothed (over minibatches) estimate of the log-likelihood FIM. G captures the local geometry of the loss
surface L(w) and, in the neighborhood of critical points, the G-TRACER penalty, as a metric trace w.r.t.
G, can be interpreted as a measure of sharpness on the weight space.

This formulation therefore highlights the deep connection between:

¢ Intrinsic curvature as measured by the manifold Laplacian, both in the space of variational param-
eters, and in the parameter space of the weights ©

e Convolving the loss with a multivariate Gaussian kernel which captures the local geometry in the
neighbourhood of u

8% is a constant in the update equation for
9The metric induces canonical or musical isomorphisms # and b between the tangent and cotangent bundles. The metric
trace of a symmetric 2-tensor H is Trp, H = TrH!

10 An alternative viewpoint, complementary to the one we take here, is an extrinsic one, where we consider the loss surface in
graph coordinates as a hypersurface embedded in ambient Euclidean space RPT!: {(w, L(w)),w € RPt! : w € ©}. In Euclidean
space, the Hessian is the matrix of the shape operator (or the second fundamental form (Lee| |2019))). The eigenvalues of the
Hessian correspond to the principal curvatures, and the mean curvature is the mean of the principal curvatures (or equivalently,
the Hessian trace). The Euclidean metric on RP*! then induces a pullback metric on the embedded submanifold, G, and at a
critical point, the matrix of the shape operator in a Riemannian manifold is given by G~ H with corresponding mean curvature
Tr(G~'H) (Kristiadi et all} [2023).
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Algorithm 1 SGD-TRACER
Require: «a;: Stepsize
Require: 3: Exponential smoothing constant for the online Fisher estimate
Require: p : flatness inducing penalty term
Require: §: small positive constant

Initialize wq, fo, t =0

while not converged do

Sample batch B = {(x1,y1)

---(fL‘b,yb)}
Wei1 = Wi — Vi [LB(wt 4 p(VwLs(we))? /(£ + 5)}

frr1 = (1— B)f + B (VuLs(w))”
end while

2.2 How is G-Tracer evaluated in practice?

The inverse of the diagonal empirical Fisher, as an approximation to the inverse Fisher Information Matrix,
is used as a gradient preconditioner by the Adam (Kingma & Bal, [2014) and Adagrad (Duchi et al., 2011))
optimizers. While many other approaches are possible here, of varying degrees of sophistication and com-
plexity (see KFAC (Martens & Grossel, [2015) for example), we find that this simple, cheap, and scalable
approach works extremely well. This regularization scheme can in principle be combined with any optimizer
by simply augmenting the loss, and maintaining an estimate of the smoothed squared gradients (as is done
by Adam). Modifying SGD to use a G-TRACER with the diagonal empirical Fisher yields algorithm |1} In
our experiments, we freely add momentum to this simple SGD formulation. In experiments with transformer
architectures, we modify Adam in the same way, by simply adding a G-TRACER penalty to the objective
and reusing the squared gradients already needed for the Adam update.

2.3 Derivation sketch

We first sketch the derivation of the general update equations and then show how these lead to SGD-
TRACER .

2.3.1 General update equations

Since we are optimizing in the space of probability distributions whose parameterizations can be changed
without changing the underlying probability distribution, it is natural to perform gradient descent on our
variational objective using Riemannian gradients corresponding to the Fisher-Rao metricﬂ (also known as
natural gradient descent (Amari, [1998)). We assume that the posterior has the form g(w) ~ N (w, X), so
that our optimization problem becomes:

arg 1;1121:1 Eq(w)[L(w)] + pDx1[q, p) (26)

where p is a positive real-valued parameter.

We show in Appendix that, assuming an isotropic Gaussian prior, p(w) ~ N (0,nI), performing gra-
dient descent w.r.t. the natural gradient leads to the following iterative update equations for the variational
parameters(Khan & Rue, 2021) (Zhang et al., [2017):

e p— aA~ (]Eq[va(w)} + Zw)

(27)
E,[V2 L
Ac(1-BA+5 (‘J[ wl()] n‘1I>
p
where o and 3 are the learning rates for the mean and precision updates, respectively, and A := 7! is

the precision matrix. Approximating the expectations to second order, approximating gradients using mini-

HThis can be shown to be steepest descent in the KL-metric (Martens), [2020))
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batches, and further simplifying leads to the following update equations for the parameteﬂ (see Appendix

for a detailed derivation):

W w— (G_lvw [L(w) + PTT(G_lH)]) (28)
G+ (1-5G+pH

where H = V32 L(w) is the Hessian.

As we will see in the full derivation of the method in Appendix [ATT.2] the recursion for G involving the loss
Hessian is an update equation for the precisiodE|7 which is exactly the Fisher Information Matrix F}, of the
variational distribution g viewed as a function of wu:

Fpu = By [V log g(w; p)" 'V, log g(w; p)] = Eprg[— V2 log g(w; p) 7] (29)

and which defines a Riemannian metric on p.

The Hessian H in the update equations arises from a second-order approximation to the loss L(w).
When the loss is given by the log-loss I(y, f(x, w)) = — log p(y|x, w)|E|, the log-likelihood Fisher Information
Matrix (FIM),

Fy = ]Eyfvp(y|a:,w),m~p(:c) [7V'¢2u logp(y\cc, w)] (30)

as the expectation of the Hessian under the model’s output distributioﬂ (Amari, 1998), is known to
provide a better local quadratic approximation to L(w) than the Hessian H (Martens & Sutskever| [2012)
when optimizing non-convex objectives. In particular:

1
M(Ay) = §AﬁFwAw + VwL(w)' Ay + L(w) (31)

can be viewed as a convex approximation to the second-order Taylor series of L(w + A,,) for which the
minimizer is the negative natural gradient —F,; 1V, L(w) (Martens, [2020), and moreover, F,, can be shown
to converge to the Hessian in the Hmiﬂ as the training error goes to zero (Kunstner et al.| 2019).

Crucially, the log-likelihood FIM is also the Hessian of the KL divergence, which measures the dissimilarity
between probability distributions in an intrinsic way, independently of parameterization. As an infinitesimal
form of the KL divergence, it defines a metric tensor on the parameter manifold corresponding to the Fisher-
Rao metric(Amari, [1998)).

We therefore make the substitution H <+ F,, and, in addition to the advantages of positive definiteness
and strong empirical performance, this is a natural identification for the log-loss, where the log-likelihood
FIM converges to the Hessian as the residual r goes to zero (Kunstner et al.l |2019)), since then we have the
relations. Furthermore, this connects in a natural way the Riemannian metric on the space of variational
parameters Fy, and the approximate Riemannian metric F,, on the weight space ©.

We show in Appendix that the penalty term pTr(G~!'F,) is invariant to affine coordinate trans-
formations. Moreover, as G~! is an approximation to the inverse metric on the parameter space © and
F is an approximation to the Hessian (which is exact when the model fits the data and the residuals are
zero (Kunstner et al., 2019)), the penalty can be interpreted, in the neighborhood of local minima, as a

coordinate-independent measure of curvature which correctly accounts for the geometry of the underlying
manifold L(w).

Using a stochastic update based on minibatches, substituting-in the Empirical Fisher approximation of the
Hessian (see Appendix for details, and a discussion of alternatives) and dropping the preconditioner (for

12Having approximated the expectations, we can identify w and p.

13We explain later why this is a natural choice

M And for the most practically relevant losses (which are the ones we consider here): cross-entropy (classification), and
squared error (regression), corresponding to exponential family output distributions with natural parameters given by the
output function f(z,w) (Kunstner et al.}|2019) (Martens| [2020])

15Whereas H is the expected Hessian under the data distribution

16 Assuming exponential family distributions
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simplicity of exposition, and since our focus here is on the regularizer), we arrive at the modified SGD-type
update (|17)):

w < w— o (Vy[Ls(w) + pTr(G™Fy))) (32)
G+ (1-8)G+ BF,

2.3.2 SGD-TRACER

We now make two simplifications. First, we use a mean-field approximation, representing the FIM by its
diagonal, as is done in Adam (Kingma & Bal [2014) and Adagrad (Duchi et al., [2011)), thus:

1 n
F, ~ - Z Vo log p(yi|xs, w)? (33)

i=1

Secondly, as most current deep learning frameworks don’t straightforwardly support access to per-example
gradients, which can in principle be achieved with negligible additional cost (see, for example, BackPACK
Dangel et al| (2020)) second-order Pytorch extensions), for simplicity and efficiency, we use the gradient
magnitude (GM) approximation (Bottou et al., [2016), as used in standard optimizers Adam and RMSprop,
replacing the sum of squared gradients with the square of summed gradients:

2
- wl 3|5, | = wl 3|5, 4
= [V logp(yilas, w)] [RZV og p(ys|x w)} (34)

i=1 i=1

and we write the resulting FIM diagonal as V., L(w)?. Finally, it is standard practice to (Martens, [2020)
to add Tikhonov regularization or damping via a small positive real constant § when using 2nd-order opti-
mization methods, so that we end up with Algorithm [T}

Wil =W, — Vi [Lg(wt) + p(VwLB(Wt))Q /(£ + 6)}
fiyr = (1— B)f; + B (VuwLs(w:))’

in which the usual stochastic gradient update is modified with a term which penalizes the trace of the ratio
between the diagonal of the Empirical Fisher Information Matrix (FIM) and an exponentially weighted
average the of the Empirical FIM diagonal. By augmenting the loss with a TRACER term and maintaining
a smoothed squared-gradient estimate, in principle, any optimization scheme can be modified in the same
way. In our experiments, we use SGD with momentum for vision tasks and Adam-TRACER (Adam with a
G-TRACER penalty) for NLP tasks, based on standard practice in each problem domain.

(35)

3 Results

While the original SAM paper (Foret et all |2020]) and subsequent papers [Kwon et al.| (2021) (Kim et al.,
2022a)) largely focus on standard benchmark problems and show marginal improvements in many settings, the
most striking and practically relevant improvements concern the performance gains in the more challenging
noisy-label settings. The CIFAR-10/100 benchmarks are extremely well understood, and good training
schedules, data augmentations, and architecture choices have all been found over an extremely large number
of trials run by the community over many years. The effect size of augmentations is often large (10% accuracy
gains, or more) compared to post-augmentation gains exhibited by SAM (typically on the order of 1%).

Given our focus on delivering material performance gains in challenging settings, we examine the performance
of our algorithm on especially challenging variants of standard benchmarks as they are a good model for the
kinds of real-world applications that most require general-purpose regularizations. For example, we apply our
method to noisy variants (with up to 50% label noise) of CIFAR-100, with and without data augmentations,
first using a standard ResNet architecture and then on a vision transformer architecture (ViT). The ViT is
trained from scratch (no pre-training), which is extremely challenging, since the convolution’s inductive bias
of spatial locality is lost in moving to a transformer architecture. We are thus using variants on standard
benchmarks as a model for general settings, such as financial time-series forecasting, in which low effective

10
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sample size, extremely low signal-noise ratio, extreme nonstationarity, and a general lack of symmetries
(financial time series exhibit neither up-down symmetry nor time-reversal symmetry) which give rise to data
augmentations, all contrive to make generalization very difficult.

Finally, we show encouraging results on challenging subtasks from one of the most challenging NLP bench-
marks, SuperGlue, using the BERT transformer architecture.

3.1 Vision: CIFAR-100, challenging variants

We first examine a variant on a standard benchmark in computer vision, CIFAR-100. We compare SGD,
SAM and SGD-Tracer using none of the standard regularizations (no data augmentation, no weight-decay)
and a standard training protocol (200 epochs, initial learning rate set to 0.1, cosine learning-rate decay).
Furthermore, we randomly flip 50% of the labels so that 50% of the examples are incorrectly labeled.

The noisy label case is of primary interest and relevance in our setting, and relates to both SAM and G-
TRACER type schemes which provide robustness w.r.t. weight perturbation since noise can be transferred
to the weights. To see this, consider the single-layer case with weight matrix W and input z: we have
L(W + AW, z) = L(W, z + Az) for the choice AW = mﬁg xT (indeed, there are infinitely many solutions to

the underlying matrix equation), so that input noise robustness corresponds to robustness in weight-space.
This type of construction can be generalized to deeper architectures (Seong et al. 2018). Methods like
G-Tracer and SAM which are robust to weight perturbations are for this reason expected to be robust to
noise. Indeed, the most convincing and striking results in the original SAM paper concern robustness to
label noise.

3.1.1 CIFAR-100 baseline with augmentation, consistency check

As a baseline and to establish consistency with other results in the literature and in order to demonstrate
empirically that our training procedure is such that our models are well-trained, we apply the basic standard
data-augmentations (rescaling, random cropping and flipping) together with a ResNet-20 architecture to the
CIFAR~100 benchmark.

Table 1: CIFAR-100: ResNet20, accuracy (standard error)

‘ with aug
SGD 70.02% (0.36)
SAM 70.33% (0.22)

SGD-TRACER | 70.71% (0.36)

The exact experimental setting for the vision tasks (unless otherwise indicated) follows standard practice
and is as follows: SGD with weight decay/ridge penalty 5 x 104, momentum 0.9, initial learning rate 0.1,
200 episodes, cosine learning rate decay to 0, batch size 128, global clip-norm= 1.0. The search spaces
for the SAM and G-Tracer penalties p were chosen by first running on a logarithmic grid of 10 values
[1x107%,...,1 x 10*] and then refining the range based on in-sample convergence, in order the span the
space of plausible regularization strengths. These results are in line with (in fact, competitive with) the
results in (Mollenhoff & Khan| [2022) (Kwon et al., [2021)). E

3.1.2 CIFAR-100 50% noise, no regularization

Having established the baseline, we now consider the challenging setting where we randomly flip 50% of the
labels and drop all augmentations (we simply rescale the inputs), and use no weight decay. The results in
Table 2] show that GTRACER significantly improves upon SAM in this challenging setting. In Figure [T] we
highlight the results for the same problem over different values of the regularization parameter p. In Figure

17 As a further consistency check with practice, follow the training protocol (stepwise learning rate decay over 200 episodes, with
learning rates [.1,.02,.004,.0008] at [0,60,120,160]) in https://github.com/weiaicunzai/pytorch-cifar100/tree/master?
tab=readme-ov-file| with larger architectures, eg ResNet-18 (11M parameters), and match the expected results for SGD,
and see similar improvements vs SGD (75.8% accuracy vs 75.1% accuracy) and SAM (75.3% accuracy, p = .05).
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Figure 1: CIFAR 100: ResNet20, no weight-decay, 50% noise, accuracy vs regularization strength.
GTRACER dominates the baseline and SAM across a wide range of regularization strengths.

we compare the training curves on this problem.
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Figure 2: CIFAR 100: ResNet20, 50% noise, test-accuracy training curves. On a standard 200 epoch training
protocol with cosine learning-rate decay, SGD-Tracer converges to a solution that generalizes materially
better than SGD and SAM

12



Under review as submission to TMLR

Table 2: CIFAR 100: ResNet20, no weight-decay, 50% noise, accuracy (standard error)

‘ no aug
SGD 17.5% (2.41)
SAM 34.63% (1.85)

SGD-TRACER | 47.55% (1.51)

3.1.3 CIFAR-100 results with weight decay

We next run SGD-Tracer on CIFAR-100 with and without label noise, with and without augmentation, with
random label flipping and with a standard ridge penalty of 5 x 1074, The results in Table [3| show that
SGD-TRACER performs consistently well, with a particularly strong advantage in the presence of noise
and/or without additional regularization in the form of data augmentation.

Table 3: CIFAR-100: ResNet20, accuracy (standard error)

‘ no aug ‘ with aug ‘ 50% noise & no aug
SGD 51.43 % (0.41) 70.02% (0.36) | 21.96% (0.36)
SAM 58.98 % (0.52) 70.33% (0.22) | 49.89% (0.32)

SGD-TRACER | 63.47% (0.32) | 70.71% (0.36) | 51.62% (0.18)

3.1.4 ViT, no pretaining

We now turn to transformer architectures and use the Keras ViTTiny16 vision transformer architecture from
the KerasCV library (Wood et al.,[2022). We apply the standard augmentations as above with initial learning
rate 1 x 1074, and batch size 256. We use this task to investigate the potential for further boosting the
performance of G-TRACER by mitigating the gradient magnitude approximation, by splitting each batch
into 4 sub-batches, computing squared gradients on each sub-batch and aggregating. |E| For fairness we also
compute the SAM gradient on 4 sub-batches and average (as explored in [Foret et al.| (2020)). We see that
this batch splitting delivers strong results for G-Tracer and suggests that moving to per-example gradients
could significantly strengthen empirical results. We see that, despite the considerable challenge in losing the

Table 4: CIFAR-100: ViT, accuracy (standard error)

with aug
SGD 37.7 % (0.71)
SAM 38.2 % (0.52)
SAM batch-split 38.7 % (0.44)
SGD-TRACER 39.1 % (0.32)
SGD-TRACER batch-split | 41.6 % (0.28)

inductive bias of locality which drives the success of CNNs on vision tasks, SGD-TRACER is able to deliver
a 10% performance boost to the naive SGD solution.

3.2 NLP

For NLP tasks we use the Huggingface Bert-base-uncased (Devlin et al.l |2018|) checkpoint together with
Adam-TRACER with max sequence length 256 and batch size 8. We fine-tune using Adam-Tracer, using a
standard protocol of 5 epochs with initial learning rate 2 x 10~° and decay the learning rate using a linear
schedule, with final learning rate 1 x 107°. The search ranges for the SAM and G-Tracer penalty parameters

18Using tools such as (Dangel et al., [2020) would allow per-example squared gradients to be calculated.
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are chosen as in the vision experiments. Each run is repeated 20 times. We choose 3 distinct fine-tuning
taskd™

e BoolQ: boolean question answering (Clark et al., [2019)

e WiC: Words in Context (Pilehvar & Camacho-Collados, [2018))

e RTE: Recognizing Textual Entailment (Wang et al., [2020)
and we see that Adam with a G-TRACER performs competitively, and has the additional property of
producing more stable results across runs (as reflected in the standard errors). Note that in this setting, the
extensive pre-training (Devlin et al., |2018]) combined with fine-tuning acts as a strong regularizer and that

the relative performance gains we see from using a G-TRACER are smaller than those we observe in the
ViT setting without pretraining.

Table 5: NLP tasks BERT base-uncased results, accuracy (standard error)

| BOOLQ | WIC | RTE
Adam 73.84% (0.14) | 69.36% (0.08) | 69.18% (0.33)
SAM 73.95% (0.13) | 69.06% (0.07) | 69.54% (0.28)

Adam-TRACER | 75.09% (0.04) | 70.01% (0.06) | 70.13% (0.18)

4 Conclusion

Motivated by the notable empirical success of SAM, a prior that flat (in expectation, and in an intrinsic,
geometric sense) minima should generalize better than sharp minima, and noting the connections between
the generalized Bayes objective and SAM, we have derived a new algorithm that is simple to implement
and understand, cheap to evaluate, provably convergent, naturally scale-independent (and approximately
coordinate-free) and which shows promising performance on standard benchmarks in vision and NLP, and
across transformer and convolutional architectures. Performance is notably strong for challenging low signal-
to-noise ratio and large batch problems, and in settings where other regularizations (data augmentations,
tailored learning rate schedules, weight decay) are not used. Crucially, the algorithm is straightforwardly
derived from an approximate natural gradient optimization of an ELBO-type objective and does not rely on
the use of small batch sizes (or "m-sharpness" (Foret et al.l 2020))) or other poorly understood (and frequently
expensive to compute) heuristics.

A Appendix

A.1 G-Tracer detailed derivation

We begin our exposition with a background on generalized variational posteriors and then derive the G-Tracer
regularizer by performing natural gradient variational inference.

A.1.1 Generalized variational posterior

Our starting point is similar to that of SAM, but uses a more general objective, which arises in the variational
optimization of a generalized posterior distribution, g, over the space of probability measures P(©) on the
parameter space © given by (Bissiri et al.l 2016]):

7 (w) = argqén;(%) {Eq(w)[L(w)] + DrLlg, p]} (36)

L9 All of which have been included in the challenging SuperGlue benchmark
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for which, when Z = [ exp{—>_7", l(w,x;)} 7(0)d@ < oo, the solution is given by the generalized posterior:

N
¢ (w) o p(w) H exp{—l(w,z:)} (37)

The terms exp{—I(w, x;)} are to be interpreted as quasi-likelihoods, and for the particular choice l(w, x;) =
—log p(x;|w), we recover the standard Bayesian posterior. As this infinite dimensional optimization is in
general intractable, it is usual to assume that the posterior belongs to a parametric family @ C P:

*(w) =arg min {E,q)[L(w)] +D , 38
¢ (w) gqég(@){ a(w)[L(w)] + Dicr[g, 9] } (38)
which, for the choice [(w, ;) = — log p(x;|w), is the same objective (up to a constant factor) as the evidence

lower bound (ELBO) used in variational Bayes.
In practice, it is often found that tempering the KL divergence term by a positive factor p < 1 produces

optimal performance, giving rise to:

¢*(w) = arg qemgi(n@) {Eq(uw) [L(w)] + pDkLlg,p]} (39)

A.1.2 Derivation of the TRACER flatness-inducing regularizer

Following [Khan & Rue (2021)) and [Zhang et al.| (2017, we make the assumption g(w) ~ N (u, X) and seek
to optimize the variational objective in equation [39| w.r.t. the variational parameters ¢ = {u, 3} m using
natural gradient descent. This allows us to derive an algorithm that respects the intrinsic geometry of the
parameter space, and thus derive an algorithm that seeks sharp minima in an approximately coordinate-
independent way.

Thus, we aim to minimize:
L(¢) = Eqw)[L(w)] + pDr g, p] (40)

w.r.t. ¢ where p is a positive real-valued regularization parameter. The negative gradient corresponds to
the steepest descent direction in the Euclidean metric:

V4L
—*— = lim -~ argmin L(¢+ A¢) (41)
VoLl =0 €agifjag|.<e

and thus depends on the chosen coordinates ¢. In contrast, the so-called natural gradient update corresponds
to steepest descent in the KL-divergence metric:
—~F71V4L
= Yem _ = argmin L(p+ Ap) (42)
||V¢£H e~ 0 €A¢:DKL[q¢,q¢+A¢]<e

where F' is the FIM:

F = Eq¢(w) [V¢ 1ogq¢,(w)TV¢ log q¢('w)] = Eq¢(w) [—Vi log q¢(w)] (43)

which defines a Riemannian metric on the variational parameter manifold. Expanding to second order in a
small neighborhood of ¢ we have:

1
Di1ltp, @+ ae) = Eqyw) |[-Ad" Vo log gg(w) — §A¢TV?¢ log q¢,(’w)A¢} +0(|agll*)  (44)

and since:
Ve (w)
g (w)

20We will write, to keep the notation as light as possible, the set of variational parameters as ¢ = {u, =}. Depending on the

Eq¢(w)V¢ log q¢(w) = Eq¢(w) [ :l = V¢Eq¢(w) [1] =0 (45)

context, e.g. when we write the gradient V4, we will take this to mean ¢ = {vec‘EE)}
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the FIM (under certain regularity conditions) can be seen to be the Hessian (or curvature) of the K-L
divergence:

Diceltg, tps 20] = 5 A By [V lomas(w)] Ad + O(|AS|) = S ASTFAG+O(|AG])  (46)

It turns out that the update equations have a particularly simple form when g4 (w) is parameterized as
¢ = (u, A=1). The following proposition gives expressions for the natural gradient vectors w.r.t. the mean
and precision (for proof see Appendix [A.5)):

Proposition 1. For a probability distribution with pdf qp(w) ~ N (p, A=) with the parameterization ¢ =
(i, A=Y, the natural gradients of L w.r.t. p and A of are given by:

VL =3E [V L(w) + pVp(w)] )
VAL = —E [V}, L(w) — pVi,p(w)] + p=

Assuming an isotropic Gaussian prior, p(w) ~ N(0,nI), performing gradient descent w.r.t. this natural
gradient then leads to the following iterative update equations:

e p— oAl (]Eq[va(w)} + f;w)

(48)

where o and 3 are the learning rates for the mean and precision updates, respectively. We work with each
of these update equations in turn. Starting with the update equation for the mean p, the key observation
is that the expectation E,[V,,L(w)] is taken with respect to the distribution g(w), which is an exponential
moving average of the expected Hessian E,[V?2 L(w)]. This updating happens naturally as a consequence
of taking natural gradient steps, and leads to an approximately coordinate-free algorithm in the sequel.
Applying Bonnet’s theorem (Khan & Rue} [2021) and forming the second-order approximation to the loss we
obtain:

B[V L(w)] = VB, [L(w)] & VB [L3) + 5 (w0 — 1) V3, L) umya(w — )] (49)
We also have:
Eyl(w — p)" V2 L(w) = (w — p)] = Bg[Tr ((w — )" V2 L(w) =y (w — p))] = Te(ZH)  (50)

where H is the Hessian V2 L(w). We therefore have that:
1
Eq[VwLl(w)] = Vu[L(p) + STr(SH)] (51)

Choosing the prior variance n to be infinite and thus ignoring terms involving 7 in both update equations
(corresponding to an improper prior, and so consistent with the discussion above), leads to the following
update for the mean:

B p+alA <V“[L(u) + ;Tr(EH)O (52)

Thus, in order to blur the loss with multivariate Gaussian noise in a way that aligns with the intrinsic
geometry of the parameter space, we can (to second order) augment the loss with a term involving the Trace
of the Hessian. Considering now the update equation for the precision, we can use Price’s theorem (Khan
& Rue, [2021)) together with a Taylor expansion to get, to second order E,[VZ L(w)] &~ V2 L(w)|w=p (see
Appendix for details), which leads to

A+ (1-BA+p <V3°L(Z’)|w‘“) (53)
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We next substitute, as is common in the literature using approximate second order approximation (Martens,
2020)), the log-likelihood Fisher Information Matrix F,, for the Hessian, where:

Fo = Eyp(ylaw),ap() [~ Vi 10g (Y| 2, w)] (54)

Substituting F, for the Hessian in the update equation for the precision and rewriting the update in
terms of G := pA, absorbing constants into p and «, and writing the iteration in terms of the parameter w,
we obtain the general update equations:

w+ w— o (Vy[L(w) + pTr (G Fy))) (55)

G+ (1-p8)G+ BFy
Crucially, the penalty term pTr(G~1F) can be seen to be invariant to affine coordinate transformations,
since it is the trace of the ratio of two (0,2) tensors which transform in the same way. Indeed, under an
affine coordinate transformation with Jacobian J, we have F,, — JTF, J and G — JTG"J so that:

Tr (G'Fy,) =Tr (J—1G'—1JT‘1JTF;UJ)) =Tr (J7'G'"'F,J)) =Tr (G'"'F},) (56)

By using the ratio of the (squared) gradients and the exponentially smoothed gradients, the trace ratio in
effect penalizes the change in (squared) gradient, in a coordinate-free way. More generally, given a smooth
coordinate change defined by a diffemorphism ® : R? — R? and Jacobian J(w), then given sufficiently rapid
exponential decay in the update equation for the Fisher, subject to ® having sufficient regularity, the penalty
term is readily seen to be approximately coordinate free.

Although the evaluation of the GGN matrix, in particular the matrix multiplications involving the Jacobians
Jy, can be relatively costly, the FIM can be expressed as an expectation of outer products of gradients w.r.t.
the output distribution p(y|x,w):

n n
% Y Enylaiw) [V logp(ylzi, w)T Vi logp(yles, w)] ~ % > Ve logp(@ilzs, w) Va log p(gilw:, w)
i=1 i=1
(57)
which, following |[Martens| (2020), can be estimated using a single Monte Carlo sample from the output
distribution: § ~ p(y|x;, w). Using this (biased) Fisher approximation in our setting thus requires gradients
to be calculated through an expectation Vo E,(y|z,w)[L(w;y)], approximated using a Monte Carlo sample
from the model’s output distribution. Since the expectation is taken w.r.t. a distribution which depends on
w, it is necessary to reparameterize so that the discrete Monte Carlo sample is expressed as the deterministic
transformation of a g, (2) (depending on w) of a sample z ~ hg(z) from a distribution not depending on w, so
that Ep(y|zw) [L(w;y)] = Exong(z) [L(w; gw(2)]. In the discrete case (corresponding to classification), since
the argmax function is non-differentiable, the standard approach is the Gumbel-Softmax reparameterization
(Jang et al.l 2016)), which uses the softmax function as a continuous relaxation of the argmax function
together with i.i.d. samples distributed as Gumbel(0,1).

It is important to note that this approach is different from simply evaluating log p(y|x, w) on the training
labels, a widely used approximation known as the empirical Fisher Fipp:

Femp = va Ing(y'Llwuw)va logp(yz‘whw) (58)
i=1

This, despite lacking the same convergence guarantees, performs competitively in many settings (Kunstner
et al., [2019). We find in our experiments that the empirical Fisher performs competitively with the MC
approximation to the GGN (Khan et al., [2018; |[Kingma & Bal 2014) and has the advantage of being straight-
forward and cheap to compute from already computed gradients (in the case of Adam-TRACER, the smooth
squared gradients are already computed and maintained for use as a preconditioner). Given the conceptual
and computational simplicity of this approach we substitute the empirical Fisher for the Hessian. Recent
advances in approximate second-order methods in optimization, notably Yao et al.|(2020), suggest avenues
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for improvement, and we leave investigations of alternatives, such as the smoothed (Hessian-free) Hessian
diagonal sketch used in AdaHessian, for future work.

We now make two simplifications. First, we use a mean-field approximation, representing the FIM by its
diagonal, as is done in Adam (Kingma & Bal |2014), Adagrad (Duchi et al. [2011) and RMSProp thus:

1 n
Fatag ~ — > Vi logp(yilas, w)? (59)
=1

Secondly, it is standard practice to (Martens, [2020) to add Tikhonov regularization or damping via a small
positive real constant § when using 2nd-order optimization methods, giving in this case the preconditioner:
(Fo + 0I)~!. In fact this would arise naturally in our setup by choosing 7 to be non-zero, in which case we
would simply have § := £. From an optimization perspective, it is justified by recognizing that the local
quadratic model from which the second-order update is ultimately derived is a second-order approximation
to the KL divergence and is thus only valid locally. For directions corresponding to small eigenvalues,
parameter updates can lie outside the region where the approximation is reasonable (Martens, 2020)). This
is true, a fortiori, when diagonal approximations are used, as is the case here. As our emphasis here is on
geometric regularization, we drop the preconditioner entirely by choosing d to be sufficiently large that the
preconditioner is equal to the identity (up to a constant, which is absorbed into the learning rate).

Finally, as most current deep learning frameworks don’t straightforwardly support access to per-example
gradients, which can in principle be achieved with negligible additional cost (see, for example, BackPACK
Dangel et al| (2020)) second-order Pytorch extensions), for simplicity and efficiency, we use the gradient
magnitude (GM) approximation (Bottou et al.,2016)), as used in standard optimizers such as Adam, Adagrad,
and RMSprop, replacing the sum of squared gradients with the square of summed gradients:

2
1 n 1 n
- D [V log p(ys|ai, w))* ~ ln >V logp(yilzs, w)] (60)

i=1 i=1

Writing the resulting FIM diagonal as (V. L(w))?, and using stochastic gradient updates computed on on
minibatches B of the data, V., Lg(w), we finally end up with the following update (Algorithm :

Wii1 = Wi — Vi [Ls(we) + p (T Ls(wi)” /(£ + )|

(61)
fri1 = (1= B)f + B (VaLs(wi))?

We show in Appendix that the algorithm converges to a neighborhood of a local minimum of L(w) of
size O(p?). We note in passing that, in this simplest form (after applying the gradient magnitude approx-
imation), the update equations amount to regularizing with a (scale-adjusted) gradient norm. In principle
(particularly for the large batch case) we would expect to see significant improvements by moving to per-
gradient calculations (which are theoretically no more expensive to compute, but require additional work
under most current ML frameworks).

A.2 Multivariate Gaussian Fisher Information Matrix

For a probability distribution with density ¢ with parameters ¢, the Fisher Information Matrix (FIM) can
be written as the expected negative log-likelihood Hessian:

F=E,[-V}logq] (62)

In particular, for a multivariate Gaussian with pdf: g(x) ~ N (u, A~1), parameterized by ¢ = [vecle)} the

negative log-likelihood is, up to constant terms:

~logg(w) = 3 (@ — )" Al — p) + 5 log|A "] (63)
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Taking gradients w.r.t. u, we have: —V ,logg(x) = A(x — p) and therefore E, [—Vi log q] = A. Taking

gradients w.r.t. the covariance, and since Va(z — p)TA(x — p) = (z — p)(z — p)? and Vplog|A7Y =
Valog|A|™' = =V log|A| = —(AT)™1 = —(A)~! we have:

~Valoga(z) = (@ )@ — p)T ~ A7 (64)

Finally, writing VAA™ as —A ® A and A~! := ¥ we have:
1
~V2logg(x) = 52_1 ® X! (65)

so that the FIM is given by:

A.3 Approximate expected Hessian

Lemma 1. To second order, we can approzimate the expected Hessian w.r.t. a multivariate Gaussian with
pdf: q(x) ~ N(, A1) by its value at the mean:

Eg[VaL(w)] % Vi, L(w)|w=p (67)
Proof. Following Khan & Rue (2021]), by Price’s theorem, we have:
E[ViL(w)] = 2V 2 Ey[L(w)] (68)
expanding the r.h.s. to second order using a Taylor series, this is equivalent to:
2VAEq[(w — )" V3 L(w) lw—p(w — p)] (69)

Finally, noting that Eq[(w — )" VZ L(w)|w=p(w — p)] = Tr [3A7'VZ L(w)|w=y], we have, to second
order:

(VA L(w)] % 2V3 T [ GAT VA L)y | = VAL (70)
O
A.4 Objective function gradient
Lemma 2. The gradient of the objective towards ¢' = [ve:(LE)} 1s given by:
VLl =Eq[VoL(w) — pVoy log p(w)] (71)
VL = 1B, [V3,L(w) ~ pV3, logplaw)] — 57! (72

Proof. Taking the negative gradient of the objective w.r.t. to p, and applying Bonnet’s theorem (Khan &
Rue), 2021)), and the fact that the expectation of the score is 0, we have:

Vi (Bo[L(w)] + pDrc 1 [g(w), p(w)]) = Eq[Vy L(w)] — pEg [V log p(w)] (73)

Taking the gradient w.r.t. 3, and applying Price’s theorem, we have:

Vs (B,[L(w)] + i la(w), pw)]) = 5B, [V3L(w) +pV3, loga(w) — p¥5, logp(w)]  (74)
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and since:
E, (V3 loga(w)] = ~ L&, [V3, (log |2 + (w — )" aw — )] = ~3! (75)

We obtain
VL = E [V L(w) - pVy, log p(w)] (76)
Vsl =SB, [V2,Lw) — pV3, logp(w)] — 257! (77)
O

A.5 Objective function natural gradient

Proposition 2. The natural gradients of the objective w.r.t. the parameters ¢ = (u, A) of q(x) ~
N(p, A=Y are given by: )
VuL = XEy [V L(w) + pV o, log p(w)] (78)

VAL = —E [V}, L(w) — pVi,p(w)] + pA (79)

Proof. By Lemma the gradients V4 of the objective L(¢) w.r.t. ¢’ = |:V€CIEIE):| are given by:

Vil =Ey[VuL(w) — pVy log p(w)]

1 80
VLl = SB[ Vi, L(w) — pV7, log p(w)] — 52‘1 *0)

The Fisher Information Matrix is given by equation

»-! 0
F= E% [—Viloqu = [ 0 %2—1 ®2—1} (81)
and therefore
-1 P> 0 VL _ DA VWS

FVL(¢) = {0 2 @ X| |vec(VAL)|  |vec(2EVALY) (82)

where we used the identities (BT ® A)vec(X) = vec(AXB) and (A® B)™' = A~' @ B~'. The gradient
V .L then follows immediately from the definition of the natural gradient operator. Using the chain rule for
matrix derivatives we have that:

VAL =—-AVzA (83)
Since vec(2X VA LY) = vec(—2V L), we have the required updates. O

A.6 Convergence analysis

With T(w;) := <(VM,L(wt))2 (F+ (5)t_l>, as p — 0, the iterates wi11 = wy — Vo [L(wy) + pV o T (wy)]
will converge to those of SGD. For p > 0, the algorithm is biased away from a pure descent direction, and
convergence then depends on the magnitude of p. The key assumption in the following convergence proof is
that ||pV T (w;)||3 < K|V L(w;)||3+¢, which controls the bias. This follows from the standard assumption
of twice-differentiability of L(w) and the Lipschitz continuity of V,,L(w;), which imply that the Hessian
has a bounded spectral norm:

— -1
1oV T (wy)|13 < 4p% | V2, L(wy) 1311 (F +6), 113
p\? 2

< L
*4(5) Cp

so that ¢ depends on the Lipschitz constant C' and the ratio £.

(84)
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Theorem 3. Let T'(wy) := <(VH,L('w,5))2 ,f;1>, and assume the objective (loss) L : RP — R is Lipschitz
continuous, twice differentiable, and has Lipschitz-continuous gradient. Let us assume, following|Bottou et al.
(2016]) and|Ajalloeian & Stich (2021) that we have a stochastic direction g(wy, &) which has the following
properties, Vt:

E [g(wta gt)] = VL + pva(wt) (85)

and further assuming that there exist M, Ma such that, Vt,
E [llg(we, &)I1°] < M + Mg || VL + pVuT (w)||* (86)
and the following bound on the bias:
1PV T (we)|* < £ VwL(we)ll + ¢ (87)

then the iteration:

Wip1 = Wi — 0t Vo [L(wy) + pV o T'(wy)

_ - ) (88)
Firi=0=8)f, +B(VwL(wy))
converges to a neighborhood of a stationary point with ||V L(w)||3 = O(¢).
Proof. By the Lipschitz continuity of the objective function we have the quadratic bound:
C
L(y) < L(@) + (VwL(@),y — @) + S|y — | (89)
By the quadratic upper bound, the iterates generated by the algorithm satisfy:
1
L(wit1) = L(wy) < =V L(we), g(wy, &) + iafCHg(wk,&)Hg (90)

Taking expectations and applying the variance bound we have:
1
EL(wi1) = L(we) < —ay|| Ve L(wy)||? = OétPVwL(wt)TVwT(wt) + *afCE [llg(we, &)15]
= — ||V L(wy)|* — atprL(wt)TVwT(wt) + atC [M + M| VwL(z) + pVuT (w)|3]

=~V L(w)[* = at(1 = aCMg)pV wL(wi)" Vo T (we) + at iCM + Oé?CMG (IVwL(@)[3 + pll VT (we)]13)

(91)
So that, choosing oy < C%Wc and applying the bound on |V, (w;)|| we have:
1 2, 1o 1 2
EL(wi41) — L(we) < —§Oét||VwL(wt)H FCM + *Oét||PVwT(wt)H2 (02)
92
1
< —ga(l = #)[|VwLw,)|* + atCM + *C
Taking the total expectation, for a fixed «, we then have:
1 s 1 Ka
Ling = L(w1) < B [Lwics1)] — L(ws) < —5a(l— 1) Y [V Llw) | + 5 Ka?CM +25¢ (93)
t=1
Finally, we have that:
aCM F(wl) — Finf Koo aCM ¢
il L( 2 4
ZHV (w)||” = Ka(l - k) 1—I€+1—/€ (94)
O
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