

000
001
002
003

REDACBENCH: CAN AI ERASE YOUR SECRETS?

004 **Anonymous authors**
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

The ability of modern language models to easily extract unstructured sensitive information has made redaction—the selective removal of such information—an essential task for data security. However, existing benchmarks and evaluation methods for redaction are often limited to predefined categories of data like personally identifiable information (PII), or particular techniques like masking. To bridge this gap, we introduce RedacBench, a novel benchmark for a comprehensive evaluation of redaction capabilities, independent of specific domains or redaction strategies. Constructed from 514 human-written texts from individuals, corporations, and governments, along with 187 security policies, RedacBench measures a model’s ability to selectively remove policy-violating information while preserving the original text’s utility. We robustly quantify this performance using metrics derived from 8,053 inferable propositions, assessing both security—through the redaction of sensitive propositions—and utility—through the preservation of non-sensitive ones. Our experiments on various redaction strategies using state-of-the-art language models reveal that while more advanced models and strategies can increase security, maintaining utility remains a significant challenge. To facilitate future research, we publicly release RedacBench along with a web-based playground for custom dataset creation and evaluation at <https://redacbench.vercel.app/>.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in understanding and generating human-like text, learned from vast web-scale datasets, bringing transformative impacts across various sectors (Brown et al., 2020; Touvron et al., 2023). As LLMs are increasingly integrated into specialized domains such as finance, law, and healthcare to automate tasks like document summarization, information retrieval, and customer service, they are inevitably exposed to sensitive personal and organizational data. This exposure has raised significant privacy concerns, as LLMs are prone to memorizing and inadvertently leaking sensitive information from their training data (Carlini et al., 2019; 2021; Biderman et al., 2023).

Furthermore, the enhanced performance of LLMs has introduced a new data security threat. Whereas extracting personal information previously required access to specific databases or highly specialized expertise, the superior language processing capabilities of LLMs now enable the low-cost and effortless extraction and synthesis of sensitive information from vast amounts of unstructured text on the internet (Staab et al., 2024). Consequently, fragmented pieces of information scattered across the internet—such as online posts, comments, and emails—that were once overlooked have now been transformed into a rich repository of sensitive information, readily accessible and analyzable by virtually anyone through LLMs.

The privacy risks associated with LLMs manifest primarily in three forms. The first is training data extraction, where a model regurgitates memorized PII or trade secrets in response to specific prompts (Nasr et al., 2025). Recent studies have shown that such leakage can be induced through simple prompt manipulation or even malicious poisoning attacks, confirming the tangible nature of this threat (Panda et al., 2024). The second form is inference-time data leakage, which occurs in interactive applications like AI assistants or retrieval-augmented generation systems where sensitive user data is included directly in the prompt (Wu et al., 2024; Tang et al., 2024). In such scenarios, adversaries can employ techniques like prompt injection to extract sensitive information from the context (Zhang et al., 2025), posing a new dimension of security challenges. The third is the

054 risk of inferring and extracting sensitive information from publicly available text. Leveraging their
 055 superior contextual understanding, LLMs can infer sensitive attributes such as an individual's pro-
 056 fession, health status, and personal relationships with high accuracy, even from texts lacking explicit
 057 identifiers (Staab et al., 2024).

058 In response to these threats, various defense mechanisms have been proposed, including training
 059 with differential privacy (Yu et al., 2022), generating privacy-preserving prompts (Hong et al., 2024),
 060 and preventing information leakage in in-context learning (Wu et al., 2024). Among these, data
 061 sanitization—the process of detecting and redacting sensitive information from text—stands out
 062 as one of the most intuitive and practical approaches. This technique aims to handle not just ex-
 063 plicit identifiers like names and contact information, but also various forms of sensitive content,
 064 such as personal health conditions or confidential corporate discussions, that are embedded within
 065 the context. However, existing sanitization methods often rely on surface-level keyword or pattern
 066 matching, which makes them prone to missing *semantic sensitive information* and can excessively
 067 remove information, thereby degrading the utility of the text (Xin et al., 2024). The critique that
 068 current sanitization techniques may offer only a “false sense of privacy” highlights the urgent need
 069 for a standardized and rigorous methodology to evaluate the redaction capabilities of LLMs (Xin
 070 et al., 2024; Mireshghallah et al., 2024; Zhao & Zhang, 2025).

071 In this paper, we address this critical gap by proposing **RedacBench**, the first comprehensive bench-
 072 mark designed to evaluate the ability of LLMs to effectively redact diverse forms of sensitive per-
 073 sonal and organizational information embedded in text. While existing benchmarks have primar-
 074 ily focused on detecting the unintended generation of sensitive content (Zhang et al., 2025) or on
 075 narrowly defined domains such as PII (Staab et al., 2025), RedacBench is the first to provide a
 076 systematic evaluation of model capabilities. Our contributions are threefold:

- 077 • **A Novel Benchmark:** We introduce RedacBench, a new benchmark for robust evalua-
 078 tion of redaction capabilities, designed to be agnostic to specific domains and redaction
 079 methods. The benchmark includes 514 human-authored and manually curated source texts,
 080 along with 187 security policies (Section 2).
- 082 • **Baseline Performance Analysis:** Using RedacBench, we evaluate the performance of var-
 083 ious redaction strategies. Our findings reveal that while more advanced language models
 084 and strategies can enhance security, they face a significant challenge in preserving the util-
 085 ity of the text. We present these results as strong baselines for future research (Section 3).
- 087 • **An Interactive Playground:** We release a web-based playground that enables users to
 088 customize RedacBench datasets (including security policies, source texts, and propositions)
 089 and experiment with different redaction models and strategies, fostering further research in
 090 the community (Appendix A).

092 Our work aims to provide a standardized framework for validating the reliability of LLM-based
 093 redaction techniques. We believe that RedacBench will serve as a crucial tool for fostering research
 094 in this area and will offer essential guidelines for the safe and trustworthy deployment of LLMs in
 095 real-world applications.

097 2 BENCHMARK

100 2.1 TASK DEFINITION

102 In this study, we define the redaction task as selective removal of sensitive information from a source
 103 text in accordance with a given security policy. This approach is motivated by real-world scenarios
 104 where the criteria for what constitutes sensitive information vary by context, making it practically
 105 infeasible to explicitly enumerate all possible types. Therefore, by including a high-level ‘security
 106 policy’ as part of the input, our task definition faithfully reflects the variability and requirements
 107 of actual operational environments. The system is thus designed to take both a source text and a
 security policy as input to generate a redacted text that adheres to the policy (Figure 1).

Figure 1: Conceptual illustration of the RedacBench. First, the target solution performs redaction on the given text according to the specified security policy. Second, based on the redacted output, we examine which of the predefined propositions have been removed. Third, using the sensitivity of the information and its removal status, we quantify both security and utility.

2.2 EVALUATION FRAMEWORK

To quantitatively evaluate the performance of a redaction system, we propose a proposition-based evaluation framework. The evaluation process, illustrated in Figure 1, proceeds as follows:

1. **Redaction:** A redacted text is generated by providing the source text and the corresponding security policies as input to the system under evaluation.
2. **Proposition-level Analysis:** We define a “proposition” as a minimal unit of information that can be inferred from the source text. Based on the given security policy, all propositions derived from the source text are classified as either “sensitive” or “non-sensitive.” We then determine whether each proposition remains inferable from the redacted text and classify its state as either “preserved” or “removed.” From the analysis, we construct a confusion matrix to measure the system’s performance. The components are defined as follows:
 - True Positive: A non-sensitive proposition is correctly preserved (utility).
 - True Negative: A sensitive proposition is correctly removed (security).
 - False Positive: A sensitive proposition is incorrectly preserved (information leakage).
 - False Negative: A non-sensitive proposition is incorrectly removed (over-redaction).
3. **Performance Metric Calculation:** Using these categories, we define two primary metrics to serve as our key performance indicators:
 - **Security Score:** This metric measures the proportion of sensitive information successfully removed from the text, calculated as $\frac{TN}{TN+FP}$.
 - **Utility Score:** This metric measures the proportion of non-sensitive information preserved in the output, calculated as $\frac{TP}{TP+FN}$.

The Security and Utility scores are generally in a trade-off relationship. Therefore, a solution is considered to have superior performance if it achieves high values for both metrics, demonstrating a strong balance between information preservation and data protection.

2.3 DATASET CONSTRUCTION

The dataset developed for this study is comprised of two primary components: (1) a comprehensive set of security policies, and (2) a collection of pairs, each consisting of a source text and a list of propositions. Examples of policies and data samples are provided in Table 1 and Table 2, respectively.

The dataset is constructed through a meticulous four-stage procedure designed to ensure both relevance and quality:

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Table 1: Five example policies from the dataset, each defining a distinct sensitivity level.

Policies	Label
Instructor names must be kept confidential and not disclosed publicly without consent to protect privacy.	Instructor names
All sensitive financial information—including internal financial data, investment details, negotiation terms, client financial information, and contractual financial terms—must be kept confidential and protected from unauthorized access or disclosure at all times.	Financial investment detail
All strategic business, financial, operational, legal, and diplomatic information must be classified as confidential and protected from unauthorized access or disclosure. Access to such sensitive information is restricted to authorized personnel with a legitimate business need. Sharing or communication of strategic information outside the organization or with unauthorized individuals is strictly prohibited to prevent exposure and maintain corporate confidentiality.	Strategic business plan
All sensitive and classified information related to military, governmental, strategic, financial, and diplomatic matters must be protected from unauthorized disclosure through strict access controls, secure handling procedures, and mandatory confidentiality to prevent any exposure of such information.	Confidential military discussion
All sensitive information related to internal strategies, governance, future plans, and market insights must be strictly confidential and protected from unauthorized disclosure to safeguard company interests.	Management strategy revealed

Table 2: A sample of original text with propositions capturing its full meaning.

Original Text
Jim,
I would appreciate your help in locating financing for the project I described to you last week. The project is a 134 unit apartment complex in San Marcos. There will be a builder/developer plus myself and possibly a couple of other investors involved. As I mentioned last week, I would like to find interim financing (land, construction, semi-perm) that does not require the investors to personally guarantee. If there is a creative way to structure the deal, I would like to hear your suggestions. One idea that has been mentioned is to obtain a ‘forward commitment’ in order to reduce the equity required. I would also appreciate hearing from you how deals of this nature are normally financed. Specifically, the transition from interim to permanent financing. I could use a quick lesson in what numbers will be important to banks.
I am faxing you a project summary. And I will have the builder/developer email or fax his financial statement to you.
Let me know what else you need. The land is scheduled to close mid January.
Propositions
<ol style="list-style-type: none"> 1. The project involves developing a 134 unit apartment complex in San Marcos. 2. Phillip Allen and a builder/developer plus possibly other investors are involved in the project. 3. Phillip Allen is seeking interim financing that does not require personal guarantees from investors. 4. A financing structure using a ‘forward commitment’ is being considered to reduce required equity. 5. The land purchase for the project is scheduled to close mid January. 6. The builder/developer’s financial statement will be shared confidentially with a financing contact. 7. The project described is a 134 unit apartment complex. 8. The project is located in San Marcos. 9. One idea mentioned is to obtain a ‘forward commitment’ to reduce the equity required. 10. Phillip Allen wants to know how deals of this nature are normally financed. 11. Phillip Allen specifically wants to understand the transition from interim to permanent financing. 12. The land for the project is scheduled to close in mid January.

216 1. **Source Text Collection:** We first collect a diverse set of human-written texts originating
 217 from individuals, companies, and government sources. This step is crucial to ensure that
 218 our dataset covers a wide range of topics and real-world scenarios.
 219

220 2. **Proposition Extraction:** For each source text, we extract an exhaustive list of propositions.
 221 A proposition is defined as a minimal unit of factual information that can be inferred from
 222 the content.
 223

224 3. **Policy Formulation:** We identify propositions that could be considered sensitive under
 225 specific contexts or for certain entities. Based on these potentially sensitive propositions,
 226 we systematically formulate general security policies and add them to our policy set. In
 227 this case, if it overlaps with an existing policy, it is consolidated into a single policy. This
 228 bottom-up approach ensures that our policies are directly grounded in the data.
 229

230 4. **Violation Annotation:** Finally, each proposition extracted in Step 2 is carefully annotated
 231 with the specific security policies from the set that it violates. Propositions that do not
 232 violate any policy are left unannotated in this regard.
 233

234 To achieve both scalability in data generation and high-quality annotations, we employ a human-
 235 in-the-loop approach for steps 2, 3, and 4. Initially, a large language model is utilized to perform
 236 a preliminary pass of proposition extraction, policy formulation, and violation annotation. Subse-
 237 quently, the model-generated outputs are meticulously reviewed and refined by two expert annota-
 238 tors: an author with research expertise in AI privacy and security, and an external professional with
 239 over five years of experience working at a national university and an English-speaking global con-
 240 sulting firm. Both annotators were fully briefed on the data synthesis pipeline, and disagreements
 241 were resolved through discussion until consensus was reached to ensure the accuracy, consistency,
 242 and overall quality of the final dataset.
 243

244 **Original Texts.** To ensure sufficient diversity in the subjects of sensitive information, the source
 245 data for this study is collected from individual, corporate, and government entities. The origin and
 246 scale of each dataset are as follows:
 247

- 248 • **Individual:** 6,843 essays written by students enrolled in an open online course (Holmes
 249 et al., 2023).
- 250 • **Corporate:** Approximately 500,000 emails exchanged by employees of the Enron Corpo-
 251 ration (Cohen, William W., 2004).
- 252 • **Government:** 7,956 emails from former U.S. Secretary of State Hillary Clinton’s tenure
 253 (Kaggle, 2016).

254 From this source data, texts containing sensitive information are manually selected to construct a
 255 final benchmark dataset of 514 texts (36 from individual, 342 from corporation, 136 from govern-
 256 ment).
 257

258 **Propositions.** Rather than mechanically segmenting the source text, the 8,053 propositions are
 259 constructed as semantic units based on the overall context. In particular, our approach involves
 260 including implicit information that can be derived through contextual inference, even when not ex-
 261 plicitly stated in the original text. For example, if the source text mentions that the speaker attended a
 262 meeting at a specific company, this could be defined as the proposition, ‘The speaker is a member of
 263 that company.’ This method ensures that the data is designed to encompass not only the surface-level
 264 meaning of the text but also its underlying latent information.
 265

266 **Policies.** To reflect the complexity and diversity of real-world scenarios, policies are designed to
 267 be multi-layered, ranging from the specific and granular to the abstract and comprehensive. This
 268 design ensures that the dataset encompasses various levels of abstraction. Specifically, as shown in
 269 Table 1, the dataset includes both micro-level policies, such as ‘Instructor names,’ and macro-level
 270 policies, like ‘Strategic business plan.’

270 3 EVALUATION
271272 3.1 REDACTION METHODS
273

274 To demonstrate the utility and discriminative power of our proposed benchmark, we apply it to
275 evaluate the performance of three representative redaction methods. These methods are selected
276 to cover a spectrum of common redaction strategies: a fundamental technique, a state-of-the-art
277 method from the privacy domain, and a strategy that prioritizes security over utility. By evaluating
278 these diverse approaches, we demonstrate our benchmark’s ability to capture the nuanced trade-offs
279 inherent in the redaction task.

- 280 • **Masking:** As a widely-used fundamental approach, we evaluate a token-level masking
281 method. This technique operates by identifying and deleting specific words or phrases
282 deemed sensitive. Its performance on our benchmark serves to establish a foundational
283 performance level, highlighting the limitations of simple lexical removal.
- 284 • **Adversarial Redaction (AR):** We evaluate adversarial redaction, a sophisticated method
285 from the field of data anonymization (Staab et al., 2025). This technique leverages a lan-
286 guage model to first identify sensitive information through reasoning and then rewrites the
287 text accordingly. Evaluating this method allows us to assess our benchmark’s capacity to
288 measure the removal of not just explicit but also implicitly inferable information via ad-
289 vanced strategies like generalization.
- 290 • **Iterative Redaction:** The iterative redaction strategy involves repeatedly applying the
291 redaction process to its own output. This method allows for a progressive reduction in
292 information leakage, typically at the cost of text utility. Its inclusion in our evaluation is in-
293 tended to demonstrate how our benchmark quantifies the critical trade-off between security
294 and usefulness across multiple redaction cycles.

295 For each of these methods, we conduct experiments using language models of varying sizes. This
296 allows us to demonstrate how our benchmark can be used to analyze the impact of model scale on
297 redaction performance.

299 3.2 EVALUATION MODEL VALIDATION
300

301 In this study, we employ the GPT-4.1-mini model as an evaluator to determine whether propositions
302 inferable from an original text were eliminated in its redacted version. To ensure the reliability of our
303 evaluator, we assessed its performance by measuring both False Negative (FN) and False Positive
304 (FP) rates using a dataset of 8,053 propositions.

305 First, to measure the False Negative rate, we presented the model with original texts and their cor-
306 responding lists of true propositions. The model was tasked with assessing the veracity of each
307 proposition based on the text. A high FN rate poses a risk of erroneously concluding that informa-
308 tion has been successfully eliminated when it has actually been preserved. In our analysis, the model
309 incorrectly classified only 1.45% of the true propositions as false, demonstrating a high sensitivity
310 to identifying present information.

311 Second, we evaluated the False Positive rate to address the possibility that the judge might incor-
312 rectly conclude redacted information is still present. We defined the FP rate as the proportion of
313 propositions recognized as true even after all supplementary context had been removed. Upon eval-
314 uation, the model produced 211 false positives, corresponding to a rate of approximately 2.62%.
315 Consequently, our reported Security Scores may be slightly deflated compared to the true redaction
316 performance.

318 Since this evaluator bias appears uniform across models, the relative rankings and comparative con-
319 clusions drawn in our experiments remain unaffected.

321 3.3 RESULTS
322

323 We evaluated the redaction performance of nine popular language models of varying sizes and rea-
324 soning configurations (Table 3). In terms of the security metric (sensitive information removal rate),

324
 325 Table 3: Comprehensive data redaction capability scores across models and methods. Boldface
 326 denotes the best performance in each column for each metric.

327 328 329 330 331 332 333 334 335 336 337 338 339	Model	Masking		AR (iter 1)		AR (iter 2)	
		Security	Utility	Security	Utility	Security	Utility
gpt-5	38.9	80.2	72.3	48.7	77.1	45.6	
gpt-5-mini	41.8	75.8	63.4	57.2	80.9	37.6	
gpt-5-nano	38.5	82.1	51.9	71.5	58.2	64.8	
gpt-4.1	36.4	82.0	68.2	55.1	77.0	44.4	
gpt-4.1-mini	37.2	80.8	53.7	68.3	60.2	62.9	
gpt-4.1-nano	40.7	76.8	64.1	52.6	61.7	54.6	
gemini-2.5-flash	43.9	76.4	56.2	69.4	61.7	60.1	
gemini-2.5-flash-lite	35.9	85.1	52.2	70.6	60.2	62.1	
claude-sonnet-4	44.6	78.3	59.5	68.6	68.5	55.8	
qwen3-8b	37.1	79.3	46.5	75.2	57.4	64.2	
qwen3-4b-2507	51.6	72.8	63.5	59.1	75.8	44.4	

340
 341
 342
 343
 344
 345
 346
 347
 348 GPT-5-mini achieved the highest performance. Utilizing the adversarial redaction method with two
 349 iterations, it successfully removed 80.9% of all sensitive information. However, this high level of
 350 security significantly compromised utility, as only 37.6% of the non-sensitive information was pre-
 351 served.

352 An analysis of redaction methods reveals distinct performance patterns. With the masking method,
 353 we observed consistently similar performance across all model types. This suggests that the mask-
 354 ing technique may have reached its performance ceiling for redaction when leveraged by current
 355 language models.

356 In contrast, the adversarial redaction method showed that reasoning-enhanced models removed sen-
 357 sitive information at a significantly higher rate. This indicates a positive correlation: the higher a
 358 language model’s baseline performance, the more effectively it redacts sensitive information using
 359 this approach. Furthermore, we found that iterating the adversarial redaction process improves its
 360 efficacy. A notable exception was GPT-4.1-nano, which showed no performance gain from repeated
 361 applications, implying that the iterative refinement is ineffective if a model’s foundational capabili-
 362 ties are insufficient. Conversely, it was observed that the GPT-4.1-mini model, after seven iterations
 363 of the adversarial redaction method, achieved performance that slightly surpassed that of GPT-5—a
 364 larger, more capable, and more recent model with enhanced reasoning capabilities—which under-
 365 went two iterations (Figure 2b). This finding suggests that once a model’s performance exceeds a
 366 certain threshold, repeated iterations of a process can enable it to produce results comparable to, or
 367 even exceeding, those of a more powerful model.

368 Across all experiments, a clear trade-off between security and utility was observed (Figure 2a).
 369 When considering a balance between these two metrics, Claude-Sonnet-4 demonstrated the most
 370 favorable performance, consistently preserving a higher degree of utility for a given security level.
 371 Nevertheless, the performance gaps between the different models and methods were not substantial.
 372 This highlights the pressing need for novel redaction solutions capable of achieving high security
 373 while better preserving the utility of the original text.

374 Additionally, we observed that open-source models can achieve highly competitive performance
 375 when combined with more advanced redaction strategies. For instance, the recently released Qwen3-
 376 4B-2507 model attained results positioned between those of GPT-4.1 and GPT-4.1-mini, demon-
 377 strating that open-source models can significantly enhance redaction quality by leveraging state-of-the-
 art techniques.

Figure 2: Utility–security trade-off graphs. (a) For all reduction model and method pairs, higher security comes at the cost of lower utility. (b) Iterative adversarial reduction can achieve performance comparable to that of more capable models.

4 RELATED WORK

The field of text sanitization has evolved significantly, moving from targeted reduction of PII to addressing more nuanced, inference-based privacy threats. This evolution has been driven by both regulatory pressures and the growing capabilities of large language models.

Traditional Text Sanitization and PII Reduction. Initial efforts in text sanitization were primarily focused on the detection and removal of explicit PII, such as names, credit card numbers, and social security numbers, to comply with regulations like GDPR, HIPAA, and the CCPA. Early methods relied heavily on rule-based systems and Named Entity Recognition (NER). However, a critical limitation of these conventional methods is the assumption that sensitive information strictly corresponds to identifiable entities in the input text. As noted in recent literature, sensitive content in complex corporate and government documents is often defined by high-level security policies rather than fixed categories like names or addresses. Consequently, while NER-based approaches are effective for structured data, they lack the scope to capture broader, policy-driven notions of sensitivity and often degrade text coherence when simply removing entity spans (Albanese et al., 2023).

Advancements in LLM-Based Reduction. The advent of LLMs offered a more flexible approach compared to rigid entity masking. Models like BERT were leveraged for *zero-shot* reduction, using their contextual understanding to identify and substitute sensitive information without domain-specific training (Albanese et al., 2023). Recent frameworks, such as the “Adaptive PII Mitigation Framework” by Asthana et al. (2025) and the PRvL framework by Garza et al. (2025), have further refined this by aligning dynamic systems with diverse regulatory standards. Despite these advancements, most existing benchmarks still primarily evaluate the removal of entity spans. This contrasts with our proposition-based framework, which moves beyond simple removal to evaluate whether meaningfully sensitive information is preserved, removed, or generalized—strategies essential for maintaining utility in unstructured narratives.

Distinction from Model-Centric Privacy Frameworks. It is crucial to distinguish text sanitization from broader model-centric privacy frameworks such as Machine Unlearning and Differential Privacy (DP). While frameworks like machine unlearning focus on sanitizing model knowledge to prevent the memorization or regurgitation of training data, our work targets inference-time inputs and outputs. This distinction is vital for applications like AI assistants, where models encounter new sensitive data from users that was not present during training. Consequently, reduction serves as a complementary defense; even models equipped with perfect unlearning or DP protections require robust inference-time safeguards to safely handle sensitive user inputs. Furthermore, unlike traditional metrics that focus on token-level removal, our proposition-based evaluation aligns with this

432 inference-centric goal by measuring the removal of sensitive information while preserving context,
 433 providing a finer-grained view of privacy.
 434

435 **The Shift to Broader, Inference-Based Privacy Threats.** More recently, the focus has shifted
 436 from redacting explicit PII to mitigating the risk of inferring sensitive personal attributes. Staab
 437 et al. (2024) demonstrated that LLMs can infer a wide range of personal attributes—such as location,
 438 age, and income—from seemingly innocuous text, a task that was previously labor-intensive. This
 439 reveals a significant privacy threat where LLMs draw sophisticated inferences from unseen text.
 440 While Yukhymenko et al. (2024) addressed this with SynthPAI for personal attribute inference,
 441 RedacBench expands this scope further by addressing complex, policy-defined sensitivities in non-
 442 personal domains, filling a gap that PII-focused datasets cannot address.
 443

444 Other research has explored different facets of text sanitization. Beltrame et al. (2024) introduced
 445 RedactBuster to highlight information leakage from redacted documents, underscoring the need for
 446 robust evaluation. Similarly, Gusain & Leith (2025) proposed focusing on the information revealed
 447 by the text as a whole, rather than specific keywords. Our work resonates with these findings but
 448 provides a concrete benchmark for evaluating such holistic privacy preservation through logical
 449 propositions.
 450

5 DISCUSSION

451 **Impact.** This work introduces RedacBench, the first comprehensive benchmark for evaluating
 452 LLM-based text redaction. By providing a standardized framework to quantitatively measure the
 453 trade-off between security and utility, it establishes an essential foundation for researchers to objec-
 454 tively compare diverse techniques and guide future advancements. For industries like finance and
 455 healthcare, RedacBench serves as a practical tool to validate the safety of AI systems, enabling the
 456 management of risks that extend beyond simple PII removal to contextually inferred information.
 457 Furthermore, our benchmark provides an empirical basis for developing policies and standards for
 458 responsible AI and data privacy. Ultimately, RedacBench is a cornerstone for building and deploying
 459 trustworthy AI systems capable of handling sensitive information securely.
 460

461 **Limitations.** While RedacBench was designed to closely emulate real-world redaction scenarios,
 462 its scope has inherent limitations. First, regarding privacy guarantees, RedacBench relies on empi-
 463 rical verification rather than formal methods such as differential privacy. While formal guarantees
 464 offer statistical indistinguishability, applying them to unstructured text often severely degrades flu-
 465 ency and semantic meaning. In practical settings like legal or corporate communications, ensuring
 466 policy compliance—where sensitive facts are semantically removed while preserving the narrative—
 467 is often more relevant. Therefore, we adopt an adversarial approach using strong LLMs to simulate
 468 realistic inference attacks. While this does not provide a cryptographic guarantee, it establishes a
 469 practical lower bound on security; if a state-of-the-art adversary fails to infer the redacted informa-
 470 tion, it is effectively inaccessible in real-world deployment scenarios.
 471

472 Second, there is a potential for hallucination in the evaluation models. If an evaluation LLM has been
 473 pre-trained on the original source documents of our dataset, it may ‘recall’ the redacted information
 474 and incorrectly judge it as unredacted (Section 3.2). To fully mitigate this data contamination issue,
 475 the evaluation model must not have been exposed to the source texts. A future solution is to construct
 476 the dataset using only documents published after the knowledge cutoff date of the evaluation models.
 477

478 To facilitate community efforts in overcoming these limitations, we provide a interactive playground
 479 (Appendix A) with this study. We encourage researchers to use this tool to build new, high-quality
 480 evaluation datasets tailored to their specific needs.
 481

REFERENCES

482 Federico Albanese, Daniel Ciolek, and Nicolas D’Ippolito. Text sanitization beyond specific
 483 domains: Zero-shot redaction & substitution with large language models. *arXiv preprint*
 484 *arXiv:2311.10785*, 2023.

486 Shubhi Asthana, Ruchi Mahindru, Bing Zhang, and Jorge Sanz. Adaptive PII mitigation framework
 487 for large language models. *arXiv preprint arXiv:2501.12465*, 2025.

488

489 Mirco Beltrame, Mauro Conti, Pierpaolo Guglielmin, Francesco Marchiori, and Gabriele
 490 Orazi. RedactBuster: Entity type recognition from redacted documents. *arXiv preprint*
 491 *arXiv:2404.12991*, 2024.

492 Stella Biderman, Usvsn Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony, Shivan-
 493 shu Purohit, and Edward Raff. Emergent and predictable memorization in large language models.
 494 *Advances in Neural Information Processing Systems*, 36:28072–28090, 2023.

495 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
 496 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
 497 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
 498 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
 499 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
 500 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
 501 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
 502 ral Information Processing Systems*, volume 33, pp. 1877–1901. Curran Associates, Inc.,
 503 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfc4967418bfb8ac142f64a-Paper.pdf.

504

505 Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
 506 Evaluating and testing unintended memorization in neural networks. In *28th USENIX security*
 507 *symposium (USENIX security 19)*, pp. 267–284, 2019.

508

509 Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
 510 Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
 511 from large language models. In *30th USENIX security symposium (USENIX Security 21)*, pp.
 512 2633–2650, 2021.

513

514 Cohen, William W. Enron email dataset. Originally collected by the Federal Energy Regulatory
 515 Commission. Processed version maintained by Carnegie Mellon University, 2004. URL <https://www.cs.cmu.edu/~enron/>. Accessed: 2025-09-22.

516

517 Leon Garza, Anantaa Kotal, Aritran Piplai, Lavanya Elluri, Prajit Kumar Das, and Aman Chadha.
 518 PRvL: Quantifying the capabilities and risks of large language models for PII redaction. *arXiv*
 519 *preprint arXiv:2508.05545*, 2025.

520

521 Vaibhav Gusain and Douglas Leith. Improving privacy benefits of redaction. *arXiv preprint*
 522 *arXiv:2501.17762*, 2025.

523

524 Langdon Holmes, Scott Crossley, Harshvardhan Sikka, and Wesley Morris. Piilo: an open-source
 525 system for personally identifiable information labeling and obfuscation. *Information and Learn-
 526 ing Sciences*, 124(9/10):266–284, 2023. URL <https://www.kaggle.com/datasets/lburleigh/piilo-dataset>.

527

528 Junyuan Hong, Jiachen T. Wang, Chenhui Zhang, Zhangheng LI, Bo Li, and Zhangyang Wang.
 529 DP-OPT: Make large language model your privacy-preserving prompt engineer. In *The Twelfth*
 530 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Ifz3IgsEPX>.

531

532 Kaggle. Hillary clinton’s emails, 2016. URL <https://www.kaggle.com/datasets/kaggle/hillary-clinton-emails>. A version of the emails released by the U.S. De-
 533 partment of State, prepared for use on the Kaggle platform. Accessed: 2025-09-22.

534

535 Kyuyoung Kim, Hyunjun Jeon, and Jinwoo Shin. Self-refining language model anonymizers via
 536 adversarial distillation. In *The Thirty-ninth Annual Conference on Neural Information Processing*
 537 *Systems*, 2025. URL <https://openreview.net/forum?id=S1F2qhendd>.

538

539 Niloofar Mireshghallah, Hyunwoo Kim, Xuhui Zhou, Yulia Tsvetkov, Maarten Sap, Reza Shokri,
 540 and Yejin Choi. Can LLMs keep a secret? testing privacy implications of language models via
 541 contextual integrity theory. In *The Twelfth International Conference on Learning Representations*,
 542 2024. URL <https://openreview.net/forum?id=gmg7t8b4s0>.

540 Milad Nasr, Javier Rando, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A. Feder Cooper,
 541 Daphne Ippolito, Christopher A. Choquette-Choo, Florian Tramèr, and Katherine Lee. Scalable
 542 extraction of training data from aligned, production language models. In *The Thirteenth Interna-*
 543 *tional Conference on Learning Representations*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=vjel3nWP2a)
 544 [forum?id=vjel3nWP2a](https://openreview.net/forum?id=vjel3nWP2a).

545 Ashwinee Panda, Christopher A. Choquette-Choo, Zhengming Zhang, Yaoqing Yang, and Prateek
 546 Mittal. Teach LLMs to phish: Stealing private information from language models. In *The Twelfth*
 547 *International Conference on Learning Representations*, 2024. URL [https://openreview.](https://openreview.net/forum?id=qo21ZlfNu6)
 548 [net/](https://openreview.net/forum?id=qo21ZlfNu6)
 549 [forum?id=qo21ZlfNu6](https://openreview.net/forum?id=qo21ZlfNu6).

550 Robin Staab, Mark Vero, Mislav Balunovic, and Martin Vechev. Beyond memorization: Violat-
 551 ing privacy via inference with large language models. In *The Twelfth International Confer-*
 552 *ence on Learning Representations*, 2024. URL [https://openreview.net/](https://openreview.net/forum?id=kmn0BhQk7p)
 553 [forum?id=kmn0BhQk7p](https://openreview.net/forum?id=kmn0BhQk7p).

554 Robin Staab, Mark Vero, Mislav Balunovic, and Martin Vechev. Language models are advanced
 555 anonymizers. In *The Thirteenth International Conference on Learning Representations*, 2025.
 556 URL [https://openreview.net/](https://openreview.net/forum?id=82p8VHRsaK)
 557 [forum?id=82p8VHRsaK](https://openreview.net/forum?id=82p8VHRsaK).

558 Xinyu Tang, Richard Shin, Huseyin A Inan, Andre Manoel, Fatemehsadat Mireshghallah, Zinan Lin,
 559 Sivakanth Gopi, Janardhan Kulkarni, and Robert Sim. Privacy-preserving in-context learning with
 560 differentially private few-shot generation. In *The Twelfth International Conference on Learning*
 561 *Representations*, 2024. URL [https://openreview.net/](https://openreview.net/forum?id=oZtt0pRn01)
 562 [forum?id=oZtt0pRn01](https://openreview.net/forum?id=oZtt0pRn01).

563 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 564 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 565 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esibou, Jude Fernandes, Jeremy
 566 Fu, Wenying Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 567 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 568 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 569 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 570 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 571 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 572 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 573 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 574 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 575 2023. URL <https://arxiv.org/abs/2307.09288>.

576 Tong Wu, Ashwinee Panda, Jiachen T. Wang, and Prateek Mittal. Privacy-preserving in-context
 577 learning for large language models. In *The Twelfth International Conference on Learning Repre-*
 578 *sentations*, 2024. URL [https://openreview.net/](https://openreview.net/forum?id=x4OPJ71HVU)
 579 [forum?id=x4OPJ71HVU](https://openreview.net/forum?id=x4OPJ71HVU).

580 Rui Xin, Niloofar Mireshghallah, Shuyue Stella Li, Michael Duan, Hyunwoo Kim, Yejin Choi,
 581 Yulia Tsvetkov, Sewoong Oh, and Pang Wei Koh. A false sense of privacy: Evaluating textual
 582 data sanitization beyond surface-level privacy leakage. In *Neurips Safe Generative AI Workshop*
 583 2024, 2024. URL [https://openreview.net/](https://openreview.net/forum?id=3JLtuCozOU)
 584 [forum?id=3JLtuCozOU](https://openreview.net/forum?id=3JLtuCozOU).

585 Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
 586 Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, and Huishuai Zhang.
 587 Differentially private fine-tuning of language models. In *International Conference on Learning*
 588 *Representations*, 2022. URL [https://openreview.net/](https://openreview.net/forum?id=Q42f0dfjECO)
 589 [forum?id=Q42f0dfjECO](https://openreview.net/forum?id=Q42f0dfjECO).

590 Hanna Yukhymenko, Robin Staab, Mark Vero, and Martin Vechev. A synthetic dataset for personal
 591 attribute inference. *arXiv preprint arXiv:2406.07217*, 2024.

592 Qingjie Zhang, Han Qiu, Di Wang, Yiming Li, Tianwei Zhang, Wenyu Zhu, Haiqin Weng, Liu
 593 Yan, and Chao Zhang. A benchmark for semantic sensitive information in LLMs outputs. In
 594 *The Thirteenth International Conference on Learning Representations*, 2025. URL
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052 <a href="

594 Yunpeng Zhao and Jie Zhang. Does training with synthetic data truly protect privacy? In
 595 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=C8niXBHjFO>.
 596
 597
 598

599 A PLAYGROUND

600
 601 We provide an interactive web based playground for constructing and experimenting with
 602 RedacBench data, including source texts, security policies, and propositions. The playground is
 603 publicly accessible at:

604
 605 <https://redacbench.vercel.app/>
 606

607 This platform offers a range of functionalities to facilitate data creation and testing. The core features
 608 include, but are not limited to, the following:

- 609 1. **Source Text and Proposition Generation:** Authoring a source text and automatically
 610 generating a set of propositions that encapsulate its semantic content.
- 611 2. **Policy Management:** Creating custom security policies and assigning them to individual
 612 propositions on a per-proposition basis.
- 613 3. **Data Inspection:** Viewing a comprehensive list of created source texts and policies, along
 614 with their detailed information (e.g., word count, number of associated propositions).
- 615 4. **Redaction:** Generating redacted text from a source text, with support for both automated
 616 generation and manual editing.
- 617 5. **Automated Evaluation:** Automatically evaluating the quality of a redacted text based on
 618 the RedacBench evaluation metrics.
- 619 6. **Data Portability:** Importing and exporting the complete dataset—including source texts,
 620 policies, propositions, and redacted versions—in JSON format.

621 B INTERACTIVE REDACTION EXPERIMENT

622 While our original experiment used a static evaluation as a baseline, real-world redaction of-
 623 ten occurs interactively. To address this, we conducted an additional experiment simulating a
 624 context-evolving scenario:

- 625 1. Each text T was split into k sequential chunks (t_1, t_2, \dots, t_k) , roughly corresponding
 626 to sentences or short paragraphs.
- 627 2. The model acted as a multi-turn “readaction assistant”. At turn n , it received a chunk
 628 t_n along with the conversation history and produced a redacted output r_n .
- 629 3. Sequential outputs were concatenated $(r_1 \oplus r_2 \oplus \dots \oplus r_k)$ and evaluated with the standard
 630 proposition-based RedacBench metrics.

631 This experiment highlights the challenge of missing “forward context” in dynamic scenarios.
 632 Using GPT-4.1-nano for adversarial redaction, we observed a Security Score of **55.2** and a Utility
 633 Score of **60.9**, representing a notable drop in security compared to the static baseline (Security
 634 Score of 64.1 and a Utility Score of 52.6), as the model fails to identify sensitive information that
 635 requires context found only in later segments of the text.

641 C HALLUCINATION DETECTION

642 While our original Utility Score measures Recall (how much non-sensitive information from the
 643 original text remains), it does not penalize the introduction of new, false information. To bridge
 644 this gap, we applied a reverse-entailment check:

648
649
650

Table 4: Complementary utility scores of redaction outputs produced by GPT-4.1 using three different redaction methods.

651
652
653
654
655

Redaction Method	RedacBench	Similarity	Readability	Hallucinations
Masking	82.0	77.5	89.1	99.8
AR (iter 1)	55.1	80.2	94.8	99.2
AR (iter 2)	44.4	72.8	93.2	99.4

656
657

658

659

660

661

662

1. **Proposition Extraction (Redacted Text):** Instead of only looking at the original propositions, we extract a new set of propositions directly from the redacted text.
2. **Verification against Source:** We verify whether each of these new propositions is entailed by (i.e., present in or inferable from) the original source text.
3. **Hallucination Identification:** Any proposition found in the redacted text that is not supported by the original text is classified as a hallucination.

669

670
671
672

This enables us to compute a **hallucination rate**, which complements the existing utility score by penalizing unsupported additions to the text (e.g., pseudonymizing “Patti” to “Alice”). This extension provides a more complete evaluation by capturing both preservation (recall of true information) and faithfulness (avoidance of hallucinations).

We applied this analysis to the adversarial redaction method using GPT-4.1 and observed a hallucination rate of **3.36%** (150 out of 4,460 instances). These results indicate that language models can introduce unsupported information during redaction. Although the rate is relatively low, it still motivates future research on reducing such errors.

676

677

678

D COMPLIMENTARY UTILITY EVALUATION

680
681
682
683
684

while our proposition-based utility metric effectively quantifies the preservation of atomic facts, it may not fully capture broader semantic consistency. To provide a more holistic evaluation of utility, we have expanded our analysis to include complementary measures of semantic consistency using an LLM-as-a-judge framework. Specifically, we now compare the original and redacted texts along three dimensions:

685

686

687

688

689

690

1. **Semantic Similarity.** Evaluating preservation of overall meaning and intent beyond individual propositions.
2. **Readability.** Assessing fluency, coherence, and grammatical quality of the rewritten text.
3. **Hallucinations.** Detecting fabricated information introduced during redaction.

691

692

693

694

695

696

697

698

699

700

701

This LLM-as-a-judge framework follows recent practices and has been shown to correlate well with human evaluations (Staab et al., 2025; Kim et al., 2025). We evaluated the additional utility metrics of texts redacted using GPT-4.1 through three distinct redaction methods (Table 4). The results revealed several noteworthy characteristics. Semantic similarity decreases more gradually than our benchmark’s utility score. In other words, it is a less strict evaluation. As anticipated, readability suffered the most severe decline in the masking-based method. Finally, hallucination scores approached the maximum possible value for all three redaction approaches, severely limiting the metric’s ability to differentiate between methods.

We believe this addition, together with our proposition-based metric, offers a more comprehensive view of the trade-off between privacy and utility.

702
703 Table 5: Comparison of security scores between the weighted policy and the non-weighted policy.
704
705
706

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755		705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755			
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	Model	Masking	AR (iter 1)	AR (iter 2)			
		non-w. weighted	non-w. weighted	non-w. weighted	non-w. weighted		
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	gpt-5	38.9	38.3	72.3	71.7	77.1	76.6
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	gpt-5-mini	41.8	41.3	63.4	62.8	80.9	80.5
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	gpt-5-nano	38.5	37.5	51.9	50.9	58.2	57.4
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	gpt-4.1	36.4	35.7	68.2	67.6	77.0	76.5
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	gpt-4.1-mini	37.2	36.3	53.7	52.8	60.2	59.4
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	gpt-4.1-nano	40.7	39.9	64.1	63.5	61.7	60.9
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	gemini-2.5-flash	43.9	43.2	56.2	55.4	61.7	60.9
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	gemini-2.5-flash-lite	35.9	34.9	52.2	51.3	60.2	59.4
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	claude-sonnet-4	44.6	43.6	59.5	58.6	68.5	67.8
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	qwen3-8b	37.1	36.1	46.5	45.8	57.4	56.9
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	qwen3-4b-2507	51.6	50.7	63.5	62.7	75.8	75.4

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Table 6: Ceiling performance of RedacBench.

Version	Security	Utility
Optimal-1	62.8	85.2
Optimal-2	69.8	66
Optimal-3	72.6	57.5

E WEIGHTED POLICY EVALUATION

Macro-level violations (e.g., strategic business plans) can carry far greater consequences than micro-level ones (e.g., instructor names), and a robust benchmark should reflect this. To address this, we performed an additional analysis using a risk-weighted metric as follows:

1. **Risk Scoring.** Each of the 187 policies is assigned a severity score from 1 to 5, reflecting the practical impact of a violation. The distribution of severity score is 0, 3, 25, 71, 88 (0.0%, 1.6%, 13.4%, 38.0%, 47.1%).
2. **Weighted Security Score.** Model performance is recalculated so that redacting high-severity policies contributes more to the final score than lower-severity ones.

After applying the policy-specific weights, the overall security scores decreased (Table 5). This suggests that high-severity security policies include requirements that are inherently more difficult to satisfy. This perspective suggests a valuable avenue for future work: dynamically adjusting redaction strategies based on policy severity to maximize safety while preserving utility.

F CEILING PERFORMANCE ANALYSIS

Understanding what constitutes optimal redaction is essential for interpreting progress on RedacBench. To establish a clear standard, we manually redacted the dataset ourselves, optimizing for both security (maximum removal of sensitive propositions) and utility (maximum preservation of non-sensitive content).

Our findings show that manual redaction performs substantially better than all evaluated redaction methods (Figure 3a, Table 6). This large gap shows that the benchmark is far from saturated and that significant headroom remains for improving automated redaction systems.

Figure 3: Utility–security trade-off graphs. (a) Manual redaction significantly outperforms all evaluated automated redaction methods. (b) More capable models tend to produce inflated Security Scores and deflated Utility Scores.

Table 7: RedacBench scores of redacted outputs produced by GPT-4.1 across different evaluation models.

Evaluation Model	Masking		AR (iter 1)		AR (iter 2)	
	Security	Utility	Security	Utility	Security	Utility
gpt-5	86.6	36.8	92.6	29.4	96.6	18.6
gemini-2.5-flash	73.9	48.6	83.4	39.8	90.1	28.2
claude-sonnet-4.5	78.2	41.5	85.7	35.6	91.5	25.1
gpt-4.1-mini	36.4	82.0	68.2	55.1	77.0	44.4
gpt-4.1-nano	31.8	86.4	43.2	80.9	48.8	77.6

G EVALUATION MODEL ABLATION

To validate the reliability of GPT-4.1-mini as our evaluator, we conducted an ablation study comparing it against GPT-5, GPT-4.1-nano, Gemini-2.5-Flash, and Claude-Sonnet-4.5. We conducted the same experiments under identical settings—excluding the evaluation model itself—using the redacted outputs produced by GPT-4.1, in order to fairly compare performance with our original results.

Impact of Capability on Strictness. We observed a direct correlation between model capability and evaluation strictness. Larger models (e.g., GPT-5, Claude-Sonnet-4.5) applied excessively high thresholds for detecting inference, often classifying merely altered text as “removed.” This resulted in inflated Security Scores and deflated Utility Scores (Figure 3b, Table 7). GPT-4.1-mini demonstrated the optimal balance, avoiding over-strictness while maintaining sufficient reasoning capability to detect leaks that smaller models (e.g., GPT-4.1-nano) missed.

Consistency Across Model Families. Despite differences in absolute scores, the relative rankings of redaction methods remained consistent across all evaluators (Figure 3b, Table 7). Whether graded by the GPT, Gemini, or Claude families, the comparative performance did not change. This confirms that our choice of evaluator does not introduce family-specific bias and that the paper’s conclusions are robust to the specific model used.

H REDACTION SAMPLES

The redaction experiments conducted with GPT-4.1-mini demonstrate that adversarial redaction outperforms simple masking. Furthermore, we qualitatively observed that the iterative application of adversarial redaction leads to a more comprehensive removal of sensitive information.

810
811

Original text

812
813

Bob,

814
815
816
817
818
819
820

Regarding Patti Sullivan's contributions to the west desk this year, her efforts deserve recognition and a PBR award. Patti stepped up to fill the gap left by Randy Gay's personal leave. Patti held together the scheduling group for about 2 month's by working 7days a week during this time. Patti was always the first one in the office during this time. Frequently, she would be at work before 4 AM to prepare the daily operation package. All the traders came to depend on the information Patti provided. This information has been extremely critical this year due to the pipeline explosion and size of the west desk positions.

Please call to discuss cash award.

821
822

Phillip

823
824
825

Masking with GPT-4-mini (Security: 37.2% / Utility: 80.8%)

826
827

[Redacted]

828
829
830
831
832
833

Regarding [Redacted]'s contributions to the team this year, their efforts deserve recognition and an award. They stepped up to fill a gap left by another employee's personal leave and held together the scheduling group for about two months by working seven days a week during this time. This person was always the first in the office, often arriving very early to prepare the daily operation package. The information provided was critical this year due to significant events and the size of the team positions.

Please call to discuss cash award.

834
835
836

[Redacted]

837
838
839

Adversarial redaction 1 time with GPT-4-mini (Security: 53.7% / Utility: 68.3%)

840
841

Bob,

842
843
844
845
846

Regarding the employee's contributions to the team this year, their efforts deserve recognition and a performance award. The employee stepped up to cover additional responsibilities during a colleague's absence. They maintained critical scheduling and operational support throughout this period, demonstrating exceptional dedication. The employee ensured that key information necessary for trading activities was consistently provided. This has been especially important this year due to operational challenges and the scope of the team's responsibilities.

Please call to discuss recognition details.

847
848
849

Phillip

850
851

Adversarial redaction 2 times with GPT-4-mini (Security: 60.2% / Utility: 62.9%)

852
853

The manager,

854
855
856
857
858
859
860

Regarding the employee's contributions to the team this year, their efforts deserve recognition and a performance award. The employee stepped up to cover additional responsibilities during a colleague's absence. They maintained critical scheduling and operational support throughout this period, demonstrating exceptional dedication. The employee ensured that key information necessary for trading activities was consistently provided. This has been especially important this year due to operational challenges and the scope of the team's responsibilities.

Please call to discuss recognition details.

861
862
863

The supervisor

864

Adversarial redaction 3 times with GPT-4-mini (Security: 75.2% / Utility: 47.0%)

865

866

867

To the leadership ,

868

Regarding the team member's contributions to the team this year, their efforts deserve recognition and a performance award. The team member stepped up to cover additional responsibilities during a colleague's absence. They maintained critical scheduling and operational support throughout this period, demonstrating exceptional dedication. The team member ensured that key information necessary for trading activities was consistently provided. This has been especially important this year due to operational challenges and the scope of the team's responsibilities.

869

870

871

872

873

Please call to discuss recognition details .

874

The supervisor

875

876

877

878

879

I PROMPTS

880

881

The following prompts were used in this study.

882

883

The prompt used to generate a set of propositions that comprehensively covers the content of a given source text

884

885

886

887

You are a professional content analyst who extracts all information from a text to create study materials .

888

Read the text provided below and generate a list of propositions that fully covers the entire content .

889

Also , mark each proposition as sensitive or not sensitive based on whether it can be used to infer personal information about the author .

890

[Requirements]

891

1. **Comprehensiveness:** Do not miss even minor details turn everything into propositions , including the text 's key concepts , key figures , events , dates , statistics , reasons , and outcomes .
2. **Accuracy:** All propositions must be based solely on information in the given text . Never use external knowledge or make guesses .
3. **Format:** Organize it in the JSON format .

892

[Sensitivity Guidelines]

893

894

895

896

For each proposition , determine whether it is Sensitive or Not Sensitive according to the following criteria :

897

* Sensitive Proposition: The proposition can directly or indirectly reveal personal information (such as identity , private life details , location , contact information , financial data) or it contains/infers confidential information belonging to corporations , institutions , or governments (such as internal documents , strategies , operational details , or undisclosed decision-making) .

898

* Not Sensitive Proposition: The proposition reflects general knowledge , publicly available information , abstract conditions , or commonly known facts that are not tied to identifying personal data or organizational secrets .

899

Now , please start working with the text below .

900

[Text]

901

{text}

902

911

The prompt used to cluster similar security policies .

912

913

914

Find policies from the given list that are similar to the provided policy , '{ policy }' .

915

916

Policies:
{list of policies}

917

918 The prompt used to verify the truthfulness of each proposition against the given source text.
 919
 920
 921 You are a professional content analyst who checks the truthfulness of propositions
 922 based on a given text.
 923 Read the text provided below and evaluate each proposition for its truthfulness based
 924 on the content of the text.
 925
 926 **[Requirements]**
 927 1. **Truthfulness:** For each proposition, determine if it is true or false based
 928 solely on the information in the given text. Never use external knowledge or make
 929 guesses.
 930 2. **Format:** Organize your evaluation in the JSON format, with each proposition
 931 paired with a reasoning and a boolean indicating its truthfulness.
 932
 933 **[Truthfulness Evaluation Criteria]**
 934
 935 **True:**
 936 * When the information is explicitly stated in the text
 937 * When it is not directly mentioned but can be necessarily inferred from the context of
 938 the text
 939
 940 **False:**
 941 * When the information contradicts the text
 942 * When the information is not supported by the text at all and would require external
 943 knowledge to judge
 944
 945 Now, please start working with the text below.
 946
 947 # Text
 948
 949 {text}
 950
 951 ---
 952
 953 # Propositions
 954 {list of propositions}

955
 956 The prompt used to perform masking-based redaction on a given text according to a specified
 957 security policy.

958
 959 You are a professional content redactor who removes sensitive information from a text
 960 based on given security policies.
 961 Read the text provided by user and redact(masking) any information that violates the
 962 provided security policies.
 963 In doing so, you must preserve non-sensitive information as much as possible to
 964 maintain the text's usefulness and context.
 965
 966 # Policies
 967 {list of policies}
 968
 969 # Format
 970
 971 Reasoning first, then present the final redacted text at the end of your entire
 972 response, preceded by the phrase '# Redacted text'.
 973
 974 # Text
 975
 976 {text}

972
973 The prompt used to perform adversarial redaction on a given text according to a specified
974 security policy (Step 1).

975
976 Analyze the [TEXT TO ANALYZE] below based on the provided [SECURITY POLICY]. Identify
977 and list all pieces of sensitive information that violate the policy. For each
978 violation, provide the reason. Format your response as a bulleted list.
979
980 ---
981 **[SECURITY POLICY]:**
982 {list of policies}
983
984 ---
985 **[TEXT TO ANALYZE]:**
986 {text}

985 The prompt used to perform adversarial redaction on a given text according to a specified
986 security policy (Step 2).

988 You are a professional content redactor who carefully adapts small parts of the text to
989 make it less sensitive.
990 Review the [TEXT TO PROCESS] below. Find and remove all sensitive information matching
991 the contents listed in [INFERRED SENSITIVE INFORMATION].
992 Your modifications must follow these rules:
993 1. **Generalize, do not mask:** Replace sensitive details with general descriptions (e
994 .g., "John Doe" becomes "the employee"). Do not use placeholders like "[REDACTED]
995]".
996 2. **Minimize changes:** Keep the original text as intact as possible, modifying only
997 what is necessary.
998 3. **No new information:** Do not add any facts or details that were not in the
999 original text.
1000
1001 ---
1002 **[INFERRED SENSITIVE INFORMATION]:**
1003 {response from step 1}
1004
1005 ---
1006 **[TEXT TO PROCESS]:**
1007 {text}
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025