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Abstract

Hyperparameter optimization (HPO) is a crucial component of deploying ma-
chine learning models, however, it remains an open problem due to the resource-
constrained number of possible hyperparameter evaluations. As a result, prior
work focuses on exploring the direction of transfer learning for tackling the sam-
ple inefficiency of HPO. In contrast to existing approaches, we propose a novel
Deep Kernel Gaussian Process surrogate with Landmark Meta-features (DKLM)
that can be jointly meta-trained on a set of source tasks and then transferred effi-
ciently on a new (unseen) target task. We design DKLM to capture the similarity
between hyperparameter configurations with an end-to-end meta-feature network
that embeds the set of evaluated configurations and their respective performance.
As a result, our novel DKLM can learn contextualized dataset-specific similarity
representations for hyperparameter configurations. We experimentally validate
the performance of DKLM in a wide range of HPO meta-datasets from OpenML
and demonstrate the empirical superiority of our method against a series of state-
of-the-art baselines.

1 Introduction

Hyperparameter optimization (HPO) is an essential open problem in machine learning (ML) due
to the black-box nature of methods’ empirical performances as a function of their hyperparame-
ters. The major challenge lies in the computational infeasibility of training and evaluating a large
sample of hyperparameters in order to identify the best generalization performances. As a result,
transfer learning lends itself as a promising direction for improving the sample efficiency of HPO
methods [45, 24, 42].

Prior approaches for transfer learning in HPO rely on exploring existing evaluations on a pool of
datasets where the model under investigation is evaluated. The similarity between datasets is often
captured via features describing their characteristics (a.k.a. meta-features), such as descriptive statis-
tics of dataset features [20, 45], or landmark measures in the form of the accuracies gathered from
a set of basic classifiers (nearest neighbors, decision trees, SVMs, etc.) on the datasets [26, 7].
A recent trend highlights the potential of learning parametric meta-feature extractors for tabu-
lar datasets [12], which are further meta-trained [9] to improve the HPO transferability to new
datasets [13].

Unfortunately, typical transfer learning from a set of unrelated source tasks suffers from the negative
transfer phenomenon [37]blue, which implies a poor generalization performance on target tasks that
are dissimilar to the source tasks, according to a predefined dissimilarity measure, e.g. similarity
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of response curves. This can happen, for example, when a model is learned jointly across tasks
without task-specific attributes. To resolve the negative transfer of HPO performance predictors
(a.k.a. surrogates) we introduce a novel direction that conditions Gaussian Process (GP) surrogates
in Bayesian Optimization on the meta-features of datasets. In that manner, we can transfer knowl-
edge only from similar datasets, and hence conditioned on the similarity of meta-features. However,
in contrast to ad-hoc dataset meta-features that are hand-crafted by domain experts, we propose a
novel architecture for deep GP kernels [39] that are enriched with novel end-to-end neural network
components that generate meta-features only from the tuples of past hyperparameter configurations
and their evaluated performances. Our meta-feature network is a set-based neural network that is
invariant to the permutation/sequence of past hyperparameter evaluations.

We jointly train Deep Kernel Gaussian Process surrogate with Landmark Meta-features (DKLM)
through HPO meta-learning [42]. To validate the empirical performance of our method we present
extensive results on a large-scale benchmark that involves 16 different search spaces and 101 datasets
from OpenML for a total of 3.4 million hyperparameter evaluations [27]. Detailed experiments
against a series of traditional HPO methods, as well as recent transfer HPO baselines, demonstrate
the superiority of meta-learning the initialization of DKLM. Overall, we make the following contri-
butions:

• Introduce the first paper that tackles the negative transfer phenomenon in Bayesian HPO,
by conditioning GP surrogates on meta-features, i.e. on dataset characteristics;

• Propose an end-to-end deep GP which implicitly learns networks that generate meta-
features, with no ad-hoc inductive bias from experts on manually designing meta-features;

• Demonstrate the empirical superiority of our method on a very-large-scale experimental
protocol (3.4 million hyperparameter evaluations), against a large number of baselines.

2 Related Work

Hyperparameter optimization (HPO) has been extensively studied over the past decade for improv-
ing the performance of machine learning models beyond simple search techniques [15, 3]. Non-
transfer learning solutions often define a probabilistic surrogate that estimates the true hyperpa-
rameter response surface using Gaussian Processes [28], Bayesian Neural Networks [31, 32], or
tree-based models [11, 2]. Hyperparameters are then selected via an acquisition function [41] and
the process is reiterated with the new set of observations until a specified budget is exhausted, e.g.
runtime or number of trials.

HPO is further expedited when defined within the context of transfer learning, i.e. by leveraging
related tasks (or datasets) to improve the generalization over unseen tasks. Transfer learning for HPO
has been observed by modeling tasks jointly [34, 47, 24, 29], or through some weighted-combination
of the surrogates [30, 45, 6]. Other directions include pruning the hyperparameter search space [43,
25], or learning to initialize the surrogate by identifying good initial hyperparameters [44]. Apart
from learning a transferable surrogate, recently, transferable acquisition functions [46, 36] have
also been proposed to replace engineered acquisition functions. The success of meta-learning for
domain adaptation has also been investigated for HPO. [42] explore few-shot Bayesian Optimization
by learning a deep kernel Gaussian Process surrogate across a set of tasks to quickly adapt to new
a target task. Similarly, [13] learn a shared neural network surrogate jointly coupled with a meta-
feature extractor defined over the dataset itself.

Meta-features [35], or dataset characteristics, have also been widely adopted in HPO algorithms
for warm-start initialization [8, 45] or as additional attributes to better marginalize the surrogate on
individual tasks [1]. Nevertheless, extracting meta-features requires direct access to the datasets,
which might be difficult in real settings where only the meta-dataset is available. In this paper,
we propose to extract landmark meta-features from existing evaluations [18, 33] in an end-to-end
fashion using a deep Gaussian kernel approach.
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3 Preliminaries

3.1 Hyperparameter Optimization

We denote by D = {(xi, yi)}ni=1 a task of interest, such that xi ∈ X ⊆ Rn represents a hyperpa-
rameter configuration in the domain of a (bounded) hyperparameter search space for some model
under investigation. Furthermore, let yi = f(xi) + ε be the response of an unknown black-box
function f := X → R+, with ε as an additive i.i.d Gaussian noise with some homoscedastic vari-
ance σ2. Typically, y represents a metric of interest that should be optimized to obtain better model
generalization, e.g. validation loss. The objective of hyperparameter optimization is then to find the
optimal hyperparameter such that x∗ = argminx∈X f(x) given a fixed budget T of trials. HPO
is commonly treated as sequential decision-making process, where a surrogate model ŷ : X → R
is iteratively fit to the history Ht := {(xi, yi)}ti=1 of evaluated hyperparameters and a policy (or
acquisition function) A : (X × R)∗ → X is used to select the next candidate which minimizes the
expected hyperparameter response. Among the existing acquisition functions, expected improve-
ment is widely adopted [21].

3.2 Deep Kernel Gaussian Processes

Given a training task D = {(xi, yi)}ni=1, the response can be modeled using a Gaussian process
(GP), i.e. as a multivariate Gaussian distribution, such that y ∼ N (m(X), k(X,X)). A GP is
a non-parametric approach that defines a prior over functions directly, and is defined by its mean
function, m, and kernel function k. Given some observed data points, it is possible to compute the
posterior over these functions to approximate unobserved data points as[

y
f∗

]
∼ N

(
m(X),

(
Kn K∗
KT
∗ K∗∗

))
(1)

with Kn = k(X,X | θ) + σ2
nI, K∗ = k(X,X∗ | θ), and K∗∗ = k(X∗, X∗ | θ). The mean and

covariance of the posterior predictive distribution is then estimated as

E[f∗ | X, y,X∗] = KT
∗ K

−1
n y, cov[f∗ | X,X∗] = K∗∗ −KT

∗ K
−1
n K∗ (2)

The standard approach of fitting GPs is to optimize the weights of the kernel function, e.g. squared
exponential kernel, θ. Nevertheless, these engineered kernels are often employed under false as-
sumptions [5], which leads to sub-optimal performances.

Recently deep kernel learning [40] has emerged as a powerful extension that leverages the represen-
tative capacity of non-linear function approximation, e.g. neural networks, and facilitates learning
the kernel directly. Specifically, we denote by φ : X → RN a mapping from the domain to a latent
space which serves as an input to the kernel, such that:

Kdeep(x, x
′ | θ, w) = K(φ(x,w), φ(x′, w) | θ) (3)

where w represents the parameters of φ. The weights θ and w are then jointly optimized for maxi-
mizing the marginal likelihood [42].

4 Deep Kernel Gaussian Process with Landmark Meta-features

Inspired by landmark meta-features [26], which are typically estimated by measuring the response of
given datasets to machine learning algorithms, we propose a novel deep kernel GP that is conditioned
on task-specific landmark meta-features. However, instead of computing meta-features through ad-
hoc approaches, we introduce a novel parametric meta-feature extractor network that is integrated
into the kernel function of a GP and subsequently meta-learned over a set of source tasks together
with the parameters of the GP kernel. In that manner, we learn meta-features that describe a set
of tasks in terms of minimizing the estimation of the tasks’ response functions. By adding the
task-specific information of the meta-features, the GP surrogate can infer a more accurate response
surface on a new task based on similar source tasks that share similar meta-features. Therefore, our
method is the first to tackle the negative transfer phenomenon for Bayesian HPO.
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4.1 Landmark Meta-Feature Networks

We propose a simple idea to learn landmark meta-features by learning a deep representation of the
evaluated set of hyperparameter-response pairs as part of a deep kernel Gaussian process. With
the success of set-based algorithms [16, 48, 17] for function approximation, we propose to use a
Deepset [48] formulation that provides a fixed-size vector representation from the dynamic set of
observations. Although other methods have been developed for set-based function estimation, we
focus here on deepsets because they have already been shown to perform well for learning meta-
feature in task-agnostic settings [12] as well as for hyperparameter optimization [13].

Suppose that we are given a collection of data points {(xi, yi)}ni=1 where x ∈ X is an observed
hyperparameter and y ∈ R its corresponding response. We denote by Ht−1 := {(xi, yi)}t−1i=1 an
associated set of data points that have been observed prior to xt. Furthermore, we formulate the
proposed meta-feature network as:

φ(x,Ht−1, w) = φ1
(
[x, φ2(Ht−1;wφ2

)]; wφ1

)
, (4)

s.t. φ2(Ht−1;wφ2
) = g

(
1

t− 1

t−1∑
i=1

f ([xi, yi]; wf ) ; wg

)
(5)

where [ ] symbolizes standard concatenation, φ2 : (X × R)∗ → RN and φ1 : X × RN → RM
are parametric neural networks with respective weights w, and where (X × R)∗ represents the set
of evaluated hyperparameter and their responses. With this formulation, we ensure that the rela-
tionship of the covariates and the responses in Ht−1 is properly encoded, and thus φ is conditioned
on these latent representations. It is also important to note that φ2 is permutation invariant, i.e.
φ2(Ht−1) = φ2(π(Ht−1)), with π := (X × R)∗ → (X × R)∗ as a random permutation func-
tion. This is critical, as the ordering of the data points in Ht−1 should not affect the landmark
meta-features. Additionally, given φ2(Ht−1), this information about the marginal distribution of the
meta-features can be encoded with the specific attribute x which in turn allows the deep kernel GP
to be marginalized over individual tasks given the context, and thus transfer (joint) learning becomes
easier with minimal overhead.

4.2 Meta-learning our Deep GPs

The parameters θ and w are optimized jointly by maximizing the following log marginal likelihood:

argmax
θ,w

log p (y | x,H; θ, w) = argmax
θ,w

Ed∼U(1,...,D) log p (yd | xd,Hd; θ, w) (6)

∝ argmin
θ,w

Ed∼U(1,...,D) yTdK
−1
d yd + log | Kd | (7)

s.t. Kd,t,t′ := K
(
φ
(
xd,t,Ht−1d ;w

)
, φ
(
xd,t′ ,Ht

′−1
d ;w

)
; θ
)

By using established practices [42, 23], we can optimize Equation 7 in terms of w, θ via stochas-
tic gradient descent (SGD), that is proven to maintain convergence guarantees [4]. We direct the
interested reader to the prior work for more details on optimizing the parameters of deep GPs [40].

Given the diverse number of tasks, which vary in the number of available data points, we propose
to jointly learn the shared surrogate via first-order meta-learning [22]. Meta-learning has found
resounding success in the research community as an initialization scheme [9, 42, 13], which allows
for fast adaption to new domains. blueConsequently, the meta-trained model resides on a joint
minimum across all the source tasks, such that given limited information about the new (unseen)
target task, it can converge faster to the new task’s local optima. In this direction, we show the
pseudocode of our meta-learning optimization in Algorithm 1.

5 Motivation

Meta-features help to model the posterior uncertainty. To motivate our approach, we present
an ablation of the effect of our deep GP kernel with meta-features, compared to the same deep
GP kernel without meta-features (i.e. Ours vs. FSBO [42]). We created a synthetic meta-dataset
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Algorithm 1: Meta-learning DKLM via REPTILE [22]
1: Require: training dataset E ; kernel parameters θ, network parameters w; learning rate η; inner

update steps v; meta-batch size n, batch size b.
2: while not converged do
3: t ∼ U ([Tmin, Tmax])
4: D1, . . . , Dn ∼ U ([1, . . . , D])
5: for i = 1 to n do
6: Sample t− 1 data points to formHt−1 ∼ Di
7: Sample batch B := {(xi, yi)}bi=1 ∼ Di

8: θi ← θ ;wi ← w
9: for j = 1 to v do

10: Define as L the objective function of Equation 7
11: θi ← θi + η∇θL
12: wi ← wi + η∇wL
13: Update θ ← θ + η 1

n

∑n
i=1 (θi − θ)

14: Update w ← w + η 1
n

∑n
i=1 (wi − w)

Figure 1: (top) Sequential model-based optimization of an unseen sine wave using our approach.
(bottom left and middle) Our fitted surrogate after 3 trials, compared to FSBO after 3 trials given the
same initial seeds. (bottom right) Correlation between amplitude and landmark meta-features.

of K = 50 tasks in the form of randomly sampled sinusoidal functions fk(x) = a(k) sin(x +
b(K)), k ∈ {1, . . . ,K} by drawing each a(k) ∼ U(0.1, 5) and b(k) ∼ U(0, 2π). Furthermore, we
meta-learn our deep GP on these source functions and then transfer the surrogate as an initialization
for a new sinusoidal curve (with new parameters a, b) as shown in Figure 1 (top). We show the
comparison of our surrogate with meta-features after 3 trials (for a total of 8 data points, including
5 initial configurations) to an FSBO deep GP that has been meta-trained identically. We notice that
our surrogate (bottom row, leftmost plot) computes a better posterior variance compared to FSBO
(bottom row, middle plot). The effect of the superior modeling of the uncertainty leads to better
exploration in a Bayesian Optimization setup, and consequently to better empirical accuracies of the
discovered hyperparameters (as will be shown in Section 6).

Meta-features capture task characteristics. We postulated that our proposed meta-features can
capture task characteristics. To illustrate the argument, we create another simpler collection of
K = 50 sinusoidal functions fk(x) = a(k) sin(x), k ∈ {1, . . . ,K} by drawing each a(k) ∼
U(0.1, 5). As these sine waves change only in terms of the amplitude parameter a, then if we meta-
train our meta-feature network with a 1-dimensional (1D) output layer from these source functions,
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it must strongly learn to correlate the 1D meta-feature with the sinusoidal amplitude a. As can
be seen in the rightmost plot of the bottom row in Figure 1, this is exactly the case. In this plot,
the y-axis shows 1D meta-feature values computed from only 5 random pairs of configurations and
responses (x, f(x)) from one random task, and the x-axis shows the amplitude of that respective
task. Although our meta-feature networks have no design bias in terms of modeling sinusoidal
functions, they are perfectly able to extract a latent representation of the amplitude, based on the
end-to-end meta-learning of the deep GP for approximating random observations on the sine waves.

6 Experiments

Our experimental protocol is designed to primarily address one simple research question: Do deep
GPs with our meta-feature networks outperform state-of-the-art HPO algorithms in the trans-
fer and non-transfer learning settings?

6.1 Meta-dataset and Baselines

We evaluate our approach on HPO-B-v3, a new hyperparameter optimization benchmark designed
for comparing black-box HPO methods [27]. The benchmark contains a collection of 935 black-box
tasks for 16 hyperparameter search spaces (algorithms) evaluated on 101 datasets and divided into
predefined training, validation, test splits. Following the same experimental protocol specified at the
HPO-B benchmark, we compare our approach to the following large set of 10 HPO baselines:

1. Random Search [3];

2. GP [28] is a hyperparameter tuning strategy that relies on a Gaussian Process as a surro-
gate model with squared exponential kernels (Matern 5/2 kernel) with automatic relevance
determination;

3. DNGO [31] utilizes a neural network to extract adaptive basis function of hyperparame-
ters, which in turn are fed to a Bayesian linear regression model to generate a posterior
distribution;

4. BOHAMIANN [32] is based on Bayesian neural networks that are trained via a stochastic
gradient Hamiltonian Monte Carlo;

5. DGP [23] fits a deep kernel Gaussian process as a surrogate;

6. TST-R [45] is an ensemble approach where the Gaussian process surrogate of the target
task is weighted with surrogates of the training datasets based on the ranking similarity of
the evaluated hyperparameters;

7. RGPE [6] is another ensemble approach, similar to TST-R, which estimates the weights
by optimizing a ranking loss between the surrogates of the training datasets and that of the
target task;

8. ABLR [24] is a multi-task Bayesian linear regression approach that optimizes a shared
feature extractor across the training datasets as an initialization strategy for the target task;

9. GCP+Prior [29] utilizes a Gaussian Copula process [38] trained jointly on the training
tasks, where a quantile-transformation is applied on their respective responses. The pre-
trained process is used as parametric prior for the target dataset;

10. FSBO [42] uses deep Kernel Gaussian processes [23] to estimate the response of the target
dataset. The parameters are initialized via meta-learning the joint response surface over the
training datasets.

In a nutshell, our experimental protocol based on HPO-B is a large scale one by the standards of the
prior papers, as it involves 10 baselines, 16 search spaces (algorithms whose hyperparameters we
tune), 101 datasets, and totally 935 black-box tasks containing 6.3 million evaluations.

6.2 Implementation Details

We implement the Deep Kernel Gaussian Process using GPyTorch 1.5 [10] with a Matern 5/2 kernel.
As described in Equation 4, DKLM is composed of two modules, φ := φ1 ◦ φ2. The parameters
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of the network have been selected based on the performance on a held-out validation set. Function
f is 4 dense layers with 32 hidden units and ReLU activation functions, whereas g is 1 dense layer
with 32 hidden units. Finally, φ1 is 4 dense layers with 32 hidden units and ReLU activation. All
parameters of the Deep Kernel are estimated by maximizing the marginal likelihood. We achieve
this by using gradient ascent and Adam [14] with a learning rate of 0.001 and batch size of 64 with
t ∈ [2, 100].

6.3 HPO Results and Discussion

We start by comparing non-transfer HPO methods to our deep GPs with meta-features DKLM (RI)
that are randomly initialized (no meta-learning). As depicted in Figure 2, DKLM (RI) outperforms
the baselines after 100 hyperparameter trials in terms of both the mean normalized regret and the
mean rank metrics. We also notice how the performance improves gradually with the increasing
number of trials, indicating the impact of the posterior variance modeling of our method (Section 5)
as more observations are present on the black-box responses.

Figure 2: Aggregated comparisons of normalized regret and mean ranks across all search spaces for
the non-transfer learning HPO methods on HPO-B-v3

Afterwards, we demonstrate the comparison of state-of-the-art transfer against our method in Fig-
ure 3. DKLM outperforms the rest of the baselines with lower mean normalized regret and lower
mean rank. The superiority of landmark meta-features also becomes evident after a larger number
of trials (more than 50) .

Figure 3: Aggregated comparisons of normalized regret and mean ranks across all search spaces for
the transfer learning HPO methods on HPO-B-v3

To further inspect the results we show the performance of DKML and all other baselines in the se-
lected individual search spaces of Figure 4. We notice primarily that meta-learning the initialization
in DKLM improves the general performance in most cases. Nevertheless, we notice in 4796 that
effect of transfer learning is not evident, as DKLM (RI) and Deep Kernel GP are better than the
meta-initialized variants, DKLM, and FSBO respectively. Still, landmark meta-features prove yet
again that they are effective in a single task setting.
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Figure 4: Normalized regret comparison of transfer learning HPO methods on selected benchmarks
from HPO-B-v3

Figure 5: 2D illustration of meta-features extracted from each task in 8 selected search spaces. For
each task, we sample 100 sets of 5 data points to extract landmark meta-features. We reduce the
dimensionality of the meta-features into a 2D representation via TSNE [19].

6.4 End-to-End Landmark Meta-features

To motivate the importance of landmark meta-features, we illustrate in Figure 5 the 2D latent dimen-
sions of the landmark meta-features for every test task in the 16 spaces of HPO-B-v3. Each point
on the graph represents a set of meta-features extracted from 100 randomly sampled data points, i.e.
t = 100, from the individual tasks after meta-initialization of the weights of DKLM. We observe
that the same color-coded meta-features, i.e. belonging to the same task, lie generally within the
vicinity of each other, and distant from other tasks. As pointed out by [12], any meta-feature ex-
tractor should be able to preserve inter-and intra-dataset similarity, a property that is evident here.
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7 Limitations

Despite the fact that our method significantly reduces the time for fitting Machine Learning, we
caution practitioners against overtuning their model for a large number of configuration trials, only
to get a very small improvement in accuracy, unless it is absolutely necessary from a business need.

8 Conclusion

In this paper, however, we propose DKLM as a simple yet effective method to better condition deep
kernel Gaussian Processes on tasks. Inspired by landmark meta-features, we design a set-based
meta-feature extractor that captures the interaction between the available hyperparameters and their
respective responses, and consequently generates distinct task-specific attributes. DKLM is meta-
learned on a set of source tasks in an end-to-end fashion to jointly approximate the response surface
over the shared hyperparameter and landmark meta-feature space. We show in a battery of experi-
ments the significance of landmark meta-features, outperforming state-of-the-art HPO baselines in
non-transfer and transfer learning settings.

Ethics Statement

In our work, we use only publicly available data without privacy concerns. Furthermore, our algo-
rithm reduces the overall time for fitting machine learning algorithms, therefore, saving computa-
tional resources and yielding a positive impact on energy consumption.

Reproducibility Statement

We promote reproducibility as detailed below:

• We use only publicly available datasets.

• All our baselines are publicly available and provided by the HPO-B benchmark [27].

• We clearly describe our method in Section 4 and provide implementation details in Sec-
tion 6.2.

• Finally, we plan to make the source code of our method publicly available.
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