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Abstract

Topic models help users understand large docu-
ment collections; however, topic models do not
always find the “right” topics. While classical
probabilistic and anchor-based topic models
have interactive variants to guide models to-
ward better topics, such interactions are not
available for neural topic models such as the
embedded topic model (ETM). We correct this
lacuna by adding an intuitive interaction to
ETM: users can label a topic with a word, and
topics are updated so that the topic words are
close to the label. This allows user to refine
topics based on their information need. We
evaluate our method through a human study,
where users can relabel topics to find relevant
documents. We find that using our method, user
labeling improves document rank scores, help-
ing to find more relevant documents to a given
query when compared to no user labeling.

1 Topic Models Need Help

Topic modeling is an unsupervised machine learn-
ing method for analyzing a set of documents to
learn meaningful clusters of related words (Boyd-
Graber et al., 2007). Despite decades of new mod-
els that purport to improve upon it, the most popular
method remains Latent Dirichlet Allocation (Blei
et al., 2003a, LDA), which is two decades old.

This venerable model is still the workhorse for
those who use unsupervised analysis to discover
the structure of document collections in digital hu-
manities (Meeks and Weingart, 2012), bioinformat-
ics (Liu et al., 2016), policitical science (Grimmer
and Stewart, 2013), and social science (Ramage
et al., 2009b). However, if you look at the com-
puter science literature, topic modeling has been
taken over by neural approaches (Zhao et al., 2021),
exemplified by the embedded topic model (ETM),
which amalgamates topic models with word em-
beddings (Dieng et al., 2020). We review LDA and
ETM in Section 2.

So what explains this discrepancy? A sceptic
would posit that there is not sufficient evidence
to support the claims that neural topic models are
substantially better either in terms of runtime, ease-
of-use, or on human-centric methods (Hoyle et al.,
2021). We are sympathetic to these arguments, and
we discuss them in detail at the end of this paper
(Section 7).

In addition to these legitimate concerns, there
are also functional lacunae: abilities “classic” topic
models have that neural models lack. Neural mod-
els are often a “take it or leave it” proposition: if
the results do not match what you want, a user
(particularly a non-expert in machine learning) has
little recourse.

In contrast, the probabilistic topic modeling lit-
erature has a rich menu of options to improve topic
models: incorporating rich priors, incorporating
syntactic information, or structural priors from co-
variates (Mcauliffe and Blei, 2007; Griffiths et al.,
2004; Boyd-Graber and Blei, 2008). Richer interac-
tions are also possible through tree-based priors and
through spectral methods (Hu and Boyd-Graber,
2012; Arabshahi and Anandkumar, 2017). Un-
fortunately, these improvements are not currently
available for neural topic models.

In an effort to expand the options that neural
topic models have and fill in the lacunae between
probabilistic and neural models. Our goal is to
extend the neural topic modeling method, ETM—
making it interactive—to give users the capability
to change the topics to fit their request or needs
better.

ETM improves upon LDA by introducing topic
embeddings, where each topic embedding is a dis-
tributed representation in the semantic space of
words, inducing a per-topic distribution over the
vocabulary. This is in contrast to traditional topic
models, where each topic is a full distribution over
the vocabulary. Here, to use ETM interactively—
based on the topic label from the user—we embed



Task: Dengue outbreak in Asia
Request: What countries are seeing an outbreak?

No topic labeling

After topic labeling

Topic 0: ‘dengue’, ‘vaccine’, ‘sanofi’,
‘dengvaxia, ‘phillipines’, ‘vaccination’
Topic 1: ‘virus’, ‘countries’, ‘new’, ‘ac-
cording’, ‘dr’, ‘pandemic’

Topic 2: ‘time’, ‘get’, ‘however’, ‘go-
naives’, ‘haiti’, ‘town, ‘stud’

Topic 0: ‘dengue’, ‘vaccine’, ‘sanofi’,
‘dengvaxia’, “phillipines’, ‘vaccination’
Topic 1: ‘virus’, ‘countries’, ‘new’, ‘ac-
cording’, ‘dr’, ‘pandemic’

Topic 2: ‘india’, ‘genotype’, ‘denv’,
‘asian’, ‘study’, ‘singapore’

Table 1: (Right) The closest words to the different topic embeddings after running ETM. While the first two topics
are related to the task/request, Topic 2 is not. (Left) shows the updated Topic 2 after moving the topic embeddings

towards the word “india".

the label in the embedding space and move the
corresponding topic embedding closer to the la-
bel. This adjusts the center of the topic embedding:
throwing out unrelated words, prioritizing words
that are “close” to the users’ label.

There have been many previous works for inter-
actively labeling probabilistic topic models, which
humans already do post-process. For example,
UTOPIAN (Choo et al., 2013), enables users to in-
teract with the topic model and steer the result
in a user-driven manner, such as topic merging
or document-induced topic creation. Our work,
in contrast, introduces a way of improving topics
through labeling in a natural way that is typically
done a posteriori. We call this method Interactive
Embedded Topic Modeling or I-ETM.

We conducted a human study to demonstrate the
efficacy of our interactive labeling method over
base ETM. Additionally, if a user has a specific task
when running a topic model on a corpus, our in-
teractive labeling method qualitatively helps users
quickly identify documents relevant to their infor-
mation needs. While I-ETM can be used in any
setting where topic modeling is useful, our method
can be especially helpful in an urgent setting where
relevant documents need to be quickly identified,
giving the users the ability to direct the model to
the most relevant documents for their request.

2 The Best of Both Words: Neural Word
Knowledge and Bayesian Informative
Priors

This section reviews topic models: how they are
useful to practitioners, the shortcomings of proba-
bilistic and neural topic models, and motivate our
attempt to ameliorate this with embedding-based
interactions.
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Figure 1: The topic and word embeddings that corre-
sponds with Table 1 before and after the labeling of
Topic 2. The topic embedding moves towards a new
cluster of word embeddings after a label is used.

2.1 Latent Dirichlet Allocation

Topic models are exemplified by latent Dirichlet
allocation LDA (Blei et al., 2003b). Given a large
collection of documents and an integer parame-
ter K, topic models like LDA find the K topics that
best describe the collection.

LDA posits a generative story for how the data
came to be and uses probabilistic inference to find
the best explanation for the dataset (Griffiths and
Steyvers, 2004a). While we do not fully recapit-
ulate the LDA generative story here—our focus is
on neural models after all—the key is that one part
of the story is a distribution over words for each
of the K topics. Often, one of the first steps of
using the output of a topic model is to name the



topics. Either by selecting top words through a
Markov chain Monte Carlo algorithm (Griffiths
and Steyvers, 2004b; Hofmann, 2017) or through
manual generation of descriptive topics (Mei et al.,
2006; Wang and McCallum, 2006). This is com-
mon especially in the social sciences, where topics
are given sentences to describe the documents that
make it up such as "topic is associated with articles
on the life and works of Goethe" (Riddell, 2012).

For probabilistic models, however, this is not
the end of the story. The Bayesian framework—
through the use of informed priors—encourages
the incorporation of expert knowledge into inter-
active topic models. This can either represent a
dictionary (Hu et al., 2014b), word lists from psy-
chology (Zhai et al., 2012), the needs of a business
organization (Hu et al., 2014a). This feedback to
a model helps correct word sense issues, match a
user’s information needs, or reflect world knowl-
edge and common sense.

Of course, one could move to a fully supervised
model (Blei and McAuliffe, 2007), where every
training document has a topic label. But this re-
quires substantially more interaction with the user
than giving feedback on a handful of topics—full
supervision requires hundreds or thousands of la-
beled examples.

But these interactive models are not without
their faults. First, they’re slow; probabilistic
inference—whether with MCMC methods or varia-
tional inference—struggles to update in the seconds
required to satisfy the best practices of an interac-
tive application. Second, while one of their goals
is to incorporate the knowdge of users, they com-
pletely ignore the vast world knowledge available
“for free” from representations trained on large text
corpora. Our next model incorporates this world
knowledge through word embedding vectors that
learn this representation through the corpora, how-
ever it replaces the Bayesian priors and lacks the
interactivity of probabilistic models.

2.2 Embedded Topic Modeling

The embedded topic model (Dieng et al., 2020,
ETM) takes advantage of these representations by
associating each topic with an embedding. In ad-
dition, each token in the vocabulary also has a L-
dimensional embedding. These embeddings can be
learned by the model or pre-trained word embed-
dings may be used. Like traditional topic models,
each document has a vector connecting it to the

K latent topics. While a traditional topic model
would have a full distribution over the vocabulary,
in ETM the k" topic is a vector aj, € RV—just
like words in the embedding space. ETM induces
a per-topic distribution over the vocabulary from
that representation. More concretely, ETM induces
this distribution from a log-linear model that takes
the inner product of the word embedding matrix p
and the k*" topic embedding vector oy

8 = softmax (pTak> . (1)

ETM assigns high probability to a word v in topic &k
if its representation is close to the topic embedding:
In the next section, we take advantage of this by
allowing users to adjust the topic embedding by
assigning a label to a topic.

3 Interactive Embedded Topic Modeling

Why is changing the labeling of a topic model a
good way for interaction? Previous topic models
do not have explicit topics. This can lead to situa-
tions where documents are associated with topics
that they should not be (Ramage et al., 2009a) or
topics that just do not make sense (Newman et al.,
2010). Also, they require users to manually an-
alyze the topics found to then use labels such as
the “Business topic”. Non-technical users also use
a similar process when using topic models: they
inspect the topics, find the topics relevant to their
use case, and label them accordingly. Thus, since
labeling is a natural way people have already been
interacting with topic models, we use labeling to
both improve topics and help guide the model to
relevant topics for the users.

This could look like say for a humanist, instead
of giving topics sentence descriptions a posteriori,
labels such as "works of Goethe" can actually be
used to improve the model itself.

Topic models can be used in time-sensitive situ-
ations such as identifying key areas that need relief
supplies through social media postings (Resch
et al., 2018; Zhang et al., 2021). Table 1 details
an example of why our labeling method can help
improve topics in these types of situations. The
scenario and scenario specific questions, as well
as the data used is from a dataset that focuses on
disaster relief situations (Mckinnon and Rubino,
2022).

In this case, the corpus is from an information re-
trieval (IR) query for the given scenario of “Dengue
outbreak in Asia”. Also there is the question of



Vocab Size Coherence Diversity F1
2565 0.19 0.81 0.86
ET™M 3572 0.17 0.85 0.85
10830 0.11 0.92 0.76
Interactive 2565 0.14 0.84 0.93
ETM 3572 0.10 0.88 0.89
10830 0.10 0.95 0.77

Table 2: Topic coherence, topic diversity, and classification accuracy for varying vocabulary sizes for regular ETM
and our interactive ETM. While the F1 scores drop as the vocabulary size increases, our method outperforms ETM in

terms of topic diversity and F1 score.

“What countries are seeing an outbreak?” which
gives a user more specific information to find re-
garding the given scenario.

After running I-ETM, the left side of the table
shows the top three topics and their corresponding
words. The first two topics have words relevant
to the scenario and question, such as “dengue”,
“virus", and “vaccine" (“dengvaxia” is the name of
the vaccine created by “sanofi"). However, the third
topic is less relevant, with words such as “gonaives"
which is a commune in Haiti. While dengue, a
mosquito-borne virus, might be present in Haiti,
the scenario is focused on Asia. So perhaps a user
knows there has been an outbreak in India, they are
able to label Topic 2 (chosen to be least relevant
to the scenario/question) with a word that might
bring forth more relevant documents to the request,
such as “india". This shifts the Topic 2 embedding
towards the word embedding for “india" and now
the nearest words that make up the new topic help
to focus on documents more related to Asia.

3.1 Adjusting topic embeddings

As discussed above, ETM induces a topic distribu-
tion from word representations and a topic embed-
ding (Equation 1). To make the topic modeling
interactive, we allow for the users to adjust the un-
derlying embedding for each topic, thus “moving”
the topic closer to the word embeddings they de-
sire. We will discuss what this looks like in terms
of users’ actions in a moment, but for the moment
we assume that this can be expressed as a vector

R = A, — i) + (1= V@ @
where azld is the topic embedding generated by
the model and wy, is the word embedding associ-
ated with the topic the user inputs. That is, if the
user wants a topic of food, the topic embedding is
moved toward the word embedding corresponding

to food. The weight of adjusting the topic embed-
ding towards the new label, can be tuned through
the parameter A, which determines how close the
topic embedding is moved.

Following the example in Table 1, in (Figure 1)
the topic and word embeddings are shown before
and after the adjustment of Topic 2. We can see
the words surrounding Topic 2 before adjusting the
label, at first read do not seem to be relevant to
the task or request. After the labeling of Topic 2,
we see the topic embedding, is close to the words
"india", "singapore", and "asian", which are more
relevant to the request and could bring forth more
relevant documents.

3.2 Cross-lingual topic modeling

While 1-ETM adds interactivity to a neural-based
topic model and improves the relevancy of docu-
ments, our model initally, like ETM lags behind
the state-of-the-art in cross-lingual capabilities.
(Bianchi et al., 2020) found that replacing the tradi-
tional bag-of-words (BOW) input for contextualized
embeddings improved the cross-lingual capabilities
of their neural topic model. We follow a similar
structure, replacing the BOW input with pre-trained
multilingual representations from SBERT (Reimers
and Gurevych, 2019).

4 Findings

4.1 Training details

For all the results presented in this paper, our model
was trained using 4 NVIDIA RTX2080ti The 1-
ETM model was trained for 200 epochs using 20
topics. The ADAM optimizer is used with a learn-
ing rate of 0.005.! The rest of the details can be
found in the appendix. For our human study, we
trained a model using only 5 topics. This was due

'we followed the other default parameters in the original
paper and can be found in our code as well.



Language Sentence Predicted Topics
EN Philippines halts sale of dengue vaccine... dengue, vaccine, sanofi, dengvaxia
ES Filipinas suspende la venta de la vacuna... dengue, vaccine, sanofi, dengvaxia
EN Flood torrents devastate Peru... rains, peru, heavy, floods
FR Des torrents d’inondations dévastent le Pérou... rains, peru, heavy, floods
EN The earthquake caused buildings to collapse... earthquake, rubble, quake, aug
IT Il terremoto ha causato il crollo di edifici... earthquake, rubble, quake

Table 3: Predicted topics for English documents translated into various languages. With the addition of multilingual
embeddings, I-ETM is able to predict similar topics across languages.

to not wanting to overwhelm users with a lot of
topics and the limited number of documents in the
dataset.

4.2 Cross-lingual capabilities

While the focus of this paper is the interactivity of
our model, Table 3 demonstrates the cross-lingual
capabilities of I-ETM. The predicted topics for dif-
ferent English sentences and their corresponding
translations are shown. I-ETM is able to predict
similar topics for the same sentence in different
languages. Continuing with our running example
of using our model in disaster relief situations, hav-
ing the capability to group documents in different
languages with understandable representative top-
ics is vital for quick and effective responses. It is
important to note, that since our formulation was
adapted from (Bianchi et al., 2020), this is done in a
zero-shot setting. The model is not trained on docu-
ments in the other languages, this capability is just
due to the pre-trained multilingual embeddings.

4.3 Topic coherence and diversity

Topic coherence is an automated method for eval-
uating the semantic similarity of top words in a
given topic. We measure the normalized Pointwise
Mutual Information (NPMI). Given a set vectors of
the top words in a topic, {wy, wa, ..., wy }, the PMI
is

p (wi’ wj)
p(wi)p(w;)
NPMI is just an extension of PMI, where the vectors
are weighted (Aletras and Stevenson, 2013).

Since (Dieng et al., 2020) showed improvements
in topic coherence and diversity over LDA, to check
if our method negatively affects them, we looked
at coherence, diversity, and F1 scores for varying
vocabulary sizes between ETM and I-ETM. Topic
coherence drops with our method, but diversity
and F1 scores are higher (Table 2). This effect is

PMI(w;, w;) = logy

dataset dependent. For Wikipedia, adjusting six of
the topics to have distinct labels for classification
results in a more diverse topic words. However,
coherence typically improves with more general
clustering topics, since it measure co-occurence of
words in the documents with the topic words. So,
with distinct topics, this can result in lower topic
coherence.

In contrast, the documents in the BETTER dataset
(Table 1 and Figure 1) are curated to be related to
disaster situations. In this case, when topics are
labeled to better fit the request at hand, the topic
words tend to have more overlap, since the request
is so specific. With the BETTER dataset, I-ETM
actually results in a decrease in topic diversity and
an increase in topic coherence. In either situation
it is important to note, that topic coherence has
been found to be a poor metric for topic modeling
evaluation (Hoyle et al., 2021). We report scores
for coherence and diversity since this is the current
standard for topic model evaluations.

5 Human Study

To validate the efficacy of I-ETM, we recruited par-
ticipants to test our model in finding more relevant
documents for different scenarios and information
needs. Information retrieval tasks are an intuitive
way to measure the success of our method, since
they involve finding relevant information specific
to a query. Comparing the scores from these scenar-
ios, before and after labeling, is used to verify that
user labeling brings forth more relevant documents.
We find users do relabel at least one topic on aver-
age and the labeling does improve ranking scores
on a common information retrieval algorithm.

5.1 Setup

To conduct this study, we recruited 20 participants
through the online platform Prolific, whom were
given one hour to complete the task. Our study is
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Figure 2: The increase of total document ranking score across all scenarios with the number of new documents

associated with the new labeled topics

set up as follows:

1. Our model I-ETM is used to generate topics on
a dataset related to disaster relief situations?

2. Participants are shown an information need
with topics generated by our model. After
consideration, they have the opportunity to
label topics in a way they deem best

3. After labeling topics, they are asked to select
a few documents that they believe best answer
the information need

For each user we collected the topic informa-
tion and document distribution before and after
the human interaction. Then following the algo-
rithm commonly known as BM25 (Robertson et al.,
1994), an information retrieval ranking function.
We compare the estimated relevancy of topics be-
fore and after the human interaction. BM25 works
by using a bag-of-words retrieval function that
ranks a set of documents based on query terms
present in the document. Formally speaking, given
a set of keywords q1, g2, ..., g, from a query, @, the
score function is defined as:

score(D, Q) =
we chose the BETTER disaster relief dataset mentioned
throughout the paper since it has documents sorted into differ-
ent scenarios with questions already given.

f(gi, D) - (k1 +1)
Fgi D)+ ki -(1—b+b- 12
3)
where f(g;, D) is the number of times g; appears
in D, |D| is the number of words in D, 7 is the
average document length, and k1, b are the term
frequency and document length scaling factors, re-

spectively.

S IDF(g)-
=1

5.2 Results

In Figure 3 we see the average BM25 document
ranking scores for each question averaged over the
20 users. We show the scores for the topics that
were changed, before and after the users made the
change. This shows that on average, changing the
topic led to more representative documents being
shown (when looking at up to the first 5 documents
for each topic). In the case of Q2 and Q9, no Before
update bar is present because some topics initially
had no documents clustered under that topic. We
believe that due to the limited size of the dataset,
a few topics covered a majority of the documents,
causing some topics to have no documents clus-
tered to it.

To understand how non-technical users interact
with our topic model, we kept track of the average
number of topic changes per question, shown in
Table 4. Across all questions there were 1.24 topic
changes. While there was no expected number of



topic changes, we believe a lower average could be
due to a few reasons. First, a topic label must be a
word that is present in the model vocabulary, so if
a user tried to label a topic with a word not in the
vocabulary, they were alerted of that. Secondly, if
the user was not familiar with topic models (which
we had no requirement for technical experience,
so this was most likely the case), it’s possible they
had a hard time coming up with good topic labels.
We see the best case of this on Q/0, where the
average number of topic changes was only 0.40,
with many users not changing any topics at all.
However, for this question, users on average made
3.15 attempts at relabeling a topic, indicating that
users had difficulty finding a representative topic
within the vocabulary.

Additionally, we calculated the average rank of
the relevant documents chosen by the users, scored
using the BM25 algorithm. Since only up to the
first five most relevant documents for each topic
were shown, this gives insight to how well users are
able to choose relevant documents after labeling
any topics. In Table 4 the ranks are shown for each
of the 10 questions, with an average rank of 8.7
across all questions. With each question having 50
documents, we see that users are able to select on
average documents in the top 20% of most relevant
documents. Due to there being a time restraint
and some documents being quite long, we believe
these ranks would improve even more if users had
more time. However, we wanted to limit the time
to mirror a real-life situation where a user might
need to be both effective and efficient.

Figure 2 shows how over the course of the study,
as the user labels topics for more scenarios, the
overall document ranking score increases. This is
demonstrating how for a given corpus, by labeling
topics for different questions, one can incremently
increase overall document relevancy. This figure
also shows the average number of new documents
associated with the new topics that the user labels.
A high number of new associated documents, does
not necessarily correlate with a larger increase in
document ranking score, as some low ranked docu-
ments could pull down the rest.

6 Related Work

Neural topic models With the recent develop-
ments in deep neural networks (DNNS, there has
been work to leverage these advancements to in-
crease performance of topic models. One of the
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Figure 3: Average BM25 document ranking scores for
each of the 10 questions averaged, over the 20 users.

most common frameworks for neural topic models
(NTMS), described in (Zhao et al., 2021), as VAE-
NTMS. Much research was focused on adapting
VAE’s for topic modeling; (Zhang et al., 2018; Sri-
vastava and Sutton, 2017) focus on developing dif-
ferent prior distributions for the reparameterization
step of VAE, such as usung hybrid of stochastic-
gradient MCMC and approximating Dirchelt sam-
ples with Laplace approximations. VAE-NTM also
were extended to work with different architectures,
(Nallapati et al., 2017) developed a sequential NTM
where the model generates documents by sampling
a topic for one whole sentence at a time and uses a
RNN decoder. ETM and therefore, I-ETM use these
advancements in VAE to update the neural model
parameters.

Interactive topic modeling. Interactive labeling
of topics has been thoroughly explored for prob-
abilistic topic models. Works involving labeling
topics through images using neural networks, us-
ing a sequence-to-sequence model to automatically
generate topics, or using unsupervised graphical
methods to label topics (Aletras and Mittal, 2016;
Aletras and Stevenson, 2014; Alokaili et al., 2020).
(Pleple, 2013) designed an interactive framework
that allows the user to give live feedback on the
topics, allowing the algorithm to use that feedback
to guide the LDA parameter search. (Smith et al.,
2017) compared labels generated by users after
seeing topic visualizations with automatically gen-
erated labels. (Hu et al., 2014a) provides a method
for iteratively updating topics by enforcing con-
straints. (Mei et al., 2007) make the task of label-
ing into an optimization problem, to provide an
objective probabilistic method for labeling. But
there has yet to be work that extends this iterative
process to neural-based topic models in an intuitive
and natural sense such as I-ETM. There has been



Ql Q2 Q3 Q4

Q5 Q6 Q7 Q8 Q9 QIlo

Average# 1.85 145 2.0 0.82
topic

changes

1.0 105 125 195 0.65 040

Average 425 11 6
rank of
relevant

docs

137 94 13

325 725 36 11.6

Table 4: Tabular view of averages across different metrics from human study. "Average # of topic changes" is the
average number of topics that users gave a new label for each of the 10 questions. "Average rank of relevant docs"
is the average rank of the documents selected as most relevant by the users (lower is better).

extensive work in the area of anchor-based topic
modeling—where a single word is used to identify
a topic. (Lund et al., 2017) present "Tandem An-
chors" where multi-word anchors are used to inter-
actively guide topics. (Yuan et al., 2018) developed
a framework for interactively establishing anchors
and alignment across languages. (Dasgupta et al.,
2019) introduces a protocol that allows users to
interact with anchor words to build interpretable
topic.

Automatic topic modeling For a similar purpose,
but through a different process, many works have
sought to automatically generate labels. (Alokaili
et al., 2020) where they re-rank labels from a large
pool of words to label topics in a two-stage method.
(Lau et al., 2011) uses top terms from titles and
subwords from Wikipedia articles to rank and label
topics based on lexical features. (Mao et al., 2012)
exploit the parent-sibling relationship of hierarchi-
cal topic models to label the topics.

Cross-lingual topic modeling. (Mimno et al.,
2009) were the first to introduce a multilingual
topic model using LDA with Polylingual Topic
Model. With many works in multilingual topic
modeling to follow (Liu et al., 2015; Hao and
Paul, 2018). But few works focus on cross-lingual
topic modeling, with enables cross-lingual rep-
resentation transfer to model topics across lan-
guages. (Heyman et al., 2016) develop C-BiLDA,
a cross-lingual LDA model, which outperforms
BiLLDA (De Smet and Moens, 2009) and does not
assume different language corpora share a common
topic distribution. However, these works typically
require extensive additions to the topic models to
get good performance, where the methods we fol-
low take advantage of the advancements in pre-
trained multilingual embeddings from large lan-

gauge models.

7 Conclusion and Future Work

In this work, we introduced a method for users to
interactively update topics given by neural topic
models. While there have been previous efforts
to improve probabilistic topic modeling through
labeling, this is the first work to our knowledge that
allows interactive updating of neural topic models
to improve the found topics. Especially in real-
world situations, such as disaster relief, the ability
to improve topics through labeling allows users to
tailor the topics to their specific needs.

The interactivity can help classification accuracy
without having a significantly negative (if at all)
effect on topic coherence and diversity. In recent
years, many works such as contextualized topic
models (Bianchi et al., 2020), have taken advantage
of large language models by using the pretrained
multilingual embeddings from SBERT (Reimers
and Gurevych, 2019) to predict the topic distribu-
tions. Adapting this method for our own model
is shown to work well even in the zero-shot cross-
lingual setting, bringing a neural-based interactive
topic model into the cross-lingual space. Addition-
ally, through a user study, we verified that giving
users the ability to label topics improves perfor-
mance on downstream information retrieval tasks,
validating that more relevant documents are being
found.

To take this work even further, we believe adding
the ability to guide the training of topic models
by interactive labeling throughout the training pro-
cess would greatly improve upon this presented
method. Similar work has been done in the proba-
bilistic space, however, we leave this extension in
the neural-based architectures to future work.



Limitations

In this work we sought to solve a key limitation
in traditional topic models— guiding the topics
of a model in a way that is relevant to the user.
While we believe we provided an effective frame-
work for interactively updating topics in a neural
topic model, it does not come without limitations.
Along the lines of what it means to "help" identify
more relevant topics, (Hoyle et al., 2021) discusses
the limitations of coherence, an automatic metric
for topic model evaluation. Topic coherence is
an automatic metric that is not validated by hu-
man experiments and thus its validity of evaluating
topic models is limited. While our method is an
attempt to improve interpretability of topic models,
it still suffers from many of the problems that topic
models in general do. Topic models do not con-
form to well-defined linguistic rules and due to the
non-compositionality of labels, from a linguistic
viewpoint, can be viewed as not actually modeling
topics (Shadrova, 2021).

We recognize that the study we conducted had
limitations, which need to be considered in con-
junction with our results. First, the average number
of topic changes per question is low, an average of
1.24 across all questions. Users seem to be most
likely to make one topic change and then choose
relevant documents. This could be due to a few
reasons; lack of knowing another good topic la-
bel or believing sufficient documents were brought
forward after only one label.

Second, while topics are meant to be representa-
tive labels of the corpus, users tended to use words
directly in the query or general task, treating it
more as a keyword match. While this is not how
topic models are meant to be used and most likely
due to a lack of knowledge about topic models, this
process did work in most cases at improving the
relevancy scores for the questions.

Finally, the BM25 requires a query to calculate
the scores. We used the scenario and correspond-
ing question as the query (removing stopwords),
however a variation in query could lead to different
BM25 scores. While this does not change the fact
that labeling topics on average improved BM25
scores, it means a good query is required to effec-
tively rank documents.

Ethical Considerations

The data that we used for the experiments in this
paper was all human gathered by others and our-

selves. If I-ETM was to be used in a real-word situ-
ation, where identifying key documents or tweets
about a time-sensitive issue was paramount, any
failures in the system could result in a negative
outcome if the wrong information is disseminated.
We went through the appropriate IRB pipeline to
receive approval for our human conducted study.
The users were paid based on the recommendation
of the Prolific platform, which bases its’ recom-
mendation based on the time of the study and other
studies. No personal idenficiation information was
collected from the users, so there poses no threat
to the participants of exposure of personal informa-
tion.
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A Datasets

We used the BETTER dataset and a curated
Wikipedia dataset.> To preprocess the data, we
removed English stopwords and used the 0.01 and
0.85 as the minimum and maximum document fre-
quency, respectively.

3https://github.com/forest-snow/mtanchor_demo
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B Models

We used the PyTorch implementation of ETM to
build our code off of.* We used an embedding
space size and rho size of 300 and a hidden layer
size of 800. The rest of the hyperparameters are
the default and can be found in the original code or
our own.

C Human Study Interface

We provide a sample page of the human study in-
terface that participants saw. After a few pages of
instructions and example scenarios, the user is give
a set of questions to choose from and each question
brings this screen (Figure 4) with different informa-
tion. The general topic and corresponding question
are shown, as well as a small reminder of the in-
structions. Users see the different topics with topic
words, the the space to enter a new label. Addition-
ally, all the associated documents are shown with
dropdown bars, where the user can read the whole
document. Finally, there are boxes to check for the
relevant documents.

D Code

The code will be publicly made available on our
Github page.

“https://github.com/Iffloyd/embedded-topic-model
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Human Assisted Al Topic Modeling

General topic: FireEye, hack

Question: Find information about the 2020 hack of FireEye and who might have been responsible.

Directions: First, relabel any topics with labels that you believe would be more relevant to the question. Second, after making the label changes (if any) please select the documents you feel are
most helpful to answer the question.

Topic 1: million
Document 2
New label: |[submit |
O Relevant
Document 4
O Relevant
Topic 2: may
Document 0
New label: “ Submit |
(J Relevant
Document 1
(J Relevant

Figure 4: Human study interface for I-ETM. Users can see the given topics that are found for a set of tasks/requests
and can change the label to better fit their needs. Additionally, the assigned documents for each topic are shown and
users can select which documents are most relevant.
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