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Abstract

Topic models help users understand large docu-001
ment collections; however, topic models do not002
always find the “right” topics. While classical003
probabilistic and anchor-based topic models004
have interactive variants to guide models to-005
ward better topics, such interactions are not006
available for neural topic models such as the007
embedded topic model (ETM). We correct this008
lacuna by adding an intuitive interaction to009
ETM: users can label a topic with a word, and010
topics are updated so that the topic words are011
close to the label. This allows user to refine012
topics based on their information need. We013
evaluate our method through a human study,014
where users can relabel topics to find relevant015
documents. We find that using our method, user016
labeling improves document rank scores, help-017
ing to find more relevant documents to a given018
query when compared to no user labeling.019

1 Topic Models Need Help020

Topic modeling is an unsupervised machine learn-021

ing method for analyzing a set of documents to022

learn meaningful clusters of related words (Boyd-023

Graber et al., 2007). Despite decades of new mod-024

els that purport to improve upon it, the most popular025

method remains Latent Dirichlet Allocation (Blei026

et al., 2003a, LDA), which is two decades old.027

This venerable model is still the workhorse for028

those who use unsupervised analysis to discover029

the structure of document collections in digital hu-030

manities (Meeks and Weingart, 2012), bioinformat-031

ics (Liu et al., 2016), policitical science (Grimmer032

and Stewart, 2013), and social science (Ramage033

et al., 2009b). However, if you look at the com-034

puter science literature, topic modeling has been035

taken over by neural approaches (Zhao et al., 2021),036

exemplified by the embedded topic model (ETM),037

which amalgamates topic models with word em-038

beddings (Dieng et al., 2020). We review LDA and039

ETM in Section 2.040

So what explains this discrepancy? A sceptic 041

would posit that there is not sufficient evidence 042

to support the claims that neural topic models are 043

substantially better either in terms of runtime, ease- 044

of-use, or on human-centric methods (Hoyle et al., 045

2021). We are sympathetic to these arguments, and 046

we discuss them in detail at the end of this paper 047

(Section 7). 048

In addition to these legitimate concerns, there 049

are also functional lacunae: abilities “classic” topic 050

models have that neural models lack. Neural mod- 051

els are often a “take it or leave it” proposition: if 052

the results do not match what you want, a user 053

(particularly a non-expert in machine learning) has 054

little recourse. 055

In contrast, the probabilistic topic modeling lit- 056

erature has a rich menu of options to improve topic 057

models: incorporating rich priors, incorporating 058

syntactic information, or structural priors from co- 059

variates (Mcauliffe and Blei, 2007; Griffiths et al., 060

2004; Boyd-Graber and Blei, 2008). Richer interac- 061

tions are also possible through tree-based priors and 062

through spectral methods (Hu and Boyd-Graber, 063

2012; Arabshahi and Anandkumar, 2017). Un- 064

fortunately, these improvements are not currently 065

available for neural topic models. 066

In an effort to expand the options that neural 067

topic models have and fill in the lacunae between 068

probabilistic and neural models. Our goal is to 069

extend the neural topic modeling method, ETM— 070

making it interactive—to give users the capability 071

to change the topics to fit their request or needs 072

better. 073

ETM improves upon LDA by introducing topic 074

embeddings, where each topic embedding is a dis- 075

tributed representation in the semantic space of 076

words, inducing a per-topic distribution over the 077

vocabulary. This is in contrast to traditional topic 078

models, where each topic is a full distribution over 079

the vocabulary. Here, to use ETM interactively— 080

based on the topic label from the user—we embed 081
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Task: Dengue outbreak in Asia
Request: What countries are seeing an outbreak?

No topic labeling After topic labeling
Topic 0: ‘dengue’, ‘vaccine’, ‘sanofi’,
‘dengvaxia, ‘phillipines’, ‘vaccination’

Topic 0: ‘dengue’, ‘vaccine’, ‘sanofi’,
‘dengvaxia’, ‘phillipines’, ‘vaccination’

Topic 1: ‘virus’, ‘countries’, ‘new’, ‘ac-
cording’, ‘dr’, ‘pandemic’

Topic 1: ‘virus’, ‘countries’, ‘new’, ‘ac-
cording’, ‘dr’, ‘pandemic’

Topic 2: ‘time’, ‘get’, ‘however’, ‘go-
naives’, ‘haiti’, ‘town, ‘stud’

Topic 2: ‘india’, ‘genotype’, ‘denv’,
‘asian’, ‘study’, ‘singapore’

Table 1: (Right) The closest words to the different topic embeddings after running ETM. While the first two topics
are related to the task/request, Topic 2 is not. (Left) shows the updated Topic 2 after moving the topic embeddings
towards the word “india".

the label in the embedding space and move the082

corresponding topic embedding closer to the la-083

bel. This adjusts the center of the topic embedding:084

throwing out unrelated words, prioritizing words085

that are “close” to the users’ label.086

There have been many previous works for inter-087

actively labeling probabilistic topic models, which088

humans already do post-process. For example,089

UTOPIAN (Choo et al., 2013), enables users to in-090

teract with the topic model and steer the result091

in a user-driven manner, such as topic merging092

or document-induced topic creation. Our work,093

in contrast, introduces a way of improving topics094

through labeling in a natural way that is typically095

done a posteriori. We call this method Interactive096

Embedded Topic Modeling or I-ETM.097

We conducted a human study to demonstrate the098

efficacy of our interactive labeling method over099

base ETM. Additionally, if a user has a specific task100

when running a topic model on a corpus, our in-101

teractive labeling method qualitatively helps users102

quickly identify documents relevant to their infor-103

mation needs. While I-ETM can be used in any104

setting where topic modeling is useful, our method105

can be especially helpful in an urgent setting where106

relevant documents need to be quickly identified,107

giving the users the ability to direct the model to108

the most relevant documents for their request.109

2 The Best of Both Words: Neural Word110

Knowledge and Bayesian Informative111

Priors112

This section reviews topic models: how they are113

useful to practitioners, the shortcomings of proba-114

bilistic and neural topic models, and motivate our115

attempt to ameliorate this with embedding-based116

interactions.117

Figure 1: The topic and word embeddings that corre-
sponds with Table 1 before and after the labeling of
Topic 2. The topic embedding moves towards a new
cluster of word embeddings after a label is used.

2.1 Latent Dirichlet Allocation 118

Topic models are exemplified by latent Dirichlet 119

allocation LDA (Blei et al., 2003b). Given a large 120

collection of documents and an integer parame- 121

ter K, topic models like LDA find the K topics that 122

best describe the collection. 123

LDA posits a generative story for how the data 124

came to be and uses probabilistic inference to find 125

the best explanation for the dataset (Griffiths and 126

Steyvers, 2004a). While we do not fully recapit- 127

ulate the LDA generative story here—our focus is 128

on neural models after all—the key is that one part 129

of the story is a distribution over words for each 130

of the K topics. Often, one of the first steps of 131

using the output of a topic model is to name the 132
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topics. Either by selecting top words through a133

Markov chain Monte Carlo algorithm (Griffiths134

and Steyvers, 2004b; Hofmann, 2017) or through135

manual generation of descriptive topics (Mei et al.,136

2006; Wang and McCallum, 2006). This is com-137

mon especially in the social sciences, where topics138

are given sentences to describe the documents that139

make it up such as "topic is associated with articles140

on the life and works of Goethe" (Riddell, 2012).141

For probabilistic models, however, this is not142

the end of the story. The Bayesian framework—143

through the use of informed priors—encourages144

the incorporation of expert knowledge into inter-145

active topic models. This can either represent a146

dictionary (Hu et al., 2014b), word lists from psy-147

chology (Zhai et al., 2012), the needs of a business148

organization (Hu et al., 2014a). This feedback to149

a model helps correct word sense issues, match a150

user’s information needs, or reflect world knowl-151

edge and common sense.152

Of course, one could move to a fully supervised153

model (Blei and McAuliffe, 2007), where every154

training document has a topic label. But this re-155

quires substantially more interaction with the user156

than giving feedback on a handful of topics—full157

supervision requires hundreds or thousands of la-158

beled examples.159

But these interactive models are not without160

their faults. First, they’re slow; probabilistic161

inference—whether with MCMC methods or varia-162

tional inference—struggles to update in the seconds163

required to satisfy the best practices of an interac-164

tive application. Second, while one of their goals165

is to incorporate the knowdge of users, they com-166

pletely ignore the vast world knowledge available167

“for free” from representations trained on large text168

corpora. Our next model incorporates this world169

knowledge through word embedding vectors that170

learn this representation through the corpora, how-171

ever it replaces the Bayesian priors and lacks the172

interactivity of probabilistic models.173

2.2 Embedded Topic Modeling174

The embedded topic model (Dieng et al., 2020,175

ETM) takes advantage of these representations by176

associating each topic with an embedding. In ad-177

dition, each token in the vocabulary also has a L-178

dimensional embedding. These embeddings can be179

learned by the model or pre-trained word embed-180

dings may be used. Like traditional topic models,181

each document has a vector connecting it to the182

K latent topics. While a traditional topic model 183

would have a full distribution over the vocabulary, 184

in ETM the kth topic is a vector αk ∈ RL—just 185

like words in the embedding space. ETM induces 186

a per-topic distribution over the vocabulary from 187

that representation. More concretely, ETM induces 188

this distribution from a log-linear model that takes 189

the inner product of the word embedding matrix ρ 190

and the kth topic embedding vector αk: 191

β ≡ softmax
(︂
ρ⊤αk

)︂
. (1) 192

ETM assigns high probability to a word v in topic k 193

if its representation is close to the topic embedding: 194

In the next section, we take advantage of this by 195

allowing users to adjust the topic embedding by 196

assigning a label to a topic. 197

3 Interactive Embedded Topic Modeling 198

Why is changing the labeling of a topic model a 199

good way for interaction? Previous topic models 200

do not have explicit topics. This can lead to situa- 201

tions where documents are associated with topics 202

that they should not be (Ramage et al., 2009a) or 203

topics that just do not make sense (Newman et al., 204

2010). Also, they require users to manually an- 205

alyze the topics found to then use labels such as 206

the “Business topic”. Non-technical users also use 207

a similar process when using topic models: they 208

inspect the topics, find the topics relevant to their 209

use case, and label them accordingly. Thus, since 210

labeling is a natural way people have already been 211

interacting with topic models, we use labeling to 212

both improve topics and help guide the model to 213

relevant topics for the users. 214

This could look like say for a humanist, instead 215

of giving topics sentence descriptions a posteriori, 216

labels such as "works of Goethe" can actually be 217

used to improve the model itself. 218

Topic models can be used in time-sensitive situ- 219

ations such as identifying key areas that need relief 220

supplies through social media postings (Resch 221

et al., 2018; Zhang et al., 2021). Table 1 details 222

an example of why our labeling method can help 223

improve topics in these types of situations. The 224

scenario and scenario specific questions, as well 225

as the data used is from a dataset that focuses on 226

disaster relief situations (Mckinnon and Rubino, 227

2022). 228

In this case, the corpus is from an information re- 229

trieval (IR) query for the given scenario of “Dengue 230

outbreak in Asia”. Also there is the question of 231
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Vocab Size Coherence Diversity F1

ETM
2565 0.19 0.81 0.86
3572 0.17 0.85 0.85

10830 0.11 0.92 0.76

Interactive
ETM

2565 0.14 0.84 0.93
3572 0.10 0.88 0.89

10830 0.10 0.95 0.77

Table 2: Topic coherence, topic diversity, and classification accuracy for varying vocabulary sizes for regular ETM
and our interactive ETM. While the F1 scores drop as the vocabulary size increases, our method outperforms ETM in
terms of topic diversity and F1 score.

“What countries are seeing an outbreak?” which232

gives a user more specific information to find re-233

garding the given scenario.234

After running I-ETM, the left side of the table235

shows the top three topics and their corresponding236

words. The first two topics have words relevant237

to the scenario and question, such as “dengue”,238

“virus", and “vaccine" (“dengvaxia" is the name of239

the vaccine created by “sanofi"). However, the third240

topic is less relevant, with words such as “gonaives"241

which is a commune in Haiti. While dengue, a242

mosquito-borne virus, might be present in Haiti,243

the scenario is focused on Asia. So perhaps a user244

knows there has been an outbreak in India, they are245

able to label Topic 2 (chosen to be least relevant246

to the scenario/question) with a word that might247

bring forth more relevant documents to the request,248

such as “india". This shifts the Topic 2 embedding249

towards the word embedding for “india" and now250

the nearest words that make up the new topic help251

to focus on documents more related to Asia.252

3.1 Adjusting topic embeddings253

As discussed above, ETM induces a topic distribu-254

tion from word representations and a topic embed-255

ding (Equation 1). To make the topic modeling256

interactive, we allow for the users to adjust the un-257

derlying embedding for each topic, thus “moving”258

the topic closer to the word embeddings they de-259

sire. We will discuss what this looks like in terms260

of users’ actions in a moment, but for the moment261

we assume that this can be expressed as a vector262

αnew
k = λ(wk⃗ − αk⃗

old) + (1− λ)αk⃗
old (2)263

where αold
k is the topic embedding generated by264

the model and wk is the word embedding associ-265

ated with the topic the user inputs. That is, if the266

user wants a topic of food, the topic embedding is267

moved toward the word embedding corresponding268

to food. The weight of adjusting the topic embed- 269

ding towards the new label, can be tuned through 270

the parameter λ, which determines how close the 271

topic embedding is moved. 272

Following the example in Table 1, in (Figure 1) 273

the topic and word embeddings are shown before 274

and after the adjustment of Topic 2. We can see 275

the words surrounding Topic 2 before adjusting the 276

label, at first read do not seem to be relevant to 277

the task or request. After the labeling of Topic 2, 278

we see the topic embedding, is close to the words 279

"india", "singapore", and "asian", which are more 280

relevant to the request and could bring forth more 281

relevant documents. 282

3.2 Cross-lingual topic modeling 283

While I-ETM adds interactivity to a neural-based 284

topic model and improves the relevancy of docu- 285

ments, our model initally, like ETM lags behind 286

the state-of-the-art in cross-lingual capabilities. 287

(Bianchi et al., 2020) found that replacing the tradi- 288

tional bag-of-words (BOW) input for contextualized 289

embeddings improved the cross-lingual capabilities 290

of their neural topic model. We follow a similar 291

structure, replacing the BOW input with pre-trained 292

multilingual representations from SBERT (Reimers 293

and Gurevych, 2019). 294

4 Findings 295

4.1 Training details 296

For all the results presented in this paper, our model 297

was trained using 4 NVIDIA RTX2080ti The I- 298

ETM model was trained for 200 epochs using 20 299

topics. The ADAM optimizer is used with a learn- 300

ing rate of 0.005.1 The rest of the details can be 301

found in the appendix. For our human study, we 302

trained a model using only 5 topics. This was due 303

1we followed the other default parameters in the original
paper and can be found in our code as well.
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Language Sentence Predicted Topics
EN Philippines halts sale of dengue vaccine... dengue, vaccine, sanofi, dengvaxia
ES Filipinas suspende la venta de la vacuna... dengue, vaccine, sanofi, dengvaxia
EN Flood torrents devastate Peru... rains, peru, heavy, floods
FR Des torrents d’inondations dévastent le Pérou... rains, peru, heavy, floods
EN The earthquake caused buildings to collapse... earthquake, rubble, quake, aug
IT Il terremoto ha causato il crollo di edifici... earthquake, rubble, quake

Table 3: Predicted topics for English documents translated into various languages. With the addition of multilingual
embeddings, I-ETM is able to predict similar topics across languages.

to not wanting to overwhelm users with a lot of304

topics and the limited number of documents in the305

dataset.306

4.2 Cross-lingual capabilities307

While the focus of this paper is the interactivity of308

our model, Table 3 demonstrates the cross-lingual309

capabilities of I-ETM. The predicted topics for dif-310

ferent English sentences and their corresponding311

translations are shown. I-ETM is able to predict312

similar topics for the same sentence in different313

languages. Continuing with our running example314

of using our model in disaster relief situations, hav-315

ing the capability to group documents in different316

languages with understandable representative top-317

ics is vital for quick and effective responses. It is318

important to note, that since our formulation was319

adapted from (Bianchi et al., 2020), this is done in a320

zero-shot setting. The model is not trained on docu-321

ments in the other languages, this capability is just322

due to the pre-trained multilingual embeddings.323

4.3 Topic coherence and diversity324

Topic coherence is an automated method for eval-
uating the semantic similarity of top words in a
given topic. We measure the normalized Pointwise
Mutual Information (NPMI). Given a set vectors of
the top words in a topic, {w1, w2, ..., wN}, the PMI

is

PMI(wi, wj) = log2
p(wi, wj)

p(wi)p(wj)
.

NPMI is just an extension of PMI, where the vectors325

are weighted (Aletras and Stevenson, 2013).326

Since (Dieng et al., 2020) showed improvements327

in topic coherence and diversity over LDA, to check328

if our method negatively affects them, we looked329

at coherence, diversity, and F1 scores for varying330

vocabulary sizes between ETM and I-ETM. Topic331

coherence drops with our method, but diversity332

and F1 scores are higher (Table 2). This effect is333

dataset dependent. For Wikipedia, adjusting six of 334

the topics to have distinct labels for classification 335

results in a more diverse topic words. However, 336

coherence typically improves with more general 337

clustering topics, since it measure co-occurence of 338

words in the documents with the topic words. So, 339

with distinct topics, this can result in lower topic 340

coherence. 341

In contrast, the documents in the BETTER dataset 342

(Table 1 and Figure 1) are curated to be related to 343

disaster situations. In this case, when topics are 344

labeled to better fit the request at hand, the topic 345

words tend to have more overlap, since the request 346

is so specific. With the BETTER dataset, I-ETM 347

actually results in a decrease in topic diversity and 348

an increase in topic coherence. In either situation 349

it is important to note, that topic coherence has 350

been found to be a poor metric for topic modeling 351

evaluation (Hoyle et al., 2021). We report scores 352

for coherence and diversity since this is the current 353

standard for topic model evaluations. 354

5 Human Study 355

To validate the efficacy of I-ETM, we recruited par- 356

ticipants to test our model in finding more relevant 357

documents for different scenarios and information 358

needs. Information retrieval tasks are an intuitive 359

way to measure the success of our method, since 360

they involve finding relevant information specific 361

to a query. Comparing the scores from these scenar- 362

ios, before and after labeling, is used to verify that 363

user labeling brings forth more relevant documents. 364

We find users do relabel at least one topic on aver- 365

age and the labeling does improve ranking scores 366

on a common information retrieval algorithm. 367

5.1 Setup 368

To conduct this study, we recruited 20 participants 369

through the online platform Prolific, whom were 370

given one hour to complete the task. Our study is 371
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Figure 2: The increase of total document ranking score across all scenarios with the number of new documents
associated with the new labeled topics

set up as follows:372

1. Our model I-ETM is used to generate topics on373

a dataset related to disaster relief situations2374

2. Participants are shown an information need375

with topics generated by our model. After376

consideration, they have the opportunity to377

label topics in a way they deem best378

3. After labeling topics, they are asked to select379

a few documents that they believe best answer380

the information need381

For each user we collected the topic informa-
tion and document distribution before and after
the human interaction. Then following the algo-
rithm commonly known as BM25 (Robertson et al.,
1994), an information retrieval ranking function.
We compare the estimated relevancy of topics be-
fore and after the human interaction. BM25 works
by using a bag-of-words retrieval function that
ranks a set of documents based on query terms
present in the document. Formally speaking, given
a set of keywords q1, q2, ..., qk from a query, Q, the
score function is defined as:

score(D,Q) =

2we chose the BETTER disaster relief dataset mentioned
throughout the paper since it has documents sorted into differ-
ent scenarios with questions already given.

382
n∑︂

i=1

IDF (qi) ·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1− b+ b · |D|
ñ
(3) 383

where f(qi, D) is the number of times qi appears 384

in D, |D| is the number of words in D, ñ is the 385

average document length, and k1, b are the term 386

frequency and document length scaling factors, re- 387

spectively. 388

5.2 Results 389

In Figure 3 we see the average BM25 document 390

ranking scores for each question averaged over the 391

20 users. We show the scores for the topics that 392

were changed, before and after the users made the 393

change. This shows that on average, changing the 394

topic led to more representative documents being 395

shown (when looking at up to the first 5 documents 396

for each topic). In the case of Q2 and Q9, no Before 397

update bar is present because some topics initially 398

had no documents clustered under that topic. We 399

believe that due to the limited size of the dataset, 400

a few topics covered a majority of the documents, 401

causing some topics to have no documents clus- 402

tered to it. 403

To understand how non-technical users interact 404

with our topic model, we kept track of the average 405

number of topic changes per question, shown in 406

Table 4. Across all questions there were 1.24 topic 407

changes. While there was no expected number of 408
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topic changes, we believe a lower average could be409

due to a few reasons. First, a topic label must be a410

word that is present in the model vocabulary, so if411

a user tried to label a topic with a word not in the412

vocabulary, they were alerted of that. Secondly, if413

the user was not familiar with topic models (which414

we had no requirement for technical experience,415

so this was most likely the case), it’s possible they416

had a hard time coming up with good topic labels.417

We see the best case of this on Q10, where the418

average number of topic changes was only 0.40,419

with many users not changing any topics at all.420

However, for this question, users on average made421

3.15 attempts at relabeling a topic, indicating that422

users had difficulty finding a representative topic423

within the vocabulary.424

Additionally, we calculated the average rank of425

the relevant documents chosen by the users, scored426

using the BM25 algorithm. Since only up to the427

first five most relevant documents for each topic428

were shown, this gives insight to how well users are429

able to choose relevant documents after labeling430

any topics. In Table 4 the ranks are shown for each431

of the 10 questions, with an average rank of 8.7432

across all questions. With each question having 50433

documents, we see that users are able to select on434

average documents in the top 20% of most relevant435

documents. Due to there being a time restraint436

and some documents being quite long, we believe437

these ranks would improve even more if users had438

more time. However, we wanted to limit the time439

to mirror a real-life situation where a user might440

need to be both effective and efficient.441

Figure 2 shows how over the course of the study,442

as the user labels topics for more scenarios, the443

overall document ranking score increases. This is444

demonstrating how for a given corpus, by labeling445

topics for different questions, one can incremently446

increase overall document relevancy. This figure447

also shows the average number of new documents448

associated with the new topics that the user labels.449

A high number of new associated documents, does450

not necessarily correlate with a larger increase in451

document ranking score, as some low ranked docu-452

ments could pull down the rest.453

6 Related Work454

Neural topic models With the recent develop-455

ments in deep neural networks (DNNS, there has456

been work to leverage these advancements to in-457

crease performance of topic models. One of the458

Figure 3: Average BM25 document ranking scores for
each of the 10 questions averaged, over the 20 users.

most common frameworks for neural topic models 459

(NTMS), described in (Zhao et al., 2021), as VAE- 460

NTMS. Much research was focused on adapting 461

VAE’s for topic modeling; (Zhang et al., 2018; Sri- 462

vastava and Sutton, 2017) focus on developing dif- 463

ferent prior distributions for the reparameterization 464

step of VAE, such as usung hybrid of stochastic- 465

gradient MCMC and approximating Dirchelt sam- 466

ples with Laplace approximations. VAE-NTM also 467

were extended to work with different architectures, 468

(Nallapati et al., 2017) developed a sequential NTM 469

where the model generates documents by sampling 470

a topic for one whole sentence at a time and uses a 471

RNN decoder. ETM and therefore, I-ETM use these 472

advancements in VAE to update the neural model 473

parameters. 474

Interactive topic modeling. Interactive labeling 475

of topics has been thoroughly explored for prob- 476

abilistic topic models. Works involving labeling 477

topics through images using neural networks, us- 478

ing a sequence-to-sequence model to automatically 479

generate topics, or using unsupervised graphical 480

methods to label topics (Aletras and Mittal, 2016; 481

Aletras and Stevenson, 2014; Alokaili et al., 2020). 482

(Pleple, 2013) designed an interactive framework 483

that allows the user to give live feedback on the 484

topics, allowing the algorithm to use that feedback 485

to guide the LDA parameter search. (Smith et al., 486

2017) compared labels generated by users after 487

seeing topic visualizations with automatically gen- 488

erated labels. (Hu et al., 2014a) provides a method 489

for iteratively updating topics by enforcing con- 490

straints. (Mei et al., 2007) make the task of label- 491

ing into an optimization problem, to provide an 492

objective probabilistic method for labeling. But 493

there has yet to be work that extends this iterative 494

process to neural-based topic models in an intuitive 495

and natural sense such as I-ETM. There has been 496
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Average #
topic
changes

1.85 1.45 2.0 0.82 1.0 1.05 1.25 1.95 0.65 0.40

Average
rank of
relevant
docs

4.25 11 6 13.7 9.4 13 3.25 7.25 3.6 11.6

Table 4: Tabular view of averages across different metrics from human study. "Average # of topic changes" is the
average number of topics that users gave a new label for each of the 10 questions. "Average rank of relevant docs"
is the average rank of the documents selected as most relevant by the users (lower is better).

extensive work in the area of anchor-based topic497

modeling—where a single word is used to identify498

a topic. (Lund et al., 2017) present "Tandem An-499

chors" where multi-word anchors are used to inter-500

actively guide topics. (Yuan et al., 2018) developed501

a framework for interactively establishing anchors502

and alignment across languages. (Dasgupta et al.,503

2019) introduces a protocol that allows users to504

interact with anchor words to build interpretable505

topic.506

Automatic topic modeling For a similar purpose,507

but through a different process, many works have508

sought to automatically generate labels. (Alokaili509

et al., 2020) where they re-rank labels from a large510

pool of words to label topics in a two-stage method.511

(Lau et al., 2011) uses top terms from titles and512

subwords from Wikipedia articles to rank and label513

topics based on lexical features. (Mao et al., 2012)514

exploit the parent-sibling relationship of hierarchi-515

cal topic models to label the topics.516

Cross-lingual topic modeling. (Mimno et al.,517

2009) were the first to introduce a multilingual518

topic model using LDA with Polylingual Topic519

Model. With many works in multilingual topic520

modeling to follow (Liu et al., 2015; Hao and521

Paul, 2018). But few works focus on cross-lingual522

topic modeling, with enables cross-lingual rep-523

resentation transfer to model topics across lan-524

guages. (Heyman et al., 2016) develop C-BiLDA,525

a cross-lingual LDA model, which outperforms526

BiLDA (De Smet and Moens, 2009) and does not527

assume different language corpora share a common528

topic distribution. However, these works typically529

require extensive additions to the topic models to530

get good performance, where the methods we fol-531

low take advantage of the advancements in pre-532

trained multilingual embeddings from large lan-533

gauge models. 534

7 Conclusion and Future Work 535

In this work, we introduced a method for users to 536

interactively update topics given by neural topic 537

models. While there have been previous efforts 538

to improve probabilistic topic modeling through 539

labeling, this is the first work to our knowledge that 540

allows interactive updating of neural topic models 541

to improve the found topics. Especially in real- 542

world situations, such as disaster relief, the ability 543

to improve topics through labeling allows users to 544

tailor the topics to their specific needs. 545

The interactivity can help classification accuracy 546

without having a significantly negative (if at all) 547

effect on topic coherence and diversity. In recent 548

years, many works such as contextualized topic 549

models (Bianchi et al., 2020), have taken advantage 550

of large language models by using the pretrained 551

multilingual embeddings from SBERT (Reimers 552

and Gurevych, 2019) to predict the topic distribu- 553

tions. Adapting this method for our own model 554

is shown to work well even in the zero-shot cross- 555

lingual setting, bringing a neural-based interactive 556

topic model into the cross-lingual space. Addition- 557

ally, through a user study, we verified that giving 558

users the ability to label topics improves perfor- 559

mance on downstream information retrieval tasks, 560

validating that more relevant documents are being 561

found. 562

To take this work even further, we believe adding 563

the ability to guide the training of topic models 564

by interactive labeling throughout the training pro- 565

cess would greatly improve upon this presented 566

method. Similar work has been done in the proba- 567

bilistic space, however, we leave this extension in 568

the neural-based architectures to future work. 569
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Limitations570

In this work we sought to solve a key limitation571

in traditional topic models— guiding the topics572

of a model in a way that is relevant to the user.573

While we believe we provided an effective frame-574

work for interactively updating topics in a neural575

topic model, it does not come without limitations.576

Along the lines of what it means to "help" identify577

more relevant topics, (Hoyle et al., 2021) discusses578

the limitations of coherence, an automatic metric579

for topic model evaluation. Topic coherence is580

an automatic metric that is not validated by hu-581

man experiments and thus its validity of evaluating582

topic models is limited. While our method is an583

attempt to improve interpretability of topic models,584

it still suffers from many of the problems that topic585

models in general do. Topic models do not con-586

form to well-defined linguistic rules and due to the587

non-compositionality of labels, from a linguistic588

viewpoint, can be viewed as not actually modeling589

topics (Shadrova, 2021).590

We recognize that the study we conducted had591

limitations, which need to be considered in con-592

junction with our results. First, the average number593

of topic changes per question is low, an average of594

1.24 across all questions. Users seem to be most595

likely to make one topic change and then choose596

relevant documents. This could be due to a few597

reasons; lack of knowing another good topic la-598

bel or believing sufficient documents were brought599

forward after only one label.600

Second, while topics are meant to be representa-601

tive labels of the corpus, users tended to use words602

directly in the query or general task, treating it603

more as a keyword match. While this is not how604

topic models are meant to be used and most likely605

due to a lack of knowledge about topic models, this606

process did work in most cases at improving the607

relevancy scores for the questions.608

Finally, the BM25 requires a query to calculate609

the scores. We used the scenario and correspond-610

ing question as the query (removing stopwords),611

however a variation in query could lead to different612

BM25 scores. While this does not change the fact613

that labeling topics on average improved BM25614

scores, it means a good query is required to effec-615

tively rank documents.616

Ethical Considerations617

The data that we used for the experiments in this618

paper was all human gathered by others and our-619

selves. If I-ETM was to be used in a real-word situ- 620

ation, where identifying key documents or tweets 621

about a time-sensitive issue was paramount, any 622

failures in the system could result in a negative 623

outcome if the wrong information is disseminated. 624

We went through the appropriate IRB pipeline to 625

receive approval for our human conducted study. 626

The users were paid based on the recommendation 627

of the Prolific platform, which bases its’ recom- 628

mendation based on the time of the study and other 629

studies. No personal idenficiation information was 630

collected from the users, so there poses no threat 631

to the participants of exposure of personal informa- 632

tion. 633
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B Models876

We used the PyTorch implementation of ETM to877

build our code off of..4 We used an embedding878

space size and rho size of 300 and a hidden layer879

size of 800. The rest of the hyperparameters are880

the default and can be found in the original code or881

our own.882

C Human Study Interface883

We provide a sample page of the human study in-884

terface that participants saw. After a few pages of885

instructions and example scenarios, the user is give886

a set of questions to choose from and each question887

brings this screen (Figure 4) with different informa-888

tion. The general topic and corresponding question889

are shown, as well as a small reminder of the in-890

structions. Users see the different topics with topic891

words, the the space to enter a new label. Addition-892

ally, all the associated documents are shown with893

dropdown bars, where the user can read the whole894

document. Finally, there are boxes to check for the895

relevant documents.896

D Code897

The code will be publicly made available on our898

Github page.899

4https://github.com/lffloyd/embedded-topic-model
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Figure 4: Human study interface for I-ETM. Users can see the given topics that are found for a set of tasks/requests
and can change the label to better fit their needs. Additionally, the assigned documents for each topic are shown and
users can select which documents are most relevant.
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