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Data-Unlearn-Bench: Making Evaluating Data Unlearning Easy

Abstract

Evaluating machine unlearning methods remains
technically challenging, with recent benchmarks
requiring complex setups and significant engineer-
ing overhead. We introduce a unified and extensi-
ble benchmarking suite that simplifies the evalu-
ation of unlearning algorithms using the KLoM
(KL divergence of Margins) metric (GRP+24).
Our framework provides precomputed model en-
sembles, oracle outputs, and streamlined infras-
tructure for running evaluations out of the box.
By standardizing setup and metrics, it enables re-
producible, scalable, and fair comparison across
unlearning methods. We aim for this benchmark
to serve as a practical foundation for accelerating
research and promoting best practices in machine
unlearning. Our code and data are publicly avail-
able.

1. Introduction
The growing reliance on machine learning in sensitive and
regulated domains, such as healthcare and finance, has
raised critical concerns regarding the ability of models to
selectively forget training data upon request. This process is
known as machine unlearning. Effective machine unlearn-
ing ensures that an unlearned model trained with certain data
behaves as though specific data (the forget set) was never in-
cluded in the training set. Although retraining from scratch
without the unwanted data offers a theoretically perfect so-
lution, it remains computationally impractical, particularly
for large-scale deep learning models.

Recent literature has introduced various heuristic methods
aimed at approximate unlearning, yet rigorously evaluating
these methods remains challenging. A significant barrier is
the substantial computational cost involved in hyperparam-
eter searches and repeated retrainings necessary to obtain
reliable evaluation results. Current benchmarks are often
complex, opaque, or costly, leading researchers to either
spend extensive resources on evaluations or rely on oversim-
plified heuristics. This complexity can inadvertently pro-
mote evaluation methods that are susceptible to ”gaming,”
where improved scores do not necessarily reflect genuine
unlearning efficacy.

Motivated by these challenges, we propose a unified bench-
marking framework that simplifies the evaluation of data
unlearning methods. Our framework provides standardized
infrastructure and readily available resources, including pre-
computed model ensembles, oracle outputs, and established
evaluation protocols. Central to our evaluation is the KLoM
(KL divergence of Margins) metric, which quantifies the
similarity of an unlearned model’s predictive margins to
those of an oracle model retrained without the target data
(GRP+24). By offering these resources publicly, our goal is
to significantly lower the computational overhead of evalua-
tions and to encourage the development of efficient heuristic
approximations for unlearning metrics.

Beyond immediate computational efficiency, our benchmark
also facilitates deeper investigation into fundamental aspects
of machine unlearning, such as scaling laws related to model
sizes and the transferability of unlearning across different
data subsets. Furthermore, we outline future extensions,
such as incorporating complementary evaluation metrics
like the Gaussian Unlearning Score (GUS) (PDL+24) and
addressing limitations observed in existing synthetic forget-
ting tasks such as TOFU (MFS+24).

Through standardized, reproducible, and efficient evaluation
of unlearning methods, we hope our benchmark accelerates
progress towards practical, reliable, and computationally
efficient unlearning methods, supporting more robust and
responsible machine learning.

Scope. While our benchmark focuses on classification
models evaluated via predictive margins under the logistic
loss, its insights extend to generative models. These mod-
els, including large language models (LLMs), are trained
with cross-entropy loss, which decomposes into conditional
classification tasks. The evaluation methods we propose
are conceptually aligned with the unlearning challenges in
generative modeling. Our work provides tools that can sup-
port future efforts to evaluate unlearning in generative AI
systems.

Acknowledgements. This benchmark builds on tools,
methodology, and insights first developed in the Attribute
to Delete study (GRP+24), which laid the groundwork for
using margin-based divergences as a principled evaluation
framework for machine unlearning. We thank the authors
for their foundational contributions.
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2. Metrics
2.1. Problems with Existing Metrics: U-LiRA

We recall that the goal of data machine unlearning is to pro-
duce models whose behavior closely matches that of models
retrained without the forget set. Achieving this requires sta-
tistical closeness between the distributions of the unlearned
model and an oracle model, defined as the model retrained
from scratch without the forget set. However, directly evalu-
ating this objective has proven challenging, prompting the
development of empirical proxies like U-LiRA (HST+24),
which assess unlearning quality via adversarial distinguisha-
bility.

U-LiRA leverages membership inference attacks (CCN+22)
to measure if an adversary can discern whether a data point
originated from the forget set or a held-out validation set
based solely on the model’s output. Ideally, responses from
the unlearned model to both sets would be indistinguish-
able, implying that an adversary cannot perform better than
random guessing.

Despite its intuitive appeal, U-LiRA has several limitations.
First, it is susceptible to manipulation. A trivial strategy to
achieve a perfect U-LiRA score involves outputting constant
margins across all inputs, rendering outputs indistinguish-
able. While this guarantees perfect indistinguishability, it
completely eliminates model utility. This highlights a struc-
tural vulnerability in U-LiRA: it prioritizes indistinguisha-
bility without enough enforcing of utility constraints. Con-
sequently, algorithms optimized for U-LiRA might inadver-
tently collapse model functionality, misleadingly inflating
performance metrics.

Second, U-LiRA does not align fully with the formal defini-
tion of unlearning. The (ε, δ)-unlearning criterion demands
that the full distribution of model outputs, not merely distin-
guishability at specific points, must closely match the oracle
distribution.

Another issue with U-LiRA is treating the forget set itself.
The metric evaluates performance by randomly generating
multiple forget sets and comparing models that unlearned
specific points against models that unlearned other points.
While this approach captures some variations, it overlooks
potential ”compound effects” arising from the particular
composition of a given forget set. Specifically, the impact of
removing one point may depend critically on the removal of
other points simultaneously. Such nuanced interactions are
obscured when forget sets vary randomly across evaluations.
In contrast, methods like KLoM address this limitation by
fixing the forget set, thus providing a clearer understanding
of compound interactions among points.

In summary, although U-LiRA provides a useful heuristic
for evaluating unlearning, its susceptibility to manipulations

and its scope limitations relative to the formal definition
of unlearning indicate that caution is necessary when inter-
preting results. Metrics that directly estimate distributional
divergence from oracle models inherently consider utility
and are better suited for rigorous evaluation of unlearning
quality.

2.2. KLoM

The KL divergence of margins (GRP+24) (KLoM) is a
metric for empirically assessing machine unlearning. It
measures how similar the output distributions of unlearned
models are to those of oracle models, which are retrained
from scratch without the forget set. KLoM implements a re-
laxed version of the standard (ε, δ) unlearning definition by
substituting KL divergence for approximate max divergence
and by comparing model outputs instead of parameters.

To compute KLoM, we first define the margin. For an input
x with true label yx, let f(x; θ) ∈ RK be the output logits
produced by a model θ. The margin of model θ on input x
is defined as:

φ(x; θ) = (f(x; θ))yx − log
∑
k ̸=yx

exp((f(x; θ))k).

This logit-gap formulation captures how separable the cor-
rect prediction is from alternatives and is both numerically
stable and aligned with our implementation.

We then compare margin distributions from (i) oracle mod-
els {θoi }Ni=1 (trained on the retain set S \ F ) and (ii) un-
learned models {θfi }Ni=1 (obtained by applying unlearning
algorithm U to models originally trained on the full dataset
S). For each data point x, we compute its margin under each
oracle and unlearned model, yielding two empirical margin
distributions: {φ(x; θoi )}Ni=1 and {φ(x; θfi )}Ni=1. These are
binned into histograms, and their KL divergence yields the
pointwise metric:

KLoM(x) = DKL(Hist({φ(x; θoi )}Ni=1) ∥Hist({φ(x; θfi )}
N
i=1))

which can be averaged or aggregated across points in the
forget, retain, or validation sets. Figure 1 provides a visual
overview of this process.

Assumptions and Robustness KLoM assumes only that
we can draw repeated samples from the oracle and unlearned
model distributions and observe their outputs. Unlike other
metrics such as U-LiRA, it does not rely on Gaussian ap-
proximations or adversarial distinguishers. It is robust to
“gaming” by degenerate unlearning strategies (e.g., return-
ing a random model), which are penalized by KL divergence
against the oracle distribution. This makes KLoM harder to
fool than membership-inference-based metrics.

Hyperparameters and Practical Estimation KLoM de-
pends on several hyperparameters: (i) the number of models
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Figure 1: Overview of the KLoM methodology (GRP+24).

N , set to 100 oracle and 100 unlearned models for stable
estimation; (ii) a clipping range of [−100, 100] to suppress
extreme margin values from unstable models; (iii) the num-
ber of histogram bins, fixed at 20 to balance resolution and
variance; and (iv) a smoothing constant ε = 10−5 to prevent
empty histogram bins, which limits KLoM values to a max-
imum of approximately 12. We find the default parameter
selection to be suitable for a fair evaluation across methods.
In Appendix A.1 we show KLoM scores versus the number
of compared models N and conclude that 100 models is
enough for a reliable evaluation.

2.3. Future Directions: Extending to LLMs

Some current LLM unlearning evaluations for unlearning,
such as TOFU (MFS+24) and Weapons of Mass Destruction
Proxy (WMDP) benchmark (LPG+24), rely on multiple-
choice question (MCQ) answering. While very convenient,
this format fails to test whether the model has truly forgot-
ten information. For instance, a model can learn to detect
sensitive topics and produce generic or misleading outputs
without necessarily removing the underlying knowledge
(QPL+24). This evades detection while preserving the data
internally. Robust evaluation should go beyond surface ac-
curacy and measure whether the model’s output distribution
matches that of a retrained oracle. Without this, current
methods risk overstating unlearning success.

Teacher-forcing KLoM We propose to extend KLoM to
language models by evaluating margin divergence under
teacher forcing. For a token sequence x = (w1, . . . , wT )
and a model θ, we compute the margin φt(x; θ) at each
prediction step t. This margin represents the model’s confi-
dence in the true next token wt+1 (from sequence x) rela-
tive to alternatives, given the prefix x<t+1 = (w1, . . . , wt).
It is computed using the logit-gap definition analogous to

φ(x′; θ) in Section 2.2, where x′ corresponds to the input
context (prefix x<t+1) and the ’true label’ is wt+1.

At each prediction step t, we compare margin histograms
from oracle {θoi }Ni=1 and unlearned {θfi }Ni=1 model en-
sembles. For a sequence x, we generate margin sets
{φt(x; θ

o
i )}Ni=1 and {φt(x; θ

f
i )}Ni=1. Let Histot (x) and

Histft (x) be histograms from these respective sets. Then
KLoMt(x) = DKL(Histot (x) ∥Histft (x)). The teacher-
forcing KLoM is the average across token positions,
KLoM(x) = 1

T

∑T
t=1 KLoMt(x), aggregated over a

dataset D as KLoM(D) = 1
|D|

∑
x∈D KLoM(x).

This formulation preserves the original metric’s robustness
while enabling distributional comparison for next-token pre-
dictions in autoregressive models. It requires no changes
to KLoM hyperparameters and is fully compatible with
standard teacher-forcing evaluation.

Crucially, teacher-forcing KLoM is significantly harder to
game than multiple-choice formats. Rather than checking
if a model avoids specific outputs, it compares the full pre-
dictive distribution against that of a ground truth model,
capturing subtler forms of retained knowledge.

3. Benchmark
Evaluating machine unlearning requires comparing the pre-
dictions of unlearned models to those of oracle models re-
trained without the forget set. Doing so reliably demands
generating ensembles of pre-trained and oracle models, com-
puting classification margins for each, and then estimating
divergence metrics such as KLoM. Establishing such a reli-
able evaluation from scratch induces substantial overhead:
for each forget set, one would typically need to train N
full-data models and N oracles on the retain set, and extract
per-example margin distributions from both. The cost of this
setup is significant, both computationally and in engineering
effort, presenting a bottleneck for rapid development and
fair comparison of new methods.

To address this, our benchmark is designed with three key
principles: (i) Reusable infrastructure: Pre-trained and ora-
cle model ensembles are agnostic to the unlearning method
under test and are expensive to compute. We precompute
and distribute these components, allowing users to focus
solely on the unlearning algorithm. (ii) Standardized evalu-
ation: The benchmark provides tested implementations of
core evaluation routines, reducing the risk of methodolog-
ical errors and improving reproducibility. Users can trust
that results are measured under consistent conditions. (iii)
Turnkey experimentation: A complete experimental pipeline
supports YAML-based configuration, automatic path resolu-
tion, checkpointing, and seamless scheduling of large-scale
hyperparameter sweeps. Implementing a new method typ-
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ically requires only a short function definition, while the
infrastructure handles training, evaluation, and logging.

Included Datasets and Resources We provide full exper-
imental support for two used benchmarks (GRP+24). For
CIFAR-10 (Kri09) with ResNet-9 models we provide 100+
pre-trained models trained on the full dataset, 10 distinct
forget sets, each with 100+ corresponding oracle models
trained on the retain set, precomputed classification mar-
gins for all models and evaluation sets. For Living-17
(STM21; DDS+09) with ResNet-18 (HZRS16) models. We
include: 100+ full-data pre-trained models, 3 forget sets,
each with 100+ corresponding oracle models, precomputed
margins for oracle and pre-trained ensembles.

Quick Start The benchmark supports a high-level work-
flow that requires no manual script editing or path con-
figuration. All experiments are specified via YAML con-
figuration files and launched via a generated script. For
example, to evaluate gradient ascent on CIFAR-10 on a
predefined hyperparameter grid (GRP+24) (learning rates
{10−5, 10−3, 10−2}; epochs {1, 3, 5, 7, 10}):

# Step 1: Generate config files
python config.py

This creates files like:

config/unlearning_method-ascent_forget_\
dataset-cifar10_epochs-[1,3,5,7,10]_\
forget_id-1_lr-1e-05_model-resnet9_\
optimizer-sgd_N-100_batch_size-64.yml

Then we can easily prepare a multi-gpu launch that will
schedule and execute our experiments

# Step 2: Create a GPU launch script to
# run the experiments
python launching.py \
--gpus "0,1" \
--jobs-per-gpu 2 \
--filters "ascent_forget,cifar10" \
--output launch_ascent.sh

# Step 3: Run all jobs in parallel
# Can also be launched through sbatch
bash launch_ascent.sh

Results are saved automatically for KLoM scores and Mar-
gins. Triggering again a launch will skip the precomputed
stages making the pipeline robust to interruptions and re-
launches. The benchmark is also designed to be easily
extensible. To add a new unlearning method, users simply
define a new function in unlearning.py that follows the
standard interface. The framework handles training, check-
pointing, margin computation, and evaluation automatically.

A typical implementation is fewer than 100 lines. Each
method is registered in a central dispatch table and selected
via a keyword in the YAML config. New hyperparameter
sweeps can be added declaratively in config.py, and
the resulting YAML files are generated with a single com-
mand. This modular design enables rapid and reproducible
experimentation with minimal boilerplate.

4. Conclusions and Future Work
We collected a benchmark based on (GRP+24) that makes
evaluating machine unlearning both practical and rigorous.
By providing precomputed model ensembles, oracle out-
puts, and tested evaluation tools, our framework allows
researchers to compare unlearning methods under standard-
ized and reproducible conditions. The infrastructure is de-
signed to be easy to use and supports reliable evaluation
with strong baselines, such as retraining without the for-
get set. Our main evaluation metric, KLoM, offers a clear
and tractable way to measure how close unlearned model
predictions are to those of oracle models. We believe this
benchmark lowers the barrier to entry and will help acceler-
ate progress in developing more effective and efficient data
unlearning algorithms along with better comparing of more
efficient heuristic evals.

This benchmark can be extended in several promising direc-
tions. First, we are actively working on incorporating the
Gaussian Unlearning Score (GUS) (PDL+24) unlearning
evaluation, which introduces a complementary perspective
by quantifying unlearning efficacy through data poisoning
reversibility. We aim to integrate this metric into our frame-
work after further validation and robustness testing. The
code is implemented and undergoing integration.

In a similar line, we are interested in extending our evalua-
tions to support LLMs more broadly. Improving upon other
current methods evaluated on synthetic forget tasks, such
as TOFU (MFS+24), and in understanding how unlearning
techniques can scale to generative settings. We provided the
initial discussion in Section 2.3.

We also consider the introduction of a public leaderboard,
similar in spirit to ROBUSTBENCH (CAS+20), to facilitate
community engagement and transparent reporting of results.
A key goal here is to also allow external researchers to con-
tribute their own margin data, encouraging a collaborative
and open environment.

Finally, we want to improve dataset and model coverage.
Although CIFAR-10 and Living-17 provide useful testbeds,
community input should guide the addition of new datasets
and model sizes, especially for settings considering genera-
tive AI applications. We welcome feedback and contribu-
tions from the community to help determine which of these
directions would be most impactful in practice.
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A. Appendix
A.1. KLoM sensitivity to number of compared models

(a): Validation set.

(b): Forget sets.

(c): Retain sets.

Figure 2: KLoM scores between pre-trained and oracle models scores on as a function of the number of compared models
N on CIFAR10 sets (1-8) (GRP+24). The figure presents results for three data categories: (a) Validation set: a held-out
test dataset, consistent across all forget configurations. (b) Forget sets: distributions for data points intended for unlearning.
(c) Retain sets: distributions for data points to be preserved post-unlearning. In all panels, boxplots illustrate the KLoM
value distributions for N ranging from 2 to 100. The red marker (•) represents the 95-th percentile of KLoM scores. Lower
KLoM values indicate better alignment of the pre-trained models with the oracle models and are expected in the Retain and
Validation sets. We find N = 100 to be sufficient for a reliable comparison.
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