
Under review as a conference paper at ICLR 2023

ON THE IMPORTANCE OF CONTRASTIVE LOSS
IN MULTIMODAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, contrastive learning approaches (e.g., CLIP (Radford et al., 2021)) have
received huge success in multimodal learning, where the model tries to minimize
the distance between the representations of different views (e.g., image and its
caption) of the same data point, while keeping the representations of different
data points away from each other. However, from a theoretical perspective, it
is unclear how contrastive learning can learn to align the representations from
different views efficiently, especially in cases where the data is not isotropic. In
this work, we analyze the training dynamics of a simple multimodal contrastive
learning model and show that contrastive pairs are important for the model to
efficiently balance the learned representations. In particular, we reveal a stage-
wise behavior of the learning process: In the first stage, the model aligns the
feature representations using positive pairs and the condition number grows in
this stage. Then, in the second stage, the model reduces the condition number of
the learned representations using negative pairs.

1 INTRODUCTION

One of the exceptional abilities of humans is to associate data from different modalities (such as
texts and images) together. For example, when we hear the words “white dog”, we can immediately
align it with the image of a dog with white color. When we hear the loud sound of the engine, we
can imagine an expensive sports car passing nearby.

Recently, in machine learning, multimodal learning methods – training the model to align the data
from different modules, has become an increasingly popular research direction, especially in deep
learning (He & Peng (2017); Stroud et al. (2020); Radford et al. (2021); Ramesh et al. (2021); Xu
et al. (2021); Jia et al. (2021); Wang et al. (2022b)). Among them, the recent work CLIP (Radford
et al. (2021)) shows remarkable quality results on aligning the features of text and images. The
contrastive learning based method CLIP empirically outperforms many existing non-contrastive
approaches (Grill et al. (2020); Chen & He (2021); He et al. (2020)). The major difference between
the contrastive approach and other approaches is that contrastive loss not only requires the learned
representations from the same pair of data (i.e. positive pairs) to be positively aligned, but it also
requires the data from different pairs (i.e. negative pairs) to be as negatively aligned as possible. In
the paper, the authors also identify contrastive loss as the most critical part to the success of CLIP.

Despite the empirical success of this contrastive learning-based method, from a theoretical perspec-
tive, the most fundamental questions are still largely open: In particular, how do contrastive pairs
help in this new multimodal learning approach? How can the non-convex contrastive loss be effi-
ciently minimized to learn features from both modules?

Unlike the prior theoretical works on contrastive learning which mostly focus on extracting features
from one module (e.g., Arora et al. (2019); Jing et al. (2022); Pokle et al. (2022); Tian et al. (2021);
Wen & Li (2021)), one main technical challenge of analyzing contrastive learning in a multimodal
setting is how the model can be trained to align the feature representations fA,fB from modules
A and B respectively. Due to the existence of negative pairs that emphasize negative correlations
of fA and fB , it is unclear that the model still has incentives to align the features from different
modules.
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In this paper, we make preliminary theoretical steps towards answering the fundamental theoretical
questions of the importance of contrastive loss in multimodal learning. We assume the data from
the two modules are of form xA = AzA +AξξA and xB = BzB +BξξB , respectively, where
zA, zB are considered as the hidden signals, A,B linear transformations from the signal to the
observation and AξξA,BξξB the noises. Similar linear models have also been used in previous
works (Tian et al. (2021); Wen & Li (2021)) in the context of single-modal learning (A = B).
The positive pair of the data shares the same signal zA = zB , and has different noises ξA, ξB and
transformations A,B. The goal is to learn features fA,fB that align positive pairs while keeping
representations of negative pairs away from each other.

Under this setting, we make the following contributions:

1. We consider the challenging (but more practical) setting where the features in A and B are
inhomogeneous, that is, the condition number of A and B can be ω(1). Prior works (Jing
et al. (2022); Tian et al. (2021); Wen & Li (2021)) only consider cases where A and B are
exactly column orthonormal matrices even in the simpler single-modal setting (A = B).

2. We consider feature learners fA,fB with normalization, meaning that fA,fB are always
normalized to have (expected) norm one during training. Output normalization plays a
critical role in the practical success of contrastive learning and is also employed in CLIP,
but it is rarely considered in theory due to the additional complexity of the division by
norm.

3. We analyze the learning process of stochastic gradient descent from random initialization.
We prove that contrastive learning converges efficiently to a nearly optimal solution, which
indeed aligns the feature representation fA and fB .

4. We also demonstrate the importance of negative pairs by comparing with training only over
the positive pairs: We prove that although the latter can also learn to align fA and fB , the
features learned by contrastive learning with negative pairs is much more uniform, meaning
that fA,fB can recover all the singular vectors of A and B and normalize them. On the
other hand, without negative pairs, the learned representation is close to a rank one solution,
meaning that fA,fB will only focus on the top singular direction of A and B.

5. We also perform simulations and more practical experiments to further support our theory.

2 RELATED WORKS

Multimodal learning Despite the empirical success of multimodal learning, there are very few
theoretical results on this topic. The one most related to ours is Huang et al. (2021), in which the
authors show that, in certain cases, multimodal methods can provably perform better than single-
modal models. However, the authors consider neither contrastive pairs nor the training dynamics.

Contrastive/Non-contrastive learning theory Another much richer line of research is about con-
trastive and non-contrastive methods in the context of single-modal self-supervised learning. Start-
ing from Arora et al. (2019), many recent works have provided various explanations on why the
representations learned with contrastive learning are useful in downstream tasks (Chuang et al.
(2020); Tosh et al. (2021); Nozawa & Sato (2021); Wang et al. (2022a); HaoChen et al. (2021);
Lee et al. (2021); Wang & Isola (2020)). These works mostly focus on the generalization aspect of
the problem and do not consider training. Among them, Wang & Isola (2020) also study the problem
using the notions of alignment and uniformity, and demonstrate that balanced representations bene-
fit downstream tasks. However, they do not provide guarantees on training. Another related line of
research is about non-contrastive learning, where the necessity of negative examples is questioned.
In this line of research, the optimization problem does get considered as non-contrastive losses have
trivial collapsed solutions. Tian et al. (2021) show that, under certain conditions, non-contrastive
learning methods can learn non-collapsed solutions. Jing et al. (2022) show that, even with negative
examples, contrastive learning can still suffer from another type of collapse, where the learned rep-
resentations only span a low-dimensional subspace of the embedding space. In Pokle et al. (2022),
the authors show that non-contrastive losses have many non-collapsed bad minima that the training
algorithm does not avoid. Another related work that takes optimization into consideration is Wen &
Li (2021), in which the authors analyze the training dynamics of contrastive learning and show that,
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with random augmentation, neural networks can learn features that are suppressed by noises when
no augmentations are used. Though these works do consider the optimization problem, they focus on
the case where the features are uniform, and only Wen & Li (2021) considers output normalization.
We compare our results with the most relevant works in the next paragraph.

Comparison with Jing et al. (2022); Tian et al. (2021); Wen & Li (2021) The dimensional
collapse problem reported in Jing et al. (2022) is not a real issue in our setting, since, in our case, the
best the model can do is to recover the latent vector z, up to some rotation. As a result, it is natural
for the learned representations to span only a low-dimensional subspace of the embedding space
Rm. Here, the point of choosing m≫ d is to make the optimization dynamics more regular, which
is a common strategy in the study of over-parameterized neural networks. The main difference
between our work and the analysis in Tian et al. (2021) and Wen & Li (2021) is we do not assume
the inputs are isotropic. In our setting, the condition number can be as large as Θ(log d). When the
condition number is 1, one can imagine that thanks to the symmetry, all directions will be learned
simultaneously, and therefore, we do not need negative examples to prevent collapse (Tian et al.
(2021)) or the negative examples do not play an important role in analysis (Wen & Li (2021)). On
the other hand, when the condition number is larger than 1, we do need to use the negative examples
to shrink the condition number, which corresponds to the second stage of our analysis.

3 PROBLEM SETUP

Similar to previous theoretical works (e.g., Lee et al. (2021); Wen & Li (2021)), we consider a linear
data-generating model. Formally, we assume that the contrastive pairs (x+

A,x−
B) are constructed as

x+
A = Az+ +Aξξ

+
A, x−

B = Bz− +Bξξ
−
B, (1)

where z±, ξ−A, ξ−B are independent random variables following the uniforms distributions over
{±1/

√
d}r, {±1/

√
d}d−r and {±1/

√
d}d−r, respectively, and A,B ∈ Rd×r, Aξ,Bξ ∈ Rd×(d−r)

are matrices with A⊤A = B⊤B = diag(σ2) and A⊤
ξ Aξ = B⊤

ξ Bξ = σ2
ξId−r for some σ ∈ Rr

+

and σξ ∈ R+. In words, we first sample the latent vectors z± ∈ Rr independently and encode them
with A,B to form the signal part of the input. Then, we sample the latent noises ξ+A, ξ−B ∈ Rd−r,
and encode them with Aξ,Bξ to form the noise part of the input. Finally, we add the signal and noise
parts together to obtain (x+

A,x−
B). To generate a positive pair (x+

A,x+
B), we use the same latent

vector. That is, x+
A = Az+ +Aξξ

+
A and x+

B = Bz+ +Bξξ
+
B . Note that the latent noises here are

still independent. We use σ2
max and σ2

min to denote the maximum and minimum of σ2
1 , . . . , σ

2
r , σ

2
ξ ,

respectively. We assume that (σ2
max/σ

2
min)max

{
1, (d− r)σ2

ξ/(rσ
2
min)

}
≤ c log d for some small

constant c > 0. Our results can easily be generalized to settings where the dimensions of xA and
xB are not the same, since one can simply pad zeros at the end of each column of A and B.

One way of interpreting this model is to view each coordinate of the latent vector z as an indicator
for the presence/absence of a certain object, and the corresponding columns in A and B as the visual
and word embeddings of this object, respectively.

Now, we describe our learner model. We consider (normalized) linear feature learners. Define

fA(xA) :=
W⊤

AxA√
ExA

∥∥W⊤
AxA

∥∥2 , fB(xB) :=
W⊤

BxB√
ExB

∥∥W⊤
BxA

∥∥2 ,
where WA,WB ∈ Rd×m are the trainable parameters. In words, we first map the inputs (xA,xB)
into the embedding space Rm using WA and WB , and then apply batch normalization to the out-
puts. By saying the learned representations are aligned, we mean that fA and fB are close for
positive pairs and far away from each other for negative pairs. Meanwhile, we say the learned
representations are balanced if changing a small fraction of coordinates of z does not change the
representation dramatically. See Section 4 for formal definitions.

One can easily verify that, in the population case, we have ExA

∥∥W⊤
AxA

∥∥2 =
∥∥W⊤

AA
∥∥2
F
/d +∥∥W⊤

AAξ

∥∥2
F
/d. For notational simplicity, we write KA = W⊤

AA, KB = W⊤
BB, KA,ξ =
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W⊤
AAξ, and KB,ξ = W⊤

BBξ. These are the matrices that directly map latent vectors to their
final representations. We also define N2

A = (∥KA∥2F + ∥KA,ξ∥2F )/d and N2
B = (∥KB∥2F +

∥KB,ξ∥2F )/d. Then our model can be rewritten as1

fA(xA) =
KAzA +KA,ξξA

NA
, fB(xB) =

KBzB +KB,ξξB
NB

. (2)

We initialize each entry of WA and WB using iid Gaussian N (0, 1/m). This scaling ensures the
norm of outputs before initialization does not blow up as m → ∞. We train our model using
gradient descent over the following contrastive loss L. First, we define2

SA(x+
A,x+

B) =
exp(τ2t f

+
A · f

+
B)

exp(τ2t f
+
A · f

+
B) +K Ex−

B
exp(τ2t f

+
A · f

−
B)

,

SB(x+
A,x+

B) =
exp(τ2t f

+
A · f

+
B)

exp(τ2t f
+
A · f

+
B) +K Ex−

A
exp(τ2t f

−
A · f

+
B)

,

where K is a positive constant controlling the strength of negative samples and τt ∈ (0, 1] is the
inverse temperature. Then, we define the contrastive loss as

L := LA + LB := −E logSA(x+
A,x+

B)− E logSB(x+
A,x+

B). (3)

By the non-contrastive loss, we mean

L̂ := −E
〈
f+
A ,f+

B

〉
. (4)

Formally, the training algorithm is defined as follows.

Algorithm 3.1 (Training algorithm). Let L̃ be L in the contrastive case and L̂ in the non-contrastive
case. At each step, we first sample a batch of positive/negative pairs {(x+

A,x+
B,x−

A,x−
B)}Ni=1,

use them to compute the empirical version of L̃, and update the weight matrices using WA ←
WA − τ−2

t η∇WA
L̃ and WB ←WB − τ−2

t η∇WB
L̃.

In the non-contrastive case, we always use τt = 13, and we repeat the above update until gradient
descent converges to an approximate stationary point. In the contrastive case, we first use a small
τt = 1/ poly(d), run the process for T1 = poly(d) iterations, switch to τt = 1, and run the process
for another T2 − T1 = poly(d) iterations.

4 MAIN RESULTS

In words, our results say that though both contrastive and non-contrastive methods can align the
representations, the representations learned by contrastive methods are more balanced. First, we
need to define what do “alignment” and “balance” mean here. We still use fA and fB to denote the
embeddings, but our definitions here will be architecture-agnostic. After some general discussion,
we also discuss these definitions in our specific setting.

Definition 4.1 (Alignment). We define the alignment score as

ΓAlign :=
1

2
E

x±
A,x±

B

{
1
{∥∥f+

A − f+
B

∥∥ <
∥∥f+

A − f−
B

∥∥}+ 1
{∥∥f+

A − f+
B

∥∥ <
∥∥f−

A − f+
B

∥∥}} .
Namely, ΓAlign is the accuracy of classifying whether the input pair (xA,xB) is a positive pair. We
say that the learned representations are aligned if ΓAlign ≈ 1.

Note that the notion of alignment introduced here is stronger than matching the positive pairs, which
can be achieved by simply mapping all inputs to one single embedding. In that case, ΓAlign will be
0 (or 0.5 if we choose to break ties randomly instead of using strict inequality).

1See Section D for discussions on the sample complexity.
2We use f+

A as a shorthand for fA(x+
A), similarly for other combinations of A,B and ±.

3Note that, in the non-contrastive case, changing τt only changes the learning rate.
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Definition 4.2 (Balance). We define the balance score as

ΓBalance := ∥Σf∥2F / ∥Σ∥22 where Σf := E
xA

{
fAf⊤

A

}
.

Namely, ΓBalance is the stable rank of the covariance matrix of the output embeddings. We say that
the learned representations are balanced if ΓBalance ≥ αr for some α ≈ 1.

We make some short remarks on Definition 4.2. First, we only use fA in this definition because
if the embeddings are well-aligned, fAf⊤

A and fBf⊤
B should be approximately the same. Second,

the stable rank is usually used as an alternative to the actual rank because it is less sensitive to
small singular values (Rudelson & Vershynin (2007)). To see why this makes sense, note that
∥Σf∥2F / ∥Σ∥22 =

∑m
k=1 κ

2
k/maxk∈[m] κ

2
k, where κ1, . . . , κm are the singular values of Σf . If all

nonzero κk are the same, then this recovers the actual rank. The intuition behind the use of rank is
that the more independent latent variables the model learns, the higher the rank of the representations
needs to be.

In Jing et al. (2022), the authors also use rank to measure the degree of “dimensional collapse”.
Unlike their argument, here we only require ΓBalance to be at least αr, instead of αm, for the
representations to be called balanced because even if we can recover the underlying latent vectors,
the rank is still at most r. Hence, it does not make much sense to expect the learned representations
to span the entire embedding space. Finally, note that a sufficient condition for ΓBalance ≥ αr is that
the ratio of the largest and r-largest singular values is at most

√
α. In other words, after excluding

those singular values that should be 0, the condition number is approximately 1.

Why balance representations are important? In our setting, one simple example of aligned but
unbalanced representations is W⊤

A = diag(ν)A−1 and W⊤
B = diag(ν)B−1 with ν1 = 1 and

ν2 = · · · = νr = exp(−d). This model maps inputs whose latent vector is z to diag(µ)z, up to
some normalization, for both modules, whence it has ΓAlign = 1. Meanwhile, one can verify that
this model has ΓBalance/r ≤ 2/r ≈ 0. The problem of this model is that it overly emphasizes z1
and is sensitive to small changes in z1. This model can be made balanced by replacing diag(µ) with
Ir, in which case the model directly recovers the latent vector z. As a result, all changes in z will be
reflected in the final representation in a faithful way. Similar notions have also been studied in Wang
& Isola (2020) under the name “uniformity” in the context of self-supervised learning, and they
also report that balanced representations lead to better performance in downstream tasks, though,
unlike our result, they do not provide guarantees on training. Still, this further suggests that learning
balanced representations is a reasonable and important goal.

With these two definitions, we can now state our main results.
Theorem 4.3. Suppose that the network width m = poly(d) is sufficiently large, the learning
rate η = 1/ poly(d) is sufficiently small, and we generate sufficiently, but still polynomially, many
samples at each step to compute the loss4. Suppose that, for some small constant c > 0,

σ2
max

σ2
min

max

{
1,

(d− r)σ2
ξ

rσ2
min

}
≤ c log d.

(a) Non-contrastive loss. There exists a σ ∈ Rr satisfying the above assumptions such that,
after poly(d) iterations, Algorithm 3.1 will converge to an approximate stationary point,
at which the learned representations are aligned but not balanced, that is, ΓAlign ≈ 1 but
ΓBalance/r ≈ 0.

(b) Contrastive loss. There exists τ20 = 1/ poly(d) and T1 = poly(d) such that, for any
valid σ, Algorithm 3.1 will reach a point after poly(d) iterations at which the learned
representations are aligned and balanced, that is, ΓAlign ≈ 1 and ΓBalance/r ≈ 1.

We close this section with sufficient conditions for the learned representations to be aligned and
balanced in our setting. First, in our specific setting, the most natural way for a model to achieve
ΓAlign ≈ 1 is to learn ∥fA − fB∥ ≈ ∥K0(zA − zB)∥ for some K0 ∈ Rm×r with K⊤

0 K0 ≻ 0.

4To make the proof cleaner, we write it in terms of gradient flow over population loss. See Section D for
discussions on the discretization of gradient flow.
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In this case, the distance between positive pairs is always close to 0 while the distance between
negative pairs is positive. Recall that the output of our model is fA = (KAzA + KA,ξξA)/NA

and fB = (KBzB +KB,ξξB)/NB . Hence, we have the following sufficient condition.
Lemma 4.4 (Sufficent condition for aligned representations). If ∥KA∥F ≫ ∥KA,ξ∥F , ∥KB∥F ≫
∥KB,ξ∥F , KA ≈ KB , and the condition number of KA is upper bounded by poly(d), then the
learned representations are aligned.

The first two conditions imply the signal parts dominate the outputted representations, the third
condition gives the existence of K0, and the final condition makes sure the smallest singular value
K⊤

0 K0 of is still at least 1/poly(d) after normalization.

Now we consider the balance of the learned representations. Suppose that our representations are
already aligned, in the sense of Lemma 4.4. Then we have

Σf = E
xA

{
fAf⊤

A

}
= E

z

{
KAzz⊤K⊤

A

∥KA∥2F /d

}
=

KAK⊤
A

∥KA∥2F
.

Recall the relationship between ΓBalance and the effective condition number of Σf . We have the
following sufficient condition.
Lemma 4.5 (Sufficient condition for balanced representations). Suppose that our model is aligned,
in the sense of Lemma 4.4. If the condition number of K⊤

AKA is close to 1, then the learned
representations are balanced.

Note that, since the columns of A are not orthonormal, even at initialization, the condition number
of K⊤

AKA is not close to 1. In other words, a condition-number-reducing stage is necessary for the
model to learn balanced representations.

5 TRAINING DYNAMICS AND PROOF OUTLINE

Our proof is based on characterizing the dynamics of gradient descent over the contrastive loss.
We first choose a small inverse temperature τ2t = 1/ poly(d) and run gradient descent for poly(d)
iterations. This stage is called Stage 1. Then, we set τ2t = 1 and run gradient descent for another
poly(d) iterations. This stage is called Stage 2. The use of different τt is mainly for technical
purposes since this gives cleaner separation between stages. We observe similar stage-wise behavior
when using a uniform τ2t . See Figure 1 for simulation results. We also report results for the non-
contrastive loss there.

5.1 THE TRAINING DYNAMICS

Instead of tracking the parameters WA and WB directly, we will track KA,KA,ξ,KB,KB,ξ, the
matrices that directly map latent signals and noises to the final representations. For the case with
contrastive pairs, one can show that the dynamics of KA are governed by the following equation

K̇A = E
x+

A,x+
B

{(
2− SA(x+

A,x+
B)− SB(x+

A,x+
B)
)(f+

B(z+)⊤

NA
−
〈
f+
A ,f+

B

〉 KA

N2
Ad

)}
diag(σ2)

−K E
x+

A,x±
B

{
SA(x+

A,x+
B) exp(τ2t f

+
A · f

−
B)

exp(τ2t f
+
A · f

+
B)

(
f−
B(z+)⊤

NA
−
〈
f+
A ,f−

B

〉 KA

N2
Ad

)}
diag(σ2)

−K E
x±

A,x+
B

{
SB(x+

A,x+
B) exp(τ2t f

−
A · f

+
B)

exp(τ2t f
+
A · f

+
B)

(
f+
B(z−)⊤

NA
−
〈
f−
A ,f+

B

〉 KA

N2
Ad

)}
diag(σ2).

(5)
See Lemma A.3 for the calculation. The first term comes from the positive pairs and the second and
third terms from the negative pairs. Within each term, the second part comes from the normalization.
The equations for the other K-matrices can be derived similarly. We rescale the gradients by 1/τ2t
so that d

dtKA does not shrink with τ2t . For the non-contrastive case, the equation is

d

dt
KA = E

x+
A,x+

B

{
f+
B(z+)⊤

NA
−
〈
f+
A ,f+

B

〉 KA

N2
Ad

}
diag(σ2). (6)
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Figure 1: Simulation results. The first row reports the accuracies of different approaches on the
classifying positive/negative pairs problem, and the second row reports the values of the largest r
singular values. From left to right, the columns correspond to the non-contrastive method, con-
trastive method with τt ≡ 1 throughout the entire process, and contrastive method with τt switch
from 0.01 to 1 at the vertical dashed line. One can make several observations here. (a) All meth-
ods can quickly attain near 100% accuracy. (b) Only contrastive methods will reduce the condition
number to approximately 1. (c) Even when τt ≡ 1, we still have the stage-wise behavior, where the
models first align the representations in Stage 1, and then balance the representations in Stage 2.

Note that the RHS resembles the first term of (5). This is not a coincidence. We will establish the
approximate equivalence between the non-contrastive approach and the contrastive approach with a
small inverse temperature τ2t (cf. Section 5.3 and Lemma B.9).

5.2 THE INFINITE-WIDTH DYNAMICS

The overall proof strategy is to first characterize the dynamics of the infinite-width limit, which is
much simpler compared to (5), and then control the error introduced by discretizing the infinite-
width network using polynomially many neurons. This discretization is one of the main technical
challenges of the proof. In general, in order to track the infinite-width dynamics, an exponentially
large network is needed (Mei et al. (2018)).

The basic idea is to use Taylor expansion around the infinite-width trajectory to factor out the first-
order error terms and show that, either they drive the process towards the infinite-width trajectory or
the error growth introduced by them is slower than the convergence rate.

Here, for ease of presentation, we will focus on the noiseless infinite-width dynamics and, in par-
ticular, the evolution of the condition number. Recall that we use iid Gaussian to initialize the
entries of WA and WB . Hence, in the m → ∞ limit, different columns of KA and KB are
orthogonal to each other, at least at initialization. Moreover, one can verify that thanks to the sym-
metry, this holds throughout the entire training procedure. Meanwhile, by symmetry, the corre-
sponding quantities in modules A and B are always the same. Namely, when m → ∞, we have
K⊤

AKA = K⊤
BKB = diag(κ2) and K⊤

AKB = diag(κ̂2) for some κ, κ̂ ∈ Rr. As a result, in
order to characterize the dynamics of KA,KB , it suffices to look at κ2 and κ̂2. One can show that,
in this noiseless infinite-width limit, we have (cf. Lemma A.7)

d

dt
κ2
p = 4

(
1− S̃

)( κ̂2
p

∥κ∥2
− ∥κ̂∥

2

∥κ∥2
κ2
p

∥κ∥2

)
σ2
p − 4

(
1− S̃

)( κ̂2
p

∥κ∥2
Tp −

κ2
p

∥κ∥2
T̃

)
σ2
p,

d

dt
κ̂2
p = 4

(
1− S̃

)( κ2
p

∥κ∥2
− ∥κ̂∥

2

∥κ∥2
κ̂2
p

∥κ∥2

)
σ2
p − 4

(
1− S̃

)( κ2
p

∥κ∥2
Tp −

κ̂2
p

∥κ∥2
T̃

)
σ2
p,

(7)
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where S̃ is a Θ(1) quantity depending on κ̂ and κ, Tp = tanh(τ2t κ̂
2
p/ ∥κ∥

2
), and T̃ =∑r

k=1(κ̂
2
p/ ∥κ∥

2
)Tp. The first term comes from the first term of (5) and the second term from

the second and third terms of (5). When κ2
p ≈ κ̂2

p for all p ∈ [r], the model is aligned. When all κ2
p

are roughly the same, the model is balanced.

5.3 STAGE 1
In this subsection, we describe the dynamics of gradient descent in Stage 1 and explain how we
control the growth of the errors and condition number. For ease of presentation, we will mostly use
the infinite-width dynamics (7) instead of the finite-width one (5).

Equivalence of Stage 1 and non-contrastive methods Recall that we use a small τ2t in Stage 1,
Tp ≈ 0 for all p ∈ [r], whence T̃ is also approximately 0. As a result, the second terms of (7) are
approximately 0. In other words, only the positive pairs matter. Meanwhile, one can check that, in
the infinite-width limit, (6) corresponds to the first term of (7), up to some multiplicative factor. This
gives the equivalence of the dynamics of Stage 1 and the non-contrastive method. See Lemma B.9
for a more formal proof in the finite-width setting.

Now, we consider the contrastive loss. The main result of Stage 1 is as follows.
Lemma 5.1 (Informal version of Lemma B.1). Under the assumptions of Theorem 4.3, the finite-
width dynamics closely track the infinite-width ones throughout Stage 1, which takes at most poly(d)
iterations, and, at the end of Stage 1, we have, for any p, q ∈ [r] and s ∈ [d− r],

κ̂2
p/κ

2
p ≈ 1, ∥[KA,ξ]s∥2 /κ2

p ≈ 0, κ2
p/κ

2
q ≤ O

(√
d
)
. (8)

Moreover, there exists a σ ∈ Rr such that maxp,q κ
2
p/κ

2
q = Ω(

√
d) at the end of Stage 1.

In words, (8) says, at the end of Stage 1, KA ≈ KB in the relative sense, the noise-signal ratio
is small, and the condition number is bounded by O(

√
d). By Lemma 4.4, the first two conditions

of (8) imply that the learned representations are aligned. The proof of this lemma can be found in
Section B. Basically, we couple the convergence of κ̂2

p/κ
2
p and the noise-signal ratio with the growth

of discretization error and condition number. The main tool we use is the following nonlinear version
of Gronwall’s lemma.
Lemma 5.2. Let At be a positive process. Let Xt and Yt be defined as Ẋt ≤ −AtXt, Ẏt ≤
βAtXtYt, with X0, Y0, β being positive. Then, for any T ≥ 0, we have YT ≤ Y0 exp(βX0).

Here, Xt represents the progress we have made and Yt the error we wish to control. In our case,
Xt is the maximum between 1 − κ̂2

p/κ
2
p and the noise-signal ratio, and Yt the discretization error

and condition number. This lemma says that, if the error growth rate decreases as we make more
progress, then by coupling these two processes, we can make sure the error does not blow up.

5.4 STAGE 2

In Stage 2, τ2t is no longer o(1), and now the second term of (7) comes into play. We show that, in
this stage, the model will reduce the condition number of KA to approximately 1. By Lemma 4.5,
this implies that the learned representations are balanced. Formally, we have the following lemma.
The proof can be found in Section C.
Lemma 5.3 (Informal version of Lemma C.1). Under the assumptions of Theorem 4.3, the finite-
width dynamics still closely track the infinite-width one throughout Stage 2, which again takes at
most poly(d) iterations, and, at the end of Stage 2, we have, for any p, q ∈ [r] and s ∈ [d− r],

κ̂2
p/κ

2
p ≈ 1, ∥[KA,ξ]s∥2 /κ2

p ≈ 0, κ2
p/κ

2
q ≈ 1. (9)

The way to control κ̂2
p/κ

2
p and the noise-signal ratio is similar to Stage 1. For the condition number,

note that when τ2t = 1 and κ̂ ≈ κ, the first term of (7) becomes close to 0 while the second term
becomes −4(1 − S̃)κ2

p/ ∥κ∥
2
(Tp − T̃ )σ2

p. Since Tp = tanh(τ2t κ̂
2
p/ ∥κ∥

2
) is positively correlated

with κ̂2
p/ ∥κ∥

2 and T̃ is a weight average of these Tp’s, this term will push κ̂2
p/ ∥κ∥

2 towards their
average and, consequently, reduces the condition number. To obtain a satisfactory convergence rate,
it suffices to consider the ratio κ2

p/κ
2
q directly. See Appendix C.5 for details. The discretization error

is handled in Appendix C.2.
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6 EXPERIMENTAL RESULTS

Figure 2: Results of the MSCOCO experiments. The top row plots report the training loss, alignment
scores, and balance scores during training, respectively. The bottom row figures plot the downstream
accuracies and the largest 25 singular value of Σf at different epochs, normalized so that the largest
one has value 1. One can see that the alignment score quickly reaches near 100%, and the balance
score, as well as the downstream accuracy, increases gradually during training, which matches our
theoretical analysis.

Besides the simulation results reported in Figure 1, we also conduct experiments on the MSCOCO-
2014 dataset (Lin et al., 2014) using more practical models. See Figure 2 for the results. For the
text part, we use a pre-trained RoBERTa (Liu et al., 2019), followed by a 3-layer fully-connected
network with batch norm between layers. For the image part, we use a pre-trained ResNet101 (He
et al., 2015), followed by the same layers. In both parts, the width of the fully-connected layers
and the output dimension are 768. We freeze the pre-trained parts of the model and only train the
fully-connected parts.

We measure the quality of the learned representation using its zero-shot performance on the
MSCOCO-2014 validation set. Unlike common image classification datasets, images in the
MSCOCO dataset usually have multiple labels, each corresponding to an object that appears in
the image, and there are 80 categories in total. We regard a prediction to be correct if it matches one
label. The zero-shot classification is done in the same way as in Radford et al. (2021). Namely, we
compute the image embedding and the embeddings of prompts “This is a [LABEL NAME]”, and
use the prompt with the highest correlation with the image embedding as the prediction.

7 CONCLUSION AND DISCUSSION

In this work, we study the role of contrastive pairs in multimodal learning, and show that contrastive
pairs are important for the model to learn representations that are both aligned and balanced. Our
work extends previous results in several directions: First, we consider the more complicated mul-
timodal learning problem. Meanwhile, our data generating model is inhomogeneous, and we show
that in this case, non-contrastive method can collapse to an approximately rank-1 solution while
contrastive method can learn all features. We also include output normalization in our analysis, a
technique that is widely used in practice but is still under-studied in theory.

However, despite the complexity of the analysis, our model is still linear, which is very different from
the models used in practice. Also, for the results on non-contrastive methods, we do not consider
more advanced training techniques such as Grill et al. (2020) and Chen & He (2021). We leave the
analysis of these more practical techniques for future work.

9
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A GRADIENT CALCULATION

In this section, we compute the gradients and the equations governing some related quantities. We
first consider the general finite-width case, and then the infinite-width case, in which we have simple
formulas for many quantities of interests.

A.1 THE FINITE-WIDTH CASE

The results in this subsection are mostly brute-force calculations. First, we prove the following
auxiliary lemma.
Lemma A.1. For any x+

A and x−
B , we have

∇WA
exp(τ2t f

+
A ·f

−
B) =

τ2t exp(τ2t f
+
A · f

−
B)

NA

x+
A(f−

B)⊤ −
〈
f+
A ,f−

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/d

NA

 .

Then we compute the gradients.
Lemma A.2. We have

∇WA
L = −τ2t E

x+
A,x+

B

(2− SA(x+
A,x+

B)− SB(x+
A,x+

B)
)x+

A(f+
B)⊤

NA
−
〈
f+
A ,f+

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
N2

Ad


+

Kτ2t
NA

E
x+

A,x±
B

SA(x+
A,x+

B) exp(τ2t f
+
A · f

−
B)

exp(τ2t f
+
A · f

+
B)

x+
A(f−

B)⊤ −
〈
f+
A ,f−

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/
√
d√

∥KA∥2F + ∥KA,ξ∥2F


+

Kτ2t
NA

E
x±

A,x+
B

SB(x+
A,x+

B) exp(τ2t f
−
A · f

+
B)

exp(τ2t f
+
A · f

+
B)

x−
A(f+

B)⊤ −
〈
f−
A ,f+

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/
√
d√

∥KA∥2F + ∥KA,ξ∥2F

 .

The formula for∇WB
L can be obtained by interchanging the roles of A and B.

Instead of tracking WA and WB directly, we are going to track KA, KB , KA,ξ and KB,ξ. The
dynamics of them is governed by the following equation. As a direct corollary of Lemma A.2, we
have the following.
Lemma A.3. We have

d

dt
KA

= τ2t E
x+

A,x+
B

{(
2− SA(x+

A,x+
B)− SB(x+

A,x+
B)
)( (KBz+ +KB,ξξB)(z+)⊤
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A ,f+

B
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We can rewrite the above result as follows.

Corollary A.4. Define

Q0 := − E
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B
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exp(τ2t f
+
A · f

+
B)

z+(z−)⊤d

}
,

Q1,ξB := E
{(

2− SA(x+
A,x+

B)− SB(x+
A,x+

B)
)
ξ+B(z+)⊤d

}
−K E

{
SA(x+

A,x+
B) exp(τ2t f

+
A · f

−
B)

exp(τ2t f
+
A · f

+
B)

ξ−B(z+)⊤d

}
−K E

{
SB(x+

A,x+
B) exp(τ2t f

−
A · f

+
B)

exp(τ2t f
+
A · f

+
B)

ξ+B(z−)⊤d

}
,

Q1,ξA := E
{(

2− SA(x+
A,x+

B)− SB(x+
A,x+

B)
)
ξ+A(z+)⊤d

}
−K E

{
SA(x+

A,x+
B) exp(τ2t f

+
A · f

−
B)

exp(τ2t f
+
A · f

+
B)

ξ+A(z−)⊤d

}
−K E

{
SB(x+

A,x+
B) exp(τ2t f

−
A · f

+
B)

exp(τ2t f
+
A · f

+
B)

ξ−A(z+)⊤d

}
,

Q2 := E
{(

2− SA(x+
A,x+

B)− SB(x+
A,x+

B)
)
ξ+B(ξ+A)⊤d

}
−K E

{
SA(x+

A,x+
B) exp(τ2t f

+
A · f

−
B)

exp(τ2t f
+
A · f

+
B)

ξ−B(ξ+A)⊤d

}
−K E

{
SB(x+

A,x+
B) exp(τ2t f

−
A · f

+
B)

exp(τ2t f
+
A · f

+
B)

ξ+B(ξ−A)⊤d

}
.

We have

d

dt
KA =

KB

NANBd
Q1 diag(σ

2) +
KB,ξ

NANBd
Q1,ξB diag(σ2) +

KA

N2
Ad

Q0 diag(σ
2),

d

dt
KB =

KA

NANBd
Q⊤

1 diag(σ2) +
KA,ξ

NANBd
Q1,ξA diag(σ2) +

KB

N2
Bd

Q0 diag(σ
2),

d

dt
KA,ξ =

KB

NANBd
Q⊤

1,ξA
σ2
ξ +

KB,ξ

NANBd
Q2σ

2
ξ +

KA,ξ

N2
Ad

Q0σ
2
ξ ,

d

dt
KB,ξ =

KA

NANBd
Q⊤

1,ξB
σ2
ξ +

KA,ξ

NANBd
Q⊤

2 σ
2
ξ +

KB,ξ

N2
Bd

Q0σ
2
ξ .

We are interested in each column of KA and KB , whose dynamics is given by the next lemma. The
next lemma also decompose the dynamics along the radial and tangent directions.
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Lemma A.5. For any p ∈ [r] and q ∈ [d− r], we have

d

dt
∥[KA]p∥2 = 2

⟨[KA]p, [KBQ1]p⟩
NANBd

σ2
p + 2

⟨[KA]p, [KB,ξQ1,ξB ]p⟩
NANBd

σ2
p + 2

∥[KA]p∥2

N2
Ad

Q0σ
2
p,

d

dt
∥[KB]p∥2 = 2

〈
[KB]p, [KAQ⊤

1 ]p
〉

NANBd
σ2
p + 2

⟨[KB]p, [KA,ξQ1,ξA ]p⟩
NANBd

σ2
p + 2

∥[KB]p∥2

N2
Bd

Q0σ
2
p,

d

dt
∥[KA,ξ]q∥2 = 2

〈
[KA,ξ]q, [KBQ⊤

1,ξA
]q

〉
NANBd

σ2
ξ + 2

⟨[KA,ξ]q, [KB,ξQ2]q⟩
NANBd

σ2
ξ + 2

∥[KA,ξ]q∥2F
N2

Ad
Q0σ

2
ξ ,

d

dt
∥[KB,ξ]q∥2 = 2

〈
[KB,ξ]q, [KAQ⊤

1,ξB
]q

〉
NANBd

σ2
ξ + 2

〈
[KB,ξ]q, [KA,ξQ

⊤
2 ]q
〉

NANBd
σ2
ξ + 2

∥[KB,ξ]q∥2

N2
Ad

Q0σ
2
ξ ,

and

d

dt
[KA]p =

(
I − [KA]p

(
[KA]p

)⊤)( [KBQ1]p
∥[KA]p∥

+
[KB,ξQ1,ξB ]p
∥[KA]p∥

)
σ2
p

NANBd
,

d

dt
[KB]p =

(
I − [KB]p

(
[KB]p

)⊤)( [KAQ⊤
1 ]p

∥[KB]p∥
+

[KA,ξQ1,ξA ]p
∥[KB]p∥

)
σ2
p

NANBd
,

d

dt
[KA,ξ]q =

(
I − [KA,ξ]q

(
[KA,ξ]q

)⊤)( [KBQ⊤
1,ξA

]q

∥[KA,ξ]q∥
+

[KB,ξQ2]q
∥[KA,ξ]q∥

)
σ2
ξ

NANBd
,

d

dt
[KB,ξ]q =

(
I − [KB,ξ]q

(
[KB,ξ]q

)⊤)( [KAQ⊤
1,ξB

]q

∥[KB,ξ]q∥
+

[KA,ξQ
⊤
2 ]q

∥[KB,ξ]q∥

)
σ2
ξ

NANBd
.

Finally, as a simple corollary of Lemma A.1, we have the following result on the gradients of the
non-contrastive loss.

Lemma A.6. For the non-contrastive loss (4), we have

∇WA
L̂ = E

x+
A(f+

B)⊤

NA
−
〈
f+
A ,f+

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
N2

Ad


As a corollary, we have, in this case,

d

dt
KA = E

{
f+
B(z+)⊤

NA
−
〈
f+
A ,f+

B

〉 KA

N2
Ad

}
diag(σ2),

d

dt
KA,ξ = E

{
f+
B(ξ+A)⊤

NA
−
〈
f+
A ,f+

B

〉KA,ξ

N2
Ad

}
σ2
ξ .

OMITTED PROOF OF THIS SUBSECTION

Proof of Lemma A.1. We compute

∇WA
exp(τ2t f

+
A · f

−
B) = τ2t exp(τ2t f

+
A · f

−
B)∇WA

〈
f+
A ,f−

B

〉
= τ2t exp(τ2t f

+
A · f

−
B)∇WA

〈
W⊤

Ax+
A,f−

B

〉√
∥KA∥2F + ∥KA,ξ∥2F /

√
d

= τ2t exp(τ2t f
+
A · f

−
B)

∇WA

〈
W⊤

Ax+
A,f−

B

〉√
∥KA∥2F + ∥KA,ξ∥2F /

√
d

− τ2t exp(τ2t f
+
A · f

−
B)
〈
f+
A ,f−

B

〉 ∇WA

√
∥KA∥2F + ∥KA,ξ∥2F√

∥KA∥2F + ∥KA,ξ∥2F
.
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For the first term, we have∇WA

〈
W⊤

Ax+
A,f−

B

〉
= x+

A(f−
B)⊤. For the second term, we have

∇WA

√
∥KA∥2F + ∥KA,ξ∥2F√

∥KA∥2F + ∥KA,ξ∥2F
=
∇WA

∥KA∥2F +∇WA
∥KA,ξ∥2F

2(∥KA∥2F + ∥KA,ξ∥2F )
=

AK⊤
A +AξK

⊤
A,ξ

∥KA∥2F + ∥KA,ξ∥2F
.

Hence,

∇WA
exp(τ2t f

+
A · f

−
B) = τ2t exp(τ2t f

+
A · f

−
B)

x+
A(f−

B)⊤√
∥KA∥2F + ∥KA,ξ∥2F /

√
d

− τ2t exp(τ2t f
+
A · f

−
B)
〈
f+
A ,f−

B

〉 AK⊤
A +AξK

⊤
A,ξ

∥KA∥2F + ∥KA,ξ∥2F

=
τ2t exp(τ2t f

+
A · f

−
B)√

∥KA∥2F + ∥KA,ξ∥2F /
√
d

x+
A(f−

B)⊤ −
〈
f+
A ,f−

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/
√
d√

∥KA∥2F + ∥KA,ξ∥2F

 .

Proof of Lemma A.2. We compute

∇WA
LA = −E

∇WA
SA(x+

A,x+
B)

SA(x+
A,x+

B)

= −E
{

1

SA(x+
A,x+

B)
∇WA

exp(τ2t f
+
A · f

+
B)

exp(τ2t f
+
A · f

+
B) +K Ez− exp(τ2t f

+
A · f

−
B)

}
= −E

{
1

SA(x+
A,x+

B)

∇WA
exp(τ2t f

+
A · f

+
B)

exp(τ2t f
+
A · f

+
B) +K Ez− exp(τ2t f

+
A · f

−
B)

}
+ E

{
∇WA

exp(τ2t f
+
A · f

+
B) +K Ez− ∇WA

exp(τ2t f
+
A · f

−
B)

exp(τ2t f
+
A · f

+
B) +K Ez− exp(τ2t f

+
A · f

−
B)

}
.

By Lemma A.1, the first term is

− E
{

1

SA(x+
A,x+

B)

∇WA
exp(τ2t f

+
A · f

+
B)

exp(τ2t f
+
A · f

+
B) +K Ez− exp(τ2t f

+
A · f

−
B)

}

= − τ2t
NA

E
x+

A,x+
B

x+
A(f+

B)⊤ −
〈
f+
A ,f+

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/
√
d√

∥KA∥2F + ∥KA,ξ∥2F

 ,

and the second term is

E

{
∇WA

exp(τ2t f
+
A · f

+
B) +K Ex−

B
∇WA

exp(τ2t f
+
A · f

−
B)

exp(τ2t f
+
A · f

+
B) +K Ez− exp(τ2t f

+
A · f

−
B)

}

=
τ2t
NA

E

SA(x+
A,x+

B)

x+
A(f+

B)⊤ −
〈
f+
A ,f+

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/
√
d√

∥KA∥2F + ∥KA,ξ∥2F


+

Kτ2t
NA

E

SA(x+
A,x+

B) exp(τ2t f
+
A · f

−
B)

exp(τ2t f
+
A · f

+
B)

x+
A(f−

B)⊤ −
〈
f+
A ,f−

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/
√
d√

∥KA∥2F + ∥KA,ξ∥2F

 .

Thus,

∇WA
LA = − τ2t

NA
E

x+
A,x+

B

(1− SA(x+
A,x+

B)
)x+

A(f+
B)⊤ −

〈
f+
A ,f+

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/
√
d√

∥KA∥2F + ∥KA,ξ∥2F


+

Kτ2t
NA

E

SA(x+
A,x+

B) exp(τ2t f
+
A · f

−
B)

exp(τ2t f
+
A · f

+
B)

x+
A(f−

B)⊤ −
〈
f+
A ,f−

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/
√
d√

∥KA∥2F + ∥KA,ξ∥2F

 .
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Then, for∇WA
LB , we compute

∇WA
LB = −E

∇WA
SB(x+

A,x+
B)

SB(x+
A,x+

B)

= −E

{
1

SB(x+
A,x+

B)

∇WA
exp(τ2t f

+
A · f

+
B)

exp(τ2t f
+
A · f

+
B) +K Ex−

A
exp(τ2t f

−
A · f

+
B)

}

+ E

{
∇WA

exp(τ2t f
+
A · f

+
B) +K∇WA

Ex−
A
exp(τ2t f

−
A · f

+
B)

exp(τ2t f
+
A · f

+
B) +K Ex−

A
exp(τ2t f

−
A · f

+
B)

}
.

Again, by Lemma A.1, the first term is

− E

{
1

SB(x+
A,x+

B)

∇WA
exp(τ2t f

+
A · f

+
B)

exp(τ2t f
+
A · f

+
B) +K Ex−

A
exp(τ2t f

−
A · f

+
B)

}

= − τ2t
NA

E

x+
A(f+

B)⊤ −
〈
f+
A ,f+

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/
√
d√

∥KA∥2F + ∥KA,ξ∥2F

 ,

and the second term is

E

{
∇WA

exp(τ2t f
+
A · f

+
B) +K∇WA

Ex−
A
exp(τ2t f

−
A · f

+
B)

exp(τ2t f
+
A · f

+
B) +K Ex−

A
exp(τ2t f

−
A · f

+
B)

}

=
τ2t
NA

E

SB(x+
A,x+

B)

x+
A(f+

B)⊤ −
〈
f+
A ,f+

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/
√
d√

∥KA∥2F + ∥KA,ξ∥2F


+

Kτ2t
NA

E

SB(x+
A,x+

B) exp(τ2t f
−
A · f

+
B)

exp(τ2t f
+
A · f

+
B)

x−
A(f+

B)⊤ −
〈
f−
A ,f+

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/
√
d√

∥KA∥2F + ∥KA,ξ∥2F

 .

Thus,

∇WA
LB = − τ2t

NA
E

(1− SB(x+
A,x+

B))

x+
A(f+

B)⊤ −
〈
f+
A ,f+

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/
√
d√

∥KA∥2F + ∥KA,ξ∥2F


+

Kτ2t
NA

E

SB(x+
A,x+

B) exp(τ2t f
−
A · f

+
B)

exp(τ2t f
+
A · f

+
B)

x−
A(f+

B)⊤ −
〈
f−
A ,f+

B

〉 (AK⊤
A +AξK

⊤
A,ξ

)
/
√
d√

∥KA∥2F + ∥KA,ξ∥2F

 .

Combine these formulas together and we complete the proof.

A.2 THE INFINITE-WIDTH CASE

Now we consider the noiseless infinite-width dynamics. The results of this subsection will not be
used in the proof. It mainly serves as a way to give intuitions on how the dynamics looks. As we have
discussed in the main text, in this noiseless infinite-width case, it suffices to track κ2

p = ∥[KA]p∥2

and κ̂2
p = ⟨[KA]p, [KB]p⟩.

Lemma A.7. In the noiseless infinite-width case, we have

d

dt
κ2
p = 4

(
1− S̃

)( κ̂2
p

∥κ∥2
− ∥κ̂∥

2

∥κ∥2
κ2
p

∥κ∥2

)
σ2
p − 4

(
1− S̃

)( κ̂2
p

∥κ∥2
Tp −

κ2
p

∥κ∥2
T̃

)
σ2
p,

d

dt
κ̂2
p = 4

(
1− S̃

)( κ2
p

∥κ∥2
− ∥κ̂∥

2

∥κ∥2
κ̂2
p

∥κ∥2

)
σ2
p − 4

(
1− S̃

)( κ2
p

∥κ∥2
Tp −

κ̂2
p

∥κ∥2
T̃

)
σ2
p,
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Proof. First, note hat

〈
f+
A ,f−

B

〉
=
⟨KBAz+, z−⟩
∥κ∥2 /d

=
⟨z+, z−⟩κ̂2

∥κ∥2 /d
.

This implies that (a)
〈
f+
A ,f+

B

〉
does not depend on the actual value of z+, and (b) if we flip the

signs of z±p simultaneously, then the value of
〈
f+
A ,f−

B

〉
remain unchanged. To compute SA, we

then need to take expectation over z−. We compute

E
z−

exp
(
τ2t f

+
A · f

−
B

)
=

r∏
k=1

E
z−
k

exp

(
τ2t

κ̂2
kz

+
k z

−
k

∥κ∥2 /d

)
=

r∏
k=1

cosh

(
τ2t κ̂

2
k

∥κ∥2

)
=: Zc.

Again, it does not depend on the actual value of z+. One can conduct similar calculation for SB

and, consequently, we have SA ≡ SB ≡ S̃ for some S̃ that depends on κ and κ̂ but not on z+.
Then, we can rewrite (5) as

d

dt
KA = 2

(
1− S̃

)
E

x+
A,x+

B

{
f+
B(z+)⊤

NA
−
〈
f+
A ,f+

B

〉 KA

N2
Ad

}
diag(σ2)

− 2KS̃ E
x+

A,x±
B

{
exp(τ2t f

+
A · f

−
B)

exp(τ2t f
+
A · f

+
B)

(
f−
B(z+)⊤

NA
−
〈
f+
A ,f−

B

〉 KA

N2
Ad

)}
diag(σ2)

= 2
(
1− S̃

)( KB

∥κ∥2
− ∥κ̂∥

2

∥κ∥2
KA

∥κ∥2

)
diag(σ2)

− 2KS̃

exp
(

τ2
t ∥κ̂∥2

∥κ∥2

) E
x+

A,x±
B

{
exp

(
τ2t ⟨z+, z−⟩κ̂2 d

∥κ∥2

)(
KBz−(z+)⊤

∥κ∥2 /d
−
⟨z+, z−⟩κ̂2

∥κ∥2 /d
KA

∥κ∥2

)}
diag(σ2).

Note that

E
z±

{
exp

(
τ2t ⟨z+, z−⟩κ̂2 d

∥κ∥2

)
z−p z+q d

}

= 1{p = q} E
z±
p

{
exp

(
τ2t κ̂

2
kz

+
k z

−
k d

∥κ∥2

)
z−p z+p d

}∏
k ̸=p

E
z±
k

{
exp

(
τ2t κ̂

2
kz

+
k z

−
k d

∥κ∥2

)}

= 1{p = q} sinh

(
τ2t κ̂

2
k

∥κ∥2

)∏
k ̸=p

cosh

(
τ2t κ̂

2
k

∥κ∥2

)
= 1{p = q}ZcTp.

Meanwhile, note that

E
x+

A,x±
B

{
exp

(
τ2t ⟨z+, z−⟩κ̂2 d

∥κ∥2

)
⟨z+, z−⟩κ̂2

∥κ∥2 /d

}
=

r∑
k=1

κ̂2
k

∥κ∥2 /d
E
z±

{
exp

(
τ2t ⟨z+, z−⟩κ̂2 d

∥κ∥2

)
z+k z

−
k

}

= Zc

r∑
k=1

κ̂2
k

∥κ∥2
Tk

=: ZcT̃ .
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Thus,

d

dt
KA = 2

(
1− S̃

)( KB

∥κ∥2
− ∥κ̂∥

2

∥κ∥2
KA

∥κ∥2

)
diag(σ2)

− 2KS̃Zc

exp
(

τ2
t ∥κ̂∥2

∥κ∥2

) ( KB

∥κ∥2
diag

(
[Tk]k∈[r]

)
− KA

∥κ∥2
T̃

)
diag(σ2)

= 2
(
1− S̃

)( KB

∥κ∥2
− ∥κ̂∥

2

∥κ∥2
KA

∥κ∥2

)
diag(σ2)

− 2
(
1− S̃

)( KB

∥κ∥2
diag

(
[Tk]k∈[r]

)
− KA

∥κ∥2
T̃

)
diag(σ2).

As a corollary, we have

d

dt
[KA]p = 2

(
1− S̃

)( [KB]p

∥κ∥2
− ∥κ̂∥

2

∥κ∥2
[KA]p

∥κ∥2

)
σ2
p − 2

(
1− S̃

)( [KB]p

∥κ∥2
Tp −

[KA]p

∥κ∥2
T̃

)
σ2
p.

Hence,

d

dt
κ2
p = 2

〈
[KA]p,

d

dt
[KA]p

〉
= 4

(
1− S̃

)( κ̂2
p

∥κ∥2
− ∥κ̂∥

2

∥κ∥2
κ2
p

∥κ∥2

)
σ2
p − 2

(
1− S̃

)( κ̂2
p

∥κ∥2
Tp −

κ2
p

∥κ∥2
T̃

)
σ2
p.

By symmetry, for KB , we have

d

dt
[KB]p = 2

(
1− S̃

)( [KA]p

∥κ∥2
− ∥κ̂∥

2

∥κ∥2
[KB]p

∥κ∥2

)
σ2
p − 2

(
1− S̃

)( [KA]p

∥κ∥2
Tp −

[KB]p

∥κ∥2
T̃

)
σ2
p.

Then, we can compute

d

dt
κ̂2
p = 4

(
1− S̃

)( κ2
p

∥κ∥2
− ∥κ̂∥

2

∥κ∥2
κ̂2
p

∥κ∥2

)
σ2
p − 4

(
1− S̃

)( κ2
p

∥κ∥2
Tp −

κ̂2
p

∥κ∥2
T̃

)
σ2
p.

B STAGE 1

In this section, we show that the following hold:

(a) KA ≈KB after Stage 1.
(b) The noise-signal ratio is small after Stage 1.

(c) The condition number is O(
√
d) in Stage 1.

(d) The trajectory is still close to the infinite-width one in Stage 1.

We formalize the main results of Stage 1 bellow.
Lemma B.1 (Stage 1). Under the assumption of Theorem 4.3. We can choose a sufficiently (poly-
nomially) large m and a sufficiently (inverse polynomially) small τ2t that may depend on the δ’s that
appear in this lemma so that the following statement holds.

Let T1 be the earliest time all the following hold:〈
[KA]p, [KB]p

〉
≥ 1− δ−, ∀p ∈ [r],

∥[KA,ξ]q∥
∥[KA]p∥

≤ δN/S , ∀p ∈ [r], q ∈ [d− r],
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where δ−, δN/S ∈ 1/poly(d) are two given parameters. We have T1 ≤ poly(d). Moreover, at any
time t ∈ [0, T1], we have κ0 := maxp,q∈[r] ∥[KA]p∥ / ∥[KA]q∥ ≤ O(

√
d) and

∥[KA]p∥2 = (1± δA/B) ∥[KB]p∥2 , ∥[KA,ξ]q∥2 = (1± δA/B) ∥[KB,ξ]q∥2 , ∀p ∈ [r], q ∈ [d− r],∣∣∣∣1− ∥[KA,ξ]p∥
∥[KA,ξ]q∥

∣∣∣∣ ≤ δξ,κ0
, ∀p, q ∈ [d− r],

max
{∣∣∣〈[KC ]p, [KD]q

〉∣∣∣ : C,D ∈ {A,B}
}
≤ δAB,⊥, ∀p ̸= q ∈ [r],

max
{∣∣∣〈[KC ]p, [KD,ξ]q

〉∣∣∣ , ∣∣∣〈[KA,ξ]s, [KB,ξ]q

〉∣∣∣ : C,D ∈ {A,B}
}
≤ δξ,⊥, ∀p ∈ [r], q, s ∈ [d− r],

(10)
where δA/B, δξ,κ0

, δAB,⊥, δξ,⊥ ∈ 1/ poly(d) are given parameters.

Basically, the conditions in (10) mean that the norm of the corresponding columns are roughly the
same, and the columns of all these matrices are approximately orthogonal to each other. Both of
them are true in the infinite-width limit, and by some standard concentration argument, one can
make all these errors to be arbitrarily inverse-polynomially small, at least at initialization. Note that,
as a simple corollary of (10), we have

NA = NB

(
1±

√
δA/B

)
.

For notational simplicity, we also define

ρ− = max
p∈[r]

{
1−

〈
[KA]p, [KB]p

〉}
, ρN/S = max

p∈[r]
q∈[d−r]

∥[KA,ξ]q∥
∥[KA]p∥

.

Characterizing the dynamics in Stage 1 is relatively straightforward. We will see in Section B.1 that
all those Q-matrices have simple forms. The main tool we use to control the condition number and
the discretization error is the following nonlinear version of Gronwall’s lemma.

Lemma B.2. Let At be a positive process. Let Xt and Yt be defined as

Ẋt ≤ −AtXt, Ẏt ≤ αAtXtYt,

with X0, Y0, α being positive. Then, for any T ≥ 0, we have YT ≤ Y0 exp(αX0).

Remark. Here, Xt represent the progress we have made and Yt the error. In our case, Xt is the
maximum between 1−

〈
[KA]p, [KB]p

〉
and the noise-signal ratio, and Yt the discretization error.

This lemma says that, if the error growth rate depends on the progress, then by coupling these two
processes, we can make sure the error does not blow up. The point of this lemma is that, with
coupling, we do not need a very tight estimation on the convergence time nor the error growth
rate. ♣

Proof. The solution of this ODE system is given by

XT = X0 exp

(
−
∫ T

0

At dt

)
, YT = Y0 exp

(
αX0

∫ T

0

At exp

(
−
∫ t

0

As ds

)
dt

)
.

Note that∫ T

0

At exp

(
−
∫ t

0

As ds

)
dt = −

∫ T

0

d exp

(
−
∫ t

0

As ds

)
= 1− exp

(
−
∫ T

0

At dt

)
.

Hence,

YT = Y0 exp

(
αX0

(
1− exp

(
−
∫ T

0

At dt

)))
≤ Y0 exp (αX0) .
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The organization of this section is as follows. In Section B.1, we derive estimations for the Q-
matrices defined in Corollary A.4 and use them to simplify the equations governing the training
dynamics. In Section B.2, we estimate the rate at which 1−

〈
[KA]p, [KB]p

〉
and the noise-signal

ratio converge to 0 and the growth rate of the condition number. In Section B.3, we estimate the
growth rate of the discretization error. Then, in Section B.4, we prove Lemma B.1, the main lemma
of Stage 1. Finally, we prove the negative result for non-contrastive learning in Section B.5.

B.1 ESTIMATIONS FOR Q AND THE DYNAMICS

Thanks to Lemma A.5, in order to analyze the dynamics, it suffices to estimate the Q-matrices. In
this subsection, we derive estimations for them and use these estimations to simplify the equations
in Lemma A.5. Recall that, in Stage 1, τ2t is small. Hence, exp(τ2t

〈
f+
A ,f−

B

〉
) = 1 ± O(τ2t ). With

this approximation, one can derive the following estimation for SA and SB .

Lemma B.3 (Estimations for S). In Stage 1, we have

SA =
1

1 +K
±Oz

(
τ2t
)
±O

(
τ2t dδξ,⊥ρN/S

)
,

and the same is also true for SB . Here, Oz(τ
2
t ) means O(τ2t ) and this does not depend on ξA nor

ξB .

The proof of this lemma and all following lemma is deferred to the end of this subsection. Note
that we derive a slightly finer estimation for the noise-related part. This additional ρN/S will be
used cancel with terms like ∥[KA]p∥ / ∥[KA,ξ]q∥, at the cost of a κ0 factor, in later analysis. We
emphasize here that Oz does not depend on the noises so that later we can argue Eξ

{
Oz(τ

2
t )ξ
}
= 0.

With this lemma, we now derive estimations for Q1, Q1,ξ, Q2 and Q0, respectively.

Lemma B.4 (Estimations for Q1). In Stage 1, we have

Q1 =
2K

1 +K
Id ±O

(
dτ2t
)
.

Lemma B.5 (Estimations for Q1,ξ and Q2). In Stage 1, we have

max
{
∥Q1,ξA∥F , ∥Q1,ξB∥F , ∥Q2∥F

}
= ±O

(
τ2t d

2ρN/Sδξ,⊥
)
.

The above two lemmas say that in Stage 1, Q1 is approximately diagonal, and Q1,ξ and Q2 can
more or less be ignored.

Lemma B.6 (Estimations for Q0). In Stage 1, we have

Q0 = − 2K

1 +K

⟨KA,KB⟩
NANBd

±O
(
dτ2t
)
.

The proof of Lemma B.6 is essentially the same as the proof of Lemma B.4 so we omit it. With
these three lemmas, we can now simplify Lemma A.5 as follows.

Corollary B.7. In Stage 1, for any p ∈ [r] and q ∈ [d− r], we have

d

dt
∥[KA]p∥2 =

4K

1 +K

σ2
p

NANBd

(
⟨[KA]p, [KB]p⟩
∥[KA]p∥2

− ⟨KA,KB⟩
NANBd

)
∥[KA]p∥2

±O

(
σ2
p

NANBd

(√
δA/B + τ2t d

)
κ2
p

)
,

d

dt
∥[KA,ξ]q∥2 = − 4K

1 +K

σ2
ξ

NANBd

⟨KA,KB⟩
NANBd

∥[KA,ξ]q∥2 ±O

(
σ2
ξ

NANBd

(
dτ2t +

√
δA/B

)
∥[KA,ξ]q∥2

)
,

The formulas for KB and KB,ξ can be obtained by interchanging the roles of A and B.
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Basically, the two parts of the first term of d
dt ∥[KA]p∥2 correspond to the signal and normaliza-

tion, respectively. For d
dt ∥[KA,ξ]q∥2, the signal term is 0 because the noises in x+

A and x+
B are

independent and have mean 0.
Corollary B.8. In Stage 1, we have

d

dt
[KA]p =

2K

1 +K

σ2
p

NANBd

(
I − [KA]p

(
[KA]p

)⊤)
[KB]p ±O

(
σ2
p

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
,

d

dt
[KA,ξ]q = ±O

(
σ2
ξ

NANBd
τ2t d

3κ0δξ,⊥

)
.

Interchange the roles of A and B and one can obtain the formulas for KB and KB,ξ.

Note that, after normalization, the normalization terms cancel with each other, and the signal terms
drive [KA]p and [KA]q toward each other. Moreover, without the normalization terms, different
[KA]p are approximately independent of each other. This allows us to maintain the orthogonality
between different columns.

Note that the above results also imply the following lemma.
Lemma B.9. The dynamics of the non-contrastive method and the Stage 1 dynamics are equivalent,
up to a multiplicative constant and some higher-order terms.

OMITTED PROOFS OF THIS SUBSECTION

Proof of Lemma B.3. First, we write〈
f+
A ,f−

B

〉
=
⟨KAz+,KBz−⟩

NANB
+

〈
KAz+,KB,ξξ

−
B

〉
+
〈
KA,ξξ

+
A,KBz−〉

NANB
+

〈
KA,ξξ

+
A,KB,ξξ

−
B

〉
NANB

.

For the second term, we write〈
KAz+,KB,ξξ

−
B

〉
NANB

=
∑

i∈[r],j∈[d−r]

∥[KA]i∥2

NANBd

∥[KB,ξ]j∥
∥[KA]i∥

〈
[KA]i, [KB,ξ]j

〉
z+i ξ

−
B,jd.

For each summand, we have ∥[KB,ξ]j∥ / ∥[KA]i∥ ≤ O(ρN/S),
〈
[KA]i, [KB,ξ]j

〉
= ±O(δξ,⊥),

and |z+i ξ
−
B,jd| ≤ 1. Hence, ⟨KAz+,KB,ξξ

−
B⟩

NANB
= ±O(dδξ,⊥ρN/S). The same is also true for

⟨KA,ξξ
+
A,KBz−⟩

NANBd and the third term. Therefore,〈
f+
A ,f−

B

〉
=
⟨KAz+,KBz−⟩

NANB
±O

(
dδξ,⊥ρN/S

)
.

Then, we compute

exp
(
τ2t
〈
f+
A ,f−

B

〉)
= exp

(
τ2t
⟨KAz+,KBz−⟩

NANB

)(
1±O

(
τ2t dδξ,⊥ρN/S

))
= 1±Oz

(
τ2t
)
±O

(
τ2t dδξ,⊥ρN/S

)
.

Thus,

SA =
1

1 +K
±Oz

(
τ2t
)
±O

(
τ2t dδξ,⊥ρN/S

)
.

The proof for SB is essentially the same.

Proof of Lemma B.4. Recall that

Q1 := E
{(

2− SA(x+
A,x+

B)− SB(x+
A,x+

B)
)
z+(z+)⊤d

}
−K E

{
SA(x+

A,x+
B) exp(τ2t f

+
A · f

−
B)

exp(τ2t f
+
A · f

+
B)

z−(z+)⊤d

}
−K E

{
SB(x+

A,x+
B) exp(τ2t f

−
A · f

+
B)

exp(τ2t f
+
A · f

+
B)

z+(z−)⊤d

}
.
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Since SA = (1 +K)−1 ±O(τ2t ) and SB = (1 +K)−1 ±O(τ2t ), we have

2− SA(x+
A,x+

B)− SB(x+
A,x+

B) = 2− 2

1 +K
±O(τ2t ) =

2K

1 +K
±O(τ2t ).

As a result,

Q1 =
2K

1 +K
E
{
z+(z+)⊤d

}
− K

1 +K
E
{
z−(z+)⊤d

}
− K

1 +K
E
{
z+(z−)⊤d

}
±O

(
dτ2t
)
.

Note that E
{
z−(z+)⊤

}
= 0 and E

{
z+(z+)⊤

}
= Id/d. Therefore,

Q1 =
2K

1 +K
Id ±O

(
dτ2t
)
.

Proof of Lemma B.5. Recall that

Q1,ξA := E
{(

2− SA(x+
A,x+

B)− SB(x+
A,x+

B)
)
ξ+A(z+)⊤d

}
−K E

{
SA(x+

A,x+
B) exp(τ2t f

+
A · f

−
B)

exp(τ2t f
+
A · f

+
B)

ξ+A(z−)⊤d

}
−K E

{
SB(x+

A,x+
B) exp(τ2t f

−
A · f

+
B)

exp(τ2t f
+
A · f

+
B)

ξ−A(z+)⊤d

}
.

Note that if some quantity X does not depend on ξ, then E {Xξ} = 0. Hence, by Lemma B.3, we
have

Q1,ξA = ±O
(
τ2t d

2ρN/Sδξ,⊥
)
.

The proof for Q1,ξA and Q2 is essentially the same.

Proof of Corollary B.7. Recall that

d

dt
∥[KA]p∥2 = 2

⟨[KA]p, [KBQ1]p⟩
NANBd

σ2
p + 2

⟨[KA]p, [KB,ξQ1,ξB ]p⟩
NANBd

σ2
p + 2

∥[KA]p∥2

N2
Ad

Q0σ
2
p

=

3∑
i=1

Ti

(
d

dt
∥[KA]p∥2

)
.

We now estimate these terms one-by-one. For T1, we have

⟨[KA]p, [KBQ1]p⟩ = ⟨[KA]p, [KB]p⟩ [Q1]p,p +
∑
k ̸=p

⟨[KA]p, [KB]k⟩ [Q1]k,p

=
2K

1 +K
⟨[KA]p, [KB]p⟩ ±O

(
τ2t dκ

2
p

)
±O

(
τ2t dκ

2
pκ0δAB,⊥

)
=

2K

1 +K
⟨[KA]p, [KB]p⟩ ±O

(
τ2t dκ

2
p

)
.

Hence,

T1

(
d

dt
∥[KA]p∥2

)
=

4K

1 +K

σ2
p

NANBd
⟨[KA]p, [KB]p⟩ ±O

(
σ2
p

NANBd
τ2t dκ

2
p

)
.

For T2, we compute

T2

(
d

dt
∥[KA]p∥2

)
=

2σ2
p

NANBd

d−r∑
k=1

⟨[KA]p, [KB,ξ]k⟩ [Q1,ξB ]k,p

= ±O(1)
σ2
p

NANBd

d−r∑
k=1

∥[KA]p∥2
∥[KB,ξ]k∥
∥[KA]p∥

〈
[KA]p, [KB,ξ]k

〉
[Q1,ξB ]k,p

= ±O

(
σ2
p

NANBd
τ2t d

3ρ2N/Sδ
2
ξ,⊥κ

2
p

)
.
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Finally, for T3, we compute

T3

(
d

dt
∥[KA]p∥2

)
= 2
∥[KA]p∥2

N2
Ad

(
− 2K

1 +K

⟨KA,KB⟩
NANBd

±O
(
dτ2t
))

σ2
p

= − 4K

1 +K

σ2
p

NANBd

(
1±

√
δA/B

) ⟨KA,KB⟩
NANBd

∥[KA]p∥2 ±O

(
κ2
p

NANBd
τ2t dσ

2
p

)

= − 4K

1 +K

σ2
p

NANBd

⟨KA,KB⟩
NANBd

±O

(
σ2
p

NANBd

(√
δA/B + τ2t d

)
κ2
p

)
.

Combine these together and we obtain

d

dt
∥[KA]p∥2 =

4K

1 +K

σ2
p

NANBd
⟨[KA]p, [KB]p⟩ −

4K

1 +K

σ2
p

NANBd

⟨KA,KB⟩
NANBd

∥[KA]p∥2

±O

(
σ2
p

NANBd
τ2t d

3ρ2N/Sδ
2
ξ,⊥κ

2
p

)
±O

(
σ2
p

NANBd

(√
δA/B + τ2t d

)
κ2
p

)

=
4K

1 +K

σ2
p

NANBd

(
⟨[KA]p, [KB]p⟩
∥[KA]p∥2

− ⟨KA,KB⟩
NANBd

)
∥[KA]p∥2

±O

(
σ2
p

NANBd

(√
δA/B + τ2t d

)
κ2
p

)
.

Interchange the roles of A and B and we obtain the formula for d
dt ∥[KB]p∥2. Now we consider

KA,ξ. We write

d

dt
∥[KA,ξ]q∥2 = 2

〈
[KA,ξ]q, [KBQ⊤

1,ξA
]q

〉
NANBd

σ2
ξ + 2

⟨[KA,ξ]q, [KB,ξQ2]q⟩
NANBd

σ2
ξ + 2

∥[KA,ξ]q∥2F
N2

Ad
Q0σ

2
ξ

=

3∑
i=1

Ti

(
d

dt
∥[KA,ξ]q∥2

)
.

For T1, we compute

T1

(
d

dt
∥[KA,ξ]q∥2

)
= 2

r∑
k=1

⟨[KA,ξ]q, [KB]k⟩ [Q1,ξA
]q,k

NANBd
σ2
ξ

=
2σ2

ξ

NANBd

r∑
k=1

∥[KA,ξ]q∥2
∥[KB]k∥
∥[KA,ξ]q∥

〈
[KA,ξ]q, [KB]k

〉
[Q1,ξA

]q,k

= ±O(1)
2σ2

ξ

NANBd
∥[KA,ξ]q∥2

r∑
k=1

κ0

ρN/S
δξ,⊥τ

2
t d

2ρN/Sδξ,⊥

= ±O

(
σ2
ξ

NANBd
τ2t d

3κ0δ
2
ξ,⊥ ∥[KA,ξ]q∥2

)
.

Similarly, one can show that this bound also holds for T2. Finally, for T3, by Lemma B.6, we have

T3

(
d

dt
∥[KA,ξ]q∥2

)
= 2
∥[KA,ξ]q∥2F
NANBd

(
1±

√
δA/B

)(
− 2K

1 +K

⟨KA,KB⟩
NANBd

±O
(
dτ2t
))

σ2
ξ

= − 4K

1 +K

σ2
ξ

NANBd

⟨KA,KB⟩
NANBd

∥[KA,ξ]q∥2F

±O

(
σ2
ξ

NANBd

(
dτ2t +

√
δA/B

)
∥[KA,ξ]q∥2F

)
.
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Combine these together and we obtain

d

dt
∥[KA,ξ]q∥2 = − 4K

1 +K

σ2
ξ

NANBd

⟨KA,KB⟩
NANBd

∥[KA,ξ]q∥2F±O

(
σ2
ξ

NANBd

(
dτ2t +

√
δA/B

)
∥[KA,ξ]q∥2F

)
.

Interchange the roles of A and B and we obtain the formula for KB,ξ.

Proof of Corollary B.8. We write

d

dt
[KA]p =

(
I − [KA]p

(
[KA]p

)⊤) [KBQ1]p
∥[KA]p∥

σ2
p

NANBd

+

(
I − [KA]p

(
[KA]p

)⊤) [KB,ξQ1,ξB ]p
∥[KA]p∥

σ2
p

NANBd

= T1

(
d

dt
[KA]p

)
+ T2

(
d

dt
[KA]p

)
.

For T1, we have

T1

(
d

dt
[KA]p

)
=

r∑
k=1

(
I − [KA]p

(
[KA]p

)⊤)
[KB]k

∥[KB]k∥ [Q1]k,p
∥[KA]p∥

σ2
p

NANBd

=

(
I − [KA]p

(
[KA]p

)⊤)
[KB]p

∥[KB]p∥ [Q1]p,p
∥[KA]p∥

σ2
p

NANBd

+
∑
k ̸=p

(
I − [KA]p

(
[KA]p

)⊤)
[KB]k

∥[KB]k∥ [Q1]k,p
∥[KA]p∥

σ2
p

NANBd
.

For the first term, by Lemma B.4, we have

∥[KB]p∥ [Q1]p,p
∥[KA]p∥

=
(
1±

√
δA/B

)( 2K

1 +K
±O

(
dτ2t
))

=
2K

1 +K
±O

(
dτ2t +

√
δA/B

)
.

Also by Lemma B.4, for each summand in the second term, we have

∥[KB]k∥ [Q1]k,p
∥[KA]p∥

= ±O
(
τ2t dκ0

)
.

Therefore,

T1

(
d

dt
[KA]p

)
=

2K

1 +K

σ2
p

NANBd

(
I − [KA]p

(
[KA]p

)⊤)
[KB]p

±
σ2
p

NANBd

r∑
k=1

O
(
τ2t dκ0 +

√
δA/B

)
[KB]k.

For T2, by Lemma B.5, we have

T2

(
d

dt
[KA]p

)
=

σ2
p

NANBd

d−r∑
k=1

(
I − [KA]p

(
[KA]p

)⊤)
[KB,ξ]k

∥[KB,ξ]k∥ [Q1,ξB ]k,p
∥[KA]p∥

=
σ2
p

NANBd

d−r∑
k=1

O
(
τ2t d

2ρ2N/Sδξ,⊥

)
[KB,ξ]k.

Combine these together, and we obtain

d

dt
[KA]p =

2K

1 +K

σ2
p

NANBd

(
I − [KA]p

(
[KA]p

)⊤)
[KB]p

±
σ2
p

NANBd

r∑
k=1

O
(
τ2t dκ0 +

√
δA/B

)
[KB]k ±

σ2
p

NANBd

d−r∑
k=1

O
(
τ2t d

2ρ2N/Sδξ,⊥

)
[KB,ξ]k

=
2K

1 +K

σ2
p

NANBd

(
I − [KA]p

(
[KA]p

)⊤)
[KB]p ±O

(
σ2
p

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.
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Now, we consider KA,ξ. Again, we write

d

dt
[KA,ξ]q =

(
I − [KA,ξ]q

(
[KA,ξ]q

)⊤) [KBQ⊤
1,ξA

]q

∥[KA,ξ]q∥
σ2
ξ

NANBd

+

(
I − [KA,ξ]q

(
[KA,ξ]q

)⊤) [KB,ξQ2]q
∥[KA,ξ]q∥

σ2
ξ

NANBd

=: T1

(
d

dt
[KA,ξ]q

)
+ T2

(
d

dt
[KA,ξ]q

)
.

For the first term, by Lemma B.5, we have

T1

(
d

dt
[KA,ξ]q

)
=

r∑
k=1

(
I − [KA,ξ]q

(
[KA,ξ]q

)⊤)
[KB]k

∥[KB]k∥ [Q1,ξA
]q,k

∥[KA,ξ]q∥
σ2
ξ

NANBd

= ±
r∑

k=1

O

(
σ2
ξ

NANBd

κ0

ρN/S
τ2t d

2ρN/Sδξ,⊥

)

= ±O

(
σ2
ξ

NANBd
τ2t d

3κ0δξ,⊥

)
.

The same bound also hold for T2. In fact, we can have a slightly sharper bound for it because we no
longer have ∥[KB]k∥ / ∥[KA,ξ]q∥. Combine these and we obtain

d

dt
[KA,ξ]q = ±O

(
σ2
ξ

NANBd
τ2t d

3κ0δξ,⊥

)
.

Proof of Lemma B.9. The proof of Corollary B.8 and Corollary B.7, mutatis mutandis, yields

d

dt
KA =

2K

1 +K

KB

NANBd
diag(σ2)− 2K

1 +K

KA

N2
Ad

⟨KA,KB⟩
NANBd

diag(σ2)

±O

(
σ2
max

NANBd

(
dτ2t +

√
δA/B

)
∥KA∥F

)
,

d

dt
KA,ξ = − 2K

1 +K

KA,ξ

N2
Ad

⟨KA,KB⟩
NANBd

σ2
ξ ±O

(
σ2
ξ

N2
Ad

dτ2t ∥KA,ξ∥F

)
.

Recall from Lemma A.6 that, in the non-contrastive case, we have

d

dt
KA = E

{
f+
B(z+)⊤

NA
−
〈
f+
A ,f+

B

〉 KA

N2
Ad

}
diag(σ2)

=
KB

NANBd
diag(σ2)− ⟨KA,KB⟩

NANBd

KA

N2
Ad

diag(σ2),

d

dt
KA,ξ = −⟨KA,KB⟩

NANBd

KA,ξ

N2
Ad

σ2
ξ .

Note that they are exactly the same, except for a 2K/(1 + K) factor and some higher order error
terms.

B.2 CONVERGENCE RATE AND THE CONDITION NUMBER

In this subsection, we estimate the rate at which 1− ρ− and ρN/S converge to 0 and the growth rate
of the condition number. The basic idea is to use the estimations we have derived in Corollary B.7
and Corollary B.8 to approximate the finite-width dynamics with the infinite-width ones.
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Lemma B.10 (Convergence rate of ρ−). In Stage 1, we have, for any p ∈ [r],

d

dt

〈
[KA]p, [KB]p

〉
=

4K

1 +K

σ2
p

NANBd

(
1 +

〈
[KA]p, [KB]p

〉)(
1−

〈
[KA]p, [KB]p

〉)
±O

(
σ2
p

NANBd

(
τ2t d

2κ0 +
√
δA/B

))
.

Note that 1 +
〈
[KA]p, [KB]p

〉
= Θ(1). Hence,

〈
[KA]p, [KB]p

〉
will converge to 1 at a linear

rate.

Now we consider the noise-signal ratio. For some technical reason, instead of characterizing the
dynamics of ρN/S , we consider

ρ̂N/S :=
∥KA,ξ∥F

∥KA +KB∥F
.

Note that we always have

ρ̂2N/S ≥ Θ(1)
∥KA,ξ∥2F
∥KA∥2F

≥ Θ(1)
(d− r) ∥[KA,ξ]q∥2

κ2
0r ∥[KA]p∥2

In other words, ρN/S can be bounded by ρN/S ≤ O
(
dκ0

r ρ̂N/S

)
.

Lemma B.11 (Convergence rate of ρN/S). In Stage 1, we have

d

dt
ρ̂2N/S ≤ −

4K

1 +K

σ2
min

NANBd
ρ̂2N/S +O

(
σ2
max

NANBd

(
dτ2t +

√
δA/B

)
ρ̂2N/S

)
.

This lemma says the noise-signal ratio decreases exponentially fast.

Lemma B.12 (Growth rate of the condition number). Define ρp/q = ∥[KA]p∥2 / ∥[KA]q∥2. In
Stage 1, we have

ρ̇p/q ≤
16K

1 +K

σ2
max

NANBd

(
ρ− +min

{
ρ̂N/S , 1

})
ρp/q ±O

(
σ2
max

NANBd

(√
δA/B + τ2t d

)
ρp/q

)
.

Note that error growth slows down as ρ− and ρ̂N/S decrease. This allows us to use Lemma B.2
(cf. Section B.4).

OMITTED PROOFS OF THIS SUBSECTION

Proof of Lemma B.10. By Corollary B.8, we have〈
d

dt
[KA]p, [KB]p

〉
=

2K

1 +K

σ2
p

NANBd

(
1−

〈
[KA]p, [KB]p

〉2)
±O

(
σ2
p

NANBd

(
τ2t d

2κ0 +
√
δA/B

))

=
2K

1 +K

σ2
p

NANBd

(
1 +

〈
[KA]p, [KB]p

〉)(
1−

〈
[KA]p, [KB]p

〉)
±O

(
σ2
p

NANBd

(
τ2t d

2κ0 +
√
δA/B

))
.

Hence, by symmetry, we have

d

dt

〈
[KA]p, [KB]p

〉
=

4K

1 +K

σ2
p

NANBd

(
1 +

〈
[KA]p, [KB]p

〉)(
1−

〈
[KA]p, [KB]p

〉)
±O

(
σ2
p

NANBd

(
τ2t d

2κ0 +
√
δA/B

))
.
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Proof of Lemma B.11. Similar to the proof of Corollary B.7 and Corollary B.8, we have
d

dt
KA =

KB

NANBd
Q1 diag(σ

2) +
KB,ξ

NANBd
Q1,ξB diag(σ2) +

KA

N2
Ad

Q0 diag(σ
2)

=
KB

NANBd

(
2K

1 +K
Id ±O

(
dτ2t
))

diag(σ2)

± KB,ξ

NANBd
O
(
τ2t d

2ρN/Sδξ,⊥
)
diag(σ2)

+
KA

N2
Ad

(
− 2K

1 +K

⟨KA,KB⟩
NANBd

±O
(
dτ2t
))

diag(σ2)

=
2K

1 +K

KB

NANBd
diag(σ2)− 2K

1 +K

KA

NANBd

⟨KA,KB⟩
NANBd

diag(σ2)

±O

(
σ2
max

NANBd

(
dτ2t +

√
δA/B

)
∥KA∥F

)
.

Define K = KA +KB . Then, by symmetry, we have
d

dt
K =

2K

1 +K

1

NANBd

(
1− ⟨KA,KB⟩

NANBd

)
K diag(σ2)±O

(
σ2
max

NANBd

(
dτ2t +

√
δA/B

)
∥K∥F

)
.

Hence,
d

dt
∥K∥2F =

4K

1 +K

1

NANBd

(
1− ⟨KA,KB⟩

NANBd

)〈
K,K diag(σ2)

〉
±O

(
σ2
max

NANBd

(
dτ2t +

√
δA/B

)
∥K∥2F

)
≥ 4K

1 +K

σ2
min

NANBd

(
1− ⟨KA,KB⟩

NANBd

)
∥K∥2F −O

(
σ2
max

NANBd

(
dτ2t +

√
δA/B

)
∥K∥2F

)
.

Similarly, we also have
d

dt
KA,ξ =

KB

NANBd
Q⊤

1,ξA
σ2
ξ +

KB,ξ

NANBd
Q2σ

2
ξ +

KA,ξ

N2
Ad

Q0σ
2
ξ

=
KB

NANBd
O
(
τ2t d

2ρN/Sδξ,⊥
)
σ2
ξ +

KB,ξ

NANBd
O
(
τ2t d

2ρN/Sδξ,⊥
)
σ2
ξ

+
KA,ξ

N2
Ad

(
− 2K

1 +K

⟨KA,KB⟩
NANBd

±O
(
dτ2t
))

σ2
ξ

= − 2K

1 +K

KA,ξ

N2
Ad

⟨KA,KB⟩
NANBd

σ2
ξ ±O

(
σ2
ξ

N2
Ad

dτ2t ∥KA,ξ∥F

)
±O

(
σ2
ξ

NANBd
τ2t d

2δξ,⊥
dκ0

r
∥KA,ξ∥F

)

= − 2K

1 +K

KA,ξ

N2
Ad

⟨KA,KB⟩
NANBd

σ2
ξ ±O

(
σ2
ξ

N2
Ad

dτ2t ∥KA,ξ∥F

)
.

Therefore,

d

dt
∥KA,ξ∥2F = − 4K

1 +K

σ2
ξ

N2
Ad

⟨KA,KB⟩
NANBd

∥KA,ξ∥2F ±O

(
σ2
ξ

N2
Ad

dτ2t ∥KA,ξ∥2F

)
.

Then, we compute

d

dt
ρ̂2N/S =

d
dt ∥KA,ξ∥2F
∥K∥2F

− ρ̂2N/S

d
dt ∥KA∥2F
∥K∥2F

≤ − 4K

1 +K

σ2
ξ

N2
Ad

⟨KA,KB⟩
NANBd

ρ̂2N/S ±O

(
σ2
ξ

N2
Ad

dτ2t ρ̂
2
N/S

)

− ρ̂2N/S

(
4K

1 +K

σ2
min

NANBd

(
1− ⟨KA,KB⟩

NANBd

)
−O

(
σ2
max

NANBd

(
dτ2t +

√
δA/B

)))
≤ − 4K

1 +K

σ2
min

NANBd
ρ̂2N/S +O

(
σ2
max

NANBd

(
dτ2t +

√
δA/B

)
ρ̂2N/S

)
.
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Proof of Lemma B.12. For notational simplicity, define ρp/q := ∥[KA]p∥2 / ∥[KA]q∥2. By Corol-
lary B.7, we have

ρ̇p/q =
d
dt ∥[KA]p∥2

∥[KA]q∥2
− ρp/q

d
dt ∥[KA]q∥2

∥[KA]q∥2

=
4K

1 +K

σ2
p

NANBd

(
⟨[KA]p, [KB]p⟩
∥[KA]p∥2

− ⟨KA,KB⟩
NANBd

)
ρp/q ±O

(
σ2
p

NANBd

(√
δA/B + τ2t d

)
ρp/q

)

− ρp/q

(
4K

1 +K

σ2
q

NANBd

(
⟨[KA]q, [KB]q⟩
∥[KA]q∥2

− ⟨KA,KB⟩
NANBd

)
±O

(
σ2
q

NANBd

(√
δA/B + τ2t d

)))

=
4K

1 +K

σ2
p

NANBd

(〈
[KA]p, [KB]p

〉
− ⟨KA,KB⟩

NANBd

)
ρp/q

− 4K

1 +K

σ2
q

NANBd

(〈
[KA]q, [KB]q

〉
− ⟨KA,KB⟩

NANBd

)
ρp/q

±O

(
σ2
max

NANBd

(√
δA/B + τ2t d

)
ρp/q

)
.

Now we bound
〈
[KA]p, [KB]p

〉
− ⟨KA,KB⟩ /(NANBd). Clear that this term is bounded by 2.

Meanwhile, by definition, we have
〈
[KA]p, [KB]p

〉
= 1± ρ−. For the second term, we have

⟨KA,KB⟩
NANBd

=

r∑
k=1

〈
[KA]k, [KB]k

〉 ∥KA∥k ∥KB∥k
∥KA∥F ∥KB∥F

∥KA∥F ∥KB∥F
NANBd

=

r∑
k=1

(1± ρ−)
(
1±min

{
ρ̂N/S , 1

}) κ2
k

∥κ∥2
(
1±

√
δA/B

)
=
(
1± ρ− ±min

{
ρ̂N/S , 1

})(
1±

√
δA/B

)
.

Combine these together and we obtain∣∣∣∣〈[KA]p, [KB]p

〉
− ⟨KA,KB⟩

NANBd

∣∣∣∣ ≤ 2ρ− + 2min
{
ρ̂N/S , 1

}
±
√

δA/B.

The same is also true for q. Thus,

ρ̇p/q ≤
16K

1 +K

σ2
max

NANBd

(
ρ− +min

{
ρ̂N/S , 1

})
ρp/q ±O

(
σ2
max

NANBd

(√
δA/B + τ2t d

)
ρp/q

)
.

B.3 CONTROLLING THE DISCRETIZATION ERROR

In this subsection, we estimate the growth rate of the errors described in (10). As in the previous
subsections, the proofs are deferred to the end of this subsection.

First, we consider the relative difference between ∥[KA]p∥2 and ∥[KB]p∥2. Instead of directly
control the difference, we define

ρA/B,p :=
∥[KA]p∥2

∥[KB]p∥2
and ρB/A,p :=

∥[KB]p∥2

∥[KA]p∥2
.

Note that ρA/B,p + ρB/A,p ≥ 2, with equality obtained iff ∥[KA]p∥2 = ∥[KB]p∥2. Meanwhile, at
initialization, this quantity can be made arbitrarily close to 2. Hence, it suffices to control the growth
of this quantity. The reason we consider ρA/B,p + ρB/A,p is to leverage the symmetry. Similarly,
we also define

ρA/B,ξ,q :=
∥[KA,ξ]q∥2

∥[KB,ξ]q∥2
and ρB/A,ξ,q :=

∥[KB,ξ]q∥2

∥[KA,ξ]q∥2
,

and analyze ρA/A,ξ + ρB/A,ξ.
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Lemma B.13 (Difference of diagonal terms). In Stage 1, we have

d

dt

(
ρA/B,p + ρB/A,p

)
≤ O

(
σ2
p

NANBd

(
δ2A/B + τ2t d

))
,

d

dt

(
ρA/B,ξ,q + ρB/A,ξ,q

)
≤ O

(
σ2
max

NANBd

(
δ2A/B + τ2t d

))
.

Note that the RHS are higher-order terms, which implies the relative difference of the norms barely
grows.

Now we consider the condition number of KA,ξ. Unlike KA, for the noises, the σ’s for different
coordinates are the same. Hence, we have the following simple bound on the growth rate of δξ,κ0

.

Lemma B.14 (Condition number of KA,ξ). Define ρξ,p/q := ∥[KA,ξ]p∥2 / ∥[KA,ξ]q∥2. In Stage 1,
we have

ρ̇ξ,p/q ≤ O

(
σ2
ξ

NANBd

(
dτ2t +

√
δA/B

))
.

Again, the RHS is a higher-order term that can be made arbitrarily small by choosing a small τ2t and
maintaining a small δA/B .

Then, we consider the orthogonality conditions.

Lemma B.15 (Orthogonality between signals). For any p ̸= q, define

δ̂⊥,p,q :=
〈
[KA]p, [KB]q

〉2
+
〈
[KB]p, [KA]q

〉2
+
〈
[KA]p, [KA]q

〉2
+
〈
[KB]p, [KB]q

〉2
.

In Stage 1, we have

d

dt
δ̂⊥,p,q ≤ O

(
σ2
max

NANBd

)
ρ−δ̂⊥,p,q +O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.

Recall that ρ− converges to 0 at a sufficiently fast rate. As a result, by Lemma B.2, δ̂⊥,p,q will not
blow up. Meanwhile, since δ̂⊥,p,q can be made arbitrarily small at initialization, this implies that we
can make sure it is still small at the end of Stage 1. Finally, we consider the orthogonality conditions
between the signals and noises and between noises. The proof follows the same spirit.

Lemma B.16 (Orthogonality between signals and noises). For any p ∈ [r] and q ∈ [d− r], define

δ̂⊥,ξA,p,q =
〈
[KA]p, [KA,ξ]q

〉2
+
〈
[KB]p, [KA,ξ]q

〉2
,

and define δ̂⊥,ξB ,p,q similarly. In Stage 1, we have

d

dt
δ̂⊥,ξA,p,q ≤ O

(
σ2
p

NANBd

)
ρ−δ̂⊥,ξA,p,q ±O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.

For any q, s ∈ [d− r], define

δ̂⊥,ξ,p,q =
〈
[KA,ξ]q, [KB,ξ]s

〉2
+
〈
[KB,ξ]q, [KA,ξ]s

〉2
,

In Stage 1, we have

d

dt
δ̂⊥,ξ,p,q ≤ O

(
σ2
ξ

NANBd
τ2t d

3κ0δξ,⊥

√
δ̂⊥,ξ,p,q

)
.
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OMITTED PROOFS OF THIS SUBSECTION

Proof of Lemma B.13 . Note that we cannot directly use Corollary B.7 as the error term contains
δA/B , the quantity we wish to control. However, by the proof of it, we still have

d

dt
∥[KA]p∥2 =

4K

1 +K

σ2
p

NANBd
⟨[KA]p, [KB]p⟩ −

4K

1 +K

⟨KA,KB⟩σ2
p

NANBd

∥[KA]p∥2

N2
Ad

±O

(
σ2
p

NANBd
τ2t dκ

2
p

)
.

Interchange the roles of A and B and we obtain

d

dt
∥[KB]p∥2 =

4K

1 +K

σ2
p

NANBd
⟨[KA]p, [KB]p⟩ −

4K

1 +K

⟨KA,KB⟩σ2
p

NANBd

∥[KB]p∥2

N2
Bd

±O

(
σ2
p

NANBd
τ2t dκ

2
p

)
.

For notational simplicity, define ρA/B,p = ∥[KA]p∥2 / ∥[KB]p∥2. Then, we compute

ρ̇A/B,p =
d
dt ∥[KA]p∥2

∥[KB]p∥2
− ρA/B,p

d
dt ∥[KB]p∥2

∥[KB]p∥2

=
4K

1 +K

σ2
p

NANBd

⟨[KA]p, [KB]p⟩
∥[KA]p∥2

ρA/B,p −
4K

1 +K

⟨KA,KB⟩σ2
p

NANBd

ρA/B,p

N2
Ad

− 4K

1 +K

σ2
p

NANBd

⟨[KA]p, [KB]p⟩
∥[KB]p∥2

ρA/B,p +
4K

1 +K

⟨KA,KB⟩σ2
p

NANBd

ρA/B,p

N2
Bd

±O

(
σ2
p

NANBd
τ2t d

)

=
4K

1 +K

σ2
p

NANBd
⟨[KA]p, [KB]p⟩

(
1

∥[KA]p∥2
− 1

∥[KB]p∥2

)
ρA/B,p

− 4K

1 +K

⟨KA,KB⟩σ2
p

NANBd

(
1

N2
Ad
− 1

N2
Bd

)
ρA/B,p

±O

(
σ2
p

NANBd
τ2t d

)
.

Then, by symmetry, we have

d

dt

(
ρA/B,p + ρB/A,p

)
=

4K

1 +K

σ2
p

NANBd
⟨[KA]p, [KB]p⟩

(
1

∥[KA]p∥2
− 1

∥[KB]p∥2

)(
ρA/B,p − ρB/A,p

)
− 4K

1 +K

⟨KA,KB⟩σ2
p

NANBd

(
1

N2
Ad
− 1

N2
Bd

)(
ρA/B,p − ρB/A,p

)
±O

(
σ2
p

NANBd
τ2t d

)

≤ O

(
σ2
p

NANBd

(
δ2A/B + τ2t d

))
.

The above proof, mutatis mutandis, yields the result for ρA/B,ξ,q + ρB/A,ξ,q .
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Proof of Lemma B.14. By Corollary B.7, we have

ρ̇ξ,p/q =
d
dt ∥[KA,ξ]p∥2

∥[KA,ξ]q∥2
− ρξ,p/q

d
dt ∥[KA,ξ]q∥2

∥[KA,ξ]q∥2

= − 4K

1 +K

σ2
ξ

NANBd

⟨KA,KB⟩
NANBd

ρξ,p/q ±O

(
σ2
ξ

NANBd

(
dτ2t +

√
δA/B

))

− ρξ,p/q

(
− 4K

1 +K

σ2
ξ

NANBd

⟨KA,KB⟩
NANBd

±O

(
σ2
ξ

NANBd

(
dτ2t +

√
δA/B

)))

= ±O

(
σ2
ξ

NANBd

(
dτ2t +

√
δA/B

))
.

Proof of Lemma B.15. By Corollary B.8, we have〈
d

dt
[KA]p, [KB]q

〉
=

2K

1 +K

σ2
p

NANBd

(〈
[KB]p, [KB]q

〉
−
〈
[KA]p, [KB]q

〉〈
[KA]p, [KB]p

〉)
±O

(
σ2
p

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))

=
2K

1 +K

σ2
p

NANBd

(〈
[KB]p, [KB]q

〉
−
〈
[KA]p, [KB]q

〉)
+

2K

1 +K

σ2
p

NANBd

〈
[KA]p, [KB]q

〉(
1−

〈
[KA]p, [KB]p

〉)
±O

(
σ2
p

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.

Interchange the roles of p, q and A,B and we obtain〈
[KA]p,

d

dt
[KB]q

〉
=

2K

1 +K

σ2
q

NANBd

(〈
[KA]p, [KA]q

〉
−
〈
[KA]p, [KB]q

〉)
+

2K

1 +K

σ2
q

NANBd

〈
[KA]p, [KB]q

〉(
1−

〈
[KA]q, [KB]q

〉)
±O

(
σ2
q

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.

Therefore,

d

dt

〈
[KA]p, [KB]q

〉
=

2K

1 +K

σ2
p

NANBd

(〈
[KB]p, [KB]q

〉
−
〈
[KA]p, [KB]q

〉)
+

2K

1 +K

σ2
q

NANBd

(〈
[KA]p, [KA]q

〉
−
〈
[KA]p, [KB]q

〉)
±O

(
σ2
max

NANBd

)
ρ−

〈
[KA]p, [KB]q

〉
±O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.
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Interchange the roles of p and q and we obtain

d

dt

〈
[KB]p, [KA]q

〉
=

2K

1 +K

σ2
q

NANBd

(〈
[KB]p, [KB]q

〉
−
〈
[KB]p, [KA]q

〉)
+

2K

1 +K

σ2
p

NANBd

(〈
[KA]p, [KA]q

〉
−
〈
[KB]p, [KA]q

〉)
±O

(
σ2
max

NANBd

)
ρ−

〈
[KB]p, [KA]q

〉
±O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.

Similarly, we compute〈
d

dt
[KA]p, [KA]q

〉
=

2K

1 +K

σ2
p

NANBd

(〈
[KB]p, [KA]q

〉
−
〈
[KA]p, [KA]q

〉〈
[KA]p, [KB]p

〉)
±O

(
σ2
p

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))

=
2K

1 +K

σ2
p

NANBd

(〈
[KB]p, [KA]q

〉
−
〈
[KA]p, [KA]q

〉)
+

2K

1 +K

σ2
p

NANBd

〈
[KA]p, [KA]q

〉(
1−

〈
[KA]p, [KB]p

〉)
±O

(
σ2
p

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))

=
2K

1 +K

σ2
p

NANBd

(〈
[KB]p, [KA]q

〉
−
〈
[KA]p, [KA]q

〉)
±O

(
σ2
max

NANBd

)
ρ−

〈
[KA]p, [KA]q

〉
±O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.

Then, by interchanging the roles of p and q, we obtain〈
[KA]p,

d

dt
[KA]q

〉
=

2K

1 +K

σ2
q

NANBd

(〈
[KA]p, [KB]q

〉
−
〈
[KA]p, [KA]q

〉)
±O

(
σ2
max

NANBd

)
ρ−

〈
[KA]p, [KA]q

〉
±O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.

Add them together and we get

d

dt

〈
[KA]p, [KA]q

〉
=

2K

1 +K

σ2
p

NANBd

(〈
[KB]p, [KA]q

〉
−
〈
[KA]p, [KA]q

〉)
+

2K

1 +K

σ2
q

NANBd

(〈
[KA]p, [KB]q

〉
−
〈
[KA]p, [KA]q

〉)
±O

(
σ2
max

NANBd

)
ρ−

〈
[KA]p, [KA]q

〉
±O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.

Interchange the roles of p and q and we obtain

d

dt

〈
[KB]p, [KB]q

〉
=

2K

1 +K

σ2
p

NANBd

(〈
[KA]p, [KB]q

〉
−
〈
[KB]p, [KB]q

〉)
+

2K

1 +K

σ2
q

NANBd

(〈
[KB]p, [KA]q

〉
−
〈
[KB]p, [KB]q

〉)
±O

(
σ2
max

NANBd

)
ρ−

〈
[KB]p, [KB]q

〉
±O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.
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For notational simplicity, define Z1 =
〈
[KA]p, [KB]q

〉
, Z2 =

〈
[KB]p, [KA]q

〉
, Z3 =〈

[KA]p, [KA]q

〉
, and Z4 =

〈
[KB]p, [KB]q

〉
. Also define Gp = 2K

1+K

σ2
p

NANBd . Then, we can
summarize the above equations as

d

dt

Z1

Z2

Z3

Z4

 =

−Gp −Gq 0 Gq Gp

0 −Gp −Gq Gp Gq

Gq Gp −Gp −Gq 0
Gp Gq 0 −Gp −Gq


Z1

Z2

Z3

Z4



±O

(
σ2
max

NANBd

)
ρ−

Z1

Z2

Z3

Z4

±O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.

Note that the eigenvalues of the first matrix is −2Gp − 2Gq , −2Gp, −2Gq and 0. Namely, it is
negative semi-definite. Thus,

d

dt
∥Z∥2 ≤ O

(
σ2
max

NANBd

)
ρ− ∥Z∥2 +O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.

Proof of Lemma B.16. By Corollary B.8,

〈
d

dt
[KA]p, [KA,ξ]q

〉
=

2K

1 +K

σ2
p

NANBd

(〈
[KB]p, [KA,ξ]q

〉
−
〈
[KA]p, [KA,ξ]q

〉〈
[KA]p, [KB]p

〉)
±O

(
σ2
p

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
,

and 〈
[KA]p,

d

dt
[KA,ξ]q

〉
= ±O

(
σ2
ξ

NANBd
τ2t d

3κ0δξ,⊥

)
.

Therefore,

d

dt

〈
[KA]p, [KA,ξ]q

〉
=

2K

1 +K

σ2
p

NANBd

(〈
[KB]p, [KA,ξ]q

〉
−
〈
[KA]p, [KA,ξ]q

〉)
±O

(
σ2
p

NANBd

)
ρ−

〈
[KA]p, [KA,ξ]q

〉
±O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.

Similarly, we also have

d

dt

〈
[KB]p, [KA,ξ]q

〉
=

2K

1 +K

σ2
p

NANBd

(〈
[KA]p, [KA,ξ]q

〉
−
〈
[KB]p, [KA,ξ]q

〉)
±O

(
σ2
p

NANBd

)
ρ−

〈
[KB]p, [KA,ξ]q

〉
±O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.
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Thus,

d

dt

(〈
[KA]p, [KA,ξ]q

〉2
+
〈
[KB]p, [KA,ξ]q

〉2)
= − 4K

1 +K

σ2
p

NANBd

(〈
[KA]p, [KA,ξ]q

〉2
−
〈
[KB]p, [KA,ξ]q

〉2)2

±O

(
σ2
p

NANBd

)
ρ−

(〈
[KA]p, [KA,ξ]q

〉2
+
〈
[KB]p, [KA,ξ]q

〉2)
±O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
≤ O

(
σ2
p

NANBd

)
ρ−

(〈
[KA]p, [KA,ξ]q

〉2
+
〈
[KB]p, [KA,ξ]q

〉2)
±O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
.

For the orthogonality between noises, by Corollary B.8, we have〈
[KA,ξ]q,

d

dt
[KA,ξ]s

〉
= ±O

(
σ2
ξ

NANBd
τ2t d

3κ0δξ,⊥

)
Clear that this bound holds for all other combinations. Thus,

d

dt
δ̂⊥,ξ,p,q ≤ O

(
σ2
ξ

NANBd
τ2t d

3κ0δξ,⊥

√
δ̂⊥,ξ,p,q

)
.

B.4 PROOF OF THE MAIN LEMMA OF STAGE 1

Proof of Lemma B.1. First, we recap the estimations we have derived in previous subsections and
introduce some notations. By Lemma B.10 and Lemma B.11, we have

d

dt
ρ− ≤ −Ω(1)

σ2
min

NANBd
ρ− +O

(
σ2
max

NANBd

(
τ2t d

2κ0 +
√
δA/B

))
,

d

dt
ρ̂N/S ≤ −Ω(1)

σ2
min

NANBd
ρ̂N/S +O

(
σ2
max

NANBd

(
dτ2t +

√
δA/B

)
d

)
.

Define ρ := max
{
ρ−, ρ̂N/S

}
to be the indicator of the progress we have made. We have

d

dt
ρ ≤ −Ω(1) σ2

min

NANBd
ρ+O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

)
.

)
. (11)

Let κ̂0 := maxp,q ∥[KA]p∥2 / ∥[KA]q∥2 be the condition number at time t. By Lemma B.12, we
have

d

dt
κ̂0 ≤ O(1)

σ2
max

NANBd
ρκ̂0. (12)

Now we consider the discretization errors, define

δ̂A/B = max
p∈[r],q∈[d−r]

{
ρA/B,p + ρB/A,p − 2, ρA/B,ξ,q + ρB/A,ξ,q − 2

}
.

Note that at time t, the first condition of (10) holds with δA/B replaced by O(δ̂A/B). Meanwhile,
by Lemma B.13, we have

d

dt
δ̂A/B ≤ O

(
σ2
max

NANBd

(
δ2A/B + τ2t d

))
. (13)
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Let δ̂ξ,κ0
(t) be the smallest number such that the second condition of (10) holds at time t. By

Lemma B.14, we have

d

dt
δ̂ξ,κ0

≤ O

(
σ2
ξ

NANBd

(
dτ2t +

√
δA/B

))
. (14)

Then, define

δ̂⊥ := max
{
δ̂⊥,p,q, δ̂⊥,ξA,p,k, δ̂⊥,ξB ,p,k, δ̂⊥,ξ,k,l, : p ̸= q ∈ [d], k, l ∈ [d− r]

}
Clear that the last two conditions hold at time t when δAB,⊥ and δξ,⊥ are replaced by

√
δ̂⊥(t). By

Lemma B.15 and Lemma B.16, we have
d

dt
δ̂⊥ ≤ O

(
σ2
max

NANBd

)
ρδ̂⊥ +O

(
σ2
max

NANBd

(
τ2t d

2κ0 + d
√
δA/B

))
. (15)

Now, we are ready to show that the errors do not blow up in Stage 1. Note that for all these δ’s, we
can make them arbitrarily inverse-polynomially small by choosing a sufficiently large m.

First, we consider δ̂A/B . Note that the dependence of the RHS of (13) on δ̂A/B is quadratic. Hence,
by making the initial value of δ̂A/B , the RHS can be made to be dominated the τ2t -related terms.

Hence, δ̂A/B ≤ O
(

σ2
max

NANBdτ
2
t dT1

)
. As we will see later, T1 = poly(d). Therefore, by choosing a

sufficiently small τ2t , we can make δ̂A/B remain small throughout Stage 1.

Then, we consider δ̂ξ,κ0
. As we have argued earlier, the RHS of (14) can be made arbitrarily small,

so that δ̂ξ,κ0
remains small in Stage 1.

Now, we consider the condition number κ̂0 and δ̂⊥. For δ̂⊥, by our previous argument, the second
term of the RHS of (15) can be merged into the first term, by choosing a sufficiently large m and a
sufficiently small τ2t . The same is also true for (11). Hence, for these quantities, we have

d

dt
ρ ≤ −Ω(1) σ2

min

NANBd
ρ,

d

dt
κ̂0 ≤ O(1)

σ2
max

NANBd
ρκ̂0,

d

dt
δ̂⊥ ≤ O(1)

σ2
max

NANBd
ρδ̂⊥.

Hence, by Lemma B.2, we have

κ̂0 ≤ κ̂0(0) exp

(
O

(
σ2
max

σ2
min

)
ρ(0)

)
, δ̂⊥ ≤ δ̂⊥(0) exp

(
O

(
σ2
max

σ2
min

)
ρ(0)

)
.

Note that ρ−(0) = O(1) and ρ̂N/S ≤
(d−r)σ2

ξ

rσ2
min

. Therefore,

exp

(
O

(
σ2
max

σ2
min

)
ρ(0)

)
≤ exp

(
O(1)

σ2
max

σ2
min

max

{
1,

(d− r)σ2
ξ

rσ2
min

})
≤ exp

(
1

2
log d

)
=
√
d.

In other words, both κ̂0 and δ̂⊥ can at most grow
√
d times.

Finally, we derive an upper bound on T1 to complete the proof. Similar to the proof for the con-
dition number, one can show that ∥[KA]p∥2 can at most grow

√
d times in Stage 1. As a result,

1/(NANBd) is lower bounded by some 1/poly(d). Thus, by (11), T1 ≤ poly(d).

B.5 NEGATIVE RESULTS

Lemma B.17. There exists a σ ∈ Rr satisfying the assumptions of Theorem 4.3 such that, at the
end of Stage 1, the condition number of KA is dΩ(1).

Proof. We choose d = r and σ2
1 = c log d, σ2

2 = · · · = σ2
d = 1. Clear that this satisfies the condition

of Theorem 4.3. Note that it suffices to consider the infinite-width case, since, as we have proved
earlier, the finite-width trajectory tracks the infinite-width one. By Lemma B.10, we have

d

dt

〈
[KA]p, [KB]p

〉
≈ 4K

1 +K

σ2
p

NANBd

(
1 +

〈
[KA]p, [KB]p

〉)(
1−

〈
[KA]p, [KB]p

〉)
.
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By the proof of Lemma B.12, we have

ρ̇p/q ≈
4K

1 +K

σ2
p

NANBd

(〈
[KA]p, [KB]p

〉
− ⟨KA,KB⟩

NANBd

)
ρp/q

− 4K

1 +K

σ2
q

NANBd

(〈
[KA]q, [KB]q

〉
− ⟨KA,KB⟩

NANBd

)
ρp/q.

Note that, in the infinite-width case, we have〈
[KA]1, [KB]1

〉
≥
〈
[KA]2, [KB]2

〉
= · · · =

〈
[KA]d, [KB]d

〉
.

Therefore,
〈
[KA]p, [KB]p

〉
− ⟨KA,KB⟩

NANBd ≥ 0a and
〈
[KA]q, [KB]q

〉
− ⟨KA,KB⟩

NANBd ≤ 0 for any
q ≥ 2. Hence,

ρ̇1/2 ≥
4K

1 +K

σ2
1

NANBd

(〈
[KA]1, [KB]1

〉
− ⟨KA,KB⟩

NANBd

)
ρ1/2

≥ 4K

1 +K

σ2
1

NANBd

((
1− κ2

1

∥κ∥2

)〈
[KA]1, [KB]1

〉
− (d− 1)κ2

1

∥κ∥2
〈
[KA]2, [KB]2

〉)
ρ1/2.

For notational simplicity, define X1 = 1 −
〈
[KA]1, [KB]1

〉
, X2 = 1 −

〈
[KA]2, [KB]2

〉
, Y =

ρ1/2, A = 4K
1+K

1
NANBd . Then we have

Ẋ1 ≤ −σ2
1AX1, Ẋ2 ≥ −2AX2.

First, by Gronwall’s lemma, we have X1(T ) ≤ exp
(
−σ2

1

∫ T

0
A
)

and

X2(T ) ≥ exp

(
−2
∫ T

0

A

)
≥ X

2/σ2
1

1 (T ).

As a result, when X1 reaches 1/d, we have X2 = Ω(1). Let T1 be the time X1 reaches 1/d and T2

the time X2(T2) = X2(T1)/2. On [T1, T2], we have

ρ̇1/2 ≥ Ω(1)σ2
1Aρ1/2.

By Gronwall’s lemma, in order for X2 to half, we need exp(−2
∫ T2

T1
A) = 1/2. Hence,

ρ1/2(T2) ≥ ρ1/2(T1) exp

(
Ω(1)σ2

1

∫ T2

T1

A

)
≥ 2Ω(σ2

1) = dΩ(1).

C STAGE 2

In this section, we show that, throughout Stage 2, the discretization error and the noise-signal ratio
still remain small, and, at the end of Stage 2, the condition number is close to 1. Formally, we prove
the following.

Lemma C.1 (Stage 2). Suppose that at the beginning of Stage 2, we have κ0 ≤
√
d and all errors

mentioned in (16) are sufficiently small5. Let cTarget > 1 be a constant. Let T1 be the earliest time
that

∥[KA]p∥2

∥[KA]q∥2
≤ cTarget, ∀p, q ∈ [r].

5By Lemma B.1, this condition indeed holds.
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We have T1 ≤ poly(d). Moreover, throughout Stage 2, we have

max

{
1−

〈
[KA]p, [KB]p

〉
,

∣∣∣∣∣1− ∥[KA]p∥2

∥[KB]p∥2

∣∣∣∣∣
}
≤ δ− ∀p ∈ [r],

max

{∣∣∣∣∣1− ∥[KA,ξ]p∥2

∥[KB,ξ]p∥2

∣∣∣∣∣ ,
∣∣∣∣∣1− ∥[KA,ξ]p∥2

∥[KA,ξ]q∥2

∣∣∣∣∣
}
≤ δ− ∀p, q ∈ [d− r],

max

{
∥[KC,ξ]q∥
∥[KD]p∥

: C,D ∈ {A,B}
}
≤ δN/S , ∀p ∈ [r], q ∈ [d− r],

max
{∣∣∣〈[KC ]p, [KD]q

〉∣∣∣ : C,D ∈ {A,B}
}
≤ δAB,⊥, ∀p ̸= q ∈ [r],

max
{∣∣∣〈[KC ]p, [KD,ξ]q

〉∣∣∣ , ∣∣∣〈[KA,ξ]s, [KB,ξ]q

〉∣∣∣ : C,D ∈ {A,B}
}
≤ δξ,⊥, ∀p ∈ [r], q, s ∈ [d− r],

(16)
where the δ’s are some small 1/poly(d) values.

The rest of this section is organized as follows. We derive estimations for the Q-matrices in Sec-
tion C.1. In Section C.2, we maintain the last two conditions of (16). In Section C.3, we handle
the first two conditions of (16). In Section C.4, we deal with the noise-signal ratio. We estimate the
convergence rate in Section C.5. Finally, we prove Lemma C.1 in Section C.6.

C.1 ESTIMATIONS FOR Q

As in Stage 1, we estimate the Q-matrices in this subsection. The analysis here will be more com-
plicated than the one in Section B.1 since now τ2t is no longer close to 0, and we cannot simply
approximate SA and SB with (1 +K)−1. However, the idea is still fairly straightforward. We split
all terms into the infinite-width part and the discretization error part. Then we Taylor expand the
corresponding function around the infinite-width part to factor out the first-order error terms. Then,
we evaluate and simplify these first-order terms with Ez− and Ez± .

First, we need the following lemma which gives closed-form formulas for some expectations we
will encounter later.

Lemma C.2. Define ⟨z+, z−⟩κ̂2 :=
∑r

k=1 κ̂
2
kz

+
k z

−
k and Tp := tanh

(
κ̂2
p/d

NANB

)
, p ∈ [r]. For any

p ̸= q ∈ [r], we have

E
z−

{
exp

(
⟨z+, z−⟩κ̂2

NANB

)}
=

r∏
k=1

cosh

(
κ̂2
k/d

NANB

)
=: Zc,

E
z−

{
exp

(
⟨z+, z−⟩κ̂2

NANB

)
z−p

}
= ZcTpz

+
p ,

E
z−

{
exp

(
⟨z+, z−⟩κ̂2

NANB

)
z−p z−q

}
= ZcTpTqz

+
p z

+
q .

Then, we derive estimations for SA and SB . There are two types of errors we need to consider. The
first one comes from the noises and the second one from the non-diagonalness of K⊤

AKB . Similar
to Lemma B.4, we deal with them separately. The next lemma handles the first type of error.
Lemma C.3 (Estimations for S). Define

E+,− := exp

(
⟨KAz+,KBz−⟩

NANB

)
, Ẽ+,− := exp

(
⟨z+, z−⟩κ̂2

NANB

)
,

δ+,ξ− :=

〈
KAz+,KB,ξξ

−
B

〉
NANB

, δξ+,T+ :=

〈
KA,ξξ

+
A,KB diag([Tk]k∈[r])z

+
〉

NANB
,

ZA,c := E
z−

E+,−, ZB,c := E
z−

E−,+,

S̃A :=
E+,+

E+,+ +KZA,c
, S̃B :=

E+,+

E+,+ +KZB,c
, S̃ :=

Ẽ+,+

Ẽ+,+ +KZc

.
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In Stage 2, we have

SA = S̃A + S̃(1− S̃) (δ+,ξ+ + δξ+,+ − δξ+,T+)±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
,

SB = S̃B + S̃(1− S̃) (δ+,ξ+ + δξ+,+ − δT+,ξ+)±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
,

and
SA(x+

A,x+
B) exp(f+

A · f
−
B)

exp(f+
A · f

+
B)

=
S̃AE+,−

E+,+
+

S̃Ẽ+,−

Ẽ+,+

(
δ+,ξ− + δξ+,− − S̃ (δ+,ξ+ + δξ+,+)− (1− S̃)δξ+,T+

)
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
,

SB(x+
A,x+

B) exp(f−
A · f

+
B)

exp(f+
A · f

+
B)

=
S̃BE−,+

E+,+
+

S̃Ẽ−,+

Ẽ+,+

(
1 + δξ−,+ + δ−,ξ+ − S̃ (δ+,ξ+ + δξ+,+)− (1− S̃)δT+,ξ+

)
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Then, we consider the error comes from the non-diagonalness of K⊤
AKB .

Lemma C.4 (Further estimations for S). Define

δ̃+,− =
∑
i ̸=j

⟨[KA]i, [KB]j⟩
NANB

z+i z
−
j , δ̃+,T+ =

∑
i ̸=j

⟨[KA]i, [KB]j⟩
NANB

z+i Tjz
+
j ,

Ẽ0 := Ẽ+,+ = Ẽ−,− = exp

(
∥κ̂∥2

NANB

)
.

In Stage 2, we have

S̃A(z+) = S̃
(
1 + (1− S̃)(δ̃+,+ − δ̃+,T+)

)
±O

(
d2δ2AB,⊥

)
,

S̃B(z+) = S̃
(
1 + (1− S̃)(δ̃+,+ − δ̃T+,+)

)
±O

(
d2δ2AB,⊥

)
,

S̃AE+,−

E+,+
=

S̃Ẽ+,−

Ẽ0

(
1− S̃δ̃+,+ − (1− S̃)δ̃+,T+ + δ̃+,−

)
±O

(
d2δ2AB,⊥

)
,

S̃BE−,+

E+,+
=

S̃Ẽ−,+

Ẽ0

(
1− S̃δ̃+,+ − (1− S̃)δ̃T+,+ + δ̃−,+

)
±O

(
d2δ2AB,⊥

)
.

With the above two lemmas in hand, we can now derive estimations for the Q-matrices.
Lemma C.5 (Estimations for Q1). Define KAB = K⊤

AKB and KBA = K⊤
BKA. In Stage 2, for

any p ̸= q ∈ [r], we have

[Q1]p,p = 2(1− S̃)(1− Tp)±O
(
d2δ2AB,⊥

)
,

[Q1]p,q = −S̃(1− S̃)
[KAB]p,q + [KBA]q,p

NANBd
(2− Tp − Tq)

− (1− S̃)
[KAB]p,q
NANBd

S̃ (2TpTq − Tp − Tq)

− (1− S̃)
[KAB]q,p
NANBd

(
2− S̃(Tp + Tq)− (1− S̃)(T 2

p + T 2
q )
)
±O

(
d2δ2AB,⊥

)
.

In particular, we have

|[Q1]p,q| ≤ O

(
κ0δAB,⊥

d

)
≤ O

(
δAB,⊥√

d

)
.

Note that the diagonal term has a zero-order term, i.e., it is not proportional to some error. That is
the signal term. On the other hand, all off-diagonal terms depend on [KAB]p,q (p ̸= q). Recall
that the dynamics of KA and KB can be described using these Q-matrices. Therefore, for any
p ̸= q, we can have equations of form d

dt [KAB]p,q ≈ G([KAB]p,q, [KAB]q,p), where G is some
complicated matrix. By carefully analyzing G, we can then derive bounds for the off-diagonal
entries using Gronwall’s lemma.

Similar things also hold for Q1,ξ and Q2. The difference here is that for these two matrices, we do
not have signal terms.
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Lemma C.6 (Estimations for Q1,ξ). In Stage 2, for any p ∈ [d− r] and q ∈ [r], we have

[Q1,ξA
]p,q = −(1− S̃)

(
1 + S̃ + (1− S̃)T 2

q

) ⟨[KB]q, [KA,ξ]p⟩
NANBd

±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
,

[Q1,ξB
]p,q = −(1− S̃)

(
1 + S̃ + (1− S̃)T 2

q

) ⟨[KA]q, [KB,ξ]p⟩
NANBd

±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

In particular, we have
max {[Q1,ξA

]p,q, [Q1,ξB
]p,q} ≤ O

(
δN/Sδξ,⊥

)
.

Lemma C.7 (Estimations for Q2). In Stage 2, for any p, q ∈ [d− r], we have

[Q2]p,q = ±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Lemma C.8 (Estimations for Q0). In Stage 2, we have

Q0 = −
r∑

k=1

κ2
k

∥κ∥2
[Q1]k,k ±O

(
d2δ2AB,⊥ + δ− + κ0dδN/Sδξ,⊥

)
.

Finally, we use these estimations to simplify the formulas for the norms. We do not consider the
tangent movement here since the situation is trickier there, and we will handle them in later subsec-
tions.
Corollary C.9 (Dynamics of the norms). In Stage 2, we have

d

dt
∥[KA]p∥2 =

2σ2
p ∥[KA]p∥ ∥[KB]p∥

NANBd

〈
[KA]p, [KB]p

〉
[Q1]p,p + 2

∥[KA]p∥2

N2
Ad

Q0σ
2
p

±O

(
σ2
pκ

2
p

NANBd
κ0dδ

2
AB,⊥

)
d

dt
∥[KA,ξ]q∥2 =

2 ∥[KA,ξ]q∥2

N2
Ad

Q0σ
2
ξ ±O

(
σ2
ξ ∥[KA,ξ]q∥2

NANBd
dδ2ξ,⊥

)
.

The formulas for ∥[KB]p∥ and ∥[KB,ξ]q∥ can be obtained by interchanging the roles of A and B.

OMITTED PROOFS OF THIS SUBSECTION

Proof of Lemma C.2. First, we compute

E
z−

{
exp

(
⟨z+, z−⟩κ̂2

NANB

)}
=

r∏
k=1

E
z−
k

{
exp

(
κ̂2
kz

+
k z

−
k

NANB

)}
=

r∏
k=1

1

2

(
exp

(
κ̂2
k/d

NANB

)
+ exp

(
− κ̂2

k/d

NANB

))

=
r∏

k=1

cosh

(
κ̂2
k/d

NANB

)
.

Similarly, we also have

E
z−

{
exp

(
⟨z+, z−⟩κ̂2

NANB

)
z−p

}
= E

z−
p

{
exp

(
κ̂2
kz

+
p z

−
p

NANB

)
z−p

}∏
k ̸=p

E
z−
k

{
exp

(
κ̂2
kz

+
k z

−
k

NANB

)}
.

Each factor in
∏

k ̸=p is still cosh
(

κ̂2
k/d

NANB

)
. For the first term, we have

E
z−
p

{
exp

(
κ̂2
kz

+
p z

−
p

NANB

)
z−p

}
=

1

2
√
d
E
z−
p

{
exp

(
κ̂2
kz

+
p /
√
d

NANB

)}
− 1

2
√
d
E
z−
p

{
exp

(
−κ̂2

kz
+
p /
√
d

NANB

)
z−p

}

=
1√
d
sinh

(
κ̂2
kz

+
p /
√
d

NANB

)
=

sgn z+o√
d

sinh

(
κ̂2
k/d

NANB

)
= sinh

(
κ̂2
k/d

NANB

)
z+p .

Therefore,

E
z−

{
exp

(
⟨z+, z−⟩κ̂2

NANB

)
z−p

}
= z+p sinh

(
κ̂2
k/d

NANB

)∏
k ̸=p

cosh

(
κ̂2
k/d

NANB

)
= ZcTpz

+
p .

The above calculation, mutatis mutandis, also yields the last identity.
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Proof of Lemma C.3. First, we write〈
f+
A ,f−

B

〉
=

〈
KAz+ +KA,ξξ

+
A,KBz− +KB,ξξ

−
B

〉
NANB

=
⟨KAz+,KBz−⟩

NANB
+

〈
KAz+,KB,ξξ

−
B

〉
NANB

+

〈
KA,ξξ

+
A,KBz−〉

NANB
±O

(
d2δξ,⊥δ

2
N/S

)
.

Also note that the middle terms are O(d2δξ,⊥δN/S). Then, we compute

exp
(
f+
A · f

−
B

)
= exp

(
1 +

〈
KAz+,KB,ξξ

−
B

〉
NANB

+

〈
KA,ξξ

+
A,KBz−〉

NANB

)
±O

(
d2δξ,⊥δ

2
N/S

)
.

Similar results also hold for other combinations of ±. With the notations defined in this lemma, we
can write these results as

exp
(
f+
A · f

−
B

)
= E+,− (1 + δ+,ξ− + δξ+,−)±O

(
d2δξ,⊥δ

2
N/S

)
,

exp
(
f−
A · f

+
B

)
= E−,+ (1 + δ−,ξ+ + δξ−,+)±O

(
d2δξ,⊥δ

2
N/S

)
,

exp
(
f+
A · f

+
B

)
= E+,+ (1 + δ+,ξ+ + δξ+,+)±O

(
d2δξ,⊥δ

2
N/S

)
.

To compute SA and SB , we then need to take expectations over the negative examples. Note that
by taking expectation over ξ−B , the term E+,−δ+,ξ− becomes 0. Therefore, we have

E
x−

B

exp
(
f+
A · f

−
B

)
= E

x−
B

{E+,− (1 + δξ+,−)} ±O
(
d2δξ,⊥δ

2
N/S

)
.

Unfortunately, the same argument does not apply to δξ+,− since both E+,− and δξ+,− depend on
z−. However, it is still possible to further simplify the expression. First, we write

E
z−
{E+,−δξ+,−} = E

z−

{
Ẽ+,− (1±O(dδAB,⊥)) δξ+,−

}
= E

z−

{
Ẽ+,−δξ+,−

}
±O(d3δAB,⊥δξ,⊥δN/S).

Recall Lemma C.2. Then, we compute

E
z−

{
Ẽ+,−δξ+,−

}
= E

z−

{
Ẽ+,−

〈
KA,ξξ

+
A,KBz−〉

NANB

}
=

〈
KA,ξξ

+
A,KB Ez−

{
Ẽ+,−z

−
}〉

NANB

= Zc

〈
KA,ξξ

+
A,KB diag([Tk]k∈[r])z

+
〉

NANB
= Zcδξ+,T+.

Hence,

E
x−

B

exp
(
f+
A · f

−
B

)
= E

x−
B

{E+,−}+ E
x−

B

{E+,−δξ+,−} ±O
(
d2δξ,⊥δ

2
N/S

)
= ZA,c + Zcδξ+,T+ ±O(d3δAB,⊥δξ,⊥δN/S)±O

(
d2δξ,⊥δ

2
N/S

)
= ZA,c + Zcδξ+,T+ ±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Similarly, we also have

E
x−

A

exp
(
f+
A · f

−
B

)
= ZB,c + ZcδT+,ξ+ ±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Recall that exp
(
f+
A · f

+
B

)
= E+,+ (1 + δ+,ξ+ + δξ+,+)±O

(
d2δξ,⊥δ

2
N/S

)
. Hence, we have

SA(x+
A,x+

B) =
E+,+(1 + δ+,ξ+ + δξ+,+)

E+,+(1 + δ+,ξ+ + δξ+,+) +KZA,c +KZcδξ+,T+
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
= S̃A

(
1− S̃A(δ+,ξ+ + δξ+,+)− (1− S̃A)δξ+,T+

)
+ S̃A(δ+,ξ+ + δξ+,+)±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
= S̃A + S̃(1− S̃) (δ+,ξ+ + δξ+,+ − δξ+,T+)±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.
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Similarly, we also have

SB(x+
A,x+

B) = S̃B + S̃(1− S̃) (δ+,ξ+ + δξ+,+ − δT+,ξ+)±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Then, we compute

SA(x+
A,x+

B) exp(f+
A · f

−
B)

exp(f+
A · f

+
B)

=
(
S̃A + S̃(1− S̃) (δ+,ξ+ + δξ+,+ − δξ+,T+)

) E+,− (1 + δ+,ξ− + δξ+,−)

E+,+ (1 + δ+,ξ+ + δξ+,+)

±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
=

S̃AE+,−

E+,+

(
1 + δ+,ξ− + δξ+,− − S̃ (δ+,ξ+ + δξ+,+)− (1− S̃)δξ+,T+

)
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
=

S̃AE+,−

E+,+
+

S̃Ẽ+,−

Ẽ

(
δ+,ξ− + δξ+,− − S̃ (δ+,ξ+ + δξ+,+)− (1− S̃)δξ+,T+

)
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
,

and
SB(x+

A,x+
B) exp(f−

A · f
+
B)

exp(f+
A · f

+
B)

=
S̃BE−,+

E+,+
+

S̃Ẽ−,+

Ẽ

(
1 + δξ−,+ + δ−,ξ+ − S̃ (δ+,ξ+ + δξ+,+)− (1− S̃)δT+,ξ+

)
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Proof of Lemma C.4. We write

⟨KAz+,KBz−⟩
NANB

=

r∑
k=1

⟨[KA]k, [KB]k⟩
NANB

z+k z
−
k +

∑
i̸=j

⟨[KA]i, [KB]j⟩
NANB

z+i z
−
j =: I+,− + δ̃+,−.

Note that, as a special case, we have I+,+ = I−,− = I0. In other words, I+,+ and I−,− do
not depend on the actual value of z±. Also note that I+,− is bounded by O(dδAB,⊥). Then, we
compute

E+,− = exp(I+,−)
(
1 + δ̃+,− ±O

(
d2δ2AB,⊥

))
and E+,+ = exp(I0)

(
1 + δ̃+,+ ±O

(
d2δ2AB,⊥

))
.

Take expectation over z− and we obtain

E
z−

E+,− = E
z−

exp(I+,−) + E
z−

{
exp(I+,−)δ̃+,−

}
±O

(
d2δ2AB,⊥

)
.

By Lemma C.2, the first term is Zc. For the second term, we compute

E
z−

{
exp(I+,−)δ̃+,−

}
=
∑
i ̸=j

[KAB]i,j
NANB

E
z−

{
exp(I+,−)z

−
j

}
z+i

= Zc

∑
i ̸=j

[KAB]i,j
NANB

Tjz
+
j z

+
i

= Zcδ̃+,T+,

where the second line again comes from Lemma C.2. Hence, we have

E
z−

E+,− = Zc + Zcδ̃+,T+ ±O
(
d2δ2AB,⊥

)
.

Then, for S̃A, we have

S̃A(z+) =
E+,+

E+,+ +K Ez− E+,−
=

exp(I0)
(
1 + δ̃+,+

)
exp(I0)

(
1 + δ̃+,+

)
+KZc +KZcδ̃+,T+

±O
(
d2δ2AB,⊥

)
= S̃

(
1− S̃δ̃+,+ − (1− S̃)δ̃+,T+

)
+ S̃δ̃+,+ ±O

(
d2δ2AB,⊥

)
= S̃

(
1 + (1− S̃)(δ̃+,+ − δ̃+,T+)

)
±O

(
d2δ2AB,⊥

)
.
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Similarly, we also have

S̃B(z+) = S̃
(
1 + (1− S̃)(δ̃+,+ − δ̃T+,+)

)
±O

(
d2δ2AB,⊥

)
.

Then, we compute

S̃AE+,−

E+,+
= S̃

(
1 + (1− S̃)(δ̃+,+ − δ̃+,T+)

) exp(I+,−)
(
1 + δ̃+,−

)
exp(I+,−)

(
1 + δ̃+,+

) ±O
(
d2δ2AB,⊥

)
=

S̃ exp(I+,−)

exp(I0)

(
1− S̃δ̃+,+ − (1− S̃)δ̃+,T+ + δ̃+,−

)
±O

(
d2δ2AB,⊥

)
.

Similarly, we also have

S̃BE−,+

E+,+
=

S̃ exp(I−,+)

exp(I0)

(
1− S̃δ̃+,+ − (1− S̃)δ̃T+,+ + δ̃−,+

)
±O

(
d2δ2AB,⊥

)
.

Proof of Lemma C.5. Recall that

Q1 := E
{(

2− SA(x+
A,x+

B)− SB(x+
A,x+

B)
)
z+(z+)⊤d

}
−K E

{
SA(x+

A,x+
B) exp(f+

A · f
−
B)

exp(f+
A · f

+
B)

z−(z+)⊤d

}
−K E

{
SB(x+

A,x+
B) exp(f−

A · f
+
B)

exp(f+
A · f

+
B)

z+(z−)⊤d

}
.

Note that there is no ξ here other than the ones in the coefficient. As a result, all terms contain δ+,ξ+

and alike are 0. Hence, we have

Q1 := E
{(

2− S̃A(x+
A,x+

B)− S̃B(x+
A,x+

B)
)
z+(z+)⊤d

}
−K E

{
S̃AE+,−

E+,+
z−(z+)⊤d

}
−K E

{
S̃BE−,+

E+,+
z+(z−)⊤d

}
=: T1(Q1) + T2(Q1) + T3(Q1).

Now we estimate each of these three terms separately. We also deal with the diagonal and off-
diagonal terms separately. By Lemma C.4, we have

T1([Q1]p,p) = E
{
2− S̃A(x+

A,x+
B)− S̃B(x+

A,x+
B)
}

= E
{
2− S̃

(
1 + (1− S̃)(δ̃+,+ − δ̃+,T+)

)
− S̃

(
1 + (1− S̃)(δ̃+,+ − δ̃T+,+)

)}
±O

(
d2δ2AB,⊥

)
= 2(1− S̃)±O

(
d2δ2AB,⊥

)
.

Note that we use the fact that all these δ’s have mean 0. Also by Lemma C.4, we have

T2([Q1]p,p) = −K E

{(
S̃Ẽ+,−

Ẽ0

(
1− S̃δ̃+,+ − (1− S̃)δ̃+,T+ + δ̃+,−

))
z−p z+p d

}
±O

(
d2δ2AB,⊥

)
= − S̃K

Ẽ0

E
{
Ẽ+,−z

−
p z+p d

}
− S̃K

Ẽ0

E
{(

Ẽ+,−

(
−S̃δ̃+,+ − (1− S̃)δ̃+,T+ + δ̃+,−

))
z−p z+p d

}
±O

(
d2δ2AB,⊥

)
.

Note that δ̃+,+, δ̃+,− and δ̃+,T+ only contain cross terms of form z+i z
±
j with i ̸= j. Hence, the

second term is 0. Meanwhile, by Lemma C.2, the first term is

− S̃K

Ẽ0

E
{
Ẽ+,−z

−
p z+p d

}
= − S̃KZcTp

Ẽ0

= −(1− S̃)Tp.

As a result,
T2([Q1]p,p) = −(1− S̃)Tp ±O

(
d2δ2AB,⊥

)
.
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Similarly, one can show that T3([Q1]p,p) = −(1− S̃)Tp ±O
(
d2δ2AB,⊥

)
also holds. Thus,

[Q1]p,p = 2(1− S̃)(1− Tp)±O
(
d2δ2AB,⊥

)
.

Now, we consider the off-diagonal terms. For notational simplicity, we define KAB = K⊤
AKB .

For any p ̸= q, we compute

T1([Q1]p,q) = −E
{(

S̃A(x+
A,x+

B) + S̃B(x+
A,x+

B)
)
z+p z

+
q d
}

= −S̃(1− S̃)E
{(

2δ̃+,+ − δ̃+,T+ − δ̃T+,T

)
z+p z

+
q d
}
±O

(
d2δ2AB,⊥

)
= −S̃(1− S̃)

∑
i ̸=j

[KAB]i,j
NANB

(2− Ti − Tj)E
{
z+i z

+
j z

+
p z

+
q d
}
±O

(
d2δ2AB,⊥

)
.

Clear that the summand is nonzero only if (i, j) = (p, q) or (i, j) = (q, p). Hence,

T1([Q1]p,q) = −S̃(1− S̃)
[KAB]p,q + [KAB]q,p

NANBd
(2− Tp − Tq)±O

(
d2δ2AB,⊥

)
.

Then, for T2, we compute

T2([Q1]p,q) = −K E
{
SA(x+

A,x+
B) exp(f+

A · f
−
B)

exp(f+
A · f

+
B)

z−p z+q d

}
= −K E

{(
S̃Ẽ+,−

Ẽ0

(
1− S̃δ̃+,+ − (1− S̃)δ̃+,T+ + δ̃+,−

))
z−p z+q d

}
±O

(
d2δ2AB,⊥

)
= −K E

{(
S̃Ẽ+,−

Ẽ0

(
−S̃δ̃+,+ − (1− S̃)δ̃+,T+ + δ̃+,−

))
z−p z+q d

}
±O

(
d2δ2AB,⊥

)
= −K

∑
i ̸=j

[KAB]i,j
NANB

E

{(
S̃Ẽ+,−

Ẽ0

(
−S̃z+i z

+
j − (1− S̃)z+i z

+
j Tj + z+i z

−
j

))
z−p z+q d

}
±O

(
d2δ2AB,⊥

)
.

Again, the summand is nonzero only if (i, j) = (p, q) or (i, j) = (q, p). By Lemma C.2, we have

T2([Q1]p,q)

= − S̃K

Ẽ0

[KAB]p,q
NANB

((
−S̃ − (1− S̃)Tq

)
E
{
exp(I+,−)z

+
p z

−
p

}
+ E

{
exp(I+,−)z

+
p z

+
q z

−
p z−q d

})
− S̃K

Ẽ0

[KAB]q,p
NANB

((
−S̃ − (1− S̃)Tp

)
E
{
exp(I+,−)z

+
p z

−
p

}
+ d−1 E {exp(I+,−)}

)
±O

(
d2δ2AB,⊥

)
= − S̃KZc

Ẽ0

[KAB]p,q
NANBd

((
−S̃ − (1− S̃)Tq

)
Tp + TpTq

)
− S̃KZc

Ẽ0

[KAB]q,p
NANBd

((
−S̃ − (1− S̃)Tp

)
Tp + 1

)
±O

(
d2δ2AB,⊥

)
= −(1− S̃)

[KAB]p,q
NANBd

S̃Tp(Tq − 1)− (1− S̃)
[KAB]q,p
NANBd

(
−S̃Tp − (1− S̃)T 2

p + 1
)
±O

(
d2δ2AB,⊥

)
.
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Similarly, for T3, we have

T3([Q1]p,q)

= −K E
{
SB(x+

A,x+
B) exp(f−

A · f
+
B)

exp(f+
A · f

+
B)

z+p z
−
q d

}
= −K E

{
S̃Ẽ−,+

Ẽ0

(
1− S̃δ̃+,+ − (1− S̃)δ̃T+,+ + δ̃−,+

)
z+p z

−
q d

}
±O

(
d2δ2AB,⊥

)
= − S̃K

Ẽ0

∑
i ̸=j

[KAB]i,j
NANB

E
{
Ẽ−,+

((
−S̃ − (1− S̃)Ti

)
z+i z

+
j + z−i z+j

)
z+p z

−
q d
}
±O

(
d2δ2AB,⊥

)
= − S̃K

Ẽ0

[KAB]p,q
NANB

((
−S̃ − (1− S̃)Tp

)
ZcTq/d+ ZcTpTq/d

)
− S̃K

Ẽ0

[KAB]q,p
NANB

((
−S̃ − (1− S̃)Tq

)
ZcTq/d+ Zc/d

)
±O

(
d2δ2AB,⊥

)
= −(1− S̃)

[KAB]p,q
NANBd

S̃Tq(Tp − 1)− (1− S̃)
[KAB]q,p
NANBd

(
1− S̃Tq − (1− S̃)T 2

q

)
±O

(
d2δ2AB,⊥

)
.

Combine these together and we obtain

[Q1]p,q = −S̃(1− S̃)
[KAB]p,q + [KAB]q,p

NANBd
(2− Tp − Tq)

− (1− S̃)
[KAB]p,q
NANBd

S̃ (2TpTq − Tp − Tq)

− (1− S̃)
[KAB]q,p
NANBd

(
2− S̃(Tp + Tq)− (1− S̃)(T 2

p + T 2
q )
)
±O

(
d2δ2AB,⊥

)
.

Proof of Lemma C.6. We write

Q1,ξB := E
{(

2− SA(x+
A,x+

B)− SB(x+
A,x+

B)
)
ξ+B(z+)⊤d

}
−K E

{
SA(x+

A,x+
B) exp(f+

A · f
−
B)

exp(f+
A · f

+
B)

ξ−B(z+)⊤d

}
−K E

{
SB(x+

A,x+
B) exp(f−

A · f
+
B)

exp(f+
A · f

+
B)

ξ+B(z−)⊤d

}
=: T1 (Q1,ξB ) + T2 (Q1,ξB ) + T3 (Q1,ξB ) .

We will use the fact that if some quantity X does not depend on ξ, then E {Xξ} = 0 to simplify
these terms. For T1, by Lemma C.3, we have

T1 ([Q1,ξB ]p,q) = −E
{(

SA(x+
A,x+

B) + SB(x+
A,x+

B)
)
[ξ+B]pz

+
q d
}

= −S̃(1− S̃)E
{
(2δ+,ξ+ + 2δξ+,+ − δξ+,T+ − δT+,ξ+) [ξ

+
B]pz

+
q d
}

±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
= −S̃(1− S̃)E

{
(2δ+,ξ+ − δT+,ξ+) [ξ

+
B]pz

+
q d
}
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Recall that

δ+,ξ+ =
∑
i,j

[K⊤
AKB,ξ]i,j
NANB

z+i [ξ
+
B]j , δT+,ξ+ =

∑
i,j

[K⊤
AKB,ξ]i,j
NANB

Tiz
+
i [ξ

+
B]j .

Hence, we can further rewrite T1 ([Q1,ξB ]p,q) as

T1 ([Q1,ξB ]p,q) = −S̃(1− S̃)
∑
i,j

[K⊤
AKB,ξ]i,j
NANB

(2− Ti)E
{
z+i [ξ

+
B]j [ξ

+
B]pz

+
q d
}

±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.
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Note that the summand is nonzero only if i = q and j = p. Thus,

T1 ([Q1,ξB ]p,q) = −S̃(1− S̃) (2− Tq)
⟨[KA]q, [KB,ξ]p⟩

NANBd
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Similarly, we also have

T2 ([Q1,ξB ]p,q) = −
KS̃

Ẽ
E
{
Ẽ+,−δ+,ξ−[ξ

−
B]pz

+
q d
}
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
,

T3 ([Q1,ξB ]p,q) = −
KS̃

Ẽ
E
{
Ẽ−,+

(
δ−,ξ+ − S̃δ+,ξ+ − (1− S̃)δT+,ξ+

)
[ξ−B]pz

+
q d
}

±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Then, we write

E
{
Ẽ+,−δ+,ξ−[ξ

−
B]pz

+
q d
}
=
∑
i,j

[K⊤
AKB,ξ]i,j
NANB

E
{
Ẽ+,−z

+
i [ξ

−
B]j [ξ

−
B]pz

+
q d
}
.

If j ̸= p, clear that that summand is 0. If i ̸= q, then by flipping the sign of z±q simultaneously, we
flip the sign of Ẽ+,−z

+
i z

+
q . Therefore, when i ̸= q, the summand is also 0. Thus,

T2 ([Q1,ξB ]p,q) = −
S̃KZc

Ẽ

⟨[KA]q, [KB,ξ]p⟩
NANBd

±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
= −(1− S̃)

⟨[KA]q, [KB,ξ]p⟩
NANBd

±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Similarly, for T3, we compute

E
{
Ẽ−,+

(
δ−,ξ+ − S̃δ+,ξ+ − (1− S̃)δT+,ξ+

)
[ξ−B]pz

+
q d
}

=
∑
i,j

[K⊤
AKB,ξ]i,j
NANB

E
{
Ẽ−,+

(
z−i [ξ−B]j − S̃z+i [ξ

−
B]j − (1− S̃)(1− Ti)z

−
i [ξ−B]j

)
[ξ−B]pz

+
q d
}

=
[K⊤

AKB,ξ]q,p
NANB

E
{
Ẽ−,+

(
z−q − S̃z+q − (1− S̃)(1− Ti)z

−
q

)
z+q

}
= Zc

[K⊤
AKB,ξ]q,p
NANBd

(
S̃(Tq − 1− T 2

q ) + T 2
q

)
.

Thus,

T3 ([Q1,ξB ]p,q) = −(1− S̃)
⟨[KA]q, [KB,ξ]p⟩

NANBd

(
S̃(Tq − 1− T 2

q ) + T 2
q

)
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Combine these together, rearrange terms and we obtain

[Q1,ξB
]p,q = −(1− S̃)

(
1 + S̃ + (1− S̃)T 2

q

) ⟨[KA]q, [KB,ξ]p⟩
NANBd

±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

To obtain the formula for Q1,ξA
, it suffices to interchange the roles of A and B.

Proof of Lemma C.7. Recall that

Q2 := E
{(

2− SA(x+
A,x+

B)− SB(x+
A,x+

B)
)
ξ+B(ξ+A)⊤d

}
−K E

{
SA(x+

A,x+
B) exp(f+

A · f
−
B)

exp(f+
A · f

+
B)

ξ−B(ξ+A)⊤d

}
−K E

{
SB(x+

A,x+
B) exp(f−

A · f
+
B)

exp(f+
A · f

+
B)

ξ+B(ξ−A)⊤d

}
=: T1(Q2) + T2(Q2) + T3(Q2).
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We now estimate each of these three terms. Again, the strategy is to leverage the symmetry of the
distribution of ξ to argue that some part of the expectation is 0. For T1, we have

T1([Q2]p,q) = −S̃(1− S̃)E
{
(2δ+,ξ+ + 2δξ+,+ − δξ+,T+ − δT+,ξ+) [ξ

+
B]p[ξ

+
A]qd

}
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Note that none of these δ’s depends on both ξ+A and ξ+B . Therefore, the first term is 0. Similarly, for
T2, we have

T2([Q2]p,q) = −
KS̃

Ẽ
E
{(

Ẽ+,−

(
δ+,ξ− + δξ+,− − S̃ (δ+,ξ+ + δξ+,+)− (1− S̃)δξ+,T+

))
[ξ−B]p[ξ

+
A]qd

}
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
= ±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

The same is also true for T3. Thus,
[Q2]p,q = ±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Proof of Lemma C.8. Recall from Corollary A.4 that Q0 is defined as
Q0 := − E

x+
A,x+

B

{(
2− SA(x+

A,x+
B)− SB(x+

A,x+
B)
) 〈

f+
A ,f+

B

〉}
+K E

x+
A,x±

B

{
SA(x+

A,x+
B) exp(τ2t f

+
A · f

−
B)

exp(τ2t f
+
A · f

+
B)

〈
f+
A ,f−

B

〉}
+K E

x±
A,x+

B

{
SB(x+

A,x+
B) exp(τ2t f

−
A · f

+
B)

exp(τ2t f
+
A · f

+
B)

〈
f−
A ,f+

B

〉}
.

We write 〈
f+
A ,f−

B

〉
=
⟨KAz+,KBz−⟩

NANB
±O

(
κ0dδN/Sδξ,⊥

)
=
∑

i,j∈[r]

[KAB]i,j
NANB

z+i z
−
j ±O

(
κ0dδN/Sδξ,⊥

)
.

Therefore, we have

Q0 = −
∑

i,j∈[r]

[KAB]i,j
NANB

[Q1]i,j ±O
(
κ0dδN/Sδξ,⊥

)
= −

r∑
k=1

κ2
k

∥κ∥2
[Q1]k,k ±O

(
d2δ2AB,⊥ + δ− + κ0dδN/Sδξ,⊥

)
.

Proof of Corollary C.9. Recall from Lemma A.5 that

d

dt
∥[KA]p∥2 = 2

⟨[KA]p, [KBQ1]p⟩
NANBd

σ2
p + 2

⟨[KA]p, [KB,ξQ1,ξB ]p⟩
NANBd

σ2
p + 2

∥[KA]p∥2

N2
Ad

Q0σ
2
p

=:

3∑
i=1

Ti

(
d

dt
∥[KA]p∥2

)
.

By Lemma C.5, we have

T1

(
d

dt
∥[KA]p∥2

)
= 2

r∑
k=1

∥[KA]p∥ ∥[KB]k∥
NANBd

〈
[KA]p, [KB]k

〉
[Q1]k,pσ

2
p

=
2σ2

p ∥[KA]p∥ ∥[KB]p∥
NANBd

〈
[KA]p, [KB]p

〉
[Q1]p,p

±O

(
σ2
pκ

2
p

NANBd
κ0dδ

2
AB,⊥

)
.
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By Lemma C.6, we have

T2

(
d

dt
∥[KA]p∥2

)
= 2

d−r∑
k=1

∥[KA]p∥ ∥[KB,ξ]k∥
NANBd

〈
[KA]p, [KB,ξ]k

〉
[Q1,ξB ]k,pσ

2
p

= O

(
σ2
pκ

2
p

NANBd
dδ2N/Sδ

2
ξ,⊥

)
.

Combine these together and we obtain

d

dt
∥[KA]p∥2 =

2σ2
p ∥[KA]p∥ ∥[KB]p∥

NANBd

〈
[KA]p, [KB]p

〉
[Q1]p,p + 2

∥[KA]p∥2

N2
Ad

Q0σ
2
p

±O

(
σ2
pκ

2
p

NANBd
κ0dδ

2
AB,⊥

)
.

To get the formula for d
dt ∥[KB]p∥2, it suffices to interchange the roles of A and B. Similarly, for

the noises, we write

d

dt
∥[KA,ξ]q∥2 =

2
〈
[KA,ξ]q, [KBQ⊤

1,ξA
]q

〉
NANBd

σ2
ξ +

2 ⟨[KA,ξ]q, [KB,ξQ2]q⟩
NANBd

σ2
ξ +

2 ∥[KA,ξ]q∥2F
N2

Ad
Q0σ

2
ξ

=

3∑
i=1

Ti

(
d

dt
∥[KA,ξ]q∥2

)
.

By Lemma C.6, we have

T1

(
d

dt
∥[KA,ξ]q∥2

)
= 2

r∑
k=1

∥[KA,ξ]q∥ ∥[KB]k∥
NANBd

〈
[KA,ξ]q, [KB]k

〉
[Q1,ξA

]q,kσ
2
ξ

= O

(
σ2
ξ ∥[KA,ξ]q∥2

NANBd
dδ2ξ,⊥

)
.

By Lemma C.7, we have

T1

(
d

dt
∥[KA,ξ]q∥2

)
= 2

d−r∑
k=1

∥[KA,ξ]q∥ ∥[KB,ξ]k∥
NANBd

〈
[KA,ξ]q, [KB,ξ]k

〉
[Q2]k,qσ

2
ξ

= O

(
σ2
ξ ∥[KA,ξ]q∥2

NANBd
d4
(
δAB,⊥ + δN/S

)
δ2ξ,⊥δN/S

)
.

Combine these together and we get

d

dt
∥[KA,ξ]q∥2 =

2 ∥[KA,ξ]q∥2

N2
Ad

Q0σ
2
ξ ±O

(
σ2
ξ ∥[KA,ξ]q∥2

NANBd
dδ2ξ,⊥

)
.

C.2 MAINTAINING THE ORTHOGONALITY

In this subsection, we control the growth of δAB,⊥ and δξ,⊥. First, we derive the equations that
govern the evolution of the off-diagonal terms.
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Lemma C.10. In Stage 2, for any p ̸= q ∈ [r], we have

d

dt

〈
[KA]p, [KB]q

〉
= [Q1]q,p

κq/κpσ
2
p + κp/κqσ

2
q

NANBd

−
〈
[KA]p, [KB]q

〉( [Q1]p,pσ
2
p

NANBd
+

[Q1]q,qσ
2
q

NANBd

)

+
〈
[KA]p, [KA]q

〉 [Q1]q,qσ
2
q

NANBd
+
〈
[KB]p, [KB]q

〉 [Q1]p,pσ
2
p

NANBd

±O

(
σ2
max

NANBd
dκ0δAB,⊥

(√
δ− + δAB,⊥

))
.

Lemma C.11. In Stage 2, for any p ̸= q ∈ [r], we have

d

dt

〈
[KA]p, [KA]q

〉
= [Q1]q,p

κq/κpσ
2
p

NANBd
+ [Q1]p,q

κp/κqσ
2
q

NANBd

−
〈
[KA]p, [KA]q

〉( [Q1]p,pσ
2
p

NANBd
+

[Q1]q,qσ
2
q

NANBd

)

+
〈
[KA]p, [KB]q

〉 [Q1]q,qσ
2
q

NANBd
+
〈
[KB]p, [KA]q

〉 [Q1]p,pσ
2
p

NANBd

±
(

σ2
max

NANBd
dκ0δAB,⊥

(√
δ− + δAB,⊥

))
,

and

d

dt

〈
[KB]p, [KB]q

〉
= [Q1]p,q

κq/κpσ
2
p

NANBd
+ [Q1]q,p

κp/κqσ
2
q

NANBd

−
〈
[KB]p, [KB]q

〉( [Q1]p,pσ
2
p

NANBd
+

[Q1]q,qσ
2
q

NANBd

)

+
〈
[KB]p, [KA]q

〉 [Q1]q,qσ
2
q

NANBd
+
〈
[KA]p, [KB]q

〉 [Q1]p,pσ
2
p

NANBd

±
(

σ2
max

NANBd
dκ0δAB,⊥

(√
δ− + δAB,⊥

))
.

Now, we are ready to control the off-diagonalness. The proof is similar to the one of Lemma B.15.
To provide intuitions, we first consider an idealized case. That is, we assume here the noise-signal
ratio is 0 and KA = KB , and explain how to control

〈
[KA]p, [KB]q

〉
for p ̸= q ∈ [r] under these

assumptions. In this case, we have

d

dt

〈
[KA]p, [KB]q

〉
≈ [Q1]q,p

κq/κpσ
2
p + κp/κqσ

2
q

NANBd
,

and

[Q1]p,q ≈ −(1− S̃)
(
2− T 2

p − T 2
q + S̃(2− Tp − Tq)

2
) [KAB]p,q

NANBd
.

Note that the coefficient is negative. As a result,
〈
[KA]p, [KB]q

〉
will move towards 0.

When KA = KB is not exactly true, the situation is trickier because we need to deal with the
middle four terms of the RHS of d

dt

〈
[KA]p, [KB]q

〉
. The idea is to view all these off-diagonal

errors as a whole and show that their sum is non-increasing, up to some higher-order terms.
Lemma C.12 (Orthogonality between signals). For any p ̸= q, define

δ̂⊥,p,q :=
〈
[KA]p, [KB]q

〉2
+
〈
[KB]p, [KA]q

〉2
+
〈
[KA]p, [KA]q

〉2
+
〈
[KB]p, [KB]q

〉2
.
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In Stage 2, we have

d

dt
δ̂⊥,p,q ≤ O

(
σ2
max

NANBd
κ0

(
d2δ2AB,⊥ + δAB,⊥

√
δ− + δ−

)√
δ̂⊥,p,q

)
.

Note that the LHS is of order δ2AB,⊥ and for the RHS, the only term that can potentially have the

same order is the
(
δ−

√
δ̂⊥,p,q

)
-related term. We will show later that δ− = o(δAB,⊥), whence this

is also a higher order term.

Then, we consider the orthogonality between signals and noises.
Lemma C.13 (Orthogonality between signals and noises). For any p ∈ [r] and q ∈ [d− r], define

δ̂ξ,⊥,p,q :=
〈
[KA]p, [KA,ξ]q

〉2
+
〈
[KB]p, [KA,ξ]q

〉2
+
〈
[KA]p, [KB,ξ]q

〉2
+
〈
[KB]p, [KB,ξ]q

〉2
.

In Stage 2, we have

d

dt
δ̂ξ,⊥,p,q ≤ O

(
σ2
max

NANBd
dκ0δ

2
ξ,⊥

(
δξ,⊥ +

√
δ−

))
.

Finally, we deal with the orthogonality between the noises.
Lemma C.14 (Orthogonality between noises). In Stage 2, for any p, q ∈ [d− r], we have

d

dt

〈
[KA,ξ]p, [KB,ξ]q

〉
= ±O

(
σ2
ξ

NANBd
dδ2ξ,⊥

)
.

OMITTED PROOF OF THIS SUBSECTION

Proof of Lemma C.10. Recall that

d

dt
[KA]p =

(
I − [KA]p

(
[KA]p

)⊤)( [KBQ1]p
∥[KA]p∥

+
[KB,ξQ1,ξB ]p
∥[KA]p∥

)
σ2
p

NANBd
,

d

dt
[KB]q =

(
I − [KB]q

(
[KB]q

)⊤)( [KAQ⊤
1 ]q

∥[KB]q∥
+

[KA,ξQ1,ξA ]q
∥[KB]q∥

)
σ2
q

NANBd
.

Then, we write〈
[KA]p,

d

dt
[KB]q

〉
= [KA]p

⊤
(
I − [KB]q

(
[KB]q

)⊤) [KAQ⊤
1 ]q

∥[KB]q∥
σ2
q

NANBd

+ [KA]p
⊤
(
I − [KB]q

(
[KB]q

)⊤) [KA,ξQ1,ξA ]q
∥[KB]q∥

σ2
q

NANBd
.

For the second term, by Lemma C.6, we have

[KA]p
⊤
(
I − [KB]q

(
[KB]q

)⊤) [KA,ξQ1,ξA ]q
∥[KB]q∥

=

d−r∑
k=1

(〈
[KA]p, [KA,ξ]k

〉
−
〈
[KA]p, [KB]q

〉〈
[KB]q, [KA,ξ]k

〉) ∥[KA,ξ]k∥ [Q1,ξA ]k,q
∥[KB]q∥

= ±O
(
dδ2ξ,⊥δ

2
N/S

)
.

Hence,〈
[KA]p,

d

dt
[KB]q

〉
= [KA]p

⊤
(
I − [KB]q

(
[KB]q

)⊤) [KAQ⊤
1 ]q

∥[KB]q∥
σ2
q

NANBd

±O

(
σ2
max

NANBd
dδ2ξ,⊥δ

2
N/S

)
.
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For the first term, we have

[KA]p
⊤
(
I − [KB]q

(
[KB]q

)⊤) [KAQ⊤
1 ]q

∥[KB]q∥

=

r∑
k=1

(〈
[KA]p, [KA]k

〉
−
〈
[KA]p, [KB]q

〉〈
[KB]q, [KA]k

〉) ∥[KA]k∥ [Q1]q,k
∥[KB]q∥

.

When k /∈ {p, q}, we have
∣∣∣〈[KA]p, [KA]k

〉∣∣∣ ≤ O(δAB,⊥),
∣∣∣〈[KB]q, [KA]k

〉∣∣∣ ≤ O(δAB,⊥),
and ∥[KA]k∥ / ∥[KB]q∥ ≤ κ0. Meanwhile, by Lemma C.5, we also have |[Q1]q,k| ≤ O(δAB,⊥).
Hence,∣∣∣∣∣∣

∑
k/∈{p,q}

(〈
[KA]p, [KA]k

〉
−
〈
[KA]p, [KB]q

〉〈
[KB]q, [KA]k

〉) ∥[KA]k∥ [Q1]q,k
∥[KB]q∥

∣∣∣∣∣∣
≤ O

(
dκ0δ

2
AB,⊥

)
.

Therefore,〈
[KA]p,

d

dt
[KB]q

〉(
σ2
q

NANBd

)−1

=
(
1−

〈
[KA]p, [KB]q

〉〈
[KB]q, [KA]p

〉) ∥[KA]p∥ [Q1]q,p
∥[KB]q∥

+
(〈

[KA]p, [KA]q

〉
−
〈
[KA]p, [KB]q

〉〈
[KB]q, [KA]q

〉) ∥[KA]q∥ [Q1]q,q
∥[KB]q∥

±O
(
dκ0δ

2
AB,⊥

)
±O

(
dδ2ξ,⊥δ

2
N/S

)
.

For the first term, we have(
1−

〈
[KA]p, [KB]q

〉〈
[KB]q, [KA]p

〉) ∥[KA]p∥ [Q1]q,p
∥[KB]q∥

=
(
1± δ2AB,⊥

) κp[Q1]q,p
κq

(
1±

√
δ−

)
=

κp[Q1]q,p
κq

±O
(
κ0δAB,⊥

√
δ−

)
±O

(
κ0δ

3
AB,⊥

)
.

For the second term, we have(〈
[KA]p, [KA]q

〉
−
〈
[KA]p, [KB]q

〉〈
[KB]q, [KA]q

〉) ∥[KA]q∥ [Q1]q,q
∥[KB]q∥

=
(〈

[KA]p, [KA]q

〉
−
〈
[KA]p, [KB]q

〉
(1± δ−)

)
[Q1]q,q

(
1±

√
δ−

)
=
(〈

[KA]p, [KA]q

〉
−
〈
[KA]p, [KB]q

〉)
[Q1]q,q ±O

(
δ⊥
√
δ−

)
.

Thus, 〈
[KA]p,

d

dt
[KB]q

〉(
σ2
q

NANBd

)−1

=
κp[Q1]q,p

κq
±O

(
κ0δAB,⊥

√
δ−

)
±O

(
κ0δ

3
AB,⊥

)
+
(〈

[KA]p, [KA]q

〉
−
〈
[KA]p, [KB]q

〉)
[Q1]q,q ±O

(
δ⊥
√
δ−

)
±O

(
dκ0δ

2
AB,⊥

)
±O

(
dδ2ξ,⊥δ

2
N/S

)
=

κp[Q1]q,p
κq

+
(〈

[KA]p, [KA]q

〉
−
〈
[KA]p, [KB]q

〉)
[Q1]q,q

±O
(
dκ0δAB,⊥

(√
δ− + δAB,⊥

))
.
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Hence,〈
[KA]p,

d

dt
[KB]q

〉
=

κp[Q1]q,p
κq

σ2
q

NANBd
+
(〈

[KA]p, [KA]q

〉
−
〈
[KA]p, [KB]q

〉) [Q1]q,qσ
2
q

NANBd

±O

(
σ2
max

NANBd
dκ0δAB,⊥

(√
δ− + δAB,⊥

))
.

Interchange the roles of A,B, p, q, replace Q1 with Q⊤
1 , and we obtain〈

d

dt
[KA]p, [KB]q

〉
=

κq[Q1]q,p
κp

σ2
p

NANBd
+
(〈

[KB]p, [KB]q

〉
−
〈
[KA]p, [KB]q

〉) [Q1]p,pσ
2
p

NANBd

±O

(
σ2
max

NANBd
dκ0δAB,⊥

(√
δ− + δAB,⊥

))
.

Combine these together and we complete the proof.

Proof of Lemma C.11. Similar to the proof of the previous lemma, we compute〈
d

dt
[KA]p, [KA]q

〉
= [KA]q

⊤
(
I − [KA]p

(
[KA]p

)⊤)( [KBQ1]p
∥[KA]p∥

+
[KB,ξQ1,ξB ]p
∥[KA]p∥

)
σ2
p

NANBd

= [KA]q
⊤
(
I − [KA]p

(
[KA]p

)⊤) [KBQ1]p
∥[KA]p∥

σ2
p

NANBd
±O

(
σ2
max

NANBd
dδ2ξ,⊥δ

2
N/S

)
.

Again, we have

[KA]q
⊤
(
I − [KA]p

(
[KA]p

)⊤) [KBQ1]p
∥[KA]p∥

= [KA]q
⊤
(
I − [KA]p

(
[KA]p

)⊤)
[KB]p

∥[KB]p∥ [Q1]p,p
∥[KA]p∥

+ [KA]q
⊤
(
I − [KA]p

(
[KA]p

)⊤)
[KB]q

∥[KB]q∥ [Q1]q,p
∥[KA]p∥

+
∑

k/∈{p,q}

[KA]q
⊤
(
I − [KA]p

(
[KA]p

)⊤)
[KB]k

∥[KB]k∥ [Q1]k,p
∥[KA]p∥

=
κq[Q1]q,p

κp
+
(〈

[KB]p, [KA]q

〉
−
〈
[KA]p, [KA]q

〉)
[Q1]p,p ±

(
dκ0δAB,⊥

(√
δ− + δAB,⊥

))
.

Therefore,〈
d

dt
[KA]p, [KA]q

〉
= [Q1]q,p

κq/κpσ
2
p

NANBd
+
(〈

[KB]p, [KA]q

〉
−
〈
[KA]p, [KA]q

〉) [Q1]p,pσ
2
p

NANBd

±
(

σ2
max

NANBd
dκ0δAB,⊥

(√
δ− + δAB,⊥

))
.

Interchange the roles of p, q and we obtain〈
[KA]p,

d

dt
[KA]q

〉
= [Q1]p,q

κp/κqσ
2
q

NANBd
+
(〈

[KB]q, [KA]p

〉
−
〈
[KA]p, [KA]q

〉) [Q1]q,qσ
2
q

NANBd

±
(

σ2
max

NANBd
dκ0δAB,⊥

(√
δ− + δAB,⊥

))
.
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Combine these together and we get

d

dt

〈
[KA]p, [KA]q

〉
= [Q1]q,p

κq/κpσ
2
p

NANBd
+ [Q1]p,q

κp/κqσ
2
q

NANBd

−
〈
[KA]p, [KA]q

〉( [Q1]p,pσ
2
p

NANBd
+

[Q1]q,qσ
2
q

NANBd

)

+
〈
[KA]p, [KB]q

〉 [Q1]q,qσ
2
q

NANBd
+
〈
[KB]p, [KA]q

〉 [Q1]p,pσ
2
p

NANBd

±
(

σ2
max

NANBd
dκ0δAB,⊥

(√
δ− + δAB,⊥

))
.

Interchange the roles of A,B, replace Q1 with Q⊤
1 , and we obtain the formula for

d
dt

〈
[KB]p, [KB]q

〉
.

Proof of Lemma C.12. First, we consider the [Q1]p,q-related terms, by Lemma C.5, we have

[Q1]p,q = −S̃(1− S̃)
[KAB]p,q + [KBA]q,p

NANBd
(2− Tp − Tq)

− (1− S̃)
[KAB]p,q
NANBd

S̃ (2TpTq − Tp − Tq)

− (1− S̃)
[KAB]q,p
NANBd

(
2− S̃(Tp + Tq)− (1− S̃)(T 2

p + T 2
q )
)
±O

(
d2δ2AB,⊥

)
= O

(
κpκqδAB,⊥

NANBd

)
.

Hence,

[Q1]p,q
κq/κpσ

2
p

NANBd
= O

(
κ2
q

NANBd

σ2
p

NANBd
δAB,⊥

)
= O

(
1√
d

σ2
max

NANBd
δAB,⊥

)
.

The same bound also hold for other [Q1]p,q-related terms. The important thing here is that we have
and additional 1/

√
d factor.

Now, we are ready to prove the result. For notational simplicity, define Z1 =
〈
[KA]p, [KB]q

〉
,

Z2 =
〈
[KB]p, [KA]q

〉
, Z3 =

〈
[KA]p, [KA]q

〉
, and Z4 =

〈
[KB]p, [KB]q

〉
. Also define Gp :=

[Q1]p,pσ
2
p/(NANBd) and similarly for Gq . Then, we can write the results of Lemma C.10 and

Lemma C.11 as

d

dt

Z1

Z2

Z3

Z4

 =

−Gp −Gq 0 Gq Gp

0 −Gp −Gq Gp Gq

Gq Gp −Gp −Gq 0
Gp Gq 0 −Gp −Gq


Z1

Z2

Z3

Z4


±O

(
1√
d

σ2
max

NANBd
δAB,⊥

)
±O

(
σ2
max

NANBd
dκ0δAB,⊥

(√
δ− + δAB,⊥

))
.

The eigenvalues of the first matrix are −2Gp,−2Gq,−2Gp − 2Gq and 0. For the first three eigen-
values, note that

Gp =
[Q1]p,pσ

2
p

NANBd
≥ 1√

d

σ2
max

NANBd
.

Hence, the signals will dominate the noises, in particular, the first term on the second line, and push
∥Z∥ toward 0. Now we consider the eigen-pair (0, (1, 1, 1, 1)), for which we will use the actual
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form of [Q1]p,q we obtained in Lemma C.5. We have

d

dt

4∑
i=1

Zi = 2 ([Q1]p,q + [Q1]q,p)
κq/κpσ

2
p + κp/κqσ

2
q

NANBd

±O

(
σ2
max

NANBd
dκ0δAB,⊥

(√
δ− + δAB,⊥

))
.

By Lemma C.5, we have

[Q1]p,q + [Q1]q,p

= −(1− S̃)
[KAB]p,q + [KBA]p,q

NANBd

(
2− T 2

p − T 2
q + S̃(2− Tp − Tq)

2
)
±O

(
d2δ2AB,⊥

)
.

Then, we write
[KAB]p,q + [KBA]p,q = ∥[KA]p∥ ∥[KB]q∥Z1 + ∥[KB]p∥ ∥[KA]q∥Z2

= (Z1 + Z2)κpκq(1±
√
δ−).

Hence,

[Q1]p,q + [Q1]q,p = −(1− S̃)
κpκq

NANBd
(Z1 + Z2)

(
2− T 2

p − T 2
q + S̃(2− Tp − Tq)

2
)

±O
(
d2δ2AB,⊥ + δAB,⊥

√
δ−

)
.

To convert Z1 + Z2 to
∑4

i=1 Zi. Note that we have

Z1 + Z2 − Z3 − Z4 =
〈
[KA]p − [KB]p, [KA]q − [KB]q

〉
≤ δ−.

Therefore,

[Q1]p,q + [Q1]q,p = −1− S̃

2

κpκq

NANBd

(
2− T 2

p − T 2
q + S̃(2− Tp − Tq)

2
) 4∑

i=1

Zi

±O
(
d2δ2AB,⊥ + δAB,⊥

√
δ− + δ−

)
.

Thus,

d

dt

4∑
i=1

Zi = −(1− S̃)
κq/κpσ

2
p + κp/κqσ

2
q

NANBd

κpκq

NANBd

(
2− T 2

p − T 2
q + S̃(2− Tp − Tq)

2
) 4∑

i=1

Zi

±O

(
σ2
max

NANBd
κ0

(
d2δ2AB,⊥ + δAB,⊥

√
δ− + δ−

))
.

Note that the coefficient of the first term is negative. Combine this with the previous bound for ∥Z∥,
and we complete the proof.

Proof of Lemma C.13. Recall that

d

dt
[KA]p =

(
I − [KA]p

(
[KA]p

)⊤)( [KBQ1]p
∥[KA]p∥

+
[KB,ξQ1,ξB ]p
∥[KA]p∥

)
σ2
p

NANBd
,

d

dt
[KA,ξ]q =

(
I − [KA,ξ]q

(
[KA,ξ]q

)⊤)( [KBQ⊤
1,ξA

]q

∥[KA,ξ]q∥
+

[KB,ξQ2]q
∥[KA,ξ]q∥

)
σ2
ξ

NANBd
.

We now compute
〈

d
dt [KA]p, [KA,ξ]q

〉
and

〈
[KA]p,

d
dt [KA,ξ]q

〉
separately. First, we write〈

d

dt
[KA]p, [KA,ξ]q

〉
= [KA,ξ]q

⊤
(
I − [KA]p

(
[KA]p

)⊤) [KBQ1]p
∥[KA]p∥

σ2
p

NANBd

+ [KA,ξ]q
⊤
(
I − [KA]p

(
[KA]p

)⊤) [KB,ξQ1,ξB ]p
∥[KA]p∥

σ2
p

NANBd

=: T1

(〈
d

dt
[KA]p, [KA,ξ]q

〉)
+ T2

(〈
d

dt
[KA]p, [KA,ξ]q

〉)
.
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Then, we compute

T1

(〈
d

dt
[KA]p, [KA,ξ]q

〉)
=
(〈

[KA,ξ]q, [KB]p

〉
−
〈
[KA,ξ]q, [KA]p

〉〈
[KA]p, [KB]p

〉) ∥[KB]p∥ [Q1]p,p
∥[KA]p∥

σ2
p

NANBd

+
∑
k ̸=p

(〈
[KA,ξ]q, [KB]k

〉
−
〈
[KA,ξ]q, [KA]p

〉〈
[KA]p, [KB]k

〉) ∥[KB]k∥ [Q1]k,p
∥[KA]p∥

σ2
p

NANBd

=
(〈

[KA,ξ]q, [KB]p

〉
−
〈
[KA,ξ]q, [KA]p

〉) [Q1]p,pσ
2
p

NANBd
±O

(
σ2
max

NANBd
dκ0δξ,⊥

(
δξ,⊥ +

√
δ−

))
,

and, by Lemma C.6, we have

T2

(〈
d

dt
[KA]p, [KA,ξ]q

〉)
=

d−r∑
k=1

[KA,ξ]q
⊤
(
I − [KA]p

(
[KA]p

)⊤) [KB,ξ]k[Q1,ξB ]k,p
∥[KA]p∥

σ2
p

NANBd

= ±O
(

σ2
max

NANBd
dδ2N/Sδ

2
ξ,⊥

)
.

Combine these together and we get〈
d

dt
[KA]p, [KA,ξ]q

〉
=
(〈

[KA,ξ]q, [KB]p

〉
−
〈
[KA,ξ]q, [KA]p

〉) [Q1]p,pσ
2
p

NANBd

±O

(
σ2
max

NANBd
dκ0δξ,⊥

(
δξ,⊥ +

√
δ−

))
.

Then, we compute
〈
[KA]p,

d
dt [KA,ξ]q

〉
. We write

〈
[KA]p,

d

dt
[KA,ξ]q

〉
=

r∑
k=1

[KA]p
⊤
(
I − [KA,ξ]q

(
[KA,ξ]q

)⊤) [KB]k[Q1,ξA
]q,k

∥[KA,ξ]q∥
σ2
ξ

NANBd

+

d−r∑
k=1

[KA]p
⊤
(
I − [KA,ξ]q

(
[KA,ξ]q

)⊤) [KB,ξ]k[Q2]k,q
∥[KA,ξ]q∥

σ2
ξ

NANBd

=: T1

(〈
[KA]p,

d

dt
[KA,ξ]q

〉)
+ T2

(〈
[KA]p,

d

dt
[KA,ξ]q

〉)
.

For T1, when k = p, by Lemma C.6, we have

[KA]p
⊤
(
I − [KA,ξ]q

(
[KA,ξ]q

)⊤) [KB]k[Q1,ξA
]q,k

∥[KA,ξ]q∥

=
(〈

[KA]p, [KB]p

〉
−
〈
[KA]p, [KA,ξ]q

〉〈
[KA,ξ]q, [KB]p

〉) ∥[KB]p∥
∥[KA,ξ]q∥

[Q1,ξA
]q,p

= − (1− S̃)
(
1 + S̃ + (1− S̃)T 2

p

) (
1±O

(
δ− + δ2ξ,⊥

)) ∥[KB]p∥2

NANBd

〈
[KB]p, [KA,ξ]q

〉
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
= −Θ

(
∥[KB]p∥2

NANBd

)〈
[KB]p, [KA,ξ]q

〉
±O

(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

When k ̸= p, we have

[KA]p
⊤
(
I − [KA,ξ]q

(
[KA,ξ]q

)⊤) [KB]k[Q1,ξA
]q,k

∥[KA,ξ]q∥
= O (κ0δAB,⊥δξ,⊥) .
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Hence,

T1

(〈
[KA]p,

d

dt
[KA,ξ]q

〉)
= −Θ

(
∥[KB]p∥2

NANBd

)
σ2
ξ

NANBd

〈
[KB]p, [KA,ξ]q

〉
±O

(
σ2
max

NANBd
d3κ0

(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Now we consider T2. By Lemma C.7, we have

T2

(〈
[KA]p,

d

dt
[KA,ξ]q

〉)
= ±O

(
σ2
ξ

NANBd
d4δ2ξ,⊥δN/S

(
δAB,⊥ + δN/S

))
.

Therefore,〈
[KA]p,

d

dt
[KA,ξ]q

〉
= −Θ

(
∥[KB]p∥2

NANBd

)
σ2
ξ

NANBd

〈
[KB]p, [KA,ξ]q

〉
±O

(
σ2
max

NANBd
d3κ0

(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Thus,

d

dt

〈
[KA]p, [KA,ξ]q

〉
=
(〈

[KA,ξ]q, [KB]p

〉
−
〈
[KA,ξ]q, [KA]p

〉) [Q1]p,pσ
2
p

NANBd

−Θ

(
∥[KB]p∥2

NANBd

)
σ2
ξ

NANBd

〈
[KB]p, [KA,ξ]q

〉
±O

(
σ2
max

NANBd
dκ0δξ,⊥

(
δξ,⊥ +

√
δ−

))
.

Similarly, one can show that

d

dt

〈
[KB]p, [KA,ξ]q

〉
=
(〈

[KA,ξ]q, [KA]p

〉
−
〈
[KA,ξ]q, [KB]p

〉) [Q1]p,pσ
2
p

NANBd

−Θ

(
∥[KA]p∥2

NANBd

)
σ2
ξ

NANBd

〈
[KA]p, [KA,ξ]q

〉
±O

(
σ2
max

NANBd
dκ0δξ,⊥

(
δξ,⊥ +

√
δ−

))
.

For notational simplicity, define

X =
〈
[KA]p, [KA,ξ]q

〉
, Y =

〈
[KB]p, [KA,ξ]q

〉
, C1 =

[Q1]p,pσ
2
p

NANBd
, C2 =

κ2
p

NANBd

σ2
ξ

NANBd
.

Then, we can write

d

dt

[
X
Y

]
=

[
−C1 C1 −Θ(C2)

C1 −Θ(C2) −C1

] [
X
Y

]
±O

(
σ2
max

NANBd
dκ0δξ,⊥

(
δξ,⊥ +

√
δ−

))
.

The first matrix is negative semi-definite, whence

d

dt

(
X2 + Y 2

)
≤ O

(
σ2
max

NANBd
dκ0δ

2
ξ,⊥

(
δξ,⊥ +

√
δ−

))
.

Since the roles of KA,ξ and KB,ξ are interchangeable, the same bound also holds for〈
[KA]p, [KB,ξ]q

〉
and

〈
[KA]p, [KB,ξ]q

〉
.
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Proof of Lemma C.14. We write〈
[KA,ξ]p,

d

dt
[KB,ξ]q

〉
= [KA,ξ]p

⊤
(
I − [KB,ξ]q

(
[KB,ξ]q

)⊤)( [KAQ⊤
1,ξB

]q

∥[KB,ξ]q∥
+

[KA,ξQ
⊤
2 ]q

∥[KB,ξ]q∥

)
σ2
ξ

NANBd

= [KA,ξ]p
⊤
(
I − [KB,ξ]q

(
[KB,ξ]q

)⊤) [KAQ⊤
1,ξB

]q

∥[KB,ξ]q∥
σ2
ξ

NANBd

+ [KA,ξ]p
⊤
(
I − [KB,ξ]q

(
[KB,ξ]q

)⊤) [KA,ξQ
⊤
2 ]q

∥[KB,ξ]q∥
σ2
ξ

NANBd

=: T1

(〈
[KA,ξ]p,

d

dt
[KB,ξ]q

〉)
+ T2

(〈
[KA,ξ]p,

d

dt
[KB,ξ]q

〉)
.

Then, we compute

T1

(〈
[KA,ξ]p,

d

dt
[KB,ξ]q

〉)
=

r∑
k=1

(〈
[KA,ξ]p, [KA]k

〉
−
〈
[KA,ξ]p, [KB,ξ]q

〉〈
[KB,ξ]q, [KA]k

〉) ∥[KA]k∥ [Q1,ξB
]q,k

∥[KB,ξ]q∥
σ2
ξ

NANBd
.

Note that, the first part of each summand is bounded by O(δξ,⊥). For the second part, by Lemma C.6
we also have

∥[KA]k∥ [Q1,ξB
]q,k

∥[KB,ξ]q∥
= ± ∥[KA]k∥
∥[KB,ξ]q∥

(
O(1)

⟨[KB]p, [KA,ξ]q⟩
NANBd

±O
(
d3
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

))
= ±O(δξ,⊥).

Hence,

T1

(〈
[KA,ξ]p,

d

dt
[KB,ξ]q

〉)
= O

(
σ2
ξ

NANBd
dδ2ξ,⊥

)
.

Now we consider T2. By Lemma C.7, We have

T2

(〈
[KA,ξ]p,

d

dt
[KB,ξ]q

〉)
=

d−r∑
k=1

[KA,ξ]p
⊤
(
I − [KB,ξ]q

(
[KB,ξ]q

)⊤)
[KA,ξ]k

∥[KA,ξ]k∥ [Q2]q,k
∥[KB,ξ]q∥

σ2
ξ

NANBd

= ±
d−r∑
k=1

O(1)[Q2]q,k
σ2
ξ

NANBd

= ±O

(
σ2
max

NANBd
d4
(
δAB,⊥ + δN/S

)
δξ,⊥δN/S

)
.

Combine this together and we obtain〈
[KA,ξ]p,

d

dt
[KB,ξ]q

〉
= ±O

(
σ2
ξ

NANBd
dδ2ξ,⊥

)
.

Similarly, one can derive the same bound for
〈

d
dt [KA,ξ]p, [KB,ξ]q

〉
and complete the proof.

C.3 MAINTAINING KA ≈ KB

In this subsection, we show that
〈
[KA]p, [KB]p

〉
≈ 1, ∥[KA]p∥ ≈ ∥[KB]p∥, and also

∥[KA,ξ]q∥ ≈ ∥[KB,ξ]q∥ throughout Stage 2. The proofs are similar to the corresponding ones
in Stage 1.
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Lemma C.15. In Stage 2, we have

d

dt

〈
[KA]p, [KB]p

〉
= Ω

(
σ2
p[Q1]p,p

NANBd

)(
1−

〈
[KA]p, [KB]p

〉)
±O

(
σ2
max

NANBd
dκ0δ

2
AB,⊥

)
.

Lemma C.16. Define ρA/B,p := ∥[KA]p∥2 / ∥[KB]p∥2 and ρB/A,p := ∥[KB]p∥2 / ∥[KA]p∥2.
In Stage 2, we have

d

dt

(
ρA/B,p + ρB/A,p

)
=

2[Q1]p,pσ
2
p

NANBd

〈
[KA]p, [KB]p

〉 (
2− ρA/B,p − ρB/A,p

)
±O

(
σ2
max

NANBd

(
dκ0δ

2
AB,⊥ + δ2−

))
.

Lemma C.17. For any p, q ∈ [d − r], define ρξ,A/A,p/q = ∥[KA,ξ]p∥2 / ∥[KA,ξ]q∥2 and
ρξ,A/B,p/q = ∥[KA,ξ]p∥2 / ∥[KB,ξ]q∥2. In Stage 2, we have

d

dt
ρξ,A/A,p/q = ±O

(
σ2
ξ

NANBd
dδ2ξ,⊥

)
,

d

dt

(
ρξ,A/B,p/q + ρξ,B/A,q/p

)
= ±O

(
σ2
ξ

NANBd

(
dδ2ξ,⊥ + δ2−

))
.

OMITTED PROOF OF THIS SUBSECTION

Proof of Lemma C.15. First, we write〈
d

dt
[KA]p, [KB]p

〉
= [KB]p

⊤
(
I − [KA]p

(
[KA]p

)⊤) [KBQ1]p
∥[KA]p∥

σ2
p

NANBd

+ [KB]p
⊤
(
I − [KA]p

(
[KA]p

)⊤) [KB,ξQ1,ξB ]p
∥[KA]p∥

σ2
p

NANBd

=: T1

(〈
d

dt
[KA]p, [KB]p

〉)
+ T2

(〈
d

dt
[KA]p, [KB]p

〉)
.

For T1, we compute

T1

(〈
d

dt
[KA]p, [KB]p

〉)
= [KB]p

⊤
(
I − [KA]p

(
[KA]p

)⊤)
[KB]p

∥[KB]p∥ [Q1]p,p
∥[KA]p∥

σ2
p

NANBd

+
∑
k ̸=p

[KB]p
⊤
(
I − [KA]p

(
[KA]p

)⊤)
[KB]k

∥[KB]k∥ [Q1]k,p
∥[KA]p∥

σ2
p

NANBd

=

(
1−

〈
[KA]p, [KB]p

〉2) ∥[KB]p∥ [Q1]p,p
∥[KA]p∥

σ2
p

NANBd

±O

(
σ2
max

NANBd
dκ0δ

2
AB,⊥

)
.

For T2, we compute

T2

(〈
d

dt
[KA]p, [KB]p

〉)
=

d−r∑
k=1

[KB]p
⊤
(
I − [KA]p

(
[KA]p

)⊤) [KB,ξ]k[Q1,ξB ]k,p
∥[KA]p∥

σ2
p

NANBd

= ±O
(

σ2
max

NANBd
dδ2N/Sδ

2
ξ,⊥

)
.

Therefore,〈
d

dt
[KA]p, [KB]p

〉
=

(
1−

〈
[KA]p, [KB]p

〉2) ∥[KB]p∥ [Q1]p,p
∥[KA]p∥

σ2
p

NANBd
±O

(
σ2
max

NANBd
dκ0δ

2
AB,⊥

)
.
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Then, by symmetry, we have

d

dt

〈
[KA]p, [KB]p

〉
=

(
1−

〈
[KA]p, [KB]p

〉2)
[Q1]p,p

(
∥[KB]p∥
∥[KA]p∥

+
∥[KA]p∥
∥[KB]p∥

)
σ2
p

NANBd

±O

(
σ2
max

NANBd
dκ0δ

2
AB,⊥

)
= Ω

(
σ2
p[Q1]p,p

NANBd

)(
1−

〈
[KA]p, [KB]p

〉)
±O

(
σ2
max

NANBd
dκ0δ

2
AB,⊥

)
.

Proof of Lemma C.16. Similar to Stage 1, we define ρA/B,p = ∥[KA]p∥2 / ∥[KB]p∥2. By
Lemma A.5, we have

d

dt
ρA/B,p =

d
dt ∥[KA]p∥2

∥[KB]p∥2
− ρA/B,p

d
dt ∥[KB]p∥2

∥[KB]p∥2

= 2
⟨[KA]p, [KBQ1]p⟩
NANBd ∥[KB]p∥2

σ2
p + 2

⟨[KA]p, [KB,ξQ1,ξB ]p⟩
NANBd ∥[KB]p∥2

σ2
p + 2

ρA/B,p

N2
Ad

Q0σ
2
p

− ρA/B,p

(
2

〈
[KB]p, [KAQ⊤

1 ]p
〉

NANBd ∥[KB]p∥2
σ2
p + 2

⟨[KB]p, [KA,ξQ1,ξA ]p⟩
NANBd ∥[KB]p∥2

σ2
p + 2

1

N2
Bd

Q0σ
2
p

)

= 2
⟨[KA]p, [KBQ1]p⟩
NANBd ∥[KB]p∥2

σ2
p + 2

⟨[KA]p, [KB,ξQ1,ξB ]p⟩
NANBd ∥[KB]p∥2

σ2
p

− ρA/B,p

(
2

〈
[KB]p, [KAQ⊤

1 ]p
〉

NANBd ∥[KB]p∥2
σ2
p + 2

⟨[KB]p, [KA,ξQ1,ξA ]p⟩
NANBd ∥[KB]p∥2

σ2
p

)

+ 2Q0σ
2
p

(
1

N2
Ad
− 1

N2
Bd

)
ρA/B,p.

Then, by Lemma C.5 and Lemma C.6, we have

⟨[KA]p, [KBQ1]p⟩ = ⟨[KA]p, [KB]p⟩ [Q1]p,p ±O
(
dκ2

pκ0δ
2
AB,⊥

)
,〈

[KB]p, [KAQ⊤
1 ]p
〉
= ⟨[KA]p, [KB]p⟩ [Q1]p,p ±O

(
dκ2

pκ0δ
2
AB,⊥

)
,

⟨[KA]p, [KB,ξQ1,ξB
]p⟩ = ±O

(
dκ2

pδ
2
N/Sδξ,⊥

)
,

⟨[KB]p, [KA,ξQ1,ξA
]p⟩ = ±O

(
dκ2

pδ
2
N/Sδξ,⊥

)
.

Thus,

d

dt
ρA/B,p = 2

[Q1]p,pσ
2
p

NANBd

⟨[KA]p, [KB]p⟩
∥[KB]p∥2

(
1− ρA/B,p

)
+ 2Q0σ

2
p

(
1

N2
Ad
− 1

N2
Bd

)
ρA/B,p ±O

(
σ2
max

NANBd
dκ0δ

2
AB,⊥

)
.

Interchange the roles of A,B and we get

d

dt
ρB/A,p = 2

[Q1]p,pσ
2
p

NANBd

⟨[KA]p, [KB]p⟩
∥[KA]p∥2

(
1− ρB/A,p

)
+ 2Q0σ

2
p

(
1

N2
Bd
− 1

N2
Ad

)
ρB/A,p ±O

(
σ2
max

NANBd
dκ0δ

2
AB,⊥

)
.
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Hence,

d

dt

(
ρA/B,p + ρB/A,p

)
= 2

[Q1]p,pσ
2
p

NANBd
⟨[KA]p, [KB]p⟩

(
1− ρA/B,p

∥[KB]p∥2
+

1− ρB/A,p

∥[KA]p∥2

)

+ 2Q0σ
2
p

(
1

N2
Ad
− 1

N2
Bd

)(
ρA/B,p − ρB/A,p

)
±O

(
σ2
max

NANBd
dκ0δ

2
AB,⊥

)
=

2[Q1]p,pσ
2
p

NANBd

〈
[KA]p, [KB]p

〉 (
2− ρA/B,p − ρB/A,p

)
±O

(
σ2
max

NANBd

(
dκ0δ

2
AB,⊥ + δ2−

))
.

Proof of Lemma C.17. For notational simplicity, we drop the subscript ξ in the proof. Recall from
Corollary C.9 that

d

dt
∥[KA,ξ]q∥2 =

2 ∥[KA,ξ]q∥2

N2
Ad

Q0σ
2
ξ ±O

(
σ2
ξ ∥[KA,ξ]q∥2

NANBd
dδ2ξ,⊥

)
.

Hence, for any p, q ∈ [d− r], we have

d

dt
ρA/A,p/q =

d
dt ∥[KA,ξ]p∥2

∥[KA,ξ]q∥2
− ρA/A,p/q

d
dt ∥[KA,ξ]q∥2

∥[KA,ξ]q∥2

=
2

N2
Ad

Q0σ
2
ξρA/A,p/q ±O

(
σ2
ξ

NANBd
dδ2ξ,⊥

)

− ρA/A,p/q

(
2

N2
Ad

Q0σ
2
ξ ±O

(
σ2
ξ

NANBd
dδ2ξ,⊥

))

= ±O

(
σ2
ξ

NANBd
dδ2ξ,⊥

)
.

Similarly, we have

d

dt
ρA/B,p/q =

d
dt ∥[KA,ξ]p∥2

∥[KB,ξ]q∥2
− ρA/B,p/q

d
dt ∥[KB,ξ]q∥2

∥[KB,ξ]q∥2

=
2

N2
Ad

Q0σ
2
ξρA/B,p/q ±O

(
σ2
ξ

NANBd
dδ2ξ,⊥

)

− ρA/B,p/q

(
2

N2
Bd

Q0σ
2
ξ ±O

(
σ2
ξ

NANBd
dδ2ξ,⊥

))

=

(
2

N2
Ad
− 2

N2
Bd

)
Q0σ

2
ξρA/B,p/q ±O

(
σ2
ξ

NANBd
dδ2ξ,⊥

)
.

By symmetry, we also have

d

dt
ρB/A,q/p =

(
2

N2
Bd
− 2

N2
Ad

)
Q0σ

2
ξρB/A,q/p ±O

(
σ2
ξ

NANBd
dδ2ξ,⊥

)
.

Hence,

d

dt

(
ρA/B,p/q + ρB/A,q/p

)
=

(
2

N2
Ad
− 2

N2
Bd

)
Q0σ

2
ξ

(
ρA/B,p/q − ρB/A,q/p

)
±O

(
σ2
ξ

NANBd
dδ2ξ,⊥

)

= ±O

(
σ2
ξ

NANBd

(
dδ2ξ,⊥ + δ2−

))
.
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C.4 CONTROLLING THE NOISE-SIGNAL RATIO

In this subsection, we show that the noise-signal ratio remains small throughout Stage 2.

Lemma C.18. Let ∥[KA]p∥ be the smallest among all {∥[KA]k∥}k∈[r]. For any q ∈ [r], in Stage 2,
we have

d

dt

∥[KA,ξ]q∥2

∥[KA]p∥2
≤ O

(
σ2
ξ

NANBd

(
dδ2ξ,⊥ + d2δ2AB,⊥ + δ− + d2δN/Sδξ,⊥

)) ∥[KA,ξ]q∥2

∥[KA]p∥2
.

Proof. Recall from Corollary C.9 that

d

dt
∥[KA]p∥2 =

2σ2
p ∥[KA]p∥ ∥[KB]p∥

NANBd

〈
[KA]p, [KB]p

〉
[Q1]p,p + 2

∥[KA]p∥2

N2
Ad

Q0σ
2
p

±O

(
σ2
pκ

2
p

NANBd
κ0dδ

2
AB,⊥

)
d

dt
∥[KA,ξ]q∥2 =

2 ∥[KA,ξ]q∥2

N2
Ad

Q0σ
2
ξ ±O

(
σ2
ξ ∥[KA,ξ]q∥2

NANBd
dδ2ξ,⊥

)
.

Since the condition number of KA is bounded by
√
d, it suffices to consider the smallest ∥[KA]p∥,

for which we have

d

dt
∥[KA]p∥2 =

2σ2
p

NANBd
[Q1]p,p ∥[KA]p∥2 +

2σ2
p

N2
Ad

Q0 ∥[KA]p∥2

±O

(
σ2
pκ

2
p

NANBd

(
κ0dδ

2
AB,⊥ + δ−

))

=
2σ2

p

NANBd
[Q1]p,p ∥[KA]p∥2 −

2σ2
p

N2
Ad

(
r∑

k=1

κ2
k

∥κ∥2
[Q1]k,k

)
∥[KA]p∥2

±O

(
σ2
pκ

2
p

NANBd

(
d2δ2AB,⊥ + d2δN/Sδξ,⊥ + δ−

))
,

where the last line comes from Lemma C.8. By Lemma B.4, [Q1]p,p is negative correlated with κ2
p.

As a result, we have

d

dt
∥[KA]p∥2 ≥ −O

(
σ2
pκ

2
p

NANBd

(
d2δ2AB,⊥ + d2δN/Sδξ,⊥ + δ−

))
.

For KA,ξ, we simply have

d

dt
∥[KA,ξ]q∥2 ≤ O

(
σ2
ξ

NANBd

(
dδ2ξ,⊥ + d2δ2AB,⊥ + δ− + d2δN/Sδξ,⊥

))
∥[KA,ξ]q∥2 .

Thus,

d

dt

∥[KA,ξ]q∥2

∥[KA]p∥2
=

d
dt ∥[KA,ξ]q∥2

∥[KA]p∥2
− ∥[KA,ξ]q∥2

∥[KA]p∥2
d
dt ∥[KA]p∥2

∥[KA]p∥2

≤ O

(
σ2
ξ

NANBd

(
dδ2ξ,⊥ + d2δ2AB,⊥ + δ− + d2δN/Sδξ,⊥

)) ∥[KA,ξ]q∥2

∥[KA]p∥2
.
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C.5 ESTIMATING THE CONVERGENCE RATE

In this subsection, we estimate how fast the condition number will become close to 1.
Lemma C.19. Suppose that ∥[KA]p∥ is the largest and ∥[KA]q∥ the smallest among all
{∥[KA]k∥}k∈[r]. In Stage 2, we have

d

dt

∥[KA]p∥2

∥[KA]q∥2
≤ −4(1− S̃)σ2

min

NANBd
(Tp − Tq)

∥[KA]p∥2

∥[KA]q∥2

±O

(
σ2
p

NANBd

(
d2δ2AB,⊥ + δ− + d2δN/Sδξ,⊥

)
κ2
0

)
.

Corollary C.20 (Convergence rate). Suppose that ∥[KA]p∥ is the largest and ∥[KA]q∥ the smallest
among all {∥[KA]k∥}k∈[r]. For any constant c > 1, it takes at most poly(d) amount of time for

∥[KA]p∥2 / ∥[KA]q∥2 to become smaller than c.

OMITTED PROOF OF THIS SUBSECTION

Proof of Lemma C.19. By Corollary C.9, Lemma C.8 and Lemma C.5, we have

d

dt
∥[KA]p∥2 =

2σ2
p

NANBd
[Q1]p,p ∥[KA]p∥2 +

2σ2
p

N2
Ad

Q0 ∥[KA]p∥2

±O

(
σ2
pκ

2
p

NANBd

(
κ0dδ

2
AB,⊥ + δ−

))

=
4(1− S̃)σ2

p

NANBd
(1− Tp) ∥[KA]p∥2 +

4(1− S̃)σ2
p

N2
Ad

(
r∑

k=1

κ2
k

∥κ∥2
(1− Tp)

)
∥[KA]p∥2

±O

(
σ2
pκ

2
p

NANBd

(
d2δ2AB,⊥ + δ− + d2δN/Sδξ,⊥

))

= −
4(1− S̃)σ2

p

NANBd

(
Tp − T̃

)
∥[KA]p∥2 ±O

(
σ2
pκ

2
p

NANBd

(
d2δ2AB,⊥ + δ− + d2δN/Sδξ,⊥

))
,

where T̃ =
∑r

k=1
κ2
k

∥κ∥2Tp. Then, we compute

d

dt

∥[KA]p∥2

∥[KA]q∥2
=

d
dt ∥[KA]p∥2

∥[KA]q∥2
− ∥[KA]p∥2

∥[KA]q∥2
d
dt ∥[KA]q∥2

∥[KA]q∥2

= −4(1− S̃)

NANBd

(
σ2
p

(
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)
− σ2

q

(
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)) ∥[KA]p∥2

∥[KA]q∥2

±O

(
σ2
p

NANBd
κ2
0

(
d2δ2AB,⊥ + δ− + d2δN/Sδξ,⊥

))
.

Since ∥[KA]p∥ is the largest, ∥[KA]q∥ is the smallest, Tp is positively correlated with ∥[KA]p∥,
and T̃ is a weighted average of Tp, we have

σ2
p

(
Tp − T̃

)
− σ2

q

(
Tq − T̃

)
≥ σ2

q (Tp − Tq) .

Thus,

d

dt

∥[KA]p∥2

∥[KA]q∥2
≤ −4(1− S̃)σ2

min

NANBd
(Tp − Tq)

∥[KA]p∥2

∥[KA]q∥2

±O

(
σ2
p

NANBd

(
d2δ2AB,⊥ + δ− + d2δN/Sδξ,⊥

)
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0

)
.
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Proof of Corollary C.20. Recall that

Tp = tanh

(
κ̂2
p

NANBd

)
= tanh

(
∥[KA]p∥2

∥KA∥2F

(
1±O(δ− + δN/S)

))
.

Since κ0 ≤
√
d, we have ∥[KA]p∥2 / ∥[KA]F ∥2 ≤ 1/2. Note that tanh′(z) = 1 − tanh2(z) =

Ω(1) for any z ≤ 1.1/2. Therefore,

Tp − Tq ≥ Ω

(
∥[KA]p∥2 − ∥[KA]q∥2

∥KA∥2F

)
±O(δ− + δN/S) ≥ Ω

(
1

d

)
.

Then, by Lemma C.19, we have

d

dt

∥[KA]p∥2

∥[KA]q∥2
≤ −4(1− S̃)σ2

min

NANBd
(Tp − Tq)

∥[KA]p∥2

∥[KA]q∥2

±O

(
σ2
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d2δ2AB,⊥ + δ− + d2δN/Sδξ,⊥

)
κ2
0

)

≤ −Ω
(

σ2
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NANBd

)
∥[KA]p∥2

∥[KA]q∥2
.

By the proof of Lemma C.19, the largest ∥[KA]p∥2 is non-increasing. Hence, NANBd is upper
bounded by some poly(d). Thus, it takes at most poly(d) for

∥∥[KA]2p
∥∥ / ∥[KA]q∥ to become

smaller than c.

C.6 PROOF OF THE MAIN LEMMA OF STAGE 2

Proof of Lemma C.1. The polynomial bound on the convergence time has been proved in Corol-
lary C.20. For the errors, recall from Lemma C.12, Lemma C.13 and Lemma C.14 that

d

dt
δ̂⊥,p,q ≤ O

(
σ2
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NANBd
κ0

(
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√
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)√
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)
,

d

dt
δ̂ξ,⊥,p,q ≤ O

(
σ2
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dκ0δ

2
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(
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√
δ−

))
,

d

dt

〈
[KA,ξ]p, [KB,ξ]q

〉
= ±O

(
σ2
ξ

NANBd
dδ2ξ,⊥

)
.

Recall from Lemma C.15, Lemma C.16, and Lemma C.17 that

d

dt

〈
[KA]p, [KB]p

〉
= Ω

(
σ2
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NANBd

)(
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〈
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〉)
±O

(
σ2
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NANBd
dκ0δ

2
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)
,

d

dt

(
ρA/B,p + ρB/A,p

)
≤ O

(
σ2
max

NANBd

(
dκ0δ

2
AB,⊥ + δ2−

))
,

d

dt
ρξ,A/A,p/q ≤ O

(
σ2
ξ

NANBd
dδ2ξ,⊥

)
,

d

dt

(
ρξ,A/B,p/q + ρξ,B/A,q/p

)
≤ O

(
σ2
ξ

NANBd

(
dδ2ξ,⊥ + δ2−
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.

(17)
By Lemma C.18, we have

d

dt

∥[KA,ξ]q∥2

∥[KA]p∥2
≤ O

(
σ2
ξ

NANBd

(
dδ2ξ,⊥ + d2δ2AB,⊥ + δ− + d2δN/Sδξ,⊥

)) ∥[KA,ξ]q∥2

∥[KA]p∥2
.

Note that on the RHS of these equations, the only terms whose order may potentially be smaller than
or equal to LHS are the δ−-reltaed terms. However, (17), we can make sure δ− is at most δ1.5AB,⊥.
As a result, the orders of the RHS are all greater than the orders of the LHS, which implies that
these errors can at most double within poly(d) time if they are sufficiently small at the beginning of
Stage 2.
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D FROM GRADIENT FLOW TO GRADIENT DESCENT

Converting the above gradient flow argument to a gradient descent one is standard. All our esti-
mations can tolerate an inverse polynomially large error. Since the all quantities of interest here
are polynomially and inverse polynomially bounded, at each step of gradient descent, one can al-
ways make the GF-to-GD discretization error sufficiently (inverse polynomially) small by choose
a sufficiently (inverse polynomially) small learning rate and generating sufficiently (polynomially)
many samples. Since the times need for Stage 1 and Stage 2 are both polynomial, this also implies
a polynomial sample complexity.
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