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Abstract

We propose Powerformer, an efficient ho-
momorphic encryption (HE)-based privacy-
preserving language model (PPLM) designed
to reduce computation overhead while main-
taining model performance. Powerformer in-
corporates three key techniques to optimize en-
crypted computations: 1) A novel distillation
technique that replaces softmax and layer nor-
malization (LN) with computationally efficient
power and linear functions, ensuring no per-
formance degradation while enabling seamless
encrypted computation. 2) A pseudo-sign com-
posite approximation method that accurately
approximates GELU and tanh functions with
minimal computational overhead. 3) A homo-
morphic matrix multiplication algorithm specif-
ically optimized for Transformer models, en-
hancing efficiency in encrypted environments.
By integrating these techniques, Powerformer
based on the BERT-base model achieves a 45%
reduction in computation time compared to the
state-of-the-art HE-based PPLM without any
loss in accuracy.

1 Introduction

As Al services continue to expand, many com-
panies now offer machine learning as a service
(MLaaS). However, there are growing concerns
about potential privacy breaches when clients en-
trust their sensitive data to a server. To address this
issue, there has been increasing interest in privacy-
preserving language models (PPLMs), which uti-
lize data encryption. In particular, PPLMs lever-
aging homomorphic encryption (HE) enable the
client to send encrypted data to the server, where
all processing is conducted without decryption. The
server subsequently returns the encrypted output
to the client. This approach drastically lowers the
client’s computational load while minimizing ex-
posure of client data or model information. Con-
sequently, HE-based PPLMs have emerged as a

promising solution that preserves data privacy and
Al capabilities in MLaaS environments.

Because HE supports only arithmetic operations,
performing non-polynomial operations within HE-
based PPLMs is challenging. To address this, vari-
ous techniques (Zhang et al., 2024; Cho et al., 2024)
have been proposed to accurately approximate non-
polynomial functions using arithmetic operations,
but most rely on high-degree polynomials, which
significantly increases computation time. Some
studies (Zimerman et al., 2024b; Rho et al., 2024)
have attempted to fine-tune models by replacing
certain non-polynomial functions with arithmetic-
friendly alternatives, yet this consistently leads to
reduced inference accuracy. Consequently, find-
ing an HE-based transformer implementation that
maintains accuracy while improving speed remains
a major challenge. Recently, THOR (Moon et al.,
2024), the fastest end-to-end HE-based transformer
model, was reported to require 10.43 minutes of
inference time for a BERT-base model on a sin-
gle GPU. For real-world use, research to further
shorten the runtime is essential.

In this study, we propose a PPLM model, Pow-
erformer, designed to effectively reduce the infer-
ence time of HE-based Transformer models. Pow-
erformer integrates: (1) a novel model tuning ap-
proach that replaces softmax and layer normaliza-
tion (LN) with simple arithmetic operations with-
out compromising accuracy, (2) efficient approxi-
mation techniques for GELU and tanh, and (3) a ho-
momorphic matrix computation method optimized
for Transformer models. As a result, we achieved a
45.0% reduction in inference time compared to the
state-of-the-art PPLM model THOR, successfully
lowering the BERT-base PPLM inference time to
5.74 minutes under the same environment.! 2
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2 Related Work

2.1 Homomorphic Encryption

HE is a cryptographic algorithm designed to per-
form arbitrary arithmetic operations directly on en-
crypted data, and we use the RNS-CKKS scheme
(Cheon et al., 2017, 2019), one of the most widely
used HE schemes for real number computations.
The RNS-CKKS scheme encrypts a vector u of
length n (referred to as a slot) in R” or C". For sim-
plicity, we denote its ciphertext as [u]. Under this
scheme, the following homomorphic operations are
defined and satisfy the corresponding properties:
[ul ® [v] =u+v], [u]l v =00 [v] =[u® ],
W) ® o] = [u© o], Rot(lulir) = [p(w;7)],
Multi([u]) = [i - u], Conj([u]) = [u], where u ® v
and u represent elementwise multiplication and
complex conjugation, respectively, and p(v;r) is
defined as (vp, Vpy1y..., Un—1,00,-..,0r—1), de-
noting a left cyclic shift by r positions. Further
details can be found in Section A.2.

2.2 Advanced Homomorphic Operations

One of the most widely used HE-based ciphertext-
ciphertext matrix multiplication (CCMM)
algorithms is Jiang et al.’s method (Jiang et al.,
2018). This approach leverages the following
transformed matrix multiplication equation
A-B=302(¢" 0 0(A)) ® (¢ o 7(B)), where
d X d matrix permutations o, T, ¢, 1 are defined as
follows ([n]; denotes n modd): o(A);;
Aifirila T A = Ayl @A)y =
Ai,[j—i—l]d’ ¢(A)1J = A[i-i-l}d,j‘ BOLT (Pang
et al., 2024) proposed a matrix multiplication
algorithm based on column packing, which demon-
strates fast performance in ciphertext-plaintext
matrix multiplication (CPMM). Recently, THOR
(Moon et al., 2024) introduced a new type of
matrix multiplication algorithm based on diagonal
packing, which outperforms BOLT.

Several studies have focused on efficiently ap-
proximating nonlinear functions to enable stable
and computationally efficient homomorphic oper-
ations. Lee et al. (Lee et al., 2021) proposed an
approach for efficient ReLU approximation by de-
composing the sign function into a composition of
multiple low-degree polynomials, ensuring optimal
efficiency under HE. For GELU approximation,
methods used in BumbleBee (Lu et al., 2023) and
PUMA models (Dong et al., 2023) approximate the
Gaussian CDF by dividing the function into multi-
ple segments and computing separate polynomial

approximations for each region.

2.3 Privacy-Preserving Language Model

Various PPLM models have been proposed to im-
plement transformers in HE environments. The-X
(Chen et al., 2022) replaced softmax with a ma-
chine learning model, but offloaded the ReL.U oper-
ation to the client side, preventing it from being con-
sidered a fully comprehensive solution. Meanwhile,
NEXUS (Zhang et al., 2024) was the first to achieve
end-to-end HE inference for transformers, and the
recent state-of-the-art HE-based transformer model
THOR (Moon et al., 2024) introduced diagonally
packed matrix multiplication to accelerate end-to-
end HE inference. Nonetheless, there remains sig-
nificant room for speed optimization due to the high
computational cost of non-polynomial operations
like softmax and LN.

Because softmax relies on costly division and
exponentiation, various approximation techniques
have been explored to replace it. MPC-based PPLM
models such as MPCFormer (Li et al., 2023) and
SecFormer (Luo et al., 2024) employed the 2Quad
function, (3(3;?02)2 , alongside distillation to reduce
computational overhead, but suffered from accu-
racy degradation. Power-Softmax (Zimerman et al.,
2024a) similarly replaced the exponential function
in softmax with a power function and applied con-
ventional fine-tuning, but encountered about a 1%
drop in accuracy. While these methods success-
fully remove the exponentiation step, they do not
entirely eliminate division, leaving it as a bottle-
neck in HE-based PPLM models. LN also presents
another bottleneck for HE inference. The-X (Chen
et al., 2022) proposed an LN distillation technique,
replacing LN with a linear layer, but still observed
a 1.71% accuracy drop even in a small model like
BERT-Tiny. Therefore, further research is essen-
tial to replace softmax and LN with HE-friendly
operations without sacrificing accuracy.

3 Batch Method

We propose the Batch Method, the first approach
that achieves both faster computation and preserves
the accuracy of the original model, outperforming
existing distillation-based methods.



3.1 Batch Power-Max Function
The Batch Power-Max Function is introduced as
an efficient alternative to softmax, formulated as:
(x+c)?
max; Y (k1 + ¢)P

Previous methods, such as MPCFormer and Sec-
Former, applied distillation-based training using

the 2Quad function % whereas Power-

Softmax utilized the power function zip with
standard training. The Batch Power-Max Function
leverages both the ¢ parameter and higher-order
terms in the numerator, allowing it to approximate
softmax closely without requiring additional non-
linear function computations. In all implementa-
tions and experiments, the parameters were set as
p=2>5,c=>.

For a mini-batch size B, the input tensor has
dimensions B x h x L x L. Similar to standard
softmax, the function first sums over the last L-
dimension, obtaining a tensor of shape B X h x
L x 1. Then, the maximum over the B-dimension is
computed to form a denominator with dimensions
1 x h x L x 1. By distilling the model using this
denominator as a reference within each mini-batch,
the model inherently learns a normalization effect,
ensuring consistent scaling across different inputs.

During inference, a different approach is taken
to further optimize computation. The final denomi-
nator from the last step of training is stored as the
running denominator (rd,). Instead of recomput-
ing the denominator during inference, the precom-
puted rd,, is directly substituted in the denominator,

simplifying the function to (m:g;)p . This modifica-
tion effectively eliminates division operations in
inference, replacing them with a single plaintext
multiplication, significantly improving computa-
tional efficiency while maintaining the accuracy of
softmax.

3.2 Batch Layer Normalization

Batch LN is introduced as an alternative to standard
LN, formulated as:

o i
max; \/ (i — p)?
The input data has dimensions of B x L X d,.
Similar to standard LN, the function first computes

the mean and variance along the last d,,,-dimension,
resulting in a tensor of shape B x L x 1. Then, the

+ 8

maximum over the B-dimension is computed to
form a denominator with dimensions 1 x L x 1.

During inference, the process follows the same
approach as the Batch Power-Max Function. The
final denominator from the last step of training is
stored as the running denominator (rd,). Instead of
recomputing the denominator during inference, the
precomputed rd is directly substituted, simplifying
the function to: -y - % + B This approach effec-
tively reduces computational overhead by elimi-
nating division operations in inference, replacing
them with a single plaintext multiplication while
maintaining the functionality of LN.

3.3 Training Method

Previous research demonstrated a distillation
method that effectively captures the characteris-
tics of the BERT model. In this approach, a pre-
trained BERT model serves as the teacher, and loss
functions are applied at four key positions: (1) the
embedding layer, (2) the attention matrix in each
Transformer layer, (3) the hidden states after each
Transformer layer, and (4) the final prediction layer.
For the final prediction layer (4), soft cross-entropy
is used as the loss function for classification tasks,
while mean squared error (MSE) is applied for re-
gression tasks. The remaining three positions (1,
2, and 3) all use MSE loss. The training process is
structured in two stages: in the first stage, the losses
from the embedding layer (1), attention matrix (2),
and hidden states (3) are minimized to mimic the
intermediate outputs of the teacher model. In the
second stage, the final prediction layer (4) is opti-
mized to achieve high accuracy.

However, when the proposed batch method is
combined with existing distillation techniques, an
issue arises where the range of intermediate ten-
sor values becomes unstable. In a standard plain-
text environment, computational limitations do not
constrain operations, meaning that even if feature
explosion occurs—causing the intermediate tensor
values to grow excessively—the final accuracy may
remain unaffected. Additionally, even if some data
points experience extreme value growth that ren-
ders computations infeasible, the model may still
be selected as optimal based on accuracy if other
data points are processed correctly.

In a HE environment, however, this characteris-
tic poses a critical challenge. When intermediate
tensor values grow too large in an HE model, errors
in the bootstrapping process amplify, the accuracy
of nonlinear function approximations degrades, and



computations become infeasible beyond a certain
threshold. Therefore, maintaining a stable range for
intermediate tensor values is essential in HE-based
models. To address this issue, this study modifies
the distillation method from previous research in
three key ways.

One-step Distillation Training. Instead of
separately optimizing each loss function in a two-
step process, we integrate all losses into a single
unified loss function and apply a one-step distilla-
tion training approach. In the conventional method,
while minimizing the losses from (1), (2), and (3) in
the first step helped stabilize intermediate tensors,
the subsequent optimization of the final prediction
layer (4) in the second step could lead to weight
adjustments that caused feature explosion. By train-
ing all four losses simultaneously, our approach
prevents drastic fluctuations in intermediate tensor
values during training, ensuring greater stability
throughout the process.

Additional Loss Function To further regulate
intermediate tensor values, we introduce an addi-
tional loss function at a new position—right before
the scaling and shifting operations in Batch LN, af-
ter the denominator has been computed. Batch LN
is one of the primary causes of feature explosion
since it processes the residual connection values
obtained by summing the outputs of preceding at-
tention or feed-forward layers. Given that Batch
LN is applied twice per layer across 12 layers, it
is executed a total of 24 times, amplifying the cu-
mulative effect of small variations in tensor values.
To mitigate this issue, we incorporate an additional
loss term at this critical point, ensuring that in-
termediate tensor values remain stable throughout
training. This loss is optimized using MSE loss
and is learned within the same one-step distillation
process, further enhancing the overall stability of
the model.

Additional Parameter [ A new adjustment
parameter, [, was introduced in the denominator of
Batch LN:

z—p
e [ Y (e — )2

The parameter [ is set to a value greater than
1 but close to 1, helping to mitigate the risk of
feature explosion by adjusting the output of Batch
LN. A larger [ applies stronger regulation, but if

v +

set too high, it can hinder learning and negatively
impact final model performance. Therefore, in this
study, [ was fine-tuned within the range of 1.0 to
1.5 to determine the optimal value. The impact of
the proposed batch method and the effect of the
adjustment parameter [ on feature explosion are
further analyzed in Appendix ().

4 Minimax Composition for Pseudo-Sign
Function

Lee et al. (Lee et al., 2021) effectively approxi-
mated the ReL.U function for HE operations using
the minimax composition method, which enables
efficient computation of the sign function. How-
ever, in Transformers, the GELU function and tanh
function are used more frequently than the ReLU
function. To compute the GELU function, it is nec-
essary to accurately approximate the cumulative
distribution function ®(z) of the Gaussian distribu-
tion. Functions such as ®(x) and tanh(x), which
are commonly used in Transformers, exhibit be-
havior similar to the sign function for inputs with
large absolute values. However, for inputs close
to zero, these functions exhibit unique character-
istics, which often determine the performance of
each activation function.

4.1 Pseudo-Sign Function and Minimax
Composite Polynomial for Sign Function

We devise a method to extend the minimax compo-
sition technique to approximate ®(x). Our observa-
tion is that when the sign function is approximated
using the minimax composition method over an ap-
proximation interval with a sufficiently large ¢, the
resulting approximation is monotonic and its func-
tion values remain within the range [—1, 1] over the
interval [—e, €]. If we can compose this approxima-
tion with a simple function to achieve the desired
shape of ®(x) within the interval [—¢, €], we can
compute () with almost the same computational
complexity as the original minimax composition
method. Furthermore, since ®(x) approaches +1
relatively gradually, it is acceptable to approximate
the sign function for a relatively large e, making
this approach both practical and efficient.

Definition 4.1. A function f satisfying the follow-
ing conditions is defined as a pseudo-sign function:
f is a monotonically increasing function, satisfying

f(=x) = —f(x) for all x and xlgrrgo flx) =1

Example 4.1. The error function erf(z) =
% Iy e~ dt and the hyperbolic tangent tanh(z) =
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is pseudo-sign functions.

We first observe the approximated minimax com-
posite polynomial for sign function to approxi-
mate the pseudo-sign function f(x), especially the
“don’t care” part of the approximated composite
polynomial. Any (e, 0)-approximate minimax com-
posite polynomial for the sign function, denoted as
Peom () = (pt—1 © -+ 0 po)(x), can be shown to
increase monotonically within the interval [—e¢, €]
and maps to the range [—1 + 0, 1 — ¢]. Therefore,
the minimax composite polynomial for the sign
function can itself be regarded as a pseudo-sign
function. It is important to note that the shape of
the curve within [—e, €] varies depending on the
specific pseudo-sign function.

Specifically, peom(x) increases monotonically
near the origin over the interval [—¢€’, €] (¢ < ¢€),
where its range of peom () within [—¢', €] is con-
tained in [—1 — §, 1 + J], satisfying peom (—€') =
—1—¢ and peom (¢') = 1+ 8. Now, define a scaled
function h(x) = %Mpcom(a:) over [—¢', €']. Since
h(z) is monotonically increasing, it has an inverse.
By defining g(x) = f o h~!(z) on the interval
[—1, 1], g(x) is also monotonically increasing and
maps to the range [—1, 1]. This function g(z) can
be closely approximated by a low-degree minimax
polynomial, denoted as p,(z). Using py(x), the
composite polynomial pgopcom = PgOPt—10- - -0Po
provides a high-accuracy approximation of the
pseudo-sign function f(z).

Algorithm 1: MiniCompPseudoSign( f, d)
Input: A pseudo-sign function f with domain
[—1, 1], minimax approximation bound &
Qutput: Polynomials po, - - - , pn—1 such that
Hpn—l O---0po — f”oo,[fl,l] <6
1 Identify v € (0,1) such that f(y) =1 —4§/2.
2 Compute po, - - - , pt—2, Pt—1 using
{po, - ,pt—2,Pt—1} +
MiniCompSign ('y, 1f/754/4) ,
3 Update p;—1 by scaling: pr—1 <+ (1 — %) pr_1.
4 Define /' as the smallest positive x such that

pscale(-’n) =Pt—10--- Opo((L‘) =1L

Restrict the domain of pscale(z) to [—7', 7], and
denote the resulting function as Pscate ().

s Define g(z) = f o p_.,.(x) on [~1, 1]. Use Remez
algorithm to approximate g with a minimax
polynomial pg:

pg < Remez(g,4/2).

6 Letn =t 4 1, and define p,—1 := pgy. Output the
polynomial sequence {po, - - ,Prn—1}.

We can verify the correctness of the
MiniCompPseudoSign  algorithm in  Algo-
rithm 1 through the following theorem, which is
specified and proven in Appendix B.

Theorem 4.1. Let f be a pseudo-sign function
and 0 < & < 1. Assume that there exists
0 < v < 1 such that f(y) = 1 — 0/4. Then,
the polynomials pg,--- ,pn—1 obtained through
MiniCompPseudoSign(f, ) satisfy the following
condition: ||pp—10---0po — flloc,[=1,1] < 6.

4.2 Efficiency of Pseudo-Sign Composite
Approximation

The Bumblebee (Lu et al., 2023) and PUMA (Dong
et al., 2023) methods for approximating the GELU
function were adopted by NEXUS (Zhang et al.,
2024) for use in HE-based PPLMs. Their approach
segments the function into four regions, requiring
three separate sign function evaluations to compute
the indicator functions. Each sign function is ap-
proximated using composite polynomials with a
maximum error of ¢ /2 and a don’t-care region half-
width of 6/2. Afterward, each segmented function
is approximated with a maximum error of ¢/2.

In contrast, our approach requires only a single
sign function approximation with a maximum error
of §/4 and a significantly wider don’t-care region
half-width of . The function g(z) is then approxi-
mated with a maximum error of 4/2, leading to a
more efficient composition. This reduces the num-
ber of sign function evaluations from three to one
while significantly expanding the don’t-care region,
thereby lowering the polynomial degree required
for the overall approximation.

For instance, when § = 270, the NEXUS model
requires computing three composite polynomials
of degrees (3,5,5,5,5,5,5) and two third-degree
polynomials. However, our method achieves the
same accuracy using only one composite polyno-
mial of degrees (5,5,5,7). Similarly, when § =
2713, NEXUS computes three composite polyno-
mials of degrees (3,3,5,5,5,5,5,5,5) and two
third-degree polynomials, whereas our approach
only requires a single composite polynomial of
degrees (3,3, 5,5,13). As a result, our method re-
duces computational cost by approximately 4.7x
and depth by approximately 1.8x compared to
NEXUS (Zhang et al., 2024).



5 Optimized Homomorphic Matrix
Operation

5.1 Optimized Ciphertext-Plaintext Matrix
Multiplication

We propose a fast CPMM algorithm based on col-

umn packing. Let {m; € R"} _ a4, be the

plaintext vectors storing A € R4 %92 via column
packing (Section A.3), which we denote by [4]c¢.
For matrices A € R4%d2 and B € R%*d3 our
algorithm computes the ciphertexts of [AB]¢ from
the ciphertexts of [A]c. We pack the columns of
the input matrix into a total of mid = dlnﬂ cipher-
texts, {ct; }1<i<mid, and ensure that the columns
of the output matrix are packed into ed = dlnﬁ ci-
phertexts, {ct} }1<i<ed. By noting that each column
of the output matrix can be expressed as a linear
combination of the columns of the input matrix, we
derive the following equation.

Ct% = Z Z ROt(Ctj; Zdl) © d{’g (D)

1<j<mid 0<i< 7

for 1 < ¢ < ed, where dgl € R"™ stores the ele-
ments of matrix B appropriately. By applying the
baby-step giant-step technique to Equation 1, we
can transform it into the following form for some
Ny, Ny satisfying Ny Noy =

—n

cty = Z Rot( Z Z Rot(ct;; qdq)
0<p< Ny 1<5<mid 0<g< N1

® p(d2n, 43 —PN1d1); pN1ds ) @

for 1 < ¢ < ed. When N; and N> satisfy
mid - N1 = ed - Na, the algorithm needs about

2, /% - mid - ed rotations.

Speedup via Complex Numbers By leverag-
ing complex numbers, we propose a method that
further reduces rotations. For any two ciphertexts
ct’ﬁl, ctQQ, we can utilize complex numbers to com-
pute the equation all at once as follows: ct’ =
> Y>> Rot(ctj;idi) ® (dg’e1 + idg’&). By
1<j<mid 0<i< 7t
using the Extract algorithm (Section C.5), which
seperates the real and imaginary parts, we obtain
cty, , cty, = Extract(ct’). By grouping the ed out-
put ciphertexts in pairs and combining their expres-
sions, ed is updated as ed < [ed/2], which leads
to a reduction in the number of rotations.
Meanwhile, it is also possible to combine two
input ciphertexts using complex numbers. For ma-
trices A, B € R4*xd2/2 ¢ D ¢ R92/2xds_(he

product of [A|B] and g is AC + BD. This com-

putation can instead be performed by extracting the
real part of (A 4+ Bi)(C — Di). In this case, the
value of mid is updated as mid < [mid/2], and
accordingly, the number of rotations also decreases.

By applying the proposed techniques, the num-
ber of rotations used by CPMM is reduced to
V579, 1/2/3, 1/1/2, and /1/2 times the orig-
inal values, respectively, for each of the following:
(1) computing the query, key, and value matrices,
(2) multiplying the output projection matrix, (3)
the first feed-forward network, and (4) the second
feed-forward network.

5.2 Optimized Ciphertext-Ciphertext Matrix
Multiplication

5.2.1 Square Matrix Multiplication

Jiang et al. (Jiang et al.,, 2018) proposed
a ciphertext-ciphertext matrix multiplication
(CCMM) algorithm using row packing. By simply
swapping its two inputs, we can obatin a column
packing version (see Section A.3 for details).

We also propose a technique to optimize this
column packing-based CCMM algorithm. Let the
input matrices A and B both be of size d x d, and let
n = d?. Suppose the constant vectors R;, L; € R”
for 0 < ¢ < d are defined as follows:

. 1: jla <4 —1 . 1: {7l <2
Rilj) = {0: Ll]se Lilsl = {0: [el]se.
for0 < j <mn. Let A = 0(A) and B’ = 7(B).
Then, the following equation holds:

[ pu(A S ol D o

0<t<d 0<j<N2 0<i<Ni
[Alciid) © p([B'le © By, jri + p([Blc; —d)
© LNlj-i-i; Nij+1— Nljd); Nljd)

) © Ye(B)]c =

for N1, No satistying N1 No = d, which corre-
sponds to an efficient CCMM algorithm. When
N; = Ny = +/d, atotal of d + 2v/2d + 5v/d key-
switches are required, which is much fewer than
the 4d + 2v/2d + 2+/d in Jiang et al.’s algorithm.

5.2.2 Multi-Head Attention

In this section, we first discuss block-wise matrix
operations. For a k satisfying k | dy and k | da,
let us partition the d; X ds matrix A into k x k
blocks A%J. Suppose that the matrix operations
o, T, ¢, are defined for k x k matrices. We define
the operations &, 7, qg, @Z, which apply o, 7, ¢, ¥
blockwise to each block A%/ of the entire matrix



A. Then, we found that by using the new packing
method, the modified column packing (defined in
Section C.1), we can obtain homomorphic algo-
rithms for &, 7, (5, 1; on n = dydo, each of which
has the same computational complexity as the cor-
responding homomorphic algorithm for o, 7, ¢, Y
on n = k%. The CCMM algorithm discussed in
Section 5.2.1 can also be naturally extended to a
blockwise (for k) CCMM algorithm for a dy X da
matrix without any additional overhead (see Sec-
tion C.4 for details).

By appropriately utilizing blockwise operations
for k = 64, we can implement all the CCMM oper-
ations required for the entire multi-head attention.
In addition, we propose a method to reduce com-
putation by making use of complex number com-
ponents. For example, if we need to compute 5(A)
and 6(B), we can instead compute 6 (A + Bi) and
then separate the real and imaginary parts, thereby
reducing the number of calls to 5. The same idea
applies to 7 and the blockwise transpose algorithm.
Moreover, if we need to compute the products AB
and AC, we can reduce the number of multiplica-
tion algorithms by computing A(B + C1) instead.
Additionally, if we need to compute AB+ C'D, we
can compute (A+ C1)(B — Di) and extract the real
part. By combining these ideas, the final optimized
algorithm is presented in Section C.5.

5.3 Microbenchmarks

Table 1 presents the microbenchmark results for
the homomorphic matrix multiplication algorithms.
One effective metric for estimating computational
complexity is the number of key-switches, which
refers to the total count of non-scalar multiplica-
tions (relinearizations), rotations, conjugations, and
other operations requiring a key-switch. In this ta-
ble, the number of key-switches is based on the
BERT-base model that we target. Our algorithm re-
quires 32% ~ 36% fewer key-switches for CPMM
and 22% fewer key-switches for CCMM compared
to THOR, a state-of-the-art technique.

6 Experiment Results

Model and Dataset In this study, we utilized
a BERT-base model with a sequence length of
L = 128 and conducted experiments on the RTE,
MRPC, and SST-2 tasks from the GLUE bench-
mark (Wang, 2018).

Hyperparameter In standard training, early
stopping was applied at 10 epochs, while in knowl-

Table 1: Comparison of key-switch counts in different
homomorphic matrix multiplication methods.

Operation Method #key-switch
NEXUS 3538944
BOLT 288
xWao, Wi, Wy THOR 180
Powerformer 122
NEXUS -
QKT BOLT 33684
&xV THOR 936
Powerformer 731
NEXUS 14155776
o BOLT 168
xW THOR 118
Powerformer 75

edge distillation training, early stopping was set at
20 epochs. This was determined based on the point
at which no further performance improvement was
observed. Other hyperparameters were fixed, with
a batch size of 64 and a learning rate of 5 x 1072, to
ensure a consistent and fair comparison of relative
model performance.

HE environment Powerformer is built on the
GPU version of the Liberate. FHE library with a
slot size of 215, Our HE setting ensures a 128-bit
security level, and 11 multiplicative levels are avail-
able before bootstrapping. All experiments were
conducted on a single NVIDIA A100 GPU.

6.1 Plaintext Results

Baseline Distill Loss
RTE 71.48 7329  6.55
MRPC 85.54 8725 572
SST-2 92.66 9220 4.22

Table 2: Fine-tuned distillation results on downstream
tasks.

Table 2 presents the results of knowledge distil-
lation training. The Baseline represents the per-
formance of the original BERT model (teacher
model) fine-tuned for downstream tasks, while Dis-
till refers to the performance of the model after
completing distillation training with Batch Power-
Max and Batch LN applied. Each task was evalu-
ated using three different random seeds, and the
highest recorded performance among them is re-
ported. Additionally, the Loss value indicates the
loss of the Distill model that achieved the reported
performance. Experimental results show that the
proposed distilled model achieved an average ac-
curacy improvement of 1.02% compared to the
original model while maintaining the Loss value



within a stable range. This indicates that the dis-
tilled model preserves the expressiveness of the
baseline model without encountering the feature ex-
plosion problem while maintaining a HE-friendly
structure. Detailed experimental results for each
task can be found in the Appendix, where the com-
plete set of results is provided.

6.2 Ciphertext Results

Plaintext
73.29

Ciphertext Max Diff Time(s)
73.29 0.019 344.52

Table 3: End-to-end inference results for the RTE task
using an encrypted model.

Table 3 presents the results of the HE experi-
ment conducted on the distilled model from Ta-
ble 2. Plaintext represents the performance of the
Distill model evaluated in a plaintext environment,
while Ciphertext represents the performance of the
Powerformer model evaluated in an encrypted envi-
ronment. The Powerformer model is an end-to-end
HE model that incorporates all the proposed tech-
niques in this paper. Experiments were conducted
using the model that achieved the highest accuracy
on the RTE task, and the results confirmed that
there was no performance difference between the
plaintext and ciphertext environments. Addition-
ally, Max Diff represents the maximum difference
between the output values in both environments,
recording an extremely small value of 0.019. This
demonstrates that the Powerformer model can ro-
bustly handle various nonlinear functions, suggest-
ing its potential for high performance not only in
classification tasks but also in regression problems.

Table 4 presents the performance breakdown,
analyzing computation time for each layer in HE
experiment from Table 3. Matrix operation time
varies significantly depending on the computation
level, making it difficult to assess performance im-
provements solely from this table. For example,
FC1 and FC2 perform identical operations, but
FC2 runs at a lower level, making it 15.44 seconds
faster. Despite its higher computational workload,
FC2 also runs 13.88 seconds faster than the Atten-
tion Layer due to its lower execution level. This
suggests that execution time is influenced more
by computation level than workload—Ilower levels
speed up processing but require additional boot-
strapping.

The proposed model focuses on minimizing

Operation Ours THOR Diff
Attention layer 57.65 49.77 -7.88
Attention score 28.76 32.53 3.77

Softmax 0.75 15.53 14.78

Attention heads 18.95 20.63 1.68

Multi-head attention 22.54 27.43 4.89

LayerNorm1 0.37 7.13 6.76

FCl1 59.21 49.80 -9.41

GELU 8.31 29.42 21.11

FC2 43.77 49.19 5.42

LN2 0.30 4.10 3.80

Pooler & Classification 0.20 2.70 2.50
Bootstrappings 103.72  337.86 234.14
Total 344.52  626.09 281.57

Total without

Pooler & Classification 344.32  623.39 279.07

Table 4: Breakdown of the execution time(sec) com-
pared to THOR.

bootstrapping, which results in computations being
performed at relatively higher levels. Consequently,
the reduction in per-layer computation time may
appear minor compared to THOR. However, as
shown in Table 1, key switching count comparisons
confirm a significant decrease in overall compu-
tational workload. We applied nonlinear function
replacement techniques, including Batch Power-
Max, Batch LN, and the minimax composition of
GELU and tanh. These not only reduced per-layer
computation time but also significantly lowered
bootstrapping overhead. Ultimately, the model re-
duces both bootstrapping frequency and required
computation levels. This led to a 70% reduction
in bootstrapping time, which previously accounted
for over half of THOR’s total computation, and an
overall computation time reduction of about 45%.

7 Conclusion

We proposed Powerformer, an efficient HE-based
PPLM designed to reduce computation overhead
while maintaining model performance. To min-
imize computational overhead while preserving
model accuracy, our work introduced a novel distil-
lation framework for softmax and LN, an optimized
approximation method for GELU and tanh, and
a highly efficient matrix multiplication algorithm
tailored for transformer models. By incorporating
these methods, it reduced computation time signif-
icantly compared to the leading HE-based PPLM
while maintaining the same level of accuracy.



Limitations

This model assumes a semi-honest security model,
meaning that both the client and server follow the
agreed-upon protocol. This assumption is standard
for all HE-based PPLM models, as homomorphic
encryption itself is designed within the semi-honest
framework. If the possibility of a malicious client
or server deviating from the protocol were con-
sidered, an MPC-based PPLM model would be
required instead, which would lead to an extreme
increase in computational resource requirements.
However, even under the semi-honest assumption,
HE-based PPLM models can still adequately en-
sure data privacy in cloud Al systems. Notably,
even if the server does not fully adhere to the pro-
tocol, it cannot extract any meaningful information
from the client’s data due to the inherent security
properties of HE. Given that there is no strong in-
centive for the server to act maliciously in a practi-
cal setting, assuming a semi-honest security model
remains a realistic and reasonable approach.
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A Extended Preliminaries

A.1 Transformer

In this paper, we focus on homomorphically imple-
menting a Transformer-based model, BERT (Bidi-
rectional Encoder Representations from Transform-
ers) using the RNS-CKKS scheme (specifically,
BERT-base model). The BERT-base model con-
sists of 12 identical encoder blocks, where each
encoder block sequentially performs multi-head at-
tention, layer normalization, feed-forward network,
and layer normalization.

First, the input sentence is tokenized, and each
token undergoes an embedding process to become
a fixed-size vector. After embedding, we obtain the
L x d,, matrix X, which serves as the input to the
first encoder block. The multi-head attention mech-
anism has h heads, and for each head, the query,
key, and value matrices are computed by multi-
plying the input matrix X with the correspond-
ing weight matrices. If the query, key, and value
weight matrices forhead j (j = 0,1,--- ,h—1) are
denoted as Wg), [((J), and W‘(/j) € Rdmxdm/h
respectively, the following matrix multiplications
need to be performed:

QY = Xchj)vK(J) — XW]((]),V(]) — XW‘(/J)_

3)

For each head, the following L x L matrix is com-
puted:

QU KWT

4
= )

Next, apply softmax and multiply by V%) to obtain
QU KWT

the following L X d,,,/h matrix:
V), 5
Vd/2 ) ®)

The Y matrices for the multiple heads are con-
catenated horizontally to form the L x d,, matrix
Y = [Yo|Y1] - - - |Ya—1]. After that, the weight ma-
trix WO is multiplied on the right, and according
to the skip connection, matrix X is added, result-
ing in YW + X, which completes the multi-head
attention process.

Y; = softmax <
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Next, layer normalization is performed to obtain
the matrix Y. In the subsequent feed-forward net-
work, the weight matrix Wr; € Rm>dn ig first
multiplied to obtain Y W1, followed by applying
GELU and then multiplying by the second weight
matrix Wgy € R%*4m on the right. After that,
layer normalization is performed. The process de-
scribed so far constitutes one encoder layer, and
the BERT model repeats this encoder layer several
times with the same structure, though with differ-
ent weight parameters. In this paper, our homomor-
phic implementation focuses on the BERT-base
model, which has parameters L = 128, d,,, = 768,
h = 12, and d;, = 3072. Figure 1 shows the ar-
chitecture of one encoder block in the BERT-base
model.

| 128x768

| Ma:MuI || MatMul || Ma':MuI | | MatMul |

128x768

128x768

128x3072

128x64

128x3072

128x768

128x768

128x768

Figure 1: Overview of one encoder block of BERT-base
Transformer architecture.

A.2 Homomorphic Encryption

HE is a cryptographic algorithm designed to per-
form arbitrary arithmetic operations directly on en-
crypted data. The CKKS HE scheme is optimized
for real-number computations, which are widely
used in Al tasks, making it a key technique for im-
plementing HE-based privacy-preserving machine
learning models. The CKKS scheme enables the
encryption of a vector of length n, where the ele-
ments are either real or complex numbers. Specif-
ically, given a vector v = (vg,...,v,—1) € C", it
produces a corresponding ciphertext ct. Several op-
erations can be performed directly on these cipher-
texts, including addition, plaintext multiplication,
ciphertext multiplication, rotation, and conjugation.



For two vectors v and w of length n, the op-
erations v + w, v - w, and v correspond to ele-
mentwise addition, multiplication, and conjugation,
respectively. Additionally, the cyclic left shift of
v by r positions, denoted as p(v;r), is given by
(U, Upg1y - s Un—1,00, - - -, Up—1). If ctl and cty
represent the ciphertexts of vectors v; and vo, re-
spectively, the corresponding homomorphic opera-
tions function as follows:

o Addition: Add(ct,cta) = ctaqq, Where
ctadd decrypts to v; + vs. This operation can

be written as ct; + cts.

Plaintext Multiplication: PMult(cty,ve) =
Ctpmult, Where ctpmyie decrypts to vy - vo. It
can be expressed as vy - ctj.

Ciphertext Multiplication: CMult(cty, cty) =
Ctemult, Where Ctemyie decrypts to vy - vo. This
can be written as cty - cto.

Rotation: Rot(cty; ) = ctyor, Where ctyor de-
crypts to p(vy, ).

Multiplication by i: Multi(ct;) = ctmuri,
where ctpyyiti decrypts toi - vg

* Conjugation: Conj(ct1) = Cteonj, Where Cteon;
decrypts to v;.

A.3 Homomorphic Matrix Multiplication

In this section, we first define column packing. Let
{ctit1<i<d,ds/n denote the ciphertexts obtained by
column-packing the matrix A € R4 *92_For sim-
plicity, assume d; | n and n | dids. If m) e R®
is the decrypted vector of ct;, then for 0 < j < n,
we have

m[j] = A

; n
Ulays 5

ael)
We denote by [A]c the set of plaintext vectors
{m® e R™}1<i<d,do/n that store the matrix A
in a column-packed manner. If n = dids, then

[A] ¢ is simply (D).

For some constant vectors a;, b;, ¢, ¢},
the following equations hold: [0(A4)]c =
> bi o p(Aleidi) , [r(Ale =
0<i<d
> ai © p([Alc;i), [ (Dle = p([Ale; do),
—d<i<d

[V (Dle = cop([Ale; ) +cyp([Alc: £~ d). Then,
these equations naturally lead to a homomorphic
CCMM algorithm for column packing.
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Now, we describe the CCMM algorithm of Jiang
et al. (Jiang et al., 2018) under the column pack-
ing approach. Suppose we have d x d matrices
A and B. First, Algorithm 2 takes as input the
ciphertexts of [A]~ and outputs the ciphertexts
of [0(A)]c. Algorithm 3 takes as input the ci-
phertexts of [A]c and outputs the ciphertexts of
[T(A)]c. In Algorithm 2, we use Ny, Ny satisfying
N1 Ny = d, and typically set N = Ny =~ Vd. In
Algorithm 3, we have N} Ny = 2d—1 and typically
set N1 = Ny ~ v/2d — 1. With these choices, the
two algorithms respectively require about 2v/d and
2+/2d rotations.

Algorithm 2: Sigma
Input: ct
Output: ct’
1 ct’ < ctyero
2 fori <+ 0to Ny —1do
ct) « Rot(ct; di)

3

4 end
s for j < Oto No — 1do
6 ct" — ctrero
7 fori <+ 0to N7 — 1do
8 ct
ct” + p(bny jyi; —dN1j) © et
9 end
10 ct’ + ct’ + Rot(ct”; dN1j)
11 end

12 return ct’

Algorithm 3: Tau
Input: ct
Output: ct’
1 ct’ < clyero
2 fori < 0to Ny —1do
ct® « Rot(ct; 1)
end
for j < 0to N, —1do
ct’" < ctyero
for: < 0to N; — 1do
ct"  ct" +planyji-dr1; —Nij+
d—1) o ctt

3

® N o n A

end
ct’ + ct’ + Rot(ct”"; Nvj — d+ 1)

9

10
11 end
12 return ct’

Algorithm 4 takes as input the ciphertexts of
[A]c and [B]¢c and outputs the ciphertexts of



[AB]c. It can be carried out using approximately
3d + 2v/d + 2v/2d rotations and d non-scalar mul-
tiplications.

Algorithm 4: CCMM algorithm for col-
umn packing (Jiang et al., 2018)

Input: ct; and ct»

Output: ct’

ct' < ctiero

cty < Sigma(cty)

cty < Tau(cta)

fori < Otod—1do
ct) < Rot(cty; di)
cth +

¢; © Rot(cto; 1) + ¢ © Rot(cte; i — d)

ct' « et + cth) ® ct}

end

return ct’

ERC I T T SN

B Details for Pseudo-Sign Composite
Approximation

The following theorem is essential for proving the
correctness of the pseudo-sign composite approxi-
mation.

Theorem B.1. For any (¢, d)-approximate min-
imax composite polynomial for sign function
p(z) = (pt—1 00 po)(x), there exists € such
thate < € < land f(€) = —f(—€') =1+
holds, and p(x) monotonously increase in the in-
terval [—€', €].

Proof. We prove this by mathematical induction.
First, we show that the theorem holds for a single
minimax polynomial pg. Then, assuming that the
minimax composite polynomial p,,_g o - - - 0 pg sat-
isfies the given property, we prove that the minimax
composite polynomial p,,_1 o - - - o pg, obtained by
composing p,—1, also satisfies the same property.
Let us first verify whether the theorem holds
for a single minimax polynomial. It is well known
that the minimax polynomial of an odd function is
also an odd function. If the degree of the minimax
polynomial pg is d = 2¢ — 1, then this polynomial
minimizes ||p — sign|loc,p among all polynomi-
als of degree at most d + 1 = 2¢ on the domain
D = [-1,—€] U [¢,1]. According to the Cheby-
shev alternation theorem, the number of local ex-
treme points of p(z) — sign(x) within D must be
d + 3 = 2¢ + 2. However, a polynomial of degree
d=2¢—1over Rcanhave atmostd—1 = 2/ —2
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local extreme points. On D, the boundary points
of D can also be local extreme points. Thus, to
satisfy the Chebyshev alternation theorem, all four
boundary points of D and the local extreme points
of R must lie in D, and these points must all be
distinct. Consequently, p(x) — sign(z) = p(z) — 1
cannot have extreme points within [0, €], meaning
that p(z) must be monotonic in this interval. Since
0 =p(0) <1-46 < p(e), it follows that p(x)
is monotonically increasing in [0, €]. Additionally,
since x = ¢ is not a local extreme point over R, the
sign of the derivative near x = ¢ cannot change.
Thus, p(z) must continue increasing, and = = € is
a local minimum point, satisfying p(e) — 1 = —0.

Let € denote the smallest local extreme point
greater than e. By the Chebyshev alternation the-
orem, x = ¢ must be a local maximum point, so
p(€')—1 = 6. This implies that p(z) — 1 must be an
increasing function on [e, €']. Consequently, p(z) is
monotonically increasing on [0, €']. Since p(x) is
an odd function, it follows that p(z) is also mono-
tonically increasing on [—¢', €’]. Thus, we conclude
that the theorem holds for a single minimax poly-
nomial.

Let us prove the second inductive step. Assume
that p = p,,_9 o - - - 0 pg satisfies the theorem. This
polynomial is also an (e, § )-approximate minimax
composite polynomial for some 5, meaning there
exists € such that p(x) is monotonically increasing
on [—&, €] and satisfies j(¢') = 1 + 4. By the defi-
nition of minimax composition, the approximation
domain of p,_1is D, = [—-1— 5, —1 +5] U[l-
6,1+ 8] Since p,,_1 is a single minimax polyno-
mial, from the result of the first inductive step, there
exists ¢’ such that 1 —§ < ¢ < 144, and p,,_1 ()
is monotonically increasing on [—€” | €”], satisfying
pn—1(€") =1+ 4. Also, there must exist €’ within
[0, €] such that p(e') = €”. As [—€,€'] C [-€, €],
p(z) is monotonically increasing within [—¢€’, €/],
and p,_1 0P = pp_1 © -+ 0 pg is also monotoni-
cally increasing within [—¢’, ¢/]. Additionally, since
Prn—1(p(€)) = pn-1(¢’) = 1 + 4, the second in-
ductive condition is satisfied. Thus, the theorem is
proven. O

The core principle of Algorithm 1 is as follows.
Without loss of generality, let us fix the approxima-
tion interval to [—1, 1] and assume that the pseudo-
sign function f is approximated within this inter-
val. The goal is to find a polynomial p(z) such that
|f(z) — p()[|oo,[—1,1] < J. The pseudo-sign func-
tion considered in this method converges rapidly



to &1, resulting in intervals sufficiently close to
+1 being long enough to matter. At the same time,
the transition regions where f(x) approaches +1
cannot be ignored and must be accurately approx-
imated. Therefore, it is reasonable to assume that
there exists ay € (0, 1] such that f(y) =1 —4§/2.
Given this, consider a (y, 1f/ﬁ)-approximate min-
imax composite polynomial for the sign function,
denoted as peom (). Then, we have

. 0/4
[Pt—10---0po —signlloc,~1,—4]uly,1] < T-o/a
We define a scaled composite polynomial
Pscale(z) = (1 — g)pcom(aj), which satisfies the
following conditions:

‘pscale - (1 - i) : Sign
< o (1 - 5)
= 1-6/4 4

Next, we approximate f within the interval [0, 7].
By Theorem 4.1, there exists a 7' > 0 such that
Pscale () is @ monotonically increasing function on
[—v',~] and satisfies pscate(7') = 1. Let Pscale ()
denote the restriction of pgca1e(x) to the domain
[—v',7/]. Since Pscate() is monotonically increas-
ing, it has an inverse function. Using this inverse,
we can define g = fop L [-1,1] — [-1,1],
We refer to g(x) as the transformation function.

This function is smooth and can be approximated
by a single minimax polynomial p,(x) such that

007[_17_’7}U[’771]

J

4

NGRS

1Pg — 9lloo,—1,1] < 5-
Finally, we can approximate f(z) using the com-
posite polynomial

pf(w) = DPg Opscale(x)~

This construction ensures that f(z) is approxi-
mated with high accuracy while maintaining the de-
sired properties of the pseudo-sign function within
the given interval. The specific approximation
method is detailed in Algorithm 1.

Below is the formal proof of the main theorem.

Proof. (Proof of )
Since each function is odd, it suffices to check
for positive inputs only.
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* If 0 <z <, then f(:L‘) = g(pscale(x)) and

pf(l') = pg(pscale(x)) asr <~y < ’)//. Since
Dscale (-73) € [*1, 1], it follows that

|pf($) - f(IL‘)| = ’pg(pscale(l')) - g(pscale(‘r)ﬂ
<4/2 <.

Thus, [[ps — flloo,0,4] < 0 is satisfied.

* If’}/ <z <1, then ||pscale(l‘) - (1 _6/4)” <
0/4, which implies 1 — 6/4 < pscate(z) < 1.
Define 7 = ﬁ;cile OPscale (). By definition, we
have v < z < x < 1. Since f(x) has a range
within [1 — §/2,1] for x € [v,1], it follows
that |f(z) — f(x)] < §/2. Fory < & < +/,
we know f(i) = goﬁscale(i‘) = gopscale(j)-
Furthermore, by the definition of z, we have
pf($) = Pg © pscale(x) = Pg © pscale(i') =
pf(Z). This allows us to deduce that

pr(x) = f(@)] = |ps(2) — f(2)]

= ’pg(pscale(j)) - g(pscale('%)”'

Since pscale(Z) € [—1, 1], it follows that

P ()= f(Z)] = [Pg(Pscate(F)) —9(Pscate ()] < 6/2.

Finally, combining these results, we obtain

Ips(z)—f(z)]
<lps(z) = f(@)] + |f(@) — f(z)]
<5/2+46/2=04.

Thus, [[pf — flloo,y,1) < 9 is satisfied.

Due to the odd-function property of f(x), this
result holds symmetrically for z € [—1, 0] as well.
Therefore, combining the results for all intervals,
we conclude that

<4é.

pr - fHoo,[fl,l}

C Detailed Algorithms for Optimized
Matrix Multiplication

C.1 Packing Method

In this paper, we use a new packing method called
modified column packing instead of column pack-
ing. Suppose we have a matrix A of size d; X do
and a natural number £ satisfying k|d; and k|-
For simplicity, assume n|d;dy. The modified col-
umn packing for k takes A as input and outputs



{cti}, ., 4145, Where each ct; encrypts a vector
- - n

m(® € R" defined by

m(l) []] = A[j]d17 kH

J

il +E e

kd]

for 0 < j < n. We denote the set of vectors
{m®}, <ictita BY [A]%. When didy = n, [AJE

C
is simply m(1). Blockwise matrix operation al-
gorithms based on this modified column packing
method require fewer rotations compared to block-
wise algorithms based on column packing. We en-
sure that any intermediate matrix computed dur-
ing BERT model inference is always packed us-
ing modified column packing with the parameter
k = 64. Figure 2 illustrates both the column pack-
ing and modified column packing methods.

C.2 Optimized CPMM

In this paper, we present a CPMM algorithm based
on modified column packing. For the matrices
A € Rhxd2 gnd B € R%*d3 consider the sit-
uation of computing the matrix product AB. Let
k|d1, k|d2, and k|ds. The proposed algorithm com-
putes the ciphertexts corresponding to [AB]%, from
the ciphertexts of [A]%,. The columns of the input
matrix are packed into a total of mid = dlnﬂ ci-
phertexts, {ct; }1<i<mid, and the columns of the
output matrix are packed into a total of ed = %
ciphertexts, {ct,}1<i<ed-

Based on the fact that each column of the output
matrix can be expressed as a linear combination
of the columns of the input matrix, the following
equation can be derived:

cty=Y_ Y Rot(ctj;id) ©d?. (6)

L<j<mid 0<i< 2

for 1 < ¢ < ed. Here, d"g’z € R” stores the el-
ements of matrix B appropriately. By applying
the baby-step giant-step technique to the above
equation, it can be transformed into the following
form for some natural numbers Ny, Ny satisfying
N 1 - 2 = %Z

cty = Z Rot( Z Z Rot(ct;; qdq)
0<p< Ny 1<5<mid 0<g< Ny
0
© p(d'yny g3 —PN1d1); pN1dy). ©)
for 1 < ¢ < ed. Algorithm 5 is derived from the

above equation. This algorithm uses mid - N7 +
ed - Ny rotations, and when N; and N, satisfy

14

mid - Ny ed - N, it requires approximately

2, /% - mid - ed rotations.

Note that in the main text, our CPMM algorithm
is described under column packing, whereas in the
appendix, it is described under modified column
packing. For both packing methods, Equation 6 re-
mains valid (only the plaintext vectors d'/ £ change).
Hence, the algorithm’s procedure and computa-
tional complexity are exactly the same.

Algorithm 5: CPMM algorithm
Input: {ct; }1<j<mid
Output: {Cté}lggged
1 for j < 1 tomid do
forg < 0to N; — 1do
‘ ct§q> « Rot(ct;; qdy)
end

2

3

end

or / < 1toeddo

cty < Ctiero

for p < 0to No — 1do

ct' < ctaero

for j < 1to mid do
for g < 0 to N; do

o ot +ct' ©

by

e ® N S wn

11

12

PN, gt —PN1d1)
13 end
14 end
15 cty + ct;, + Rot(ct’; pN1dy)
16 end
17 end

18 return {ct)}1</<ed

In addition, we speed up Algorithm 5 by making
appropriate use of complex numbers. The follow-
ings explain how complex numbers are utilized,
depending on the specific case.

Q, K,V Calculation In the BERT-base model,
from the input matrix X € RX*% we need to

compute QU) = XWC(Qj),K(j) = XW[((j),V(j) =

XW‘(/]) for Wg), I(g), W‘(/J) € Rdm>dm/h where
0 < j < h. We have parameters L = 128,d,, =
768, and h = 12. This can be viewed as com-
puting X for one large matrix W & Ré%m*3dm
obtained by concatenating all the smaller matrices.

Consequently, it suffices to compute the following



equation.

cty= Y > Rot(ctiziL)yod?  (®)

1< <mid 0<i<

for 1 < ¢ < ed. Here, mid = LdTm =3and ed =
% = 9. We need to compute the expression for
a total of ed = 9 output ciphertexts. By making use
of complex numbers, the expression for any two
ciphertexts ct; and ct;, can be computed at once

as follows:

ct' = Z Z Rot(ct;; iL)@(d’{’“ —I-z'd'g’Z?)
1<j<mid 0<i< 2

©))
Afterward, by using the Extract algorithm, which
extracts the real and imaginary parts, we obtain
cty, ,cty, = Extract(ct'). Thus, by pairing up 8 of
the 9 output ciphertexts in twos, we only need to
compute the expression for a total of 5 ciphertexts
(ed = 5). When using the baby-step giant-step
algorithm, the number of rotations is approximately

2,/% - 3.5, which is \/gtimes the 2,/%-3-9

required by Algorithm 5.

Multiplication with WO or Wr; The concate-
nated attention matrix Y € RE*9m is multiplied
by WO € R768x768 Tn the feed-forward network,
Y € REXdm js multiplied by Wpy € R&m>dn
(where d;, = 3072). In both cases, we can make
use of complex numbers to combine the expres-
sions for two ciphertexts in the same way, thereby
reducing ed from 3 — 2 and from 12 — 6, re-
spectively. Consequently, the number of rotations

in each case is reduced to \/g and \/g times that
of Algorithm 5.

Multiplication with 7W©  In multi-head attention,
the concatenated result matrix Y € R128x768 jg
multiplied by W© € R7%8x768 1 this case, we
need to compute Equation 8 for 1 < £ < 3, and as
in the computation of ), K, and V, we can use
complex numbers to merge the expressions for
two output ciphertexts into one. Consequently, the

number of rotations is 2, /% - mid - 2, which is \/g
times the 2,/7 - mid - 3 required by Algorithm 5.

Multiplication with Wr; When multiplying
Y € R128><768 by WFl c R768><3072’ the param-
eters are mid = 3 and ed = 12, so Equation 8
must be computed for the 12 ciphertexts ct (for
1 < ¢ < 12). By similarly utilizing complex num-
bers to pair these ciphertexts, we only need to com-
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pute it for the 6 ciphertexts. The number of rota-

tions is 24 /% -mid - 6, which is v/2 times fewer
than the 2,/7 - mid - 12 required by Algorithm 5.

A
AEEEEENE
o [ T TT T
column packing for A

JEENS BN
« [ [T T [ T

modified column packing for A with k = 2

Figure 2: Column packing and modifid column packing
with k =2 ford; = 2,ds; = 12, and n = 12.

C.3 CCMM for Square Matrix

In this section, we present a new algorithm that is
faster than the CCMM algorithm of Jiang et al. We
begin with the following Equation:

A.B= jz_:wf 0 0(A4)) ® (¥ o 7(B)).

First, we note that the operation ¢/’ satisfies the
following equation:

[ (A)le = p([Alc © R; + p([A]lc; —d) © Li; i)

(10)
Here, the constant vectors R;, L; € R™ for 0 <
1 < d are defined as follows:

o Jlilla<da—i o [1i[jla<i
R;[j] = 0: else L’[j]_{():else.
for0 < j <n.

Then, for A’ = 0(A), B’ = 7(B), and natural
numbers Ny, Ny satisfying N1 Ny = d, the follow-



ing equation holds.

[ ¢u(A) @ ¢u(B)o

0<e<d

S oA ) © [be(B)]o

0<i<d
= > > p([Aes (N +i)d)
0<j<N3 0<i<N;

® [ j+i(B)]e

() pl[Aesid)e
0<j< N2 0<i<N;
p([¥n,j+i(B')]c; —Nijd); Nijd)
> o > p([Aciid) © p([Be
0<j<N2 0<i<N;
Ry j+i + p([B']c; —d) © Ly, j4i;
Nlj‘l-Z—Nl]d),Nl]d)

Algorithm 6 describes the CCMM algorithm
based on the final equation above. It requires
2v/d+2v/2d+ N3 + Ny + N1 N rotations, which
becomes d + 2v/2d + 4v/d when N1 =Ny = V.
Moreover, by using the lazy relinearization tech-
nique—where all non-scalar multiplication results
in the loop over j are summed up first and then
relinearized only once at the end—the total number
of relinearizations used is v/d. Consequently, the
total number of key-switches is d + 2v/2d + 5\/(?,
which is smaller than the 4d + 2v/2d + 2v/d re-
quired by Algorithm 4 (Jiang et al., 2018).

C.4 Blockwise Matrix Multiplication

By using the modified column packing method, we
can obtain homomorphic algorithms for &, 7, q}, 15
on n = dyds. Each of these has the same computa-
tional complexity as its corresponding homomor-
phic algorithm for o, 7, $,7 on n = k2, respec-
tively. In this section, we describe the algorithms
for the proposed blockwise matrix operations. Let
A,B € R4 and suppose we have a k such
that k|d; and k|da. We define 6 and 7 to be the
operations that apply o and 7, respectively, block
by block. Also, let A [ B denote the result of the
blockwise (with block size k) multiplication of A
and B.

Similar to the equation [o(A)lc = > b ®
0<i<k

p([Alc; ki), we have [6(A)E = > b ©
0<i<k

p([Al%; dlde i) where each vector b; € R%192 is ob-

tained by splitting b; € R** into chunks of size k

and repeating each chunk d;cg’? times. Similarly, just
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Algorithm 6: CCMM algorithm
Input: ct; and cts
Output: ct’
ct' < ctyero
cty < Sigma(cty)
cty < Tau(cta)
ct, + Rot(cte; —d)
for j <~ 0to Ny —1do
ctV) < Rot(ct;jd)
end
fori + Oto Ny — 1do
ct" — ctrero
for j <~ 0to N2 — 1do
ct” «+
ct” 4+ ctU) @ Rot(cty ® Ryyivj +
Cté ® LN1Z'+j; Nyi+j — led)

e ® N 1 AW N =

-
_- o

end
ct’ « ct’' + Rot(ct”; Nyid)

12
13

end
return ct’

14
15

as 7 for a k x k matrix is expressed as [7(A)]c =
> a; ®p([A]e;i), 7 forady x dy matrix can

—k<i<k
be written as [F(A))5, = 3 a} © p([A]E;9).

) —k<i<k
Similarly, just as [¢"(A)lc = p([A]c; ki), we
have [¢'(A))E = p([A]E; ©%24). Likewise, just as

[W'(A)]c = ci©p([Alcsi) +cip([Alei i — k), we
have [/ (A)]¢ = @O p([Al; 1) +¢ @ p([AlE; i -
k). Therefore, the blockwise operations share the
same computational complexity (i.e., the same
number of rotations) as the original operations,
and the baby-step giant-step approach also retains

the same complexity. For matrix transposition, the

d-1
blockwise counterpart to [AT]c = Y. s 0
i=—d+1
. . d_l .
p([Alc; (d=1)i) is Z(; ISQQP([A]@;(M—DZ),
i=—d-+

which likewise has the same computational cost.
As an example, Figure 3 shows the algorithm for ¢
when using modified column packing.

Algorithm 6 can also be naturally extended to a
blockwise (matrix multiplication for k) algorithm
on a di X d9 matrix. The constant vectors R; and
L; used here are defined in the same way as in
Section 5.2.1, with the only difference being that
n = dyids. Then, the following holds.



11417 ¢ |44i7i1] column packing

21518 —s|5i812

Tt et [Alc=[123456789]
A [pD]c =p([Al;3)=[456789123]

1147]10/13116 (ﬁ 21711 131161 10] modified

2151811114417 — | 51812 [14117111 Column

31619[12i15(18 61913 |15i18112| Packing
A

[A12=[12310111245613141578916 17 18]
g ! 3 r

[6AD]. = p([4'1E;6)
=[456131415789161718123101112]

Figure 3: An algorithm for (;5 using modified column
packing

[ Y 6u(A) 0 de(B)E

0<i<d
_ /k.dld? 7 N1k
= Y p([ANE =0 0 [h(B)e  (11)
0<t<d
did )
= > > ([A']lé;%(l\fuﬂ))
0<j< N2 0<i<N;
@ [Oniri(B))E
dids .
= > o X AN e
0<j< N2 0<i< Ny
~ did . did .
Pl i(B)]Es == Naj) == Vi)
did
= > oY el S Eie
0<j<Na2 0<i<N;
p([B']E ® Ry, v + p([B'E: —k) © Ly, ;43
.. dd L did )
N1]+Z—%N1J);%N1])'

The above derivations for blockwise operations
each correspond to their respective algorithms. Al-
gorithm 7 takes as input the ciphertexts of [A]f, and
outputs the ciphertexts of [5(A)],. Algorithm 8
takes as input the ciphertexts of [A]% and outputs
the ciphertexts of [7(A)]%. Finally, Algorithm 9
takes as input the ciphertexts of [A]f, and [B]£, and
outputs the ciphertexts of [A (] B,

Algorithm 10 is essentially Algorithm 9 with
only the BlockSigma and BlockTau steps removed,
allowing these steps to be computed separately. Al-
gorithm 10 is used in Algorithm 14. Algorithm 11
describes the blockwise transpose operation. Let
ABT denote the matrix obtained by transposing
the matrix A € R% %92 i blocks of size k. Then,
Algorithm 11 takes as input the ciphertexts of [A]%,
and outputs the ciphertexts of [ABT]%,.

17

Algorithm 7: BlockSigma
Input: ct
Output: ct’
1 ct’ < clyero
2 fori <+ 0to Ny —1do
ct® « Rot(ct; dl—kd%')

3

4 end
s for j < 0to Ny — 1 do
6 ct” «— ctrero
7 fori < 0to Ny —1do
8 ct!
ct” + p(bly, j i — B2 N1j) © et
9 end
| ct’ < ct’ + Rot(ct”; 4492 Ny 5)
11 end

12 return ct’

Algorithm 8: BlockTau
Input: ct
Output: ct’
1 ct’' < ctyero
2 fori <+ 0to Ny —1do
‘ ct) « Rot(ct; )
end
for j <~ 0to Ny — 1 do
ct" — ctrero
fori <+ 0to Ny — 1do
ct" Ct”+p(a/]V1j+i7k+1; —Nyj+
k—1)® ct®

3

®w N o A

end
ct’ <+ ct’ + Rot(ct”; N1j — k + 1)

9
10
1 end

12 return ct/

C.5 CCMM for Multi-Head Attention

In this section, we address the optimization of the
CCMM computations required to calculate multi-
head attention. Specifically, these are the operations
for the QY) K )T multiplication and for multiply-
ing the resulting matrix (after passing through the
softmax) by V). We first introduce two compo-
nent algorithms that make up this procedure. Al-
gorithm 12 takes as input a ciphertext ct encrypt-
ing a + bi and outputs the ciphertexts ct,.,; and
ctimag encrypting a and b, respectively. This al-
gorithm uses one key-switch for the conjugation
operation. Any unnecessary level consumption aris-
ing from multiplying by 0.5 can be addressed by
compensating for the 0.5 factor in the constants



Algorithm 9: Optimized blockwise
ciphertext-ciphertext matrix multiplication
algorithm BlockMult
Input: ct; and ct»
Output: ct’
ct' < ctaero
cty < BlockSigma(cty)
cty < BlockTau(cta)
ct, < Rot(cte; —k)
fori < 0to Ny —1do
‘ ct® « Rot(cty; dldei)
end
for j <~ 0Oto No — 1do
ct’" «— ctrero
fori < O0to N7 — 1do
ct”
ct” + et @ Rot(cty ® Ry, iyt
cth © Ly, ;43 Nuj +i— BNy j)

- CHE S - Y R

—
S

end
ct’ < ct’ + Rot(ct”; dl%Nlj)

12

13
end
return ct’

14
15

used immediately before or after this step. In addi-
tion, Algorithm 13 handles the operation of taking
half of a matrix and copying it onto the other half.
The constant vectors y(o) ,y1) € R” used in Algo-
rithm 13 are ileﬁr}ed a[s_]followg: /2

D —1 1 2]s < O1
y( )[‘7] - 1 : ejlse1
for0<j<nand0 <7< 1.

For the CCMM computations in multi-head at-
tention, we appropriately employ blockwise op-
erations with & 64. In addition, we use an
idea that utilizes complex number components to
reduce the computational cost. For example, if
we need to compute o(A) and o(B), we can in-
stead compute o(A + Bi) and then separate the
real and imaginary parts, reducing the number of
calls to 0. The same approach applies to 7 and
the transpose algorithm. Furthermore, when we
need to compute AB and AC', we can reduce the
number of multiplication algorithms by computing
A(B + C1) instead. Additionally, if we need to
compute AB + C'D, we can replace it by comput-
ing (A + Ci)(B — Di) and extracting the real part.
Algorithm 14 combines these ideas into a final op-
timized algorithm. Let Q = [Q@|Q™)] - --|Q(Y)],
K (KO KD]...|K(), and V
(VO M) ... (D], Also, let the concatenated
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Algorithm 10: Optimized blockwise
ciphertext-ciphertext matrix multiplication
algorithm BlockMult’ (without Sigma and
Tau)
Input: ct; and cts
Output: ct’
ct’ < ctrero
cth, « Rot(cte; —k)
fori <+ 0to Ny —1do
ct) < Rot(cty; dlde i)
end
for j < O0to No — 1do
ct" — ctoero
fori <+ Oto Ny —1do
ct”
ct” + ct) @ Rot(cty © Ry i+
cth © Ly, ;s Nij +i— 4d2 N )

(- TE- IS B N Y O A S

end
ct’ « ct’ + Rot(ct”; %Nlj)

10

11
end
return ct’

12

attention matrix be Y [YolYi|---|Y11] €
RE*dm Then, Algorithm 14 takes the ciphertexts
of [QF, [K]E, [V]E as input and outputs the ci-
phertexts of [Y]%..

In this algorithm, Soft is a function that
briefly represents the softmax function; in prac-
tice, since we replace the softmax function with
an component-wise function, this operation can be
carried out as a component-wise operation without
any packing concerns.

D Batch Layer Normalization
E Full Experiment Result

Table 5 presents the complete results of the dis-
tillation experiments. The Baseline represents the
performance of the original BERT model (teacher
model) fine-tuned for downstream tasks, while Dis-
till refers to the performance of the model after
undergoing distillation training with batch power-
max and batch layer normalization applied. The
Loss represents the loss value during the distilla-
tion process.

The occurrence of feature explosion can be iden-
tified by examining the loss value. At the loss
computation points, the MSE between the distilled
model’s outputs and the teacher model’s outputs
is incorporated into the loss. If feature explosion



Algorithm 11: BlockTrans
Input: ct
Output: ct’

1 ct' — ctrero

2 fori <+ O0to N7 —1do

ct® <« Rot(ct; (2k — 1)i)

3

4 end
5 for j < 0to No — 1do
6 ct" — ctoero
7 fori+ Oto N7 — 1do
8 ct" < ct" + p(sy i pyrs —(2k =
D(Nij —k+1)) ©ct®
9 end
10 ct'
ct’ + Rot(et”; (2k — 1)(N1j — k+ 1))
11 end
12 return ct’/

Algorithm 12: Extract
Input: ct
Output: ct,cql, Climag
ct’ + Conj(ct)
Clreal < 0.5© (Ct + Ct/)
Ctimag < —-0.50 l\/lulti(ct — Ct/)
return ct,cqi, Ctimag

BOW N -

Algorithm 13: SplitPaste
Input: ct

Output: ct, ct)

cty < ct ©y0)

ct) « cty + Rot(ct); S1/2)
cth < ct ® yM)

cth < ctt, + Rot(cth; S1/2)
return ct}, ct)y

occurs, this value increases excessively. In gen-
eral, loss values exceeding a single-digit number
indicate the presence of feature explosion. Addi-
tionally, as the [ value increases from 1.0 to 1.5,
the frequency of feature explosion occurrences de-
creases, with counts of 6, 1, 2, 1, 1, and 0. This
trend demonstrates the effectiveness of introducing
the [ parameter in mitigating feature explosion.
Table 6 presents the experimental results evalu-
ating the effectiveness of GK attention. The experi-
ment was conducted on the BERT-base model with
a fixed batch size of 16 and a learning rate of Se-5.
Softmax represents the results obtained using the
standard softmax function, while GK denotes the
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Algorithm 14: Optimized CCMM algo-
rithm for multi-head attention
Input: {ct); }1<i<s, {ct}; }1<i<s. and
{cty; hi<i<s
Qutput: Ctakol, Clakv2, and ctgpy3
ctra < ctiy + Multi(ct) ;)
ctyy < BlockTrans(ct} )
Ctpa < BlockTrans(ctys)
Cthg, Cthg 4 Clio
for : < 1to 3 do
Cli 1, Cliio <— SplitPaste(ctfm-)
Clii < cty;q + Multi(cty; »)

=Y T U S R SR

s end
Ctyo < ctyo + Multi(ctys)
cty < BlockSigma(cty,) )
Clyg, ctys + Extract(BlockSigma(cty2))
fori < 1to 3 do
Claki BlockMult'(cty;, Ctr;)
Ctaki1» Ctari2 < SplitPaste(ct i)
thki,l — SOft(thkiyl)
thki’Q — SOft(thk@Q)
étqki — thki,l + Multi(ctqki@)
end
Ctyy 15 Ctyy o 4 BlockTau(cty,)
Ctya < BlockTau(et!, + Multi(ct! ;)
ctl o, cth s < Extract(ctys)
fori < 1to3do

10
11
12
13
14
15
16
17
18
19
20
21
22

3 | cly,q,cty, o < SplitPaste(ct;;)
2 Cty; cty; 1 — Multi(ety,; )

25 Ctaki < BlockSigma(ctyxi)

% | Clyryi < BlockMult!(ctyri, ctu;)
27 Clakvis # Extract(étqui)

28 end

29 return ct g1, Clyky2, and ctgry3

results when applying GK attention.

The results show that GK attention leads to an
average performance degradation of 11.72% and a
maximum degradation of 17.69%, indicating that it
is not a suitable replacement for the standard soft-
max function. Notably, this performance decline is
more pronounced in certain tasks, demonstrating
the limitations of GK attention in fully replacing
softmax’s stable probability distribution generation
capability.



Seed | \ 4 \ 777 \
Task 1 ‘ Baseline Distill Loss Diff ‘ Baseline Distill Loss Diff ‘ Baseline Distill Loss Diff ‘ Feature Explosion
1 7148 7040 INF  -1.08 | 6931 6895 462 -036| 67.87 7184 484 397 1
11 | 7148 7220 687 072 | 6931 6895 494  -036| 6787 7329 1150.08 5.42 1
RTE 12| 7148 7184 524 036 | 6931 6968 568 036 | 6787 7220 617 433 0
13 | 7148 7148 606 000 | 6931 6751 686 -1.81| 6787 7365 573  5.78 0
14 | 7148 7292 628 144 | 6931 6787 749  -144 | 6787 7329 655 542 0
15 | 7148 7256 715 108 | 6931 6895 779  -036| 6787 7256  7.66  4.69 0
1 8382 8578 INF 196 | 8554 8529 INF  -025| 8505 8750 245 245 3
1.1 | 8382 8529 502 147 | 8554 8529 465 -025| 8505 8725 572 221 0
MRpc 12| 8382 8520 505 147 | 8554 8529 3487813 000 [ 8505 8676 654 172 1
13 | 838 8578 553 196 | 8554 8578 583  -049 | 8505 8627 595 123 0
14 | 8382 8529 696 147 | 8554 8529 674  -025| 8505 8652 684 147 0
15 | 8382 8505 7.80 123 | 8554 8505 770  -049 | 8505 8505 815 0.0 0
1 9266 9197 316 -069| 91.63 9197 INF 000 | 9197 9197 INF 0.0 2
11 | 9266 9209 347 -057| 91.63 9209 288 000 | 9197 9209 373 0.1 0
ssTo 12| 9266 9220 203845 -046| 9163 9220 331 000 | 9197 9220 422 023 1
13| 9266 9186 455 -080| 9163 918 INF  -0.11 | 9197 9186 434 -0l 1
14 | 9266 9186 INF -0.80| 91.63 91.86 536  -0.11| 9197 9186 549 0.1 1
15 | 9266 918 636 -080| 91.63 9174 771  -023| 9197 9174 771  -0.23 0
Table 5: Full distillation learning results across different seeds, tasks, and [ parameters.
seed 0 42 777
Softmax GK Diff | Softmax GK Diff | Softmax GK Diff
RTE 70.76 53.07 -17.69 67.15 53.07 -14.08 67.15 5271 -14.44
MRPC 85.29 70.59 -14.71 86.52 73.04 -13.48 86.03 69.61 -16.42
SST-2 91.06 84.86 -6.19 90.14 8544 -4.70 90.14 86.35 -3.78

Table 6: Experimental results across different seeds
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