
Powerformer: Efficient and High-Accuracy Privacy-Preserving Language
Model with Homomorphic Encryption

Anonymous ACL submission

Abstract

We propose Powerformer, an efficient ho-001
momorphic encryption (HE)-based privacy-002
preserving language model (PPLM) designed003
to reduce computation overhead while main-004
taining model performance. Powerformer in-005
corporates three key techniques to optimize en-006
crypted computations: 1) A novel distillation007
technique that replaces softmax and layer nor-008
malization (LN) with computationally efficient009
power and linear functions, ensuring no per-010
formance degradation while enabling seamless011
encrypted computation. 2) A pseudo-sign com-012
posite approximation method that accurately013
approximates GELU and tanh functions with014
minimal computational overhead. 3) A homo-015
morphic matrix multiplication algorithm specif-016
ically optimized for Transformer models, en-017
hancing efficiency in encrypted environments.018
By integrating these techniques, Powerformer019
based on the BERT-base model achieves a 45%020
reduction in computation time compared to the021
state-of-the-art HE-based PPLM without any022
loss in accuracy.023

1 Introduction024

As AI services continue to expand, many com-025

panies now offer machine learning as a service026

(MLaaS). However, there are growing concerns027

about potential privacy breaches when clients en-028

trust their sensitive data to a server. To address this029

issue, there has been increasing interest in privacy-030

preserving language models (PPLMs), which uti-031

lize data encryption. In particular, PPLMs lever-032

aging homomorphic encryption (HE) enable the033

client to send encrypted data to the server, where034

all processing is conducted without decryption. The035

server subsequently returns the encrypted output036

to the client. This approach drastically lowers the037

client’s computational load while minimizing ex-038

posure of client data or model information. Con-039

sequently, HE-based PPLMs have emerged as a040

promising solution that preserves data privacy and 041

AI capabilities in MLaaS environments. 042

Because HE supports only arithmetic operations, 043

performing non-polynomial operations within HE- 044

based PPLMs is challenging. To address this, vari- 045

ous techniques (Zhang et al., 2024; Cho et al., 2024) 046

have been proposed to accurately approximate non- 047

polynomial functions using arithmetic operations, 048

but most rely on high-degree polynomials, which 049

significantly increases computation time. Some 050

studies (Zimerman et al., 2024b; Rho et al., 2024) 051

have attempted to fine-tune models by replacing 052

certain non-polynomial functions with arithmetic- 053

friendly alternatives, yet this consistently leads to 054

reduced inference accuracy. Consequently, find- 055

ing an HE-based transformer implementation that 056

maintains accuracy while improving speed remains 057

a major challenge. Recently, THOR (Moon et al., 058

2024), the fastest end-to-end HE-based transformer 059

model, was reported to require 10.43 minutes of 060

inference time for a BERT-base model on a sin- 061

gle GPU. For real-world use, research to further 062

shorten the runtime is essential. 063

In this study, we propose a PPLM model, Pow- 064

erformer, designed to effectively reduce the infer- 065

ence time of HE-based Transformer models. Pow- 066

erformer integrates: (1) a novel model tuning ap- 067

proach that replaces softmax and layer normaliza- 068

tion (LN) with simple arithmetic operations with- 069

out compromising accuracy, (2) efficient approxi- 070

mation techniques for GELU and tanh, and (3) a ho- 071

momorphic matrix computation method optimized 072

for Transformer models. As a result, we achieved a 073

45.0% reduction in inference time compared to the 074

state-of-the-art PPLM model THOR, successfully 075

lowering the BERT-base PPLM inference time to 076

5.74 minutes under the same environment.1 2 077

1HE implementations can be checked from https://
anonymous.4open.science/r/powerformer_HE-D1D5

2Plaintext implementations can be checked from https://
anonymous.4open.science/r/powerformer_plain-D48A

1

https://anonymous.4open.science/r/powerformer_HE-D1D5
https://anonymous.4open.science/r/powerformer_HE-D1D5
https://anonymous.4open.science/r/powerformer_plain-D48A
https://anonymous.4open.science/r/powerformer_plain-D48A

2 Related Work078

2.1 Homomorphic Encryption079

HE is a cryptographic algorithm designed to per-080

form arbitrary arithmetic operations directly on en-081

crypted data, and we use the RNS-CKKS scheme082

(Cheon et al., 2017, 2019), one of the most widely083

used HE schemes for real number computations.084

The RNS-CKKS scheme encrypts a vector u of085

length n (referred to as a slot) in Rn or Cn. For sim-086

plicity, we denote its ciphertext as [u]. Under this087

scheme, the following homomorphic operations are088

defined and satisfy the corresponding properties:089

[u]⊕ [v] = [u+ v], [u]⊙ v = u ⊙ [v] = [u⊙ v],090

[u] ⊗ [v] = [u ⊙ v], Rot([u]; r) = [ρ(u; r)],091

Multi([u]) = [i · u], Conj([u]) = [ū], where u⊙ v092

and ū represent elementwise multiplication and093

complex conjugation, respectively, and ρ(v; r) is094

defined as (vr, vr+1, . . . , vn−1, v0, . . . , vr−1), de-095

noting a left cyclic shift by r positions. Further096

details can be found in Section A.2.097

2.2 Advanced Homomorphic Operations098

One of the most widely used HE-based ciphertext-099

ciphertext matrix multiplication (CCMM)100

algorithms is Jiang et al.’s method (Jiang et al.,101

2018). This approach leverages the following102

transformed matrix multiplication equation103

A ·B =
∑d−1

ℓ=0 (ϕ
ℓ ◦ σ(A))⊙ (ψℓ ◦ τ(B)), where104

d× d matrix permutations σ, τ, ϕ, ψ are defined as105

follows ([n]d denotes n mod d): σ(A)i,j =106

Ai,[i+j]d , τ(A)i,j = A[i+j]d,j , ϕ(A)i,j =107

Ai,[j+1]d , ψ(A)i,j = A[i+1]d,j . BOLT (Pang108

et al., 2024) proposed a matrix multiplication109

algorithm based on column packing, which demon-110

strates fast performance in ciphertext-plaintext111

matrix multiplication (CPMM). Recently, THOR112

(Moon et al., 2024) introduced a new type of113

matrix multiplication algorithm based on diagonal114

packing, which outperforms BOLT.115

Several studies have focused on efficiently ap-116

proximating nonlinear functions to enable stable117

and computationally efficient homomorphic oper-118

ations. Lee et al. (Lee et al., 2021) proposed an119

approach for efficient ReLU approximation by de-120

composing the sign function into a composition of121

multiple low-degree polynomials, ensuring optimal122

efficiency under HE. For GELU approximation,123

methods used in BumbleBee (Lu et al., 2023) and124

PUMA models (Dong et al., 2023) approximate the125

Gaussian CDF by dividing the function into multi-126

ple segments and computing separate polynomial127

approximations for each region. 128

2.3 Privacy-Preserving Language Model 129

Various PPLM models have been proposed to im- 130

plement transformers in HE environments. The-X 131

(Chen et al., 2022) replaced softmax with a ma- 132

chine learning model, but offloaded the ReLU oper- 133

ation to the client side, preventing it from being con- 134

sidered a fully comprehensive solution. Meanwhile, 135

NEXUS (Zhang et al., 2024) was the first to achieve 136

end-to-end HE inference for transformers, and the 137

recent state-of-the-art HE-based transformer model 138

THOR (Moon et al., 2024) introduced diagonally 139

packed matrix multiplication to accelerate end-to- 140

end HE inference. Nonetheless, there remains sig- 141

nificant room for speed optimization due to the high 142

computational cost of non-polynomial operations 143

like softmax and LN. 144

Because softmax relies on costly division and 145

exponentiation, various approximation techniques 146

have been explored to replace it. MPC-based PPLM 147

models such as MPCFormer (Li et al., 2023) and 148

SecFormer (Luo et al., 2024) employed the 2Quad 149

function, (x+c)2∑
(x+c)2

, alongside distillation to reduce 150

computational overhead, but suffered from accu- 151

racy degradation. Power-Softmax (Zimerman et al., 152

2024a) similarly replaced the exponential function 153

in softmax with a power function and applied con- 154

ventional fine-tuning, but encountered about a 1% 155

drop in accuracy. While these methods success- 156

fully remove the exponentiation step, they do not 157

entirely eliminate division, leaving it as a bottle- 158

neck in HE-based PPLM models. LN also presents 159

another bottleneck for HE inference. The-X (Chen 160

et al., 2022) proposed an LN distillation technique, 161

replacing LN with a linear layer, but still observed 162

a 1.71% accuracy drop even in a small model like 163

BERT-Tiny. Therefore, further research is essen- 164

tial to replace softmax and LN with HE-friendly 165

operations without sacrificing accuracy. 166

3 Batch Method 167

We propose the Batch Method, the first approach 168

that achieves both faster computation and preserves 169

the accuracy of the original model, outperforming 170

existing distillation-based methods. 171

2

3.1 Batch Power-Max Function172

The Batch Power-Max Function is introduced as173

an efficient alternative to softmax, formulated as:174

(x+ c)p

maxi
∑

l(xi,j,k,l + c)p
175

Previous methods, such as MPCFormer and Sec-176

Former, applied distillation-based training using177

the 2Quad function (x+c)2∑
(x+c)2

, whereas Power-178

Softmax utilized the power function xp∑
xp with179

standard training. The Batch Power-Max Function180

leverages both the c parameter and higher-order181

terms in the numerator, allowing it to approximate182

softmax closely without requiring additional non-183

linear function computations. In all implementa-184

tions and experiments, the parameters were set as185

p = 5, c = 5.186

For a mini-batch size B, the input tensor has187

dimensions B × h × L × L. Similar to standard188

softmax, the function first sums over the last L-189

dimension, obtaining a tensor of shape B × h ×190

L×1. Then, the maximum over theB-dimension is191

computed to form a denominator with dimensions192

1× h× L× 1. By distilling the model using this193

denominator as a reference within each mini-batch,194

the model inherently learns a normalization effect,195

ensuring consistent scaling across different inputs.196

During inference, a different approach is taken197

to further optimize computation. The final denomi-198

nator from the last step of training is stored as the199

running denominator (rdp). Instead of recomput-200

ing the denominator during inference, the precom-201

puted rdp is directly substituted in the denominator,202

simplifying the function to (x+c)p

rdp
. This modifica-203

tion effectively eliminates division operations in204

inference, replacing them with a single plaintext205

multiplication, significantly improving computa-206

tional efficiency while maintaining the accuracy of207

softmax.208

3.2 Batch Layer Normalization209

Batch LN is introduced as an alternative to standard210

LN, formulated as:211

γ · x− µ

maxi

√
1
dm

∑
k(xi,j,k − µ)2

+ β212

The input data has dimensions of B × L × dm.213

Similar to standard LN, the function first computes214

the mean and variance along the last dm-dimension,215

resulting in a tensor of shape B ×L× 1. Then, the216

maximum over the B-dimension is computed to 217

form a denominator with dimensions 1× L× 1. 218

During inference, the process follows the same 219

approach as the Batch Power-Max Function. The 220

final denominator from the last step of training is 221

stored as the running denominator (rdℓ). Instead of 222

recomputing the denominator during inference, the 223

precomputed rd is directly substituted, simplifying 224

the function to: γ · x−µ
Rd

+ β This approach effec- 225

tively reduces computational overhead by elimi- 226

nating division operations in inference, replacing 227

them with a single plaintext multiplication while 228

maintaining the functionality of LN. 229

3.3 Training Method 230

Previous research demonstrated a distillation 231

method that effectively captures the characteris- 232

tics of the BERT model. In this approach, a pre- 233

trained BERT model serves as the teacher, and loss 234

functions are applied at four key positions: (1) the 235

embedding layer, (2) the attention matrix in each 236

Transformer layer, (3) the hidden states after each 237

Transformer layer, and (4) the final prediction layer. 238

For the final prediction layer (4), soft cross-entropy 239

is used as the loss function for classification tasks, 240

while mean squared error (MSE) is applied for re- 241

gression tasks. The remaining three positions (1, 242

2, and 3) all use MSE loss. The training process is 243

structured in two stages: in the first stage, the losses 244

from the embedding layer (1), attention matrix (2), 245

and hidden states (3) are minimized to mimic the 246

intermediate outputs of the teacher model. In the 247

second stage, the final prediction layer (4) is opti- 248

mized to achieve high accuracy. 249

However, when the proposed batch method is 250

combined with existing distillation techniques, an 251

issue arises where the range of intermediate ten- 252

sor values becomes unstable. In a standard plain- 253

text environment, computational limitations do not 254

constrain operations, meaning that even if feature 255

explosion occurs—causing the intermediate tensor 256

values to grow excessively—the final accuracy may 257

remain unaffected. Additionally, even if some data 258

points experience extreme value growth that ren- 259

ders computations infeasible, the model may still 260

be selected as optimal based on accuracy if other 261

data points are processed correctly. 262

In a HE environment, however, this characteris- 263

tic poses a critical challenge. When intermediate 264

tensor values grow too large in an HE model, errors 265

in the bootstrapping process amplify, the accuracy 266

of nonlinear function approximations degrades, and 267

3

computations become infeasible beyond a certain268

threshold. Therefore, maintaining a stable range for269

intermediate tensor values is essential in HE-based270

models. To address this issue, this study modifies271

the distillation method from previous research in272

three key ways.273

One-step Distillation Training. Instead of274

separately optimizing each loss function in a two-275

step process, we integrate all losses into a single276

unified loss function and apply a one-step distilla-277

tion training approach. In the conventional method,278

while minimizing the losses from (1), (2), and (3) in279

the first step helped stabilize intermediate tensors,280

the subsequent optimization of the final prediction281

layer (4) in the second step could lead to weight282

adjustments that caused feature explosion. By train-283

ing all four losses simultaneously, our approach284

prevents drastic fluctuations in intermediate tensor285

values during training, ensuring greater stability286

throughout the process.287

Additional Loss Function To further regulate288

intermediate tensor values, we introduce an addi-289

tional loss function at a new position—right before290

the scaling and shifting operations in Batch LN, af-291

ter the denominator has been computed. Batch LN292

is one of the primary causes of feature explosion293

since it processes the residual connection values294

obtained by summing the outputs of preceding at-295

tention or feed-forward layers. Given that Batch296

LN is applied twice per layer across 12 layers, it297

is executed a total of 24 times, amplifying the cu-298

mulative effect of small variations in tensor values.299

To mitigate this issue, we incorporate an additional300

loss term at this critical point, ensuring that in-301

termediate tensor values remain stable throughout302

training. This loss is optimized using MSE loss303

and is learned within the same one-step distillation304

process, further enhancing the overall stability of305

the model.306

Additional Parameter l A new adjustment307

parameter, l, was introduced in the denominator of308

Batch LN:309

γ · x− µ

l ·maxi

√
1
dm

∑
k(xi,j,k − µ)2

+ β310

The parameter l is set to a value greater than311

1 but close to 1, helping to mitigate the risk of312

feature explosion by adjusting the output of Batch313

LN. A larger l applies stronger regulation, but if314

set too high, it can hinder learning and negatively 315

impact final model performance. Therefore, in this 316

study, l was fine-tuned within the range of 1.0 to 317

1.5 to determine the optimal value. The impact of 318

the proposed batch method and the effect of the 319

adjustment parameter l on feature explosion are 320

further analyzed in Appendix (). 321

4 Minimax Composition for Pseudo-Sign 322

Function 323

Lee et al. (Lee et al., 2021) effectively approxi- 324

mated the ReLU function for HE operations using 325

the minimax composition method, which enables 326

efficient computation of the sign function. How- 327

ever, in Transformers, the GELU function and tanh 328

function are used more frequently than the ReLU 329

function. To compute the GELU function, it is nec- 330

essary to accurately approximate the cumulative 331

distribution function Φ(x) of the Gaussian distribu- 332

tion. Functions such as Φ(x) and tanh(x), which 333

are commonly used in Transformers, exhibit be- 334

havior similar to the sign function for inputs with 335

large absolute values. However, for inputs close 336

to zero, these functions exhibit unique character- 337

istics, which often determine the performance of 338

each activation function. 339

4.1 Pseudo-Sign Function and Minimax 340

Composite Polynomial for Sign Function 341

We devise a method to extend the minimax compo- 342

sition technique to approximate Φ(x). Our observa- 343

tion is that when the sign function is approximated 344

using the minimax composition method over an ap- 345

proximation interval with a sufficiently large ϵ, the 346

resulting approximation is monotonic and its func- 347

tion values remain within the range [−1, 1] over the 348

interval [−ϵ, ϵ]. If we can compose this approxima- 349

tion with a simple function to achieve the desired 350

shape of Φ(x) within the interval [−ϵ, ϵ], we can 351

compute Φ(x) with almost the same computational 352

complexity as the original minimax composition 353

method. Furthermore, since Φ(x) approaches ±1 354

relatively gradually, it is acceptable to approximate 355

the sign function for a relatively large ϵ, making 356

this approach both practical and efficient. 357

Definition 4.1. A function f satisfying the follow- 358

ing conditions is defined as a pseudo-sign function: 359

f is a monotonically increasing function, satisfying 360

f(−x) = −f(x) for all x and lim
x→∞

f(x) = 1. 361

Example 4.1. The error function erf(x) = 362
2
π

∫ x
0 e

−t2dt and the hyperbolic tangent tanh(x) = 363

4

ex−e−x

ex+e−x is pseudo-sign functions.364

We first observe the approximated minimax com-365

posite polynomial for sign function to approxi-366

mate the pseudo-sign function f(x), especially the367

“don’t care” part of the approximated composite368

polynomial. Any (ϵ, δ)-approximate minimax com-369

posite polynomial for the sign function, denoted as370

pcom(x) = (pt−1 ◦ · · · ◦ p0)(x), can be shown to371

increase monotonically within the interval [−ϵ, ϵ]372

and maps to the range [−1 + δ, 1− δ]. Therefore,373

the minimax composite polynomial for the sign374

function can itself be regarded as a pseudo-sign375

function. It is important to note that the shape of376

the curve within [−ϵ, ϵ] varies depending on the377

specific pseudo-sign function.378

Specifically, pcom(x) increases monotonically379

near the origin over the interval [−ϵ′, ϵ′] (ϵ < ϵ′),380

where its range of pcom(x) within [−ϵ′, ϵ′] is con-381

tained in [−1 − δ, 1 + δ], satisfying pcom(−ϵ′) =382

−1− δ and pcom(ϵ′) = 1+ δ. Now, define a scaled383

function h(x) = 1
1+δpcom(x) over [−ϵ′, ϵ′]. Since384

h(x) is monotonically increasing, it has an inverse.385

By defining g(x) = f ◦ h−1(x) on the interval386

[−1, 1], g(x) is also monotonically increasing and387

maps to the range [−1, 1]. This function g(x) can388

be closely approximated by a low-degree minimax389

polynomial, denoted as pg(x). Using pg(x), the390

composite polynomial pg◦pcom = pg◦pt−1◦· · ·◦p0391

provides a high-accuracy approximation of the392

pseudo-sign function f(x).393

Algorithm 1: MiniCompPseudoSign(f, δ)
Input: A pseudo-sign function f with domain

[−1, 1], minimax approximation bound δ
Output: Polynomials p0, · · · , pn−1 such that

∥pn−1 ◦ · · · ◦ p0 − f∥∞,[−1,1] ≤ δ
1 Identify γ ∈ (0, 1) such that f(γ) = 1− δ/2.
2 Compute p0, · · · , pt−2, p̄t−1 using
{p0, · · · , pt−2, p̄t−1} ←
MiniCompSign

(
γ, δ/4

1−δ/4

)
,

3 Update pt−1 by scaling: pt−1 ←
(
1− δ

4

)
p̃t−1.

4 Define γ′ as the smallest positive x such that

pscale(x) := pt−1 ◦ · · · ◦ p0(x) = 1.

Restrict the domain of pscale(x) to [−γ′, γ′], and
denote the resulting function as p̃scale(x).

5 Define g(x) = f ◦ p̃−1
scale(x) on [−1, 1]. Use Remez

algorithm to approximate g with a minimax
polynomial pg:

pg ← Remez(g, δ/2).

6 Let n = t+ 1, and define pn−1 := pg . Output the
polynomial sequence {p0, · · · , pn−1}.

We can verify the correctness of the 394

MiniCompPseudoSign algorithm in Algo- 395

rithm 1 through the following theorem, which is 396

specified and proven in Appendix B. 397

Theorem 4.1. Let f be a pseudo-sign function 398

and 0 < δ < 1. Assume that there exists 399

0 < γ < 1 such that f(γ) = 1 − δ/4. Then, 400

the polynomials p0, · · · , pn−1 obtained through 401

MiniCompPseudoSign(f, δ) satisfy the following 402

condition: ∥pn−1 ◦ · · · ◦ p0 − f∥∞,[−1,1] ≤ δ. 403

4.2 Efficiency of Pseudo-Sign Composite 404

Approximation 405

The Bumblebee (Lu et al., 2023) and PUMA (Dong 406

et al., 2023) methods for approximating the GELU 407

function were adopted by NEXUS (Zhang et al., 408

2024) for use in HE-based PPLMs. Their approach 409

segments the function into four regions, requiring 410

three separate sign function evaluations to compute 411

the indicator functions. Each sign function is ap- 412

proximated using composite polynomials with a 413

maximum error of δ/2 and a don’t-care region half- 414

width of δ/2. Afterward, each segmented function 415

is approximated with a maximum error of δ/2. 416

In contrast, our approach requires only a single 417

sign function approximation with a maximum error 418

of δ/4 and a significantly wider don’t-care region 419

half-width of γ. The function g(x) is then approxi- 420

mated with a maximum error of δ/2, leading to a 421

more efficient composition. This reduces the num- 422

ber of sign function evaluations from three to one 423

while significantly expanding the don’t-care region, 424

thereby lowering the polynomial degree required 425

for the overall approximation. 426

For instance, when δ = 2−10, the NEXUS model 427

requires computing three composite polynomials 428

of degrees (3, 5, 5, 5, 5, 5, 5) and two third-degree 429

polynomials. However, our method achieves the 430

same accuracy using only one composite polyno- 431

mial of degrees (5, 5, 5, 7). Similarly, when δ = 432

2−13, NEXUS computes three composite polyno- 433

mials of degrees (3, 3, 5, 5, 5, 5, 5, 5, 5) and two 434

third-degree polynomials, whereas our approach 435

only requires a single composite polynomial of 436

degrees (3, 3, 5, 5, 13). As a result, our method re- 437

duces computational cost by approximately 4.7× 438

and depth by approximately 1.8× compared to 439

NEXUS (Zhang et al., 2024). 440

5

5 Optimized Homomorphic Matrix441

Operation442

5.1 Optimized Ciphertext-Plaintext Matrix443

Multiplication444

We propose a fast CPMM algorithm based on col-445

umn packing. Let {mi ∈ Rn}
1≤i≤ d1d2

n

be the446

plaintext vectors storing A ∈ Rd1×d2 via column447

packing (Section A.3), which we denote by [A]C .448

For matrices A ∈ Rd1×d2 and B ∈ Rd2×d3 , our449

algorithm computes the ciphertexts of [AB]C from450

the ciphertexts of [A]C . We pack the columns of451

the input matrix into a total of mid = d1d2
n cipher-452

texts, {cti}1≤i≤mid, and ensure that the columns453

of the output matrix are packed into ed = d1d3
n ci-454

phertexts, {ct′i}1≤i≤ed. By noting that each column455

of the output matrix can be expressed as a linear456

combination of the columns of the input matrix, we457

derive the following equation.458

ct′ℓ =
∑

1≤j≤mid

∑
0≤i< n

d1

Rot(ctj ; id1)⊙ dj,ℓi (1)459

for 1 ≤ ℓ ≤ ed, where dj,ℓi ∈ Rn stores the ele-460

ments of matrix B appropriately. By applying the461

baby-step giant-step technique to Equation 1, we462

can transform it into the following form for some463

N1, N2 satisfying N1N2 =
n
d1

.464

ct′ℓ =
∑

0≤p<N2

Rot(
∑

1≤j≤mid

∑
0≤q<N1

Rot(ctj ; qd1)465

⊙ ρ(dj,ℓpN1+q;−pN1d1); pN1d1) (2)466

for 1 ≤ ℓ ≤ ed. When N1 and N2 satisfy467

mid · N1 = ed · N2, the algorithm needs about468

2
√

n
d1
·mid · ed rotations.469

Speedup via Complex Numbers By leverag-470

ing complex numbers, we propose a method that471

further reduces rotations. For any two ciphertexts472

ct′ℓ1 , ct′ℓ2 , we can utilize complex numbers to com-473

pute the equation all at once as follows: ct′ =474 ∑
1≤j≤mid

∑
0≤i< n

d1

Rot(ctj ; id1)⊙ (dj,ℓ1i + idj,ℓ2i). By475

using the Extract algorithm (Section C.5), which476

seperates the real and imaginary parts, we obtain477

ct′ℓ1 , ct
′
ℓ2

= Extract(ct′). By grouping the ed out-478

put ciphertexts in pairs and combining their expres-479

sions, ed is updated as ed← ⌈ed/2⌉, which leads480

to a reduction in the number of rotations.481

Meanwhile, it is also possible to combine two482

input ciphertexts using complex numbers. For ma-483

trices A,B ∈ Rd1×d2/2, C,D ∈ Rd2/2×d3 , the484

product of [A|B] and
[
C
D

]
isAC+BD. This com- 485

putation can instead be performed by extracting the 486

real part of (A + Bi)(C − Di). In this case, the 487

value of mid is updated as mid ← ⌈mid/2⌉, and 488

accordingly, the number of rotations also decreases. 489

By applying the proposed techniques, the num- 490

ber of rotations used by CPMM is reduced to 491√
5/9,

√
2/3,

√
1/2, and

√
1/2 times the orig- 492

inal values, respectively, for each of the following: 493

(1) computing the query, key, and value matrices, 494

(2) multiplying the output projection matrix, (3) 495

the first feed-forward network, and (4) the second 496

feed-forward network. 497

5.2 Optimized Ciphertext-Ciphertext Matrix 498

Multiplication 499

5.2.1 Square Matrix Multiplication 500

Jiang et al. (Jiang et al., 2018) proposed 501

a ciphertext-ciphertext matrix multiplication 502

(CCMM) algorithm using row packing. By simply 503

swapping its two inputs, we can obatin a column 504

packing version (see Section A.3 for details). 505

We also propose a technique to optimize this 506

column packing-based CCMM algorithm. Let the 507

input matricesA andB both be of size d×d, and let 508

n = d2. Suppose the constant vectors Ri, Li ∈ Rn 509

for 0 ≤ i < d are defined as follows: 510

Ri[j] =

{
1: [j]4 ≤ 4− i
0: else

Li[j] =

{
1: [j]4 < i
0: else.

511

for 0 ≤ j < n. Let A′ = σ(A) and B′ = τ(B). 512

Then, the following equation holds: 513

[
∑

0≤ℓ<d

ϕℓ(A
′)⊙ ψℓ(B

′)]C =
∑

0≤j<N2

ρ(
∑

0≤i<N1

ρ(514

[A′]C ; id)⊙ ρ([B′]C ⊙RN1j+i + ρ([B′]C ;−d) 515

⊙ LN1j+i;N1j + i−N1jd);N1jd). 516

for N1, N2 satisfying N1N2 = d, which corre- 517

sponds to an efficient CCMM algorithm. When 518

N1 = N2 =
√
d, a total of d+ 2

√
2d+ 5

√
d key- 519

switches are required, which is much fewer than 520

the 4d+ 2
√
2d+ 2

√
d in Jiang et al.’s algorithm. 521

5.2.2 Multi-Head Attention 522

In this section, we first discuss block-wise matrix 523

operations. For a k satisfying k | d1 and k | d2, 524

let us partition the d1 × d2 matrix A into k × k 525

blocks Ai,j . Suppose that the matrix operations 526

σ, τ, ϕ, ψ are defined for k× k matrices. We define 527

the operations σ̃, τ̃ , ϕ̃, ψ̃, which apply σ, τ, ϕ, ψ 528

blockwise to each block Ai,j of the entire matrix 529

6

A. Then, we found that by using the new packing530

method, the modified column packing (defined in531

Section C.1), we can obtain homomorphic algo-532

rithms for σ̃, τ̃ , ϕ̃, ψ̃ on n = d1d2, each of which533

has the same computational complexity as the cor-534

responding homomorphic algorithm for σ, τ, ϕ, ψ535

on n = k2. The CCMM algorithm discussed in536

Section 5.2.1 can also be naturally extended to a537

blockwise (for k) CCMM algorithm for a d1 × d2538

matrix without any additional overhead (see Sec-539

tion C.4 for details).540

By appropriately utilizing blockwise operations541

for k = 64, we can implement all the CCMM oper-542

ations required for the entire multi-head attention.543

In addition, we propose a method to reduce com-544

putation by making use of complex number com-545

ponents. For example, if we need to compute σ̃(A)546

and σ̃(B), we can instead compute σ̃(A+Bi) and547

then separate the real and imaginary parts, thereby548

reducing the number of calls to σ̃. The same idea549

applies to τ̃ and the blockwise transpose algorithm.550

Moreover, if we need to compute the products AB551

and AC, we can reduce the number of multiplica-552

tion algorithms by computing A(B + Ci) instead.553

Additionally, if we need to computeAB+CD, we554

can compute (A+Ci)(B−Di) and extract the real555

part. By combining these ideas, the final optimized556

algorithm is presented in Section C.5.557

5.3 Microbenchmarks558

Table 1 presents the microbenchmark results for559

the homomorphic matrix multiplication algorithms.560

One effective metric for estimating computational561

complexity is the number of key-switches, which562

refers to the total count of non-scalar multiplica-563

tions (relinearizations), rotations, conjugations, and564

other operations requiring a key-switch. In this ta-565

ble, the number of key-switches is based on the566

BERT-base model that we target. Our algorithm re-567

quires 32% ∼ 36% fewer key-switches for CPMM568

and 22% fewer key-switches for CCMM compared569

to THOR, a state-of-the-art technique.570

6 Experiment Results571

Model and Dataset In this study, we utilized572

a BERT-base model with a sequence length of573

L = 128 and conducted experiments on the RTE,574

MRPC, and SST-2 tasks from the GLUE bench-575

mark (Wang, 2018).576

Hyperparameter In standard training, early577

stopping was applied at 10 epochs, while in knowl-578

Table 1: Comparison of key-switch counts in different
homomorphic matrix multiplication methods.

Operation Method #key-switch
NEXUS 3538944

×WQ,WK ,WV
BOLT 288
THOR 180

Powerformer 122
NEXUS -

QKT BOLT 33684
&× V THOR 936

Powerformer 731
NEXUS 14155776

×WO BOLT 168
THOR 118

Powerformer 75

edge distillation training, early stopping was set at 579

20 epochs. This was determined based on the point 580

at which no further performance improvement was 581

observed. Other hyperparameters were fixed, with 582

a batch size of 64 and a learning rate of 5×10−5, to 583

ensure a consistent and fair comparison of relative 584

model performance. 585

HE environment Powerformer is built on the 586

GPU version of the Liberate.FHE library with a 587

slot size of 215. Our HE setting ensures a 128-bit 588

security level, and 11 multiplicative levels are avail- 589

able before bootstrapping. All experiments were 590

conducted on a single NVIDIA A100 GPU. 591

6.1 Plaintext Results 592

Baseline Distill Loss
RTE 71.48 73.29 6.55
MRPC 85.54 87.25 5.72
SST-2 92.66 92.20 4.22

Table 2: Fine-tuned distillation results on downstream
tasks.

Table 2 presents the results of knowledge distil- 593

lation training. The Baseline represents the per- 594

formance of the original BERT model (teacher 595

model) fine-tuned for downstream tasks, while Dis- 596

till refers to the performance of the model after 597

completing distillation training with Batch Power- 598

Max and Batch LN applied. Each task was evalu- 599

ated using three different random seeds, and the 600

highest recorded performance among them is re- 601

ported. Additionally, the Loss value indicates the 602

loss of the Distill model that achieved the reported 603

performance. Experimental results show that the 604

proposed distilled model achieved an average ac- 605

curacy improvement of 1.02% compared to the 606

original model while maintaining the Loss value 607

7

within a stable range. This indicates that the dis-608

tilled model preserves the expressiveness of the609

baseline model without encountering the feature ex-610

plosion problem while maintaining a HE-friendly611

structure. Detailed experimental results for each612

task can be found in the Appendix, where the com-613

plete set of results is provided.614

6.2 Ciphertext Results615

Plaintext Ciphertext Max Diff Time(s)
73.29 73.29 0.019 344.52

Table 3: End-to-end inference results for the RTE task
using an encrypted model.

Table 3 presents the results of the HE experi-616

ment conducted on the distilled model from Ta-617

ble 2. Plaintext represents the performance of the618

Distill model evaluated in a plaintext environment,619

while Ciphertext represents the performance of the620

Powerformer model evaluated in an encrypted envi-621

ronment. The Powerformer model is an end-to-end622

HE model that incorporates all the proposed tech-623

niques in this paper. Experiments were conducted624

using the model that achieved the highest accuracy625

on the RTE task, and the results confirmed that626

there was no performance difference between the627

plaintext and ciphertext environments. Addition-628

ally, Max Diff represents the maximum difference629

between the output values in both environments,630

recording an extremely small value of 0.019. This631

demonstrates that the Powerformer model can ro-632

bustly handle various nonlinear functions, suggest-633

ing its potential for high performance not only in634

classification tasks but also in regression problems.635

Table 4 presents the performance breakdown,636

analyzing computation time for each layer in HE637

experiment from Table 3. Matrix operation time638

varies significantly depending on the computation639

level, making it difficult to assess performance im-640

provements solely from this table. For example,641

FC1 and FC2 perform identical operations, but642

FC2 runs at a lower level, making it 15.44 seconds643

faster. Despite its higher computational workload,644

FC2 also runs 13.88 seconds faster than the Atten-645

tion Layer due to its lower execution level. This646

suggests that execution time is influenced more647

by computation level than workload—lower levels648

speed up processing but require additional boot-649

strapping.650

The proposed model focuses on minimizing651

Operation Ours THOR Diff
Attention layer 57.65 49.77 -7.88
Attention score 28.76 32.53 3.77

Softmax 0.75 15.53 14.78
Attention heads 18.95 20.63 1.68

Multi-head attention 22.54 27.43 4.89
LayerNorm1 0.37 7.13 6.76

FC1 59.21 49.80 -9.41
GELU 8.31 29.42 21.11
FC2 43.77 49.19 5.42
LN2 0.30 4.10 3.80

Pooler & Classification 0.20 2.70 2.50
Bootstrappings 103.72 337.86 234.14

Total 344.52 626.09 281.57
Total without

Pooler & Classification 344.32 623.39 279.07

Table 4: Breakdown of the execution time(sec) com-
pared to THOR.

bootstrapping, which results in computations being 652

performed at relatively higher levels. Consequently, 653

the reduction in per-layer computation time may 654

appear minor compared to THOR. However, as 655

shown in Table 1, key switching count comparisons 656

confirm a significant decrease in overall compu- 657

tational workload. We applied nonlinear function 658

replacement techniques, including Batch Power- 659

Max, Batch LN, and the minimax composition of 660

GELU and tanh. These not only reduced per-layer 661

computation time but also significantly lowered 662

bootstrapping overhead. Ultimately, the model re- 663

duces both bootstrapping frequency and required 664

computation levels. This led to a 70% reduction 665

in bootstrapping time, which previously accounted 666

for over half of THOR’s total computation, and an 667

overall computation time reduction of about 45%. 668

7 Conclusion 669

We proposed Powerformer, an efficient HE-based 670

PPLM designed to reduce computation overhead 671

while maintaining model performance. To min- 672

imize computational overhead while preserving 673

model accuracy, our work introduced a novel distil- 674

lation framework for softmax and LN, an optimized 675

approximation method for GELU and tanh, and 676

a highly efficient matrix multiplication algorithm 677

tailored for transformer models. By incorporating 678

these methods, it reduced computation time signif- 679

icantly compared to the leading HE-based PPLM 680

while maintaining the same level of accuracy. 681

8

Limitations682

This model assumes a semi-honest security model,683

meaning that both the client and server follow the684

agreed-upon protocol. This assumption is standard685

for all HE-based PPLM models, as homomorphic686

encryption itself is designed within the semi-honest687

framework. If the possibility of a malicious client688

or server deviating from the protocol were con-689

sidered, an MPC-based PPLM model would be690

required instead, which would lead to an extreme691

increase in computational resource requirements.692

However, even under the semi-honest assumption,693

HE-based PPLM models can still adequately en-694

sure data privacy in cloud AI systems. Notably,695

even if the server does not fully adhere to the pro-696

tocol, it cannot extract any meaningful information697

from the client’s data due to the inherent security698

properties of HE. Given that there is no strong in-699

centive for the server to act maliciously in a practi-700

cal setting, assuming a semi-honest security model701

remains a realistic and reasonable approach.702

References703

Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong,704
Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li,705
and Furu Wei. 2022. The-x: Privacy-preserving trans-706
former inference with homomorphic encryption. In707
Findings of the Association for Computational Lin-708
guistics: ACL 2022, pages 3510–3520.709

Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran710
Kim, and Yongsoo Song. 2019. A full rns variant of711
approximate homomorphic encryption. In Selected712
Areas in Cryptography–SAC 2018: 25th International713
Conference, Calgary, AB, Canada, August 15–17,714
2018, Revised Selected Papers 25, pages 347–368.715
Springer.716

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo717
Song. 2017. Homomorphic encryption for arithmetic718
of approximate numbers. In Advances in Cryptology–719
ASIACRYPT 2017: 23rd International Conference720
on the Theory and Applications of Cryptology and721
Information Security, Hong Kong, China, December722
3-7, 2017, Proceedings, Part I 23, pages 409–437.723
Springer.724

Wonhee Cho, Guillaume Hanrot, Taeseong Kim, Minje725
Park, and Damien Stehlé. 2024. Fast and accurate726
homomorphic softmax evaluation. In Proceedings of727
the 2024 on ACM SIGSAC Conference on Computer728
and Communications Security, pages 4391–4404.729

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu,730
Derun Zhao, Jin Tan, Zhicong Huang, Cheng Hong,731
Tao Wei, and Wenguang Chen. 2023. Puma: Secure732
inference of llama-7b in five minutes. arXiv preprint733
arXiv:2307.12533.734

Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yong- 735
soo Song. 2018. Secure outsourced matrix compu- 736
tation and application to neural networks. In Pro- 737
ceedings of the 2018 ACM SIGSAC conference on 738
computer and communications security, pages 1209– 739
1222. 740

Eunsang Lee, Joon-Woo Lee, Jong-Seon No, and Young- 741
Sik Kim. 2021. Minimax approximation of sign 742
function by composite polynomial for homomorphic 743
comparison. IEEE Transactions on Dependable and 744
Secure Computing, 19(6):3711–3727. 745

Dacheng Li, Hongyi Wang, Rulin Shao, Han Guo, Eric 746
Xing, and Hao Zhang. 2023. Mpcformer: Fast, per- 747
formant and private transformer inference with mpc. 748
In International Conference on Learning Representa- 749
tions. 750

Wen-jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian 751
Liu, Cheng Hong, Kui Ren, Tao Wei, and WenGuang 752
Chen. 2023. Bumblebee: Secure two-party inference 753
framework for large transformers. Cryptology ePrint 754
Archive. 755

Jinglong Luo, Yehong Zhang, Zhuo Zhang, Jiaqi Zhang, 756
Xin Mu, Hui Wang, Yue Yu, and Zenglin Xu. 2024. 757
Secformer: Fast and accurate privacy-preserving in- 758
ference for transformer models via smpc. In Findings 759
of the Association for Computational Linguistics ACL 760
2024, pages 13333–13348. 761

Jungho Moon, Dongwoo Yoo, Xiaoqian Jiang, and Mi- 762
ran Kim. 2024. Thor: Secure transformer inference 763
with homomorphic encryption. Cryptology ePrint 764
Archive. 765

Qi Pang, Jinhao Zhu, Helen Möllering, Wenting 766
Zheng, and Thomas Schneider. 2024. Bolt: Privacy- 767
preserving, accurate and efficient inference for trans- 768
formers. In 2024 IEEE Symposium on Security and 769
Privacy (SP), pages 4753–4771. IEEE. 770

Donghwan Rho, Taeseong Kim, Minje Park, Jung Woo 771
Kim, Hyunsik Chae, Jung Hee Cheon, and Ernest K 772
Ryu. 2024. Encryption-friendly llm architecture. 773
arXiv preprint arXiv:2410.02486. 774

Alex Wang. 2018. Glue: A multi-task benchmark and 775
analysis platform for natural language understanding. 776
arXiv preprint arXiv:1804.07461. 777

Jiawen Zhang, Xinpeng Yang, Lipeng He, Kejia Chen, 778
Wen-jie Lu, Yinghao Wang, Xiaoyang Hou, Jian Liu, 779
Kui Ren, and Xiaohu Yang. 2024. Secure transformer 780
inference made non-interactive. Cryptology ePrint 781
Archive. 782

Itamar Zimerman, Allon Adir, Ehud Aharoni, Matan 783
Avitan, Moran Baruch, Nir Drucker, Jenny Lerner, 784
Ramy Masalha, Reut Meiri, and Omri Soceanu. 785
2024a. Power-softmax: Towards secure llm in- 786
ference over encrypted data. arXiv preprint 787
arXiv:2410.09457. 788

9

Itamar Zimerman, Moran Baruch, Nir Drucker, Gilad789
Ezov, Omri Soceanu, and Lior Wolf. 2024b. Con-790
verting transformers to polynomial form for secure791
inference over homomorphic encryption. In Interna-792
tional Conference on Machine Learning.793

A Extended Preliminaries794

A.1 Transformer795

In this paper, we focus on homomorphically imple-796

menting a Transformer-based model, BERT (Bidi-797

rectional Encoder Representations from Transform-798

ers) using the RNS-CKKS scheme (specifically,799

BERT-base model). The BERT-base model con-800

sists of 12 identical encoder blocks, where each801

encoder block sequentially performs multi-head at-802

tention, layer normalization, feed-forward network,803

and layer normalization.804

First, the input sentence is tokenized, and each805

token undergoes an embedding process to become806

a fixed-size vector. After embedding, we obtain the807

L× dm matrix X , which serves as the input to the808

first encoder block. The multi-head attention mech-809

anism has h heads, and for each head, the query,810

key, and value matrices are computed by multi-811

plying the input matrix X with the correspond-812

ing weight matrices. If the query, key, and value813

weight matrices for head j (j = 0, 1, · · · , h−1) are814

denoted as W (j)
Q , W (j)

K , and W (j)
V ∈ Rdm×dm/h,815

respectively, the following matrix multiplications816

need to be performed:817

Q(j) = XW
(j)
Q ,K(j) = XW

(j)
K , V (j) = XW

(j)
V .
(3)818

For each head, the following L× L matrix is com-819

puted:820

Q(j)K(j)T√
d/2

(4)821

Next, apply softmax and multiply by V (j) to obtain822

the following L× dm/h matrix:823

Yj = softmax

(
Q(j)K(j)T√

d/2

)
V (j). (5)824

The Yj matrices for the multiple heads are con-825

catenated horizontally to form the L× dm matrix826

Y = [Y0|Y1| · · · |Yh−1]. After that, the weight ma-827

trix WO is multiplied on the right, and according828

to the skip connection, matrix X is added, result-829

ing in YWO +X , which completes the multi-head830

attention process.831

Next, layer normalization is performed to obtain 832

the matrix Y . In the subsequent feed-forward net- 833

work, the weight matrix WF1 ∈ Rdm×dh is first 834

multiplied to obtain YWF1, followed by applying 835

GELU and then multiplying by the second weight 836

matrix WF2 ∈ Rdh×dm on the right. After that, 837

layer normalization is performed. The process de- 838

scribed so far constitutes one encoder layer, and 839

the BERT model repeats this encoder layer several 840

times with the same structure, though with differ- 841

ent weight parameters. In this paper, our homomor- 842

phic implementation focuses on the BERT-base 843

model, which has parameters L = 128, dm = 768, 844

h = 12, and dh = 3072. Figure 1 shows the ar- 845

chitecture of one encoder block in the BERT-base 846

model. 847

MatMul MatMul MatMul

Transpose

MatMul

Softmax

MatMul

Concat

MatMul

Add&Norm

MatMul

GeLU

MatMul

Add&Norm

128x768

128x768

128x64

128x768

768x128

128x128

128x128

128x64

128x768

128x768

128x768

128x3072

128x3072

128x768

128x768

Q K V

KT

X12
(12 heads)

X

Figure 1: Overview of one encoder block of BERT-base
Transformer architecture.

A.2 Homomorphic Encryption 848

HE is a cryptographic algorithm designed to per- 849

form arbitrary arithmetic operations directly on en- 850

crypted data. The CKKS HE scheme is optimized 851

for real-number computations, which are widely 852

used in AI tasks, making it a key technique for im- 853

plementing HE-based privacy-preserving machine 854

learning models. The CKKS scheme enables the 855

encryption of a vector of length n, where the ele- 856

ments are either real or complex numbers. Specif- 857

ically, given a vector v = (v0, . . . , vn−1) ∈ Cn, it 858

produces a corresponding ciphertext ct. Several op- 859

erations can be performed directly on these cipher- 860

texts, including addition, plaintext multiplication, 861

ciphertext multiplication, rotation, and conjugation. 862

10

For two vectors v and w of length n, the op-863

erations v + w, v · w, and v̄ correspond to ele-864

mentwise addition, multiplication, and conjugation,865

respectively. Additionally, the cyclic left shift of866

v by r positions, denoted as ρ(v; r), is given by867

(vr, vr+1, . . . , vn−1, v0, . . . , vr−1). If ct1 and ct2868

represent the ciphertexts of vectors v1 and v2, re-869

spectively, the corresponding homomorphic opera-870

tions function as follows:871

• Addition: Add(ct1, ct2) = ctadd, where872

ctadd decrypts to v1 + v2. This operation can873

be written as ct1 + ct2.874

• Plaintext Multiplication: PMult(ct1, v2) =875

ctpmult, where ctpmult decrypts to v1 · v2. It876

can be expressed as v2 · ct1.877

• Ciphertext Multiplication: CMult(ct1, ct2) =878

ctcmult, where ctcmult decrypts to v1 · v2. This879

can be written as ct1 · ct2.880

• Rotation: Rot(ct1; r) = ctrot, where ctrot de-881

crypts to ρ(v1, r).882

• Multiplication by i: Multi(ct1) = ctmulti,883

where ctmulti decrypts to i · v1884

• Conjugation: Conj(ct1) = ctconj, where ctconj885

decrypts to v̄1.886

A.3 Homomorphic Matrix Multiplication887

In this section, we first define column packing. Let888

{cti}1≤i≤d1d2/n denote the ciphertexts obtained by889

column-packing the matrix A ∈ Rd1×d2 . For sim-890

plicity, assume d1 | n and n | d1d2. If m(i) ∈ Rn891

is the decrypted vector of cti, then for 0 ≤ j < n,892

we have893

m(i)[j] = A
[j]d1 ,

n
d1

(i−1)+
⌊

j
d1

⌋.894

We denote by [A]C the set of plaintext vectors895

{m(i) ∈ Rn}1≤i≤d1d2/n that store the matrix A896

in a column-packed manner. If n = d1d2, then897

[A]C is simply m(1).898

For some constant vectors ai, bi, cℓ, c
′
ℓ,899

the following equations hold: [σ(A)]C =900 ∑
0≤i<d

bi ⊙ ρ([A]C ; di) , [τ(A)]C =901 ∑
−d<i<d

ai ⊙ ρ([A]C ; i), [ϕℓ(A)]C = ρ([A]C ; dℓ),902

[ψℓ(A)]C = cℓρ([A]C ; ℓ)+c
′
ℓρ([A]C ; ℓ−d). Then,903

these equations naturally lead to a homomorphic904

CCMM algorithm for column packing.905

Now, we describe the CCMM algorithm of Jiang 906

et al. (Jiang et al., 2018) under the column pack- 907

ing approach. Suppose we have d × d matrices 908

A and B. First, Algorithm 2 takes as input the 909

ciphertexts of [A]C and outputs the ciphertexts 910

of [σ(A)]C . Algorithm 3 takes as input the ci- 911

phertexts of [A]C and outputs the ciphertexts of 912

[τ(A)]C . In Algorithm 2, we use N1, N2 satisfying 913

N1N2 = d, and typically set N1 = N2 ≈
√
d. In 914

Algorithm 3, we haveN1N2 = 2d−1 and typically 915

set N1 = N2 ≈
√
2d− 1. With these choices, the 916

two algorithms respectively require about 2
√
d and 917

2
√
2d rotations. 918

Algorithm 2: Sigma
Input: ct
Output: ct′

1 ct′ ← ctzero
2 for i← 0 to N1 − 1 do
3 ct(i) ← Rot(ct; di)
4 end
5 for j ← 0 to N2 − 1 do
6 ct′′ ← ctzero
7 for i← 0 to N1 − 1 do
8 ct′′ ←

ct′′ + ρ(bN1j+i;−dN1j)⊙ ct(i)
9 end

10 ct′ ← ct′ + Rot(ct′′; dN1j)

11 end
12 return ct′

Algorithm 3: Tau
Input: ct
Output: ct′

1 ct′ ← ctzero
2 for i← 0 to N1 − 1 do
3 ct(i) ← Rot(ct; i)
4 end
5 for j ← 0 to N2 − 1 do
6 ct′′ ← ctzero
7 for i← 0 to N1 − 1 do
8 ct′′ ← ct′′+ρ(aN1j+i−d+1;−N1j+

d− 1)⊙ ct(i)
9 end

10 ct′ ← ct′ + Rot(ct′′;N1j − d+ 1)

11 end
12 return ct′

Algorithm 4 takes as input the ciphertexts of 919

[A]C and [B]C and outputs the ciphertexts of 920

11

[AB]C . It can be carried out using approximately921

3d+ 2
√
d+ 2

√
2d rotations and d non-scalar mul-922

tiplications.923

Algorithm 4: CCMM algorithm for col-
umn packing (Jiang et al., 2018)
Input: ct1 and ct2
Output: ct′

1 ct′ ← ctzero
2 ct1 ← Sigma(ct1)
3 ct2 ← Tau(ct2)
4 for i← 0 to d− 1 do
5 ct′1 ← Rot(ct1; di)
6 ct′2 ←

ci ⊙ Rot(ct2; i) + c′i ⊙ Rot(ct2; i− d)
7 ct′ ← ct′ + ct′1 ⊗ ct′2
8 end
9 return ct′

B Details for Pseudo-Sign Composite924

Approximation925

The following theorem is essential for proving the926

correctness of the pseudo-sign composite approxi-927

mation.928

Theorem B.1. For any (ϵ, δ)-approximate min-929

imax composite polynomial for sign function930

p(x) = (pt−1 ◦ · · · ◦ p0)(x), there exists ϵ′ such931

that ϵ < ϵ′ < 1 and f(ϵ′) = −f(−ϵ′) = 1 + δ932

holds, and p(x) monotonously increase in the in-933

terval [−ϵ′, ϵ′].934

Proof. We prove this by mathematical induction.935

First, we show that the theorem holds for a single936

minimax polynomial p0. Then, assuming that the937

minimax composite polynomial pn−2 ◦ · · · ◦ p0 sat-938

isfies the given property, we prove that the minimax939

composite polynomial pn−1 ◦ · · · ◦ p0, obtained by940

composing pn−1, also satisfies the same property.941

Let us first verify whether the theorem holds942

for a single minimax polynomial. It is well known943

that the minimax polynomial of an odd function is944

also an odd function. If the degree of the minimax945

polynomial p0 is d = 2ℓ− 1, then this polynomial946

minimizes ∥p − sign∥∞,D among all polynomi-947

als of degree at most d + 1 = 2ℓ on the domain948

D = [−1,−ϵ] ∪ [ϵ, 1]. According to the Cheby-949

shev alternation theorem, the number of local ex-950

treme points of p(x)− sign(x) within D must be951

d+ 3 = 2ℓ+ 2. However, a polynomial of degree952

d = 2ℓ−1 over R can have at most d−1 = 2ℓ−2953

local extreme points. On D, the boundary points 954

of D can also be local extreme points. Thus, to 955

satisfy the Chebyshev alternation theorem, all four 956

boundary points of D and the local extreme points 957

of R must lie in D, and these points must all be 958

distinct. Consequently, p(x)− sign(x) = p(x)− 1 959

cannot have extreme points within [0, ϵ], meaning 960

that p(x) must be monotonic in this interval. Since 961

0 = p(0) ≤ 1 − δ ≤ p(ϵ), it follows that p(x) 962

is monotonically increasing in [0, ϵ]. Additionally, 963

since x = ϵ is not a local extreme point over R, the 964

sign of the derivative near x = ϵ cannot change. 965

Thus, p(x) must continue increasing, and x = ϵ is 966

a local minimum point, satisfying p(ϵ)− 1 = −δ. 967

Let ϵ′ denote the smallest local extreme point 968

greater than ϵ. By the Chebyshev alternation the- 969

orem, x = ϵ′ must be a local maximum point, so 970

p(ϵ′)−1 = δ. This implies that p(x)−1 must be an 971

increasing function on [ϵ, ϵ′]. Consequently, p(x) is 972

monotonically increasing on [0, ϵ′]. Since p(x) is 973

an odd function, it follows that p(x) is also mono- 974

tonically increasing on [−ϵ′, ϵ′]. Thus, we conclude 975

that the theorem holds for a single minimax poly- 976

nomial. 977

Let us prove the second inductive step. Assume 978

that p̃ = pn−2 ◦ · · · ◦ p0 satisfies the theorem. This 979

polynomial is also an (ϵ, δ̃)-approximate minimax 980

composite polynomial for some δ̃, meaning there 981

exists ϵ̃′ such that p̃(x) is monotonically increasing 982

on [−ϵ̃′, ϵ̃′] and satisfies p̃(ϵ̃′) = 1 + δ̃. By the defi- 983

nition of minimax composition, the approximation 984

domain of pn−1 isDn−1 = [−1− δ̃,−1+ δ̃]∪ [1− 985

δ̃, 1 + δ̃]. Since pn−1 is a single minimax polyno- 986

mial, from the result of the first inductive step, there 987

exists ϵ′′ such that 1− δ̃ < ϵ′′ < 1+ δ̃, and pn−1(x) 988

is monotonically increasing on [−ϵ′′, ϵ′′], satisfying 989

pn−1(ϵ
′′) = 1 + δ. Also, there must exist ϵ′ within 990

[0, ϵ̃′] such that p̃(ϵ′) = ϵ′′. As [−ϵ′, ϵ′] ⊂ [−ϵ̃′, ϵ̃′], 991

p̃(x) is monotonically increasing within [−ϵ′, ϵ′], 992

and pn−1 ◦ p̃ = pn−1 ◦ · · · ◦ p0 is also monotoni- 993

cally increasing within [−ϵ′, ϵ′]. Additionally, since 994

pn−1(p̃(ϵ
′)) = pn−1(ϵ

′′) = 1 + δ, the second in- 995

ductive condition is satisfied. Thus, the theorem is 996

proven. 997

The core principle of Algorithm 1 is as follows. 998

Without loss of generality, let us fix the approxima- 999

tion interval to [−1, 1] and assume that the pseudo- 1000

sign function f is approximated within this inter- 1001

val. The goal is to find a polynomial p(x) such that 1002

∥f(x)− p(x)∥∞,[−1,1] < δ. The pseudo-sign func- 1003

tion considered in this method converges rapidly 1004

12

to ±1, resulting in intervals sufficiently close to1005

±1 being long enough to matter. At the same time,1006

the transition regions where f(x) approaches ±11007

cannot be ignored and must be accurately approx-1008

imated. Therefore, it is reasonable to assume that1009

there exists a γ ∈ (0, 1] such that f(γ) = 1− δ/2.1010

Given this, consider a (γ, δ/4
1−δ/4)-approximate min-1011

imax composite polynomial for the sign function,1012

denoted as pcom(x). Then, we have1013

∥pt−1 ◦ · · · ◦ p0− sign∥∞,[−1,−γ]∪[γ,1] ≤
δ/4

1− δ/4
.1014

We define a scaled composite polynomial1015

pscale(x) = (1 − δ
4)pcom(x), which satisfies the1016

following conditions:1017 ∥∥∥∥pscale − (1− δ

4

)
· sign

∥∥∥∥
∞,[−1,−γ]∪[γ,1]

1018

≤ δ/4

1− δ/4
·
(
1− δ

4

)
=
δ

4
1019

Next, we approximate f within the interval [0, γ].1020

By Theorem 4.1, there exists a γ′ > 0 such that1021

pscale(x) is a monotonically increasing function on1022

[−γ′, γ′] and satisfies pscale(γ′) = 1. Let p̃scale(x)1023

denote the restriction of pscale(x) to the domain1024

[−γ′, γ′]. Since p̃scale(x) is monotonically increas-1025

ing, it has an inverse function. Using this inverse,1026

we can define g = f ◦ p̃−1
scale : [−1, 1] → [−1, 1].1027

We refer to g(x) as the transformation function.1028

This function is smooth and can be approximated1029

by a single minimax polynomial pg(x) such that1030

∥pg − g∥∞,[−1,1] ≤
δ

2
.1031

Finally, we can approximate f(x) using the com-1032

posite polynomial1033

pf (x) = pg ◦ pscale(x).1034

This construction ensures that f(x) is approxi-1035

mated with high accuracy while maintaining the de-1036

sired properties of the pseudo-sign function within1037

the given interval. The specific approximation1038

method is detailed in Algorithm 1.1039

Below is the formal proof of the main theorem.1040

Proof. (Proof of)1041

Since each function is odd, it suffices to check1042

for positive inputs only.1043

• If 0 ≤ x ≤ γ, then f(x) = g(pscale(x)) and 1044

pf (x) = pg(pscale(x)) as x ≤ γ < γ′. Since 1045

pscale(x) ∈ [−1, 1], it follows that 1046

|pf (x)− f(x)| = |pg(pscale(x))− g(pscale(x))| 1047

≤ δ/2 < δ. 1048

Thus, ∥pf − f∥∞,[0,γ] < δ is satisfied. 1049

• If γ ≤ x ≤ 1, then ∥pscale(x)− (1− δ/4)∥ ≤ 1050

δ/4, which implies 1− δ/4 ≤ pscale(x) ≤ 1. 1051

Define x̃ = p̃−1
scale◦pscale(x). By definition, we 1052

have γ ≤ x̃ ≤ x ≤ 1. Since f(x) has a range 1053

within [1 − δ/2, 1] for x ∈ [γ, 1], it follows 1054

that |f(x̃) − f(x)| ≤ δ/2. For γ ≤ x̃ ≤ γ′, 1055

we know f(x̃) = g ◦ p̃scale(x̃) = g ◦pscale(x̃). 1056

Furthermore, by the definition of x̃, we have 1057

pf (x) = pg ◦ pscale(x) = pg ◦ pscale(x̃) = 1058

pf (x̃). This allows us to deduce that 1059

|pf (x)− f(x̃)| = |pf (x̃)− f(x̃)| 1060

= |pg(pscale(x̃))− g(pscale(x̃))|. 1061

Since pscale(x̃) ∈ [−1, 1], it follows that 1062

|pf (x)−f(x̃)| = |pg(pscale(x̃))−g(pscale(x̃))| ≤ δ/2.1063

Finally, combining these results, we obtain 1064

|pf (x)−f(x)| 1065

≤ |pf (x)− f(x̃)|+ |f(x̃)− f(x)| 1066

≤ δ/2 + δ/2 = δ. 1067

Thus, ∥pf − f∥∞,[γ,1] ≤ δ is satisfied. 1068

Due to the odd-function property of f(x), this 1069

result holds symmetrically for x ∈ [−1, 0] as well. 1070

Therefore, combining the results for all intervals, 1071

we conclude that 1072

∥pf − f∥∞,[−1,1] ≤ δ. 1073

1074

C Detailed Algorithms for Optimized 1075

Matrix Multiplication 1076

C.1 Packing Method 1077

In this paper, we use a new packing method called 1078

modified column packing instead of column pack- 1079

ing. Suppose we have a matrix A of size d1 × d2 1080

and a natural number k satisfying k|d1 and k| nd1 . 1081

For simplicity, assume n|d1d2. The modified col- 1082

umn packing for k takes A as input and outputs 1083

13

{cti}1≤i≤ d1d2
n

, where each cti encrypts a vector1084

m(i) ∈ Rn defined by1085

m(i)[j] = A
[j]d1 , k

[⌊
j
d1

⌋]
n

kd1

+⌊ kjn ⌋+ n
d1

(i−1)
1086

for 0 ≤ j < n. We denote the set of vectors1087

{m(i)}
1≤i≤ d1d2

n

by [A]kC . When d1d2 = n, [A]kC1088

is simply m(1). Blockwise matrix operation al-1089

gorithms based on this modified column packing1090

method require fewer rotations compared to block-1091

wise algorithms based on column packing. We en-1092

sure that any intermediate matrix computed dur-1093

ing BERT model inference is always packed us-1094

ing modified column packing with the parameter1095

k = 64. Figure 2 illustrates both the column pack-1096

ing and modified column packing methods.1097

C.2 Optimized CPMM1098

In this paper, we present a CPMM algorithm based1099

on modified column packing. For the matrices1100

A ∈ Rd1×d2 and B ∈ Rd2×d3 , consider the sit-1101

uation of computing the matrix product AB. Let1102

k|d1, k|d2, and k|d3. The proposed algorithm com-1103

putes the ciphertexts corresponding to [AB]kC from1104

the ciphertexts of [A]kC . The columns of the input1105

matrix are packed into a total of mid = d1d2
n ci-1106

phertexts, {cti}1≤i≤mid, and the columns of the1107

output matrix are packed into a total of ed = d1d3
n1108

ciphertexts, {ct′i}1≤i≤ed.1109

Based on the fact that each column of the output1110

matrix can be expressed as a linear combination1111

of the columns of the input matrix, the following1112

equation can be derived:1113

ct′ℓ =
∑

1≤j≤mid

∑
0≤i< n

d1

Rot(ctj ; id1)⊙ d′j,ℓi . (6)1114

for 1 ≤ ℓ ≤ ed. Here, d′j,ℓi ∈ Rn stores the el-1115

ements of matrix B appropriately. By applying1116

the baby-step giant-step technique to the above1117

equation, it can be transformed into the following1118

form for some natural numbers N1, N2 satisfying1119

N1N2 =
n
d1

:1120

ct′ℓ =
∑

0≤p<N2

Rot(
∑

1≤j≤mid

∑
0≤q<N1

Rot(ctj ; qd1)1121

⊙ ρ(d′j,ℓpN1+q;−pN1d1); pN1d1). (7)1122

for 1 ≤ ℓ ≤ ed. Algorithm 5 is derived from the1123

above equation. This algorithm uses mid · N1 +1124

ed · N2 rotations, and when N1 and N2 satisfy1125

mid · N1 = ed · N2, it requires approximately 1126

2
√

n
d1
·mid · ed rotations. 1127

Note that in the main text, our CPMM algorithm 1128

is described under column packing, whereas in the 1129

appendix, it is described under modified column 1130

packing. For both packing methods, Equation 6 re- 1131

mains valid (only the plaintext vectors d′j,ℓi change). 1132

Hence, the algorithm’s procedure and computa- 1133

tional complexity are exactly the same. 1134

Algorithm 5: CPMM algorithm
Input: {ctj}1≤j≤mid

Output: {ct′ℓ}1≤ℓ≤ed

1 for j ← 1 to mid do
2 for q ← 0 to N1 − 1 do
3 ct

(q)
j ← Rot(ctj ; qd1)

4 end
5 end
6 for ℓ← 1 to ed do
7 ct′ℓ ← ctzero
8 for p← 0 to N2 − 1 do
9 ct′ ← ctzero

10 for j ← 1 to mid do
11 for q ← 0 to N1 do
12 ct′ ← ct′ + ct

(q)
j ⊙

ρ(d′j,ℓpN1+q;−pN1d1)

13 end
14 end
15 ct′ℓ ← ct′ℓ + Rot(ct′; pN1d1)

16 end
17 end
18 return {ct′ℓ}1≤ℓ≤ed

In addition, we speed up Algorithm 5 by making 1135

appropriate use of complex numbers. The follow- 1136

ings explain how complex numbers are utilized, 1137

depending on the specific case. 1138

Q,K, V Calculation In the BERT-base model, 1139

from the input matrix X ∈ RL×dm , we need to 1140

compute Q(j) = XW
(j)
Q ,K(j) = XW

(j)
K , V (j) = 1141

XW
(j)
V for W (j)

Q ,W
(j)
K ,W

(j)
V ∈ Rdm×dm/h where 1142

0 ≤ j < h. We have parameters L = 128, dm = 1143

768, and h = 12. This can be viewed as com- 1144

puting XW for one large matrix W ∈ Rdm×3dm 1145

obtained by concatenating all the smaller matrices. 1146

Consequently, it suffices to compute the following 1147

14

equation.1148

ct′ℓ =
∑

1≤j≤mid

∑
0≤i< n

L

Rot(ctj ; iL)⊙ d′j,ℓi (8)1149

for 1 ≤ ℓ ≤ ed. Here, mid = Ldm
n = 3 and ed =1150

3Ldm
n = 9. We need to compute the expression for1151

a total of ed = 9 output ciphertexts. By making use1152

of complex numbers, the expression for any two1153

ciphertexts ct′ℓ1 and ct′ℓ2 can be computed at once1154

as follows:1155

ct′ =
∑

1≤j≤mid

∑
0≤i< n

L

Rot(ctj ; iL)⊙(d′j,ℓ1i +id′
j,ℓ2
i)

(9)1156

Afterward, by using the Extract algorithm, which1157

extracts the real and imaginary parts, we obtain1158

ct′ℓ1 , ct
′
ℓ2

= Extract(ct′). Thus, by pairing up 8 of1159

the 9 output ciphertexts in twos, we only need to1160

compute the expression for a total of 5 ciphertexts1161

(ed = 5). When using the baby-step giant-step1162

algorithm, the number of rotations is approximately1163

2
√

n
L · 3 · 5, which is

√
5
9 times the 2

√
n
L · 3 · 91164

required by Algorithm 5.1165

Multiplication with WO or WF1 The concate-1166

nated attention matrix Y ∈ RL×dm is multiplied1167

by WO ∈ R768×768. In the feed-forward network,1168

Y ∈ RL×dm is multiplied by WF1 ∈ Rdm×dh1169

(where dh = 3072). In both cases, we can make1170

use of complex numbers to combine the expres-1171

sions for two ciphertexts in the same way, thereby1172

reducing ed from 3 → 2 and from 12 → 6, re-1173

spectively. Consequently, the number of rotations1174

in each case is reduced to
√

2
3 and

√
1
2 times that1175

of Algorithm 5.1176

Multiplication withWO In multi-head attention,1177

the concatenated result matrix Y ∈ R128×768 is1178

multiplied by WO ∈ R768×768. In this case, we1179

need to compute Equation 8 for 1 ≤ ℓ ≤ 3, and as1180

in the computation of Q,K, and V , we can use1181

complex numbers to merge the expressions for1182

two output ciphertexts into one. Consequently, the1183

number of rotations is 2
√

n
L ·mid · 2, which is

√
2
31184

times the 2
√

n
L ·mid · 3 required by Algorithm 5.1185

Multiplication with WF1 When multiplying1186

Y ∈ R128×768 by WF1 ∈ R768×3072, the param-1187

eters are mid = 3 and ed = 12, so Equation 81188

must be computed for the 12 ciphertexts ct′ℓ (for1189

1 ≤ ℓ ≤ 12). By similarly utilizing complex num-1190

bers to pair these ciphertexts, we only need to com-1191

pute it for the 6 ciphertexts. The number of rota- 1192

tions is 2
√

n
L ·mid · 6, which is

√
2 times fewer 1193

than the 2
√

n
L ·mid · 12 required by Algorithm 5. 1194

�

column packing for �

modified column packing for � with � = 2

���

���

���

���

Figure 2: Column packing and modifid column packing
with k = 2 for d1 = 2, d2 = 12, and n = 12.

C.3 CCMM for Square Matrix 1195

In this section, we present a new algorithm that is 1196

faster than the CCMM algorithm of Jiang et al. We 1197

begin with the following Equation: 1198

A ·B =
d−1∑
ℓ=0

(ϕℓ ◦ σ(A))⊙ (ψℓ ◦ τ(B)). 1199

First, we note that the operation ψi satisfies the 1200

following equation: 1201

[ψi(A)]C = ρ([A]C ⊙Ri + ρ([A]C ;−d)⊙ Li; i)
(10) 1202

Here, the constant vectors Ri, Li ∈ Rn for 0 ≤ 1203

i < d are defined as follows: 1204

Ri[j] =

{
1: [j]4 ≤ 4− i
0: else

Li[j] =

{
1: [j]4 < i
0: else.

1205

for 0 ≤ j < n. 1206

Then, for A′ = σ(A), B′ = τ(B), and natural 1207

numbers N1, N2 satisfying N1N2 = d, the follow- 1208

15

ing equation holds.1209

[
∑

0≤ℓ<d

ϕℓ(A
′)⊙ ψℓ(B

′)]C1210

=
∑

0≤ℓ<d

ρ([A′]C ; ℓd)⊙ [ψℓ(B
′)]C1211

=
∑

0≤j<N2

∑
0≤i<N1

ρ([A′]C ; (N1j + i)d)1212

⊙ [ψN1j+i(B
′)]C1213

=
∑

0≤j<N2

ρ(
∑

0≤i<N1

ρ([A′]C ; id)⊙1214

ρ([ψN1j+i(B
′)]C ;−N1jd);N1jd)1215

=
∑

0≤j<N2

ρ(
∑

0≤i<N1

ρ([A′]C ; id)⊙ ρ([B′]C⊙1216

RN1j+i + ρ([B′]C ;−d)⊙ LN1j+i;1217

N1j + i−N1jd);N1jd).1218

Algorithm 6 describes the CCMM algorithm1219

based on the final equation above. It requires1220

2
√
d+2

√
2d+N2+N1+N1N2 rotations, which1221

becomes d+ 2
√
2d+ 4

√
d when N1 = N2 =

√
d.1222

Moreover, by using the lazy relinearization tech-1223

nique—where all non-scalar multiplication results1224

in the loop over j are summed up first and then1225

relinearized only once at the end—the total number1226

of relinearizations used is
√
d. Consequently, the1227

total number of key-switches is d+ 2
√
2d+ 5

√
d,1228

which is smaller than the 4d + 2
√
2d + 2

√
d re-1229

quired by Algorithm 4 (Jiang et al., 2018).1230

C.4 Blockwise Matrix Multiplication1231

By using the modified column packing method, we1232

can obtain homomorphic algorithms for σ̃, τ̃ , ϕ̃, ψ̃1233

on n = d1d2. Each of these has the same computa-1234

tional complexity as its corresponding homomor-1235

phic algorithm for σ, τ, ϕ, ψ on n = k2, respec-1236

tively. In this section, we describe the algorithms1237

for the proposed blockwise matrix operations. Let1238

A,B ∈ Rd1×d2 and suppose we have a k such1239

that k|d1 and k|d2. We define σ̃ and τ̃ to be the1240

operations that apply σ and τ , respectively, block1241

by block. Also, let A⊡B denote the result of the1242

blockwise (with block size k) multiplication of A1243

and B.1244

Similar to the equation [σ(A)]C =
∑

0≤i<k

bi ⊙1245

ρ([A]C ; ki), we have [σ̃(A)]kC =
∑

0≤i<k

b′i ⊙1246

ρ([A]kC ;
d1d2
k i) where each vector b′i ∈ Rd1d2 is ob-1247

tained by splitting bi ∈ Rk2 into chunks of size k1248

and repeating each chunk d1d2
k2

times. Similarly, just1249

Algorithm 6: CCMM algorithm
Input: ct1 and ct2
Output: ct′

1 ct′ ← ctzero
2 ct1 ← Sigma(ct1)
3 ct2 ← Tau(ct2)
4 ct′2 ← Rot(ct2;−d)
5 for j ← 0 to N2 − 1 do
6 ct(j) ← Rot(ct1; jd)
7 end
8 for i← 0 to N1 − 1 do
9 ct′′ ← ctzero

10 for j ← 0 to N2 − 1 do
11 ct′′ ←

ct′′ + ct(j) ⊗ Rot(ct2 ⊙RN1i+j +
ct′2 ⊙ LN1i+j ;N1i+ j −N1id)

12 end
13 ct′ ← ct′ + Rot(ct′′;N1id)

14 end
15 return ct′

as τ for a k × k matrix is expressed as [τ(A)]C = 1250∑
−k<i<k

ai⊙ ρ
(
[A]C ; i

)
, τ̃ for a d1× d2 matrix can 1251

be written as [τ̃(A)]kC =
∑

−k<i<k

a′i ⊙ ρ
(
[A]kC ; i

)
. 1252

Similarly, just as [ϕi(A)]C = ρ([A]C ; ki), we 1253

have [ϕ̃i(A)]kC = ρ([A]kC ;
d1d2
k i). Likewise, just as 1254

[ψi(A)]C = ci⊙ρ([A]C ; i)+ c′iρ([A]C ; i−k), we 1255

have [ψ̃i(A)]kC = c̄i⊙ρ([A]kC ; i)+ c̄′i⊙ρ([A]kC ; i− 1256

k). Therefore, the blockwise operations share the 1257

same computational complexity (i.e., the same 1258

number of rotations) as the original operations, 1259

and the baby-step giant-step approach also retains 1260

the same complexity. For matrix transposition, the 1261

blockwise counterpart to [AT]C =
d−1∑

i=−d+1

si ⊙ 1262

ρ([A]C ; (d−1)i) is
d−1∑

i=−d+1

s′i⊙ρ([A]kC ; (2d−1)i), 1263

which likewise has the same computational cost. 1264

As an example, Figure 3 shows the algorithm for ϕ̃ 1265

when using modified column packing. 1266

Algorithm 6 can also be naturally extended to a 1267

blockwise (matrix multiplication for k) algorithm 1268

on a d1 × d2 matrix. The constant vectors Ri and 1269

Li used here are defined in the same way as in 1270

Section 5.2.1, with the only difference being that 1271

n = d1d2. Then, the following holds. 1272

16

� � = [1 2 3 4 5 6 7 8 9]

��
�
� = [1 2 3 10 11 12 4 5 6 13 14 15 7 8 9 16 17 18]

� � � = �(� � ; 3) = [4 5 6 7 8 9 1 2 3]

��(��)
�

�
= � ��

�
� ; 6

= [4 5 6 13 14 15 7 8 9 16 17 18 1 2 3 10 11 12]

column packing

modified
column
packing

741

852

963

161310

171411

181512

174

285

396

101613

111714

121815

��

741

852

963

174

285

396

�

�

�′

Figure 3: An algorithm for ϕ̃ using modified column
packing

[
∑

0≤ℓ<d

ϕ̃ℓ(A
′)⊙ ψ̃ℓ(B

′)]kC1273

=
∑

0≤ℓ<d

ρ([A′]kC ;
d1d2
k

ℓ)⊙ [ψ̃ℓ(B
′)]kC (11)1274

=
∑

0≤j<N2

∑
0≤i<N1

ρ([A′]kC ;
d1d2
k

(N1j + i))1275

⊙ [ψ̃N1i+j(B
′)]kC1276

=
∑

0≤j<N2

ρ(
∑

0≤i<N1

ρ([A′]kC ;
d1d2
k

i)⊙1277

ρ([ψ̃N1j+i(B
′)]kC ;−

d1d2
k

N1j);
d1d2
k

N1j)1278

=
∑

0≤j<N2

ρ(
∑

0≤i<N1

ρ([A′]kC ;
d1d2
k

i)⊙1279

ρ([B′]kC ⊙R′
N1j+i + ρ([B′]kC ;−k)⊙ L′

N1j+i;1280

N1j + i− d1d2
k

N1j);
d1d2
k

N1j).1281

The above derivations for blockwise operations1282

each correspond to their respective algorithms. Al-1283

gorithm 7 takes as input the ciphertexts of [A]kC and1284

outputs the ciphertexts of [σ̃(A)]kC . Algorithm 81285

takes as input the ciphertexts of [A]kC and outputs1286

the ciphertexts of [τ̃(A)]kC . Finally, Algorithm 91287

takes as input the ciphertexts of [A]kC and [B]kC and1288

outputs the ciphertexts of [A⊡B]kC .1289

Algorithm 10 is essentially Algorithm 9 with1290

only the BlockSigma and BlockTau steps removed,1291

allowing these steps to be computed separately. Al-1292

gorithm 10 is used in Algorithm 14. Algorithm 111293

describes the blockwise transpose operation. Let1294

ABT denote the matrix obtained by transposing1295

the matrix A ∈ Rd1×d2 in blocks of size k. Then,1296

Algorithm 11 takes as input the ciphertexts of [A]kC1297

and outputs the ciphertexts of [ABT]kC .1298

Algorithm 7: BlockSigma
Input: ct
Output: ct′

1 ct′ ← ctzero
2 for i← 0 to N1 − 1 do
3 ct(i) ← Rot(ct; d1d2k i)
4 end
5 for j ← 0 to N2 − 1 do
6 ct′′ ← ctzero
7 for i← 0 to N1 − 1 do
8 ct′′ ←

ct′′ + ρ(b′N1j+i;−
d1d2
k N1j)⊙ ct(i)

9 end
10 ct′ ← ct′ + Rot(ct′′; d1d2k N1j)

11 end
12 return ct′

Algorithm 8: BlockTau
Input: ct
Output: ct′

1 ct′ ← ctzero
2 for i← 0 to N1 − 1 do
3 ct(i) ← Rot(ct; i)
4 end
5 for j ← 0 to N2 − 1 do
6 ct′′ ← ctzero
7 for i← 0 to N1 − 1 do
8 ct′′ ← ct′′+ρ(a′N1j+i−k+1;−N1j+

k − 1)⊙ ct(i)
9 end

10 ct′ ← ct′ + Rot(ct′′;N1j − k + 1)

11 end
12 return ct′

C.5 CCMM for Multi-Head Attention 1299

In this section, we address the optimization of the 1300

CCMM computations required to calculate multi- 1301

head attention. Specifically, these are the operations 1302

for the Q(j)K(j)T multiplication and for multiply- 1303

ing the resulting matrix (after passing through the 1304

softmax) by V (j). We first introduce two compo- 1305

nent algorithms that make up this procedure. Al- 1306

gorithm 12 takes as input a ciphertext ct encrypt- 1307

ing a + bi and outputs the ciphertexts ctreal and 1308

ctimag encrypting a and b, respectively. This al- 1309

gorithm uses one key-switch for the conjugation 1310

operation. Any unnecessary level consumption aris- 1311

ing from multiplying by 0.5 can be addressed by 1312

compensating for the 0.5 factor in the constants 1313

17

Algorithm 9: Optimized blockwise
ciphertext-ciphertext matrix multiplication
algorithm BlockMult
Input: ct1 and ct2
Output: ct′

1 ct′ ← ctzero
2 ct1 ← BlockSigma(ct1)
3 ct2 ← BlockTau(ct2)
4 ct′2 ← Rot(ct2;−k)
5 for i← 0 to N1 − 1 do
6 ct(i) ← Rot(ct1; d1d2k i)
7 end
8 for j ← 0 to N2 − 1 do
9 ct′′ ← ctzero

10 for i← 0 to N1 − 1 do
11 ct′′ ←

ct′′ + ct(i) ⊗ Rot(ct2 ⊙R′
N1j+i +

ct′2 ⊙L′
N1j+i;N1j + i− d1d2

k N1j)

12 end
13 ct′ ← ct′ + Rot(ct′′; d1d2k N1j)

14 end
15 return ct′

used immediately before or after this step. In addi-1314

tion, Algorithm 13 handles the operation of taking1315

half of a matrix and copying it onto the other half.1316

The constant vectors y(0), y(1) ∈ Rn used in Algo-1317

rithm 13 are defined as follows:1318

y(i)[j] =

{
1− i : [j]S1 < S1/2
i : else

1319

for 0 ≤ j < n and 0 ≤ i ≤ 1.1320

For the CCMM computations in multi-head at-1321

tention, we appropriately employ blockwise op-1322

erations with k = 64. In addition, we use an1323

idea that utilizes complex number components to1324

reduce the computational cost. For example, if1325

we need to compute σ(A) and σ(B), we can in-1326

stead compute σ(A + Bi) and then separate the1327

real and imaginary parts, reducing the number of1328

calls to σ. The same approach applies to τ and1329

the transpose algorithm. Furthermore, when we1330

need to compute AB and AC, we can reduce the1331

number of multiplication algorithms by computing1332

A(B + Ci) instead. Additionally, if we need to1333

compute AB + CD, we can replace it by comput-1334

ing (A+Ci)(B −Di) and extracting the real part.1335

Algorithm 14 combines these ideas into a final op-1336

timized algorithm. Let Q = [Q(0)|Q(1)| · · · |Q(11)],1337

K = [K(0)|K(1)| · · · |K(11)], and V =1338

[V (0)|V (1)| · · · |V (11)]. Also, let the concatenated1339

Algorithm 10: Optimized blockwise
ciphertext-ciphertext matrix multiplication
algorithm BlockMult’ (without Sigma and
Tau)

Input: ct1 and ct2
Output: ct′

1 ct′ ← ctzero
2 ct′2 ← Rot(ct2;−k)
3 for i← 0 to N1 − 1 do
4 ct(i) ← Rot(ct1; d1d2k i)
5 end
6 for j ← 0 to N2 − 1 do
7 ct′′ ← ctzero
8 for i← 0 to N1 − 1 do
9 ct′′ ←

ct′′ + ct(i) ⊗ Rot(ct2 ⊙R′
N1j+i +

ct′2 ⊙L′
N1j+i;N1j + i− d1d2

k N1j)

10 end
11 ct′ ← ct′ + Rot(ct′′; d1d2k N1j)

12 end
13 return ct′

attention matrix be Y = [Y0|Y1| · · · |Y11] ∈ 1340

RL×dm . Then, Algorithm 14 takes the ciphertexts 1341

of [Q]kC , [K]kC , [V]kC as input and outputs the ci- 1342

phertexts of [Y]kC . 1343

In this algorithm, Soft is a function that 1344

briefly represents the softmax function; in prac- 1345

tice, since we replace the softmax function with 1346

an component-wise function, this operation can be 1347

carried out as a component-wise operation without 1348

any packing concerns. 1349

D Batch Layer Normalization 1350

E Full Experiment Result 1351

Table 5 presents the complete results of the dis- 1352

tillation experiments. The Baseline represents the 1353

performance of the original BERT model (teacher 1354

model) fine-tuned for downstream tasks, while Dis- 1355

till refers to the performance of the model after 1356

undergoing distillation training with batch power- 1357

max and batch layer normalization applied. The 1358

Loss represents the loss value during the distilla- 1359

tion process. 1360

The occurrence of feature explosion can be iden- 1361

tified by examining the loss value. At the loss 1362

computation points, the MSE between the distilled 1363

model’s outputs and the teacher model’s outputs 1364

is incorporated into the loss. If feature explosion 1365

18

Algorithm 11: BlockTrans
Input: ct
Output: ct′

1 ct′ ← ctzero
2 for i← 0 to N1 − 1 do
3 ct(i) ← Rot(ct; (2k − 1)i)
4 end
5 for j ← 0 to N2 − 1 do
6 ct′′ ← ctzero
7 for i← 0 to N1 − 1 do
8 ct′′ ← ct′′+ ρ(s′N1j+i−k+1;−(2k−

1)(N1j − k + 1))⊙ ct(i)
9 end

10 ct′ ←
ct′ +Rot(ct′′; (2k− 1)(N1j − k+1))

11 end
12 return ct′

Algorithm 12: Extract
Input: ct
Output: ctreal, ctimag

1 ct′ ← Conj(ct)
2 ctreal ← 0.5⊙ (ct+ ct′)
3 ctimag ← −0.5⊙Multi(ct− ct′)
4 return ctreal, ctimag

Algorithm 13: SplitPaste
Input: ct
Output: ct′1, ct′2

1 ct′1 ← ct⊙ y(0)
2 ct′1 ← ct′1 + Rot(ct′1;S1/2)
3 ct′2 ← ct⊙ y(1)
4 ct′2 ← ct′2 + Rot(ct′2;S1/2)
5 return ct′1, ct′2

occurs, this value increases excessively. In gen-1366

eral, loss values exceeding a single-digit number1367

indicate the presence of feature explosion. Addi-1368

tionally, as the l value increases from 1.0 to 1.5,1369

the frequency of feature explosion occurrences de-1370

creases, with counts of 6, 1, 2, 1, 1, and 0. This1371

trend demonstrates the effectiveness of introducing1372

the l parameter in mitigating feature explosion.1373

Table 6 presents the experimental results evalu-1374

ating the effectiveness of GK attention. The experi-1375

ment was conducted on the BERT-base model with1376

a fixed batch size of 16 and a learning rate of 5e-5.1377

Softmax represents the results obtained using the1378

standard softmax function, while GK denotes the1379

Algorithm 14: Optimized CCMM algo-
rithm for multi-head attention
Input: {ct′qi}1≤i≤3, {ct′ki}1≤i≤3, and

{ct′vi}1≤i≤3

Output: ctqkv1, ctqkv2, and ctqkv3
1 ĉtk2 ← ct′k2 +Multi(ct′k3)
2 ct′k1 ← BlockTrans(ct′k1)

3 ĉtk2 ← BlockTrans(ĉtk2)

4 ct′k2, ct
′
k3 ← ĉtk2

5 for i← 1 to 3 do
6 ctki,1, ctki,2 ← SplitPaste(ct′ki)

7 ĉtki ← ct′ki,1 +Multi(ct′ki,2)

8 end
9 ĉtq2 ← ct′q2 +Multi(ct′q3)

10 ct′q1 ← BlockSigma(ct′q1)

11 ct′q2, ct
′
q3 ← Extract(BlockSigma(ĉtq2))

12 for i← 1 to 3 do
13 ĉtqki ← BlockMult′(ct′qi, ĉtki)

14 ctqki,1, ctqki,2 ← SplitPaste(ĉtqki)
15 ctqki,1 ← Soft(ctqki,1)
16 ctqki,2 ← Soft(ctqki,2)

17 ĉtqki ← ctqki,1 +Multi(ctqki,2)

18 end
19 ct′v1,1, ct

′
v1,2 ← BlockTau(ct′v1)

20 ĉtv2 ← BlockTau(ct′v2 +Multi(ct′v3))

21 ct′v2, ct
′
v3 ← Extract(ĉtv2)

22 for i← 1 to 3 do
23 ct′vi,1, ct

′
vi,2 ← SplitPaste(ct′vi)

24 ĉtvi ← ct′vi,1 −Multi(ct′vi,2)

25 ĉtqki ← BlockSigma(ĉtqki)

26 ĉtqkvi ← BlockMult′(ĉtqki, ĉtvi)

27 ctqkvi,#← Extract(ĉtqkvi)

28 end
29 return ctqkv1, ctqkv2, and ctqkv3

results when applying GK attention. 1380

The results show that GK attention leads to an 1381

average performance degradation of 11.72% and a 1382

maximum degradation of 17.69%, indicating that it 1383

is not a suitable replacement for the standard soft- 1384

max function. Notably, this performance decline is 1385

more pronounced in certain tasks, demonstrating 1386

the limitations of GK attention in fully replacing 1387

softmax’s stable probability distribution generation 1388

capability. 1389

19

Seed 0 42 777

Task l Baseline Distill Loss Diff Baseline Distill Loss Diff Baseline Distill Loss Diff Feature Explosion

RTE

1 71.48 70.40 INF -1.08 69.31 68.95 4.62 -0.36 67.87 71.84 4.84 3.97 1
1.1 71.48 72.20 6.87 0.72 69.31 68.95 4.94 -0.36 67.87 73.29 1150.08 5.42 1
1.2 71.48 71.84 5.24 0.36 69.31 69.68 5.68 0.36 67.87 72.20 6.17 4.33 0
1.3 71.48 71.48 6.06 0.00 69.31 67.51 6.86 -1.81 67.87 73.65 5.73 5.78 0
1.4 71.48 72.92 6.28 1.44 69.31 67.87 7.49 -1.44 67.87 73.29 6.55 5.42 0
1.5 71.48 72.56 7.15 1.08 69.31 68.95 7.79 -0.36 67.87 72.56 7.66 4.69 0

MRPC

1 83.82 85.78 INF 1.96 85.54 85.29 INF -0.25 85.05 87.50 2.45 2.45 3
1.1 83.82 85.29 5.02 1.47 85.54 85.29 4.65 -0.25 85.05 87.25 5.72 2.21 0
1.2 83.82 85.29 5.05 1.47 85.54 85.29 3487813 0.00 85.05 86.76 6.54 1.72 1
1.3 83.82 85.78 5.53 1.96 85.54 85.78 5.83 -0.49 85.05 86.27 5.95 1.23 0
1.4 83.82 85.29 6.96 1.47 85.54 85.29 6.74 -0.25 85.05 86.52 6.84 1.47 0
1.5 83.82 85.05 7.89 1.23 85.54 85.05 7.70 -0.49 85.05 85.05 8.15 0.00 0

SST-2

1 92.66 91.97 3.16 -0.69 91.63 91.97 INF 0.00 91.97 91.97 INF 0.00 2
1.1 92.66 92.09 3.47 -0.57 91.63 92.09 2.88 0.00 91.97 92.09 3.73 0.11 0
1.2 92.66 92.20 2038.45 -0.46 91.63 92.20 3.31 0.00 91.97 92.20 4.22 0.23 1
1.3 92.66 91.86 4.55 -0.80 91.63 91.86 INF -0.11 91.97 91.86 4.34 -0.11 1
1.4 92.66 91.86 INF -0.80 91.63 91.86 5.36 -0.11 91.97 91.86 5.49 0.11 1
1.5 92.66 91.86 6.36 -0.80 91.63 91.74 7.71 -0.23 91.97 91.74 7.71 -0.23 0

Table 5: Full distillation learning results across different seeds, tasks, and l parameters.

seed 0 42 777
Softmax GK Diff Softmax GK Diff Softmax GK Diff

RTE 70.76 53.07 -17.69 67.15 53.07 -14.08 67.15 52.71 -14.44
MRPC 85.29 70.59 -14.71 86.52 73.04 -13.48 86.03 69.61 -16.42
SST-2 91.06 84.86 -6.19 90.14 85.44 -4.70 90.14 86.35 -3.78

Table 6: Experimental results across different seeds

20

	Introduction
	Related Work
	Homomorphic Encryption
	Advanced Homomorphic Operations
	Privacy-Preserving Language Model

	Batch Method
	Batch Power-Max Function
	Batch Layer Normalization
	Training Method

	Minimax Composition for Pseudo-Sign Function
	Pseudo-Sign Function and Minimax Composite Polynomial for Sign Function
	Efficiency of Pseudo-Sign Composite Approximation

	Optimized Homomorphic Matrix Operation
	Optimized Ciphertext-Plaintext Matrix Multiplication
	Optimized Ciphertext-Ciphertext Matrix Multiplication
	Square Matrix Multiplication
	Multi-Head Attention

	Microbenchmarks

	Experiment Results
	Plaintext Results
	Ciphertext Results

	Conclusion
	Extended Preliminaries
	Transformer
	Homomorphic Encryption
	Homomorphic Matrix Multiplication

	Details for Pseudo-Sign Composite Approximation
	Detailed Algorithms for Optimized Matrix Multiplication
	Packing Method
	Optimized CPMM
	CCMM for Square Matrix
	Blockwise Matrix Multiplication
	CCMM for Multi-Head Attention

	Batch Layer Normalization
	Full Experiment Result

