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ABSTRACT

We present a policy gradient method for Multi-Objective Reinforcement Learning
under unknown, linear preferences. By enforcing Pareto stationarity, a first-order
condition for Pareto optimality, we are able to design a simple policy gradient al-
gorithm that approximates the Pareto front and infers the unknown preferences.
Our method relies on a projected gradient descent solver that identifies common
ascent directions for all objectives. Leveraging the solution of that solver, we in-
troduce Pareto Policy Adaptation (PPA), a loss function that adapts the policy to
be optimal with respect to any distribution over preferences. PPA uses implicit
differentiation to back-propagate the loss gradient bypassing the operations of the
projected gradient descent solver. Our approach is straightforward, easy to imple-
ment and can be used with all existing policy gradient and actor-critic methods.
We evaluate our method in a series of reinforcement learning tasks.

1 INTRODUCTION

Deep reinforcement learning has a pivotal role in solving several control problems of practical in-
terest in multi-agent autonomy (1), robotics, and cyber-physical systems (2) that would otherwise
be intractable, such as robotic locomotion (3), the Atari (4) and Go games (5) to name a few. While
such approaches have focused on the scalar reward setting, there exist many real-world problems
that have multiple, conflicting objectives and, therefore, cannot be addressed by the current rein-
forcement learning tools. In such scenario, it is challenging to find an optimal control policy as
the trade-offs (preferences) among the objectives may not be precisely known at training time or
may differ from user to user. The paradigm of Multi-Objective Reinforcement Learning (MORL)
provides a generalized framework for dealing with multi-dimensional rewards signals and has been
identified as one of the main challenges of real-world reinforcement learning (6). However, learn-
ing optimal policies for MORL has been proven to be quite challenging, because most strategies
require either to have access to or be able to infer a quantification of the relative importance of the
objectives, or they perform sophisticated searches in the value or policy space aiming to find an
ensemble of policies that are non-inferior to each other. The former methods lack adaptability and
generalizability, as their performance is tied to the given or inferred preferences, while the later ones
suffer from scalability issues, because they learn multiple policies, and are usually complicated to
implement. In this work, we aim to strike a balance between those two families of methods.

Related Work: Multi-Objective Optimization (MOO) provides the fundamental tools for MORL.
In MOO, there are two common solution concepts: scalarization and Pareto optimality. The former
one derives a scalar objective and uses standard single-objective optimization techniques (7; 8; 9;
10; 11). The later method is based on the concept of Pareto dominance and considers the set of
all non-inferior solutions (12; 13). Multiple gradient methods that leverage first-order, necessary
conditions for Pareto optimality have also been developed (14; 15; 16).

Similarly to MOO, existing work in MORL can be roughly divided into two main categories: Single-
policy methods aim to maximize a single, scalarized reward. These methods essentially transform
the problem into a single-objective MDP and differ mostly in the way they determine and express
the preferences. Scalarization is usually performed using a weighted sum of the reward vector (17;
18; 19) or, less commonly, using linear mappings (20). Different single-policy methods are based
on thresholds or lexicographical ordering (21) or different classes of preferences (22; 23). More
recently, a scalarized Q-learning algorithm has been developed in (24) which uses the concept of
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corner weight to infer and optimize over preferences. It was extended to handle dynamic preferences
in (25) and to utilize the convex envelope of the Pareto front in (26). Finally, a scale-invariant
supervised learning approach for encoding the preferences was developed in (27).

On the other hand, multiple-policy methods use the vector-valued reward signal and learn a set of
policies that approximate the Pareto front. The Pareto optimal solutions are the subset of non-inferior
and equally good alternative polices among all distributions in the policy space and multiple-policy
methods mainly differ on the approximation scheme for the Pareto front. One common approach is
to perform multiple runs (18; 17) of a single scalarized reward function over a set of preferences.
Unfortunately, such methods lack scalability to high-dimensional rewards. Other approaches lever-
age convex approximations of the Pareto front (28) or linear approximations of the value function
(29; 30) to learn optimal deterministic policies. Multi-objective fitted Q-iteration (31; 32) enables
us to learn policies for all linear preferences by encapsulating the preference vector as an input to
the Q-function approximator. A policy gradient method based on discrete approximations of the
Pareto front was proposed in (33) and enhanced to utilize continuous approximations in (34). A
gradient-based method that learns a manifold on the policy parameter space leveraging episodic ex-
ploration and importance sampling was developed in (35). Finally, a prediction-guided evolutionary
algorithm which is able to find dense approximation to the Pareto front was proposed in (36).

Single-policy methods have the advantage of learning a single policy and being simple to implement.
However, they suffer from instability issues, as a small change on the preferences may lead to
performance collapse (37), and also rely on heuristics to infer the preferences when they are not
known. On the other hand, multiple-policy methods enjoy the advantage of being able to adapt to
changing preferences because the solution (being an approximation to the Pareto front) encapsulates
all trade-offs between the objectives. However, this benefit comes at a higher computational cost
as we typically have to learn and store multiple policies. In this paper, we aim to bridge the gab
between single and multiple policy MORL methods: Our method learns a single policy along with
the underlying preference vectors and is able to adapt the inferred preference to any preference
distribution. Our preference vectors are inferred, not by using heuristics, but by approximating the
Pareto front via a first-order condition (see Fig. 1 for an example). Our method is inspired by the
multiple gradient descent algorithm for MOO introduced in (15) as well as its application in the field
of multi-task supervised learning presented in (38).
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Figure 1: True and identified Pareto front for
Deep Sea Treasure enviroment.

Contributions: We propose a policy gradient
method for multi-objective reinforcement learning
under unknown, linear preferences. Initially, we
present Pareto stationarity as a necessary, first-
order condition for Pareto optimality and develop a
multi-objective policy gradient algorithm which uses
a projected gradient descent solver to search for and
take steps in a common ascent direction for all objec-
tives. Following that, we tackle the problem of adapt-
ing the policy gradient to any given preference distri-
bution. We utilize our method from the first part and
introduce the Pareto Policy Adaptation (PPA), a loss
function that penalizes deviations between the given
preference distribution and the recovered preferences.
Using implicit differentiation, we are able to back-propagate the gradient of PPA bypassing the op-
erations of the projected gradient descent solver, which makes our method applicable to real-world
problems. We evaluate our method in a series reinforcement learning tasks.

The most closely related work to ours is presented in (33). The authors discuss the existence of
common ascent directions, introduce a quadratic optimization problem for their computation and
give two gradient-based learning algorithms. Even though our method identifies the common ascent
directions using a similar optimization problem, we leverage these directions to define the PPA loss
function, which is a simple and efficient way 1) to incorporate the ascent directions into any learning
algorithm and 2) to account for a given preference distribution. Leveraging implicit differentiation,
PPA enables us to incorporate multiple rewards and preference distributions into any modern policy
gradient algorithm by a mere modification of the loss function and by implementing a projected
gradient descent optimizer.
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2 PRELIMINARIES

We consider the framework of Multi-Objective Markov Decision Process (MOMDP) M :=
(S,A,R,P, γ,Ω, fΩ), where S and A denote the (discrete) state and action spaces, P : S ×
A × S → [0, 1] is the transition kernel representing the environment dynamics, r(s, a) ≡ R :
S × A → RM is a function mapping state-action tuples to reward vectors, Ω is the space of
preferences and fω : RM → R a preference function which produces a scalar utility using a
preference ω ∈ Ω. To declutter notation, we assume that there exists a given initial state. We
consider linear preferences fω(r(s, a)) = ωTr(s, a). A fixed preference vector ω ∈ Ω al-
lows to directly compare the vectorized reward and value function by comparing their scalarized
utilities, and, therefore, the MOMDP collapses to a standard MDP. A stationary control policy
π : S × A → P(A), where P(A) is the Borel set of A, is a function that assigns a probability
distribution over actions for all states. The value vπ : S → RM×|S| of a policy π is defined as
vπ(s) := Eπ[

∑∞
t=0 γ

tr(st, at) | s0 = s], where γ ∈ (0, 1) is a discount factor and the expectation
is taken under the distribution over trajectories τ = (s0, a0, s1, a,s2, . . . ) obtained by starting from
s and following policy π thereafter. The discounted state-action occupation measure under policy π
is defined as dπ(s, a) :=

∑∞
t=0 γ

tP (st = s, at = a | π) for all states s ∈ S and allows us to write
the value function compactly as vπ(s) = Edπ [r(s, a) | s0 = s].
Definition 1. Considering all possible returns r̃ :=

∑∞
t=0 γ

tr(st, at), we define the Reward Space
Pareto Coverage Set (RS-PCS) or Pareto frontier as F∗

r := {r̃ : r̃ ∈ RM , r̃′ ≻P r̃}, where the
symbol ≻P denotes Pareto dominance: greater or equal in all objectives and strictly greater in at
least one objective. For all possible preferences in Ω and under the linear preference assumption,
we define the Reward Space Convex Coverage Set (RS-CCS) as

C∗R,Ω := {r̃ : r̃ ∈ R, ∃ω ∈ Ω s.t. ωT r̃ ≥ ωT r̃′, ∀r̃′ ∈ RM}. (1)

The set C∗R,Ω contains all discounted reward vectors that could be optimal for some preference
vector in Ω. Anything in F∗

r but not in C∗R,Ω cannot be useful under linear preferences. In that
case, it suffices to restrict our analysis to C∗R,Ω. Also, we assume, without loss of generality, that∑

m ωm = 1, ωm ≥ 0,m = 1, 2 . . .M for all ω ∈ Ω, i.e., the preference vector is a convex
combination of the objectives. We extend the definition of Pareto optimality from the reward space
to the policy space.
Definition 2. A policy π dominates a policy π′ if and only if vπ ≻P vπ′

. A policy π∗ is called
Pareto optimal if there exists no other policy π that dominates π∗. The set Π∗

P of all Pareto optimal
policies is called Pareto policy set and its image F∗

π := {vπ}π∈Π∗
P

is called Pareto policy frontier.
The set

C∗Π,Ω := {π : π ∈ Π, ∃ω ∈ Ω s.t. ωTvπ ≥ ωTvπ′
, ∀π′ ∈ Π,

∑
m

ωm = 1, ωm ≥ 0} (2)

is called the Policy Space Convex Coverage Set (PS-CCS).
Lemma 1. Let π ∈ C∗Π,Ω be a policy. Then, we have Eπ[r̃] ∈ C∗R,Ω, i.e., the expected return vector
under policy π belongs in the RS-CCS.

Lemma 1 (proof given in the Appendix) connects the PS-CCS with the RS-CCS and allows us
to use the former one in place of the later. This is very convenient because searching for Pareto
optimal vectors in the reward space is not practically efficient (e.g., due to the sparsity of reward
signal) or useful (e.g., because they cannot be easily mapped to values or actions). By finding a
policy π ∈ C∗Π,Ω, Lemma 1 guarantees that the expected return vector under π belongs in C∗R,Ω and,
therefore, maps the problem of reward space exploration to policy space exploration. Additionally,
Lemma 1 imposes no restrictions on the class of policies and allows us to adopt the common prac-
tice of parameterizing the policy by high-dimensional vector θ ∈ Θ (e.g., a neural network). The
definition of PS-CCS given Eq. equation 3 carries over to this parametric class as is, i.e., we can
define the PS-CCS in the policy parameter space as follows

C∗Θ,Ω := {θ : θ ∈ Θ, ∃ω ∈ Ω s.t. ωTvπθ ≥ ωTvπθ′ , ∀θ′ ∈ Θ}. (3)

3 LEARNING WITH UNKNOWN PREFERENCES

In this section, we propose a new policy gradient algorithm for MORL under unknown preferences.
The key idea of our approach is to infer the preference vector ω, use that ω as scalarization coeffi-
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cient for the multi-objective criterion and ascent on the gradient of the scalarized value. To search
for a Pareto optimal policy, we leverage a fist-order condition known as Pareto stationarity.
Definition 3 (Pareto stationarity). A policy πθ is called Pareto stationary if and only if∑M

m=1 ωm∇θ Edπθ [rm(s, a)] = 0 for some ωm ∈ [0, 1], m = 1, 2 . . .M .

Pareto stationarity implies that there exists a vanishing convex combination of the objectives’ gra-
dients and is a necessary condition for Pareto optimality (15). The following theorem connect the
PS-CCS with Pareto stationarity.
Theorem 1. Let πθ ∈ C∗Θ,Ω be a policy in the PS-CCS. Then, πθ is Pareto stationary.

Proof. Let πθ ∈ C∗Θ,Ω be a policy and ω the corresponding preferences, i.e., we have ωTvπθ ≥
ωTvπθ′ , ∀θ′ ∈ Θ. The last relation can be written as ωT Eπθ

[r̃] ≥ ωT Eπθ′ [r̃], ∀θ
′ ∈ Θ. This

implies that θ is a global maximizer of ωT Eπθ
[r̃] or, equivalently, that its gradient at θ vanishes.

Therefore, we have

∇θω
T Edπθ [r̃] =

M∑
m=1

ωm∇θ Edπθ [rm(s, a)] = 0, (4)

which corresponds to the necessary condition for Pareto stationarity as per Def. 3.

Theorem 1 essentially states that Pareto stationarity is a necessary condition for a policy to belong
to PS-CCS. Additionally, as stated in the proof, the convex combination of the objectives that leads
to vanishing gradients coincides with the preferences that make the underlying policy part of the
PS-CCS. This presents us with a strong necessary condition for recovering the unknown preferences
and for identifying an optimal policy. This is because the problem of finding a Pareto stationary is
tractable via gradient methods. In fact, if a policy is not Pareto stationary then there exists a common
ascent direction for all objectives. To find this descent direction, we use the following theorem.
Theorem 2 ((15), Theorem 1). Consider the following quadratic optimization problem

min
ω1,...ωM

{∥∥∥∥∥
M∑

m=1

ωm∇θ Edπθ [rm(s, a)]

∥∥∥∥∥
2

2

s.t
M∑

m=1

ωm = 1, ωm ≥ 0, ∀m
}
. (PA)

Let ω∗ be the optimal solution of Problem PA and µ∗ the underlying minimal-norm objective. Then:

1. either µ∗ = 0 and πθ∗ is a Pareto stationary policy

2. or
∑M

m=1 ω
∗
m∇θ Edπθ [rm(s, a)] is a common ascent direction for all objectives.

Problem PA is essentially equivalent to the formulation of the famous Minimum-Norm Point prob-
lem, which arises many fields such as optimal control (39), submodular minimization (40) and
portfolio optimization (41). The MNP problem has been well studied and several combinatorial and
recursive algorithms have been proposed (42; 43; 44). Such methods search for the exact solution
and typically have exponential run-time (45), which prevents their application in high-dimensional
control policies. Therefore, we adopt convex optimization approach for Problem 2. We start by
noting that the constrain set E = {ω ∈ RM :

∑M
m=1 ωm = 1, ωm ≥ 0, ∀m = 1, 2 . . .M} is essen-

tially the unit simplex and the projection problem, i.e., ΠE(ω) = argminδ∈E ∥ω − δ∥, can be effi-
ciently solved. In fact, there exists a unique dual variable τ ∈ R such that

ΠE(ω) = (ω − τ)+, (5)

where (x)+ = max(x, 0). To find the dual variable, we enforce the equality constraint, i.e.,∑
m(ωm − τ)+ = 1. This non-linear equation of a single variable can be solved very efficiently

using the Newton method. This suggests a projected gradient descent solver for solving Problem
PA and recovering the unknown preferences.

Our method (Algorithm 1) extends the classical REINFORCE algorithm (46) to take gradient steps
in the direction given by the weighted combination of the multi-objective gradient, with the weights
being the preferences recovered by the projected gradient descent solver. Lemma 1, Theorem 1 and
2 essentially state that Algorithm 1 learns arbitrary policies in the Convex Coverage Set along with

4



Published as a conference paper at ICLR 2022

their underlying preference vectors and provide theoretical justification for our method. Algorithm 1
is simple to implement, compatible with all policy gradient and actor-critic methods and provides
a practical algorithm for learning Pareto optimal policies under unknown preferences. However, it
suffers from a subtle drawback: we have no control over the identified preferences and they cannot be
optimized to account for any given preference distribution. This is the problem of policy adaptation
which we address in the next section.

Algorithm 1: Multi-Objective Policy Gradient
Inputs: Initial parameters θ0, learning rate α

1 foreach k = 0, 1, . . . do
2 Collect trajectories D = {τi}, τi ∼ πθk
3 Compute rewards-to-go rt
4 gm ← 1

|D|
∑

τ,t rt∇θ log πθk(at|st)
5 (ω1, . . . ωM )←− PGDSolver(g1, . . . gM , α)

6 θk+1 ← θk +
∑M

m=1 ωmgm
7 end
8

9 procedure PGDSolver(g1, . . . , gM , α):
10 Initialize feasible ω = (ω1, . . . ωM )
11 while not converged do
12 Find τ solving

∑
m(ωm − τ)+ = 1

13 ωm ← ωm + αgTm
∑

n engn, m = 1 . . .M
14 ω ← (ω − τ)+
15 end
16 return (ω1, . . . ωM )

It is worth comparing our projected
gradient descent solver with (38),
where the authors used the Frank-
Wolfe method for Problem PA, albeit
in the context of supervised learning.
Both algorithms have the same con-
vergence rate of O(1/N) and since
the projection to the constraint set can
be easily calculated, we opted for the
projected gradient descent optimizer.
The overhead added by solving for
the dual variable τ is minimal be-
cause the Newton’s method is known
to enjoy quadratic convergence rate
and is very efficient in practice. The
trade-off of using Frank-Wolfe is that
requires to obtain the feasible mini-
mizer of the linear approximation of
the objective around the current iter-
ant, which is typically solved approx-
imately and worsens the convergence
rate by a multiplicative constant (47). Nonetheless, we expect that both methods can be used inter-
changeably in practice.

4 PARETO POLICY ADAPTATION

The policy gradient algorithm presented in the previous section finds policies that are optimal
(i.e., Pareto stationary) for the inferred preferences. In this section, we show how to address the
problem of adapting the policy to be optimal for a given distribution Dω over preferences. We
start by expressing the optimal solution of Problem PA as a function of the policy parameters
ω∗ := ω∗(θ) = (ω1(θ), ω2(θ), . . . ωM (θ)). We introduce the Pareto Policy Adaptation loss func-
tion as follows:

L(θ) = Edπθ ,ω

[
λ

M∑
m=1

ω∗
m(θ)rm(s, a)− (1− λ) ∥ω∗(θ)− ω∥22

]
, (6)

where λ ∈ [0, 1] is a weight that trades off between the two losses. The first term of PPA is the
scalarized reward, with the scalarization coefficient being the inferred preferences. The second
term penalizes the expected deviation between the given and inferred preferences. To further mo-
tivate the PPA loss, consider the special case of a single, given preference vector ω0. In this case,
the MOMDP collapses to a standard MDP, with ω0 being the scalarization coefficient for the re-
ward and value functions. Additionally, assume that the policy πθ has been adapted to that pref-
erence vector, i.e., it achieves ω∗(θ) = ω0 for some parameter vector θ. Then, Eq. 6 reduces to
L(θ) = Edπθ

[∑M
m=1 ω

0
mrm(s, a)

]
. Maximization of this loss corresponds to taking ascent steps

along
∑

m ω0
m∇θ Edπθ [rm(s, a)], which, per Theorem 2, is an ascent direction guaranteed to in-

crease all objectives. This simplified scenario essentially states the if we exactly match the pref-
erences learned from Problem PA to the given preference vector ω0, then not only the PPA loss
function reduces to the loss function for the scalarized reward, but also the ascent steps along its
gradient lead to concurrent improvements of all objectives. We show a geometric illustration of the
PPA loss function in Fig. 2.

Despite its simplicity, one important obstacle in using the PPA loss to train agents in practice is that
the optimal solution to the Problem PA is analytically known only for M = 2 (solution is presented
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Figure 2: (a) The Convex Coverage Set (CCS) for a 2-dimensional value function. Algorithm 1 identi-
fies arbitrary solutions on the Pareto front. (b) Illustration of the PPA loss function for a single preference
vector ω0: by minimizing the distance

∥∥ω∗(θ)− ω0
∥∥, the solution converges to the optimal solution cor-

responding to preference ω0. (c) PPA loss function for two preference vectors ω0,ω1: the minimizer of∥∥ω∗(θ)− ω0
∥∥ +

∥∥ω∗(θ)− ω1
∥∥ (also called the geometric median) gives the optimal solution because it

maximizes the projections onto the preference vectors.

in the Appendix). For M > 2, it can rather only be approximated by the iterative projected gradient
descent solver introduced in Algorithm 1. This makes the backward pass challenging because the
gradients need to be back-propagated through the (perhaps thousands) iterations of the projected
gradient descent solver. Since back-propagation is known to be a very expensive operation compared
to the forward pass, this could make our approach inefficient for practical problems. The problem of
back-propagating through solutions of numerical solvers arises in several deep learning architectures
such as deep equilibrium models (48) and optimization-based neural network layers (49). Luckily,
the implicit value theorem allows us to back-propagate the gradient bypassing the operations of the
projected gradient descent solver.

Theorem 3. Let l := l(ω∗(θ)) be a generic loss function that depends explicitly on the the optimal
solution ω∗(θ) of Problem PA. Then, the gradient of l with respect to the policy parameters is

∇θl =
[
HT (θ) 0 0

]  G(θ) −IM e
−D(µ∗(θ)) −D(ω∗(θ)) 0

eT 0 0

−T  dl
dω∗

0
0

 , (7)

where [G(θ)]m,n = 2gTm(θ)gn(θ), [H(θ)]m,· = −
∑

n ω
∗
n(θ)∇T

θ (g
T
n (θ)gm(θ)), gm(θ) =

∇θ Edπθ [rm(s, a)], µ∗(θ) is the optimal dual variable, e and 0 are the identity and zero vectors
of appropriate dimensions, IM is the identity matrix of dimension M and D(·) create a diagonal
matrix from a vector. When applied on a vector quantity, the operator ∇θ denotes the Jacobian
matrix and the operator∇T

θ denotes the transpose of the underlying gradient or Jacobian.

The proof of Theorem 3 (given in the Appendix) leverages the implicit value theorem which en-
ables us to differentiate the KKT optimality conditions of Problem PA with respect to the policy
parameters. Observe that matrix H(θ) is essentially of dimension M × dθ, dθ being the dimension
of θ. This dependence on dθ makes the solution of eq:nmatrix inefficient, as we need to compute
and store a matrix of size (2M + 1)dθ. However, in practice, we are not interested in knowing the
full gradient of ω∗(θ), but rather in back-propagating the gradient of the loss function; Eq. 7 has
an appealing form which allows us to use vector-Jacobian products (VJPs) to evaluate the gradient
∇θl one row at a time. This frees us from having to store matrix H(θ) and compute its product
with another matrix. We observe that the solution in Eq. 7 requires knowledge of the optimal dual
variable µ∗(θ), which is not directly available. However, the optimal primal solution ω∗(θ) given
by the projected gradient descent solver (Algorithm 1) can be utilized to obtain µ∗(θ) by substi-
tuting it into the KKT optimality conditions of Problem PA (details in the Appendix) and solving
the resulting linear system. That system has M + 1 variables, therefore its solution adds minimal
computational overhead.

It is worth discussing similarities and differences between PPA and EQL (26). PPA retrieves and
adapts to preferences during the training phase, whereas EQL first learns a preference-dependant
policy and then retrieves preferences using a combination of stochastic search and policy gradient.
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Also, the loss functions are partially similar: the penalty term in PPA is the MSE loss between the
given and inferred preferences, whereas the EQL loss function is the MSE loss of vector Q-values.
Finally, the optimal policy obtained under a given preference distribution is not, in general, optimal
under a different distribution and the model has to be fine-tuned. We expect that we will not need to
re-train the network entirely and that we can leverage the previous policy to find the new one. This
is an interesting direction for future work.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our proposed method. In our implementation, we
extended the popular Proximal Policy Optimization (PPO) (50) algorithm so that it can handle our
PPA loss function. We implemented all experiments on PyTorch using modified versions of OpenAI
Gym environments. We give the details of our experimental setup in the Appendix.

Domains: We evaluate on 4 environments (details given in the Appendix): (a) Multi-Objective
GridWorld (MOWG): a variant of the classical gridworld, (b) Deep Sea Treasure (DST): a slightly
modified version of classical multi-objective reinforcement learning enviroment (51), (c) Mulit-
Objective SuperMario (MOSM): modified, multi-objective variant of the popular video game that
has a 5-dimensional reward signal and (d) Multi-Objective MuJoCo (MOMU): a modified version
of the MuJoCo physics simulator, focusing on locomotion tasks.

Ablation Study and Baselines: To highlight the extent to which our results are driven by the PPA
loss function, we perform an ablation study. In more details, we consider the following three agents:
(a) Pareto Policy Adaptation (PPA): This is our original loss function as introduced in Sec. 4.
(b) non-adaptive PPA (na-PPA): Same as PPA but the preferences are static, i.e., the policy is not
adapted to the preference distribution. This agent is essentially Algorithm 1 without the PPA loss
function. (c) Fixed Preferences: Same as na-PPA but the preferences are given. This corresponds
to optimizing the scalarized objective. Additionally, we compare the performance of our method
against a range of state-of-the-art baselines. In particular, we compare against: the Pareto Follow-
ing Algorithm (PFA) (33), the Conditional Neural network with Optimistic Linear Support (CN-
OLS)(24; 25), the Conditioned Network with Diverse Experience Replay (CN-DER) (25), the En-
velope Q-Learning (EQL) (26) and the Prediction-Guided Multi-Objective Reinforcement Learning
(PGMORL) (36).

Evaluation Metrics: To evaluate the performance of our method and compare against the baselines,
we use the following metrics:

1. HyperVolume (HV): Let F be a reward space Pareto front approximation and r0 be a
reference vector. Then, we define the HyperVolume as HV :=

∫
1H(P )(z)dz, where

H(P ) = {z ∈ RM : ∃r ∈ F : r0 ≺P z ≺P r} and 1(·) is the indicator function.
2. Pareto Dominance (PD): Let r1t , r2t be the reward vectors of trajectories sampled

from agent 1 and 2, respectively. We define the Pareto Dominance metric as
PD1,2 := 1

T

∑T
t=0 1(r

1
t ≻P r2t ), where 1(·) is the indicator function. This is essentially

the fraction of time when the reward vector under agent 1 Pareto dominates the reward
vector under agent 2. Note that PD1,2 + PD2,1 ≤ 1.

3. Utility (UT): For a reward vector rt sampled from any agent, we define the Utility metric as
UT := Eω[

1
T

∑T
t=0 ω

Trt], where the expected value is evaluated by sampling uniformly
from the preference space Ω or from the preference distribution Dω .

Main Results: Figure 3 shows the results of the ablation study conducted on the MOGW and DST
domains. We compare against the non-adaptive and the fixed-preferences agents. For the later
case, we pick three different preference vectors: (ω1, ω2) = (0.5, 0.5), (ω1, ω2) = (0.75, 0.25) and
(ω1, ω2) = (0.25, 0.75). These plots facilitate the visual identification of Pareto dominant agents.
Focusing on the MOGW (upper row), we observe that our PPA agent converges to a policy that
yields a higher reward and lower time-penalty than any other agent, i..e, PPA Pareto dominates all
other agents. While a similar statement cannot be made for the DST domain, we note that PPA is
not Pareto dominated by any other agent and the only agent that it does not dominate is the fixed-
preference one for (ω1, ω2) = (0.5, 0.5). On the other hand, the non-adaptive PPA (na-PPA) seems
to perform relatively poor. However, there exists some merit in using it because, in contrast to the
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fixed-preference agents, na-PPA does not rely on being given a preference vector. It is also worth
noting that in the DST domain the preference vector (ω1, ω2) = (0.25, 0.75) gives very poor results,
which implies that handpicking the preferences might lead to performance collapse. Overall, these
results suggest that PPA steadily achieves better performance and is superior than the other agents.
It is interesting to observe that the reward and time penalty curves are quite similar in the MOWG
domain. This agrees with our intuition because in the MOGW domain the reward and time penalty
have an ”inverse” relationship (i.e., the sooner we reach the bottom right, the higher the reward).
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Figure 4: Learning curves on MuJoCo environments. We show the Pareto Dominance (PD) and Average
Utility (UT) metrics. Experiments are run for 10 random seeds. We compare against the non-adaptive PPA and
the fixed-preferences agents.

PFA CN-OLS CD-DER EQL PGMORL nA-PPA PPA

HV 2.52 2.36 2.65 3.10 3.15 2.35 3.32
MOGW PD 0.52 0.51 0.46 0.53 0.55 0.33 0.65

UT 0.23 0.19 −0.12 0.18 0.28 0.08 0.28

HV 36.32 35.36 35.65 35.12 39.35 34.20 40.12
DST PD 0.46 0.55 0.39 0.48 0.52 0.38 0.75

UT 0.19 0.14 −0.11 0.20 0.24 0.12 0.21

HV - 1146.14 1364.14 1134.12 1401.14 1125.18 1442.14
MOSM PD - 0.47 0.41 0.50 0.59 0.42 0.64

UT - 0.15 −0.07 0.24 0.26 0.14 0.27

HV - 4.39 5.18 4.95 4.65 4.02 5.15
Humanoid-v3 PD - 0.41 0.46 0.54 0.52 0.33 0.55

UT - 0.19 0.22 0.41 0.30 0.28 0.48

HV - 3.18 2.98 3.44 3.74 2.23 3.73
Hopper-v3 PD - 0.43 0.49 0.45 0.52 0.45 0.70

UT - −0.23 0.14 0.22 0.21 0.12 0.25

HV - 5.17 5.38 5.39 5.77 4.18 5.68
HalfCheetah-v3 PD - 0.37 0.38 0.51 0.55 0.45 0.62

UT - −0.10 0.11 0.22 0.20 0.18 0.31

HV - 5.95 5.47 6.30 6.35 5.25 6.45
Ant-v3 PD - 0.26 0.30 0.44 0.41 0.32 0.52

UT - 0.36 0.31 0.34 0.55 0.39 0.55

Table 1: Comparison of MORL agents using the HyperVolume (HV), Pareto Dominance (PD), and Average
Utility (UT) metrics. Possible values for each metric lie in the range [0,∞], [0, 1], and [−1, 1], respectively. In
all cases, higher values indicate better performance. We evaluate the agents using 10 random seeds.

In the next line of experiments, we evaluate the performance of PPA in continuous control tasks.
We modified the MuJoCo Gym interface to output 2-dimensional rewards on each step. The first
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one is the commonly used reward in such environments, i.e., the difference between two sequential
positions of the robot. The second one is the energy consumed by the robot. We show the results on
Fig. 4. We compare against the ablated agents and show the Pareto Dominance (PD) and Average
Utility (UT) metrics. The only case where our method does not attain the best performance is the
Hopper-v3 environment under the UT metric, where the performance of the fixed-preferences agent
(ω1, ω2) = (0.75, 0.25) slightly surpasses the performance of PPA. However, observe that the same
agent attains very poor performance in the HalfCheetah-v3 enviroment. This suggests that, given
the complex inter-dependence between the two rewards, simply hand-crafting a preference vector
is far from optimal and a preference vector that yields good performance in one environment may
perform poorly in a different environment or judged under a different metric.
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Figure 3: Results on the MOGW and DST environments.

In the last line of experiments, we com-
pare our method against state-of-the-art
MORL algorithms (Table 1). Since PD is
a pair-wise metric, we first compute the
pair-wise PDi,j values for all agents and
then average-out the j component to ob-
tain a single value for each agent. Note
that this metric is specific to the ensemble
of agents that we consider and needs to be
re-calculated if we compare a different set
of agents. The UT metric is calculated by
sampling preferences from the preference
space of each domain. We assume assume
a uniform preference distribution and sam-
ple 1000 points for the 2-dimensional pref-
erence case (MOGW, DST, MUMO) and
100 across each dimension for the MOSM
case, where the preference space has 4 di-
mensions. Additionally, we scale the re-
wards in the range [−1, 1] across each dimension. This scaling is important when calculating the
average utility but has no particular influence on the Pareto dominance or hypervolume. Observe
that some agents have negative utility, which is indeed possible given the aforementioned reward
scaling. Our method systematically outperforms all other baselines across all domains, which is
another strong empirical finding for its performance.

6 CONCLUSION

We introduced a policy gradient algorithm for Multi-Objective Reinforcement Learning (MORL)
under linear preferences. By approximating the Pareto front via a first-order necessary condition,
our method learns a single policy that can be adapted to any preference distribution. The two pillars
of our method is a projected gradient descent solver that searches for common ascent direction for
all objectives and a novel Pareto Policy Adaptation (PPA) loss function that leverages the solutions
of that solver to adapt the policy to any preference distribution. Our method enjoys the advantages of
both single and multiple policy MORL algorithms while being simple to implement and compatible
with all policy gradient and actor-critic methods. We demonstrated the effectiveness of our method
in several reinforcement learning tasks.
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A APPENDIX

A THEORETICAL FRAMEWORK

In the first part of the Appendix, we give the proofs omitted in Sections 2 and 4 as well as the analytical solution
of Problem PA for the special case of 2-dimensional reward signals. For the ease of reference, we re-state the
underlying theorem.

A.1 PROOFS

Lemma 1. Let π ∈ C∗
Π,Ω be a policy. Then, we have Eπ[r̃] ∈ C∗

R,Ω, i.e., the expected return vector under
policy π belongs in the RS-CCS.

Proof. Consider a policy π ∈ C∗
Π,Ω and a policy π′ ∈ Π such that dπ

′
(s, a) = 0 wherever dπ(s, a) = 0. Then,

we can write

vπ′
=

∑
s,a

dπ
′
(s, a)r(s, a) =

∑
s,a

dπ(s, a)
dπ

′
(s, a)

dπ(s, a)
r(s, a) = Edπ [r

′(s, a)], (8)

where we used the importance sampling identity and defined r′(s, a) := dπ
′
(s, a)/dπ(s, a)r(s, a). Per Def.

2, there exists ω ∈ Ω such that ωTvπ ≥ ωTvπ′
. Leveraging the fact that the value function can be expressed

as vπ = Eπ[r̃] as well as Eq. equation 8, we have ωT Eπ[r̃] ≥ ωT Eπ[r̃
′]. This implies that Eπ[r̃] ∈ C∗

R,Ω

and concludes the proof.

Remark 1. Under the additional assumption of normalized rewards, we can prove the converse of Lemma 1.
However, since we are are concerned with approximating C∗

R,Ω by C∗
Π,Ω (and not the other way around), we

refrain from making that additional assumption to prove the converse of Lemma 1.
Theorem 3. Let l := l(ω∗(θ)) be a generic loss function that depends explicitly on the the optimal solution
ω∗(θ) of Problem PA. Then, the gradient of l with respect to the policy parameters is

∇θl =
[
HT (θ) 0 0

]  G(θ) −IM e
−D(µ∗(θ)) −D(ω∗(θ)) 0

eT 0 0

−T  dl
dω∗

0
0

 , (9)

where [G(θ)]m,n = 2gTm(θ)gn(θ), [H(θ)]m,· = −
∑

n ω∗
n(θ)∇T

θ (g
T
n (θ)gm(θ)), e and 0 are the identity and

zero vectors of appropriate dimensions, IM is the identity matrix of dimension M and D(·) create a diagonal
matrix from a vector.

Proof. We start by writing the Lagrangian of Problem PA

L(ω, λ,µ) =

∥∥∥∥∥
M∑

m=1

ωmgm(θ)

∥∥∥∥∥
2

+ λ
( M∑
m=1

ωm − 1
)
+

M∑
m=1

µmωm, (10)

where gm(θ) = ∇θ Edπθ [rm(s, a)]. Let (ω∗(θ), λ∗(θ),µ∗(θ)) be the policy-dependant optimal primal and
dual variables. The KKT conditions for stationarity, primal feasibility and complementary slackness are

∂L

∂ω∗
m(θ)

= 2
M∑

n=1

ω∗
n(θ)g

T
n (θ)gm(θ) + λ∗(θ) + µ∗

m(θ) = 0, m = 1, 2 . . .M (11a)

∂L

∂λ∗(θ)
= λ∗(θ)

( M∑
m=1

ω∗
m(θ)− 1

)
= 0 (11b)

∂L

∂µ∗
m(θ)

= µ∗
m(θ)ω∗(θ) = 0, m = 1, 2 . . .M, (11c)

By taking the gradient of the above equations with respect to the policy parameters, we obtain

2

M∑
n=1

∇θω
∗
n(θ)g

T
n (θ)gm(θ) + 2

M∑
n=1

ω∗
n(θ)∇θ

(
gTn (θ)gm(θ)

)
+

∇θλ
∗(θ) +∇θµ

∗
m(θ) = 0, m = 1, 2 . . .M, (12a)

M∑
m=1

∇θω
∗
m(θ) = 0, (12b)

∇θµ
∗
m(θ)ω∗(θ) + µ∗

m(θ)∇θω
∗(θ) = 0, m = 1, 2 . . .M. (12c)
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Using matrix notation, we can rewrite the above system of equations as follows: G(θ) −IM e
−D(µ∗(θ)) −D(ω∗(θ)) 0

eT 0 0

∇T
θ ω

∗(θ)
∇T

θ µ
∗(θ)

∇T
θ λ

∗(θ)

 =

H(θ)
0
0

 . (13)

By inverting Eq. equation 13 and using the chain rule ∇θl(ω(θ)) =
∂l
∂ω

∇θl we obtain the claimed result.

We observe that the solution of Eq. equation 13 requires knowledge of the optimal dual variable µ∗(θ), which
is not directly available when we use the projected gradient descent solver of Algorithm 1; that solver only gives
us the optimal primal variable ω∗(θ). However, we can substitute that optimal ω∗(θ) into the KKT conditions
given by Eq. (11a–11c) and solve the resulting linear system of M + 1 variables to find the optimal dual
variables. The number of variables in that system depends only on the dimension of the reward signal M and
not on the dimension of θ, therefore it adds minimal computational overhead. This step would not be necessary
if we chose a primal-dual method for solving Problem PA. However, primal-dual methods may add to the
complexity of the implementation, which may not be worthy given the simplicity of Problem PA. Exploring
such a trade-off is an interesting direction for future work.

A.2 PARETO STATIONARITY: 2-DIMENSIONAL CASE

In general, the problem of finding common ascent directions (Problem PA) can be solved either exactly using
the methods from the minimum norm points literature (as discussed in Sec. 3) or approximately using convex
optimization methods. Due to the dimensionality of the gradient vector, the former class of methods are not
applicable in our case. Therefore, we resorted to the projected gradient descent solver presented in Algorithm 1.
This solver is essentially an internal optimizer which we run before every parameter update. Luckily, Problem
PA is convex and the gradient descent optimizer converges rapidly in practice with little tuning. Additionally,
for the special case of two objectives, we can leverage the analytical solution to achieve further performance
improvements. We re-state Problem PA for convenience bellow:

min
ϵ1,...ϵM

{∥∥∥∥∥
M∑

m=1

ϵm∇θ Edπθ [rm(s, a)]

∥∥∥∥∥
2

2

s.t
M∑

m=1

ϵm = 1, ϵm ≥ 0, ∀m
}
. (PA)

For M = 2, the problem reduces to minϵ∈[0,1] ∥ϵ∇θ Edπθ [r1(s, a)] + (1− ϵ)∇θ Edπθ [r2(s, a)]∥22, which is a
one-dimensional quadratic optimization problem of a single variable and has the following analytical solution:

ϵ∗ =

[
(∇θ Edπθ [r2(s, a)]−∇θ Edπθ [r1(s, a)])

T∇θ Edπθ [r2(s, a)]

∥∇θ Edπθ [r2(s, a)]−∇θ Edπθ [r1(s, a)]∥22

]
+

, (14)

where [·]+ represents the clipping operator, i.e., [x]+ = max (min (x, 1), 0). Geometrically, Eq. equation 14
implies that minimal-norm point lies either on the boundary on the convex hull (ϵ = 0 or ϵ = 1) and the desired
descent direction is parallel to corresponding gradient or is equal to the vector perpendicular to the difference
of the gradients. The former one is a corner case and occurs when the ascent direction for one of the objectives
is a non-decreasing direction for the other one. While this is only applicable to M = 2, it enables us to replace
the inner projected gradient descent optimizer in Algorithm 1 with the analytical solution in Eq. equation 14.
Additionally, this special case is applicable to several real-world cases since there are several problems that
have the reward-cost structure.

B EXPERIMENTAL DETAILS

B.1 ENVIRONMENTS

Our implementation uses modified versions of 4 OpenAI Gym enviroments (Fig. 5). The first two are synthetic
domains and act as a proof-of-concept for our method, while the other two are complex, real domains. The
details are listed below:

Multi-Objective GridWorld (MOGW): A multi-objective variant of the classic gridworld environment. The
agent starts from the top-left corner, moves in a 16×16-grid and receives a reward equal to 1 when it reaches the
bottom-right corner. Each action results in a small time penalty of −0.1. Any policy that results in a trajectory
that minimizes the taxicab distance between the agent’s starting position and the goal is Pareto optimal. Our
implementation uses the gym-minigrid1 enviroment, which we modify to output the aforementioned 2-
dimensional reward.

1https://github.com/maximecb/gym-minigrid
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Figure 5: OpenAI Gym enviroments used in our experimental results.

Deep Sea Treasure (DST): A classic multi-objective reinforcement learning environment. The agent is located
in a 10 × 11-grid and controls a submarine searching for treasures. There are multiple treasures the value of
which increases as their distance increases. The agent receives a time penalty of −1 for each action. The Pareto
front of non-dominated policies can be easily extracted (51) and is also shown on Fig. 1. As in the MOGW
case, we use the gym-minigrid package and extend it to the reward map shown in Fig. 5.

Multi-Objective SuperMario (MOSM): We use a modified, multi-objective variant of the popular video
game. There are 5 scalar rewards: x-pos: the difference in Mario’s horizontal position between current and
last time point, time: a small time penalty of −0.1, deaths: a large negative penalty of −100 each time
Mario dies, coin: rewards for collecting coins, and enemy: rewards for eliminating an enemy. We use the
gym-super-mario-bros2 package and the multi-objective extension developed in (26).

Multi-Objective MuJoCo (MOMU): We focus on locomotion tasks and modify the environments provided
by the MuJoCo physics simulator to output vector rewards. To do so, we create a custom wrapper for the
built-in OpenAI Gym interface. There are 2 scalar rewards: x-pos: the difference in the robot’s current and last
horizontal position, r-pos: a positive reward for moving in circular trajectories.

B.2 IMPLEMENTATION DETAILS

We implement our algorithm in PyTorch building on top of the torch-ac package3. Our implementation
extends the Proximal Policy Optimization (PPO) algorithm to handle our PPA loss function (Eq. equation 6).
We use the clipped version of PPO with the clip ratio threshold set to 0.2. We set the GAE parameter to
λ = 0.95 and the discount factor to γ = 0.99.

Network Architecture: We use a consistent network architecture across all our simulation for both the actor
and the critic: Two hidden layers of 64 and 64 neurons each and a ReLU non-linearity. In the discreet action
case (MOGW, DST, MOSM), we append the actor network with an output layer of dimension equal to the
number of actions. In the MuJoCo enviroments, where the actions are continous, we use that output layer
to parametrize a multi-dimensional Gaussian distribution, via its mean and variance, assuming uncorrelated
actions. Each non-terminal layer has a ReLU non-linearity. Even though the hyperbolic tangent is known
to be preferred for reinforcement learning applications, we experimentally observed that it leads to vanishing
gradients and slows down learning. This may be due to the fact that the PPA loss function requires second-
differentiation. In the SuperMario enviroment, we worked on the pixel domain and two convolutional layer of
32 and 64 layers as feature extractors, which were shared between the actor and the critic.

Hyperparameters and Training: To train the neural network, we use the Adam optimizer (β1 = 0.9, β2 =
0.999) with a learning rate of 0.0001. In the MOGW, DST and MOMU domains, we optimize the parameters
of the actor and critic separately. In the MOSM domain, given that the actor and critic share the convolutional
layers, we sum their losses (using weights 1 and 0.5, respectively) and use a common optimizer. We run all of
our simulations in the Google Cloud Platorm using 48 vCores and one NVIDIA Tesla T4 GPU. For the MOGW
and DST environments, we train the agent for 0.5M frames and for the MOSM and MOMU for 1M frames.
For each 512 frames we perform one update of the network parameters iterating over 10 epochs of the collected
data and using a mini-batch size of 64.

2https://github.com/Kautenja/gym-super-mario-bros
3https://github.com/lcswillems/torch-ac
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