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Abstract

In severely over-parametrized regimes, neural network optimization can be analyzed by lin-
earization techniques as the neural tangent kernel, which shows gradient descent convergence
to zero training error, and landscape analysis, which shows that all local minima are global
minima. Practical networks are often much less over-parametrized, and training behaviour
becomes more nuanced and nonlinear. This paper contains a fine grained analysis of the
nonlinearity for a simple shallow network in one dimension. We show that the networks
have unfavourable critical points, which can be mitigated by sufficiently high local resolu-
tion. Given this resolution, all critical points satisfy L2 loss bounds of optimal adaptive
approximation in Sobolev and Besov spaces on convex and concave subdomains of the tar-
get function. These bounds cannot be matched by linear approximation methods and show
nonlinear and global behaviour of the critical point’s inner weights.

1 Introduction

In this paper, we analyze nonlinear aspects of neural network training for a simple model problem in su-
pervised learning: For samples xi and data yi = f(xi) generated by some unknown target function f , find
a neural network fθ with weights θ by minimizing the least squares loss. To motivate the results, we first
review some common approaches in the literature.

Landscape Analysis Gradient descent can easily get stuck in local minima. That this fact does not
harm neural network training is the purview of landscape analysis. It aims to demonstrate that either
the loss has no local minima, in favour of saddle points, or all local minima have small loss value and
therefore provide good trained networks. Indeed, the papers Soudry & Carmon (2016); Kawaguchi (2016);
Nguyen & Hein (2017); Ge et al. (2018); Du & Lee (2018); Soltanolkotabi et al. (2019); Venturi et al. (2019);
Kawaguchi et al. (2019); Kawaguchi & Huang (2019) show that local minima are global minima, either under
strong assumptions, or over-parametrization with more network width than number of samples. Absent such
assumptions, one needs to be more careful, e.g. the papers Swirszcz et al. (2017); Safran & Shamir (2018);
He et al. (2020); Ding et al. (2022); Jentzen & Riekert (2024), find local minima that are not global. A more
fine grained analysis of the landscape is included in He et al. (2020), which finds valleys of path connected
local minima.

Since these results are mixed, matching local and global minima may be to strong a goal and on may be
content with a simpler question:

(Q1) Do critical points have favorable properties and what are these?

To address this question, first note that ultimately we are not interested in a good training error, but rather
in a good generalization error infθ ∥fθ − f∥2

L2(P) for some probability measure P that generates the input
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samples xi. In general, it is difficult to understand the exact nature of the global optimum, but it is much
more feasible to understand upper bounds of the form

inf
θ

∥fθ − f∥ ≲ n(θ)−r, f ∈ K, (1)

where n(θ) is an indicator for the network size, like width, depth or total number of weights and r > 0 an
asymptotic rate. Similar to the no-free-lunch theorem, such bounds cannot work for arbitrary f , which is
why we restrict them to some compact set K. Typically, it bounds Sobolev, Besov or Barron norms or other
smoothness properties of the permissible targets f . Inequalities of type (1) are common in approximation
theory and have been studied extensively for neural networks. A literature overview is given later in the
introduction.

We use this perspective to ease the characterization of local minima. If they do not match the global
minimum, can they match their scaling behaviour

∥fθ − f∥ ≲ n(θ)−r, f ∈ K, θ is a critical point of the training loss? (2)

Such results are well established for partial differential equations (PDEs), where fθ is a nonlinear approxi-
mation method like adaptive finite elements or wavelets and f the solution of a PDE Cohen et al. (2002);
Morin et al. (2002); Binev et al. (2004). Similar results also exits for shallow neural networks, when trained
with greedy algorithms Siegel & Xu (2022b); Siegel et al. (2023) instead of gradient descent.

Linearization Arguments In over-parametrized regimes, typically with more network width than train-
ing samples, gradient descent training does not move the network weights far from their random initialization.
As a result, one can obtain accurate descriptions of the training dynamics by linearising the network at the
initial value. Careful analysis then provides exponential gradient descent convergence to zero training loss.
A common representative of this approach is the neural tangent kernel (NTK) introduced in Jacot et al.
(2018); Li & Liang (2018); Allen-Zhu et al. (2019); Du et al. (2019b;a), and refined in Zou et al. (2020); Arora
et al. (2019a;b); Su & Yang (2019); Lee et al. (2019); Song & Yang (2019); Zou & Gu (2019); Kawaguchi
& Huang (2019); Chizat et al. (2019); Oymak & Soltanolkotabi (2020); Ji & Telgarsky (2020); Nguyen &
Mondelli (2020); Bai & Lee (2020); Cao & Gu (2020); Chen et al. (2021); Song et al. (2021); Lee et al. (2022);
Gentile & Welper (2022); Welper (2024b;a); Keene & Welper (2024).

Contrary to this analysis, much of the promise of neural networks relies on their severe non-linearity, leading
to e.g. high expressivity and excellent function approximation properties, even in high dimensions. Can
these be exploited by gradient descent training? If we consider less over-parametrization, or even slightly
under-parametrized regimes, the weights can move farther from their initial and break the linear dominance
in the training dynamics. Empirical studies Vyas et al. (2023) (see also Lee et al. (2020); Seleznova &
Kutyniok (2022)) on image classification datasets show that in such regimes networks perform better than
extremely wide networks with dominantly linear behaviour. A theoretical understanding of these regimes is
still largely unknown. This leads to a second question:

(Q2) Can training in under-parametrized or only slightly over-parametrized regimes exploit the nonlinear
nature of neural networks?

To this end, it is instructive to look at classical approximation methods, where fθ is replaced by e.g. splines,
finite elements or wavelets. These depend nonlinearly on θ if adaptivity is used and linearly if not. The non-
linear variations strictly include the linear ones so that infθ ∥fnonlinear

θ −f∥ ≤ infθ ∥f linear
θ −f∥. Nonetheless,

in the upper error bounds (1) this does neither change the number of degrees of freedom (weights) n(θ) nor
the (maximal) rate r. It does change, however, the size of the compact sets Klinear ⊂ Knonlinear for which
the given rates can be achieved, with the latter being significantly larger.

In summary, if we want to establish approximation results (2) for neural network critical points with nonlinear
compact sets Knonlinear, we have to carefully exploit the nonlinear nature of the networks and can no longer
rely on vanilla NTK analysis.
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New Contributions In this paper, we address questions (Q1) and (Q2) for the very simple model problem

fθ(x) :=
m∑

r=1
wrσ(x − br), (3)

with ReLU activation, in a one dimensional interval x ∈ D ⊂ R, trained on the L2 loss ∥fθ − f∥L2(D).
This is probably the simplest choice with nonlinear weight dependence (of the br), non-convex loss and fully
understood approximation behaviour both in linear (br untrained) and non-linear (br trained) cases. The
continuous loss simplifies the analysis and places the problem in an under-parametrized regime, independent
of the width m. Empirical losses, with large numbers of samples, are expected to show similar behaviour by
classical arguments in statistics and machine learning, different from the over-parametrized regime, where
their application is more complicated.

Although this setup may seem simple, it contains two challenges:

1. The problem does have bad local minima.

2. Large compact sets Knonlinear in the approximation bounds (2) cannot be achieved by linear ap-
proximation methods and require careful global placement of the nonlinear inner weights br.

The first result shows this global placement for all critical points of the loss function in the infinite width
limit: If we order the inner weights b0 ≤ · · · ≤ bm the normalized grid size satisfies

lim
m→∞

x∈[br−1,br]
m(br − br−1) = constant|f ′′(x)−2/5|, (4)

with possibly a different constant for each interval on which f is strictly convex or concave. The factor
m ∼ 1/h is reciprocal to the uniform grid size h and used for normalization. The right hand side shows
that the breakpoints br are close wherever the second derivative f ′′(x), and hence the local approximation
difficulty, is large. Generally, this requires global movement of breakpoints br dependent on f , from initial
locations independent of f . For finite m, analogous arguments show that at critical points of the loss the
breakpoints equidistribute the local smoothness

∥f ′′∥L2/5([br−1,br]) = constant,
again on intervals DI where f is convex or concave. With standard approximation theory, this leads to
approximation errors of the type

∥fθ − f∥L2(DI) ≲ |I|−2∥f ′′∥L2/5(DI),

where |I| is the number of breakpoints in the respective intervals. To avoid bad local minima, these results
require the critical points to have sufficient local resolution |br − br−1| so that f does not have highly
oscillatory features between breakpoints that are imperceptible to the gradient. The rigorous statements are
in Theorems 3.3 and 3.4 and an example for the conditions is given in Section 5.

The results demonstrate approximation errors (2) on subdomains where f is convex or concave with K :=
K2/5 := {f ∈ L2(D) : ∥f ′′∥L2/5(D) ≤ 1}. A subtle, but crucial, observation is that f ′′ is measured in the very
weak L2/5 (quasi-) norm (or Besov spaces in Section B.3), which allows us to achieve high approximation
orders for fairly rough functions f . These are not possible for purely linear approximation methods (by
Kolmogorov n-width lower bounds) and therefore demonstrate that finding local critical points of the loss
landscape allows us to exploit some nonlinearity of the neural networks.

Infinite Width Limit Mean field theory of neural networks Chizat & Bach (2018); Mei et al. (2018);
Rotskoff & Vanden-Eijnden (2018); Sirignano & Spiliopoulos (2020) takes the infinite width limit

1
m

m∑
r=1

wrσ(vT
r x) →

∫
wσ(vT x) dµ(v, w)

for some limiting measure µ and then analyzes training of the infinite networks. For comparison, the limits
of the gird size (4) are taken in different order: We first compute the gradient, decouple the computation of
br from wr and then take the limit afterwards.
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Beyond Linearization Some recent papers analyze neural network training beyond the NTK regime. For
example, Damian et al. (2022); Lee et al. (2024) demonstrate results for two layer networks that cannot be
achieved by kernel methods for polynomials g(Ux) that depend only on a few dimension by the inner matrix
U ∈ Rr×d with r ≪ d.

Approximation Universal approximation theorems Cybenko (1989); Hornik et al. (1989); Barron (1993);
Zhou (2020); Lu et al. (2017); Hanin & Sellke (2017) show that neural networks can approximate any function
arbitrarily well. Since this is true for virtually all approximation methods in practical use, it is important
to quantify the approximation error more closely. This usually leads to errors bounds of type (1), which are
studied extensively for neural networks. If the compact set K consists of functions with bounded Sobolev
or Besov smoothness, results can be found in Gribonval et al. (2022); Gühring et al. (2020); Opschoor et al.
(2020); Li et al. (2019); Suzuki (2019), or for improved rates that surpass classical methods for the price
of discontinuous weight assignments in Yarotsky (2017; 2018); Yarotsky & Zhevnerchuk (2020); Daubechies
et al. (2022); Shen et al. (2019); Lu et al. (2021). Compact sets K specifically tailored to neural networks
include Barron and related spaces Bach (2017); Klusowski & Barron (2018); Weinan et al. (2022); Li et al.
(2020); Siegel & Xu (2020; 2022a); Bresler & Nagaraj (2020); Parhi & Nowak (2021); Unser (2023). Overviews
are in Pinkus (1999); DeVore et al. (2021); Weinan et al. (2020); Berner et al. (2022).

In the majority of neural network approximation results, the weights are hand-picked and only few papers
show approximation properties of gradient descent trained neural networks Jentzen & Riekert (2022); Ibrag-
imov et al. (2022); Drews & Kohler (2022); Kohler & Krzyzak (2022); Gentile & Welper (2022); Welper
(2024b;a). These heavily rely on the outermost linear layer, or a NTK linearization and therefore show ap-
proximation guarantees only for compact sets K that can be well approximated by linear methods. Larger,
nonlinear classes K can, to best of our knowledge, so far only be proven for greedy training algorithms Siegel
& Xu (2022b); Siegel et al. (2023) which rely on another non-convex optimization problem in each step.

Notations We use c for generic constants that can be different in each occurrence, but are independent
of f and the network width m. We abbreviate a ≤ cb, a ≥ b and ca ≤ b ≤ cb by a ≲ b, a ≳ b and a ∼ b,
respectively. We define [m] := {1, . . . , m} and Pr as all polynomials of degree at most r. We use Sobolev
∥ ·∥W s,p(D) and Besov ∥ ·∥Bs

q (Lp(D) norms with their usual definitions, stated in Section B.1. For any interval
I, we denote the corresponding L2 inner product by ⟨·, ·⟩I .

2 Approximation By Piecewise Linear Functions

Before we state the main results of the paper, we review relevant approximation properties of the neural
networks. The set of all networks of type 3

Υm :=
{

fθ(·) =
m∑

r=1
wrσ(· − br)

∣∣∣∣∣wr, br ∈ R

}
.

corresponds exactly to continuous piecewise linear (CPwL) functions in one dimension

Σm := {f |f is continuous piecewise linear with m breakpoints} ,

often referred to as first order free knot splines or finite elements. To discuss the benefits of nonlinearity, we
compare them with the simpler linear class

Σu
m := {f ∈ Σm|uniform distance between neighbouring breakpoints} ,

corresponding to networks with untrained inner biases br and hence convex loss. Notice that the lat-
ter set Σu

m is linear, while the former Υm = Σm is nonlinear and hence we refer to them as linear and
nonlinear approximation methods. Their approximation errors are precisely understood:

inf
ϕ∈Σu

m

∥ϕ − f∥L2 ≲ Cm−2|f |B2
2 (L2),

inf
ϕ∈Σm

∥ϕ − f∥L2 ≲ Cm−2|f |B2
2/5(L2/5).

(5)
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These correspond exactly to the approximation bound in the introduction if we define Ks,p := {f ∈ L2(D) :
|f |B2

p(Lp) ≤ 1} with p = 2 and p = 2/5.

Up to minor differences, the Besov norms |f |Bs
p(Lp) ≈ ∥f (s)∥Lp

are equivalent to Sobolev norms, which
bound the s-th derivative of f in Lp. The former are technical, but usually preferred in approximation
theory because they are well behaved for p < 1, as used in the nonlinear bound above. For orientation, these
spaces are often arranged as in Figure 1. The sets Ks,p become larger with decreasing s and decreasing p.
By Sobolev embedding theorems, one may trade some p for some s so that all spaces (s, p) above the dashed
line in the figure are contained in L2 and thus Ks,p ⊂ K0,2. See Section B.1 for definitions and DeVore &
Lorentz (1993); DeVore (1998) for more details.

1/p

s

L2 L1

B2
2(L2) B2

2/5(L2/5)

Figure 1: Diagram of Besov spaces. Each point (1/p, s) corresponds to one space Bs
p(Lp) for s > 0 and Lp

for s = 0.

Let us compare the linear approximation Σu
m with the nonlinear approximation Σm. First observe that in

(5) the rate m−2 is identical for both methods. Generally, piecewise linear approximation does not achieve
higher rates, even if f admits more smoothness. However, since ∥ · ∥L2/5(D) ≲ ∥ · ∥L2(D), the smoothness
conditions for nonlinear approximation are much weaker. For example fϵ = sigmoid(x/ϵ) has norms

∥f ′′
ϵ ∥Lp(D) ∼ ϵ

1
p −2, ∥f ′′

ϵ ∥L2(D) ∼ ϵ− 3
2 , ∥f ′′

ϵ ∥L2/5(D) ∼ ϵ
1
2 . (6)

Indeed, the second derivative is of size ϵ−2 in a region [−cϵ, cϵ] and negligible outside. Thus ∥f ′′
ϵ ∥Lp(D) ≈

ϵ−2∥1∥Lp([−cϵ,cϵ]) ∼ ϵ−2ϵ
1
p . As ϵ goes to zero and fϵ converges to a jump function, the L2 norm blows up,

whereas the L2/5 norm remains bounded. This provides significantly better approximation bounds in (5)
for nonlinear approximation. If we use Besov spaces instead of the second derivative, this extends to the
jump function itself, which can be approximated by nonlinear methods up to order m−2, whereas linear
approximation only achieves order < m−1/2.

While the linear approximation has a fixed number of breakpoints br near the jump or sharp gradients of
fϵ, the adaptive approximation can allocate more resources where f is complicated. Indeed, algorithms and
proofs for the approximation bounds (5), aim for breakpoints that equidistribute the local errors

∥fθ − f∥L2([br,br−1]) = constant for all r

or closely related the local smoothness

∥f ′′∥L2/5([br,br−1]) = constant for all r. (7)

Finally note that the bounds (5) are sharp in several ways. For example the best possible rate linear
approximation methods can achieve for functions f in the class K2,p ⊂ K2,2/5 with 2 < p ≤ 1 is m−2+ 1

p − 1
2 <

m−2, see Lorentz et al. (1996), Chapter 14, Theorem 1.1. Therefore, if we can find critical points of the neural
network (9) loss that achieves second order m−2 error on the class K2/5, it must exploit the nonlinearity of
the network.
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3 Main Result

Setup Maybe the simplest neural network with non-convex training objective and fully understood ap-
proximation properties is

FW,V,B(x) := B0 + W0x +
m∑

r=1
Wrσ(Vrx − Br) (8)

in one dimension, which generates the piecewise linear functions Σm of the last section. By the property
σ(ax) = aσ(x) for a ≥ 0 of ReLU activations, the separation of Wr and Vr is redundant and we simplify the
network to

fw,b := b0 + w0x +
m∑

r=1
wrσ(x − br),

with appropriately redefined weights. The case Vr < 0 requires a slight technicality and is considered in the
following lemma. The lemma also shows that critical points of the loss carry over to the simplified network
Lemma 3.1. Let D be an interval. Assume FW,V,B is a critical point of the loss minW,V,B ∥FW,V,B −f∥2

L2(D).
Then FW,V,B is piecewise linear with m̄ ≤ m breakpoints

br = Br/Vr, for all r with Wr, Vr ̸= 0.

Furthermore, there is a network fw,b(x) = FW,V,B(x) of width m̄ with the same breakpoints that is a critical
point of the loss minw,b ∥fw,b − f∥2

L2(D).

The proof is in Section B.4. Since our main theorems characterize critical points, it suffices to consider the
simplified variant of the networks. Finally, the term b0 + w0x can be generated by two ReLUs σ(x − br), one
with breakpoint at the left boundary and one more left of the domain. Therefore, we drop b0 and w0 and
arrive at the network

fθ(x) :=
m∑

r=1
wrσ(x − br), (9)

that we consider throughout the paper.

We train the network with loss
ℓ(θ) := 1

2∥fθ − f∥2
L2(D) (10)

on some finite domain D ⊂ R and some target function f ∈ L2(D). This matches the infinite sample limit of
the least squares loss and places us in an under-parametrized regime similar to classical statistics. Although
the ReLU activation has kinks, this loss is strongly differentiable for all weights θ. Indeed, it suffices to
consider the network as a map θ → fθ(·) from parameters to L2(D) functions. This topology is sufficiently
weak to render the map differentiable, unlike the regular pointwise topology, which does not. See Gentile &
Welper (2022) for details.

Cleanup Gradient descent and related methods converge to critical points,

∇ℓ(θ) = 0, (11)

which we examine more closely in the following. To ease the theoretical analysis, we start with some
notational cleanup, which does not alter the actual network. First, we drop inactive neurons with wr = 0.
Second, we join neurons with identical bias br into one neuron and adjust the outer weights wr accordingly.
Third, we drop neurons for biases br outside of the domain D, except for the largest br left of the domain,
which influences the left boundary value of fθ. Finally, we add one artificial breakpoint bm̄ at the right end
of D, which does not change fθ inside D, but avoids technicalities. This yields m̄ ≤ m neurons, which we
reorder according to

b0 < · · · < bm̄ (12)
and denote as cleaned critical breakpoints. These define intervals Ir := [br−1, br] of length hr := |Ir|. We
denote two consecutive intervals by Ir+ := Ir ∪ Ir+1 and hr+ := |Ir+|.
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Equidistribution We have seen in the last section that optimal asymptotic approximation rates are
achieved by equidistributing local errors or smoothness via careful placement of the breakpoints br. It is
instructive to start with an informal discussion of the infinite width limit. To this end, we define the grid
size limit

h(x) := lim
m→∞
x∈Ir

mhr,

where for every m we choose the interval Ir with width hr that contains x. For a uniform grid, we have
grid size hr = |D|/m and therefore h(x) = mhr = |D|. For non-uniform grids, h(x) measures the ratio hr/h
between the actual local grid size hr and the uniform grid size h = |D|/m, up to a global factor. If the limit
exists, h(x) is given by the following lemma.
Lemma 3.2. Let f be smooth and for every m let br, r ∈ [m̄] be cleaned critical breakpoints (11), (12). If
the limit h(x) exists, it satisfies

h(x) = cIf ′′(x)−2/5,

with possibly a different constant cI on each interval I for which f ′′(x) is non-zero.

For finite m, a careful perturbation analysis leads to the first main theorem.
Theorem 3.3. Let θ be a critical point (11), with cleaned breakpoints in ascending order 12. For r, s ∈
{2, . . . , m̄}, let I = {r, r + 1, . . . , s} be a set of consecutive neurons with DI :=

⋃
k∈I Ik and

max
{

h
1
2 − 1

p

k+ ∥f (3)∥Lp(Ik+), h
1− 1

q

k+ ∥f (4)∥Lq(Ik+),

}
≤ C min

x∈Ik+
|f ′′(x)| (13)

for some 1 < q, p ≤ ∞ and some sufficiently small constant C > 0 independent of f and hk. Then for
l, k ∈ DI we have equidistribution

∥f ′′∥L2/5(Il) ∼ ∥f ′′∥L2/5(Ik).

This is precisely the equidistribution (7) used in the proofs of CPwL approximation bounds (5). We discuss
the result and the major assumption (13) after the approximation theorem below. In short, high oscillations
strictly contained in one interval Ir are imperceptible to the gradient and therefore can lead to bad critical
points. The assumption ensures that we have enough breakpoints to fully resolve such oscillations.

Approximation Once we have established equidistribution, approximation results can be obtained along
standard lines.
Theorem 3.4. Let θ be a critical point (11), with cleaned breakpoints in ascending order 12. For r, s ∈
{2, . . . , m̄}, let I = {r, r + 1, . . . , s} be a set of consecutive neurons with DI :=

⋃
k∈I Ik and

max
{

h
1
2 − 1

p

k+ ∥f (3)∥Lp(Ik+), h
1− 1

q

k+ ∥f (4)∥Lq(Ik+),

}
≤ C min

x∈Ik+
|f ′′(x)| (14)

for some 1 < q, p ≤ ∞ and some sufficiently small constant C > 0 independent of f and hk. Then

∥fθ − f∥L2(DI) ≲ |I|−2∥f ′′∥L2/5(DI). (15)

Discussion Approximation Result: Note that |I| is the number of breakpoints in DI and therefore is
analogous to the number of breakpoints m̄ on the full domain. Therefore, any critical point subject to the
given conditions achieves asymptotically optimal CPwL approximation on subdomains DI ⊂ D and can
properly utilize the nonlinearity of the network. If we have multiple subdomains DI1 and DI2 , the total
allocation of breakpoints on each of these may be suboptimal.

Resolution: The main purpose of assumption 13 is to prevent bad critical points: Oscillations of the target
f that are strictly contained inside one interval Ir do not change the gradient and can cause unfavorable
critical points. The assumption is satisfied if the network’s local resolution hr is sufficiently high to capture
all fine grained features of f . For comparison classical adaptive CPwL approximation methods contain “data
oscillation” terms in their error bounds. See Section 5 for a more careful discussion.
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Smoothness: The fourth order smoothness in (13) is higher than the smoothness in the approximation bounds
and seems to contradict the discussion in Section 2. Indeed, it does rule out limiting cases like jump functions.
This is also the reason why we can use Sobolev type norms instead of Besov norms. However, functions with
large gradients as in example (6) are permissible. In this case assumption (13) provides some a-posteriori
bounds on the resolution necessary to achieve equidistribution and adaptive approximation errors. However,
even if this requires large networks none of the constants enters the approximation error itself: As soon as the
networks are big enough, we obtain nonlinear approximation bounds with small constants only dependent
on the favourable ∥f ′′∥L2/5 smoothness bound.

Convex/Concave: Assumption (13) implicitly entails that f is concave or convex on each subdomain DI .
While it is not clear if this is strictly necessary, longer stretches with f ′′(x) = 0 seem problematic: In these
f is linear and can be approximated with zero local error. Then any breakpoint in this region has no good
gradient information for its placement.

Left Boundary: The networks are zero fθ(x) = 0 for all x < b0 left of the leftmost breakpoint. To avoid
dealing with this boundary condition, we exclude the corresponding interval I1, by requiring s, r ≥ 2 in the
definition of I.

Comparison with NTK Theory: In over-parametrized NTK regimes the weights do not move far from their
initialization during gradient descent training. This implies that uniformly initialized breakpoints br remain
uniform and can generally not equidistribute local errors. Accordingly, the approximation error achieved
after training is bounded by ∥fθ −f∥L2(D) ≲ m−α∥f∥Bs

2(L2(D) in Gentile & Welper (2022) for some constants
α ≥ 0 and 0 ≤ s ≤ 1/2. In particular, the smoothness is measured in the L2 norm as for uniform CPwL
approximation and not in a suitable larger Lp norm as for adaptive CPwL approximation.

Inner Weights: The equidistribution results carry over to more standard networks FW,V,B , with inner weights
Vr, as defined in (8). Indeed, by Lemma B.2, the breakpoints of a critical point FW,V,B match the breakpoints
of a critical point fw,b, for which Theorem (3.3) provides equidistribution on convex/concave sub-domains.

4 Proof Idea

This section contains a short overview over the proof. The optimization of the outer weights wr is convex
and therefore fairly simple. On the other hand, the optimization of the inner weights br is non-convex and
the main objective of the prove is to demonstrate their equidistribution in Theorem 3.3. Once this property
is established, the approximation Theorem 3.4 follows by standard arguments DeVore (1998). The proof
proceeds in several steps.

1. Critical Points: Define the spaces

X := span{∂wr fθ | r ∈ [m]} = span{σ(x − br) | r ∈ [m]},

Ẋ := span{∂br
fθ | r ∈ [m]} = span{wrσ̇(x − br) | r ∈ [m]}

of the partial derivatives and the residual κ := fθ − f . Then, by taking linear combinations, it is
easy to see that the critical point conditions

∂θr ℓ(θ) = ⟨κ, ∂θr fθ⟩ = 0,

are equivalent to

⟨κ, v⟩ = 0, v ∈ X + Ẋ. (16)

2. Eliminate wr: In the critical point conditions the residual κ depends on both wr and br. To show
equidistribution, which depends on br only, we eliminate wr from the equations. To this end, define
the L2-orthogonal complement space X⊥ so that

X + Ẋ = X ⊕ X⊥, X ⊥ X⊥.

8



Published in Transactions on Machine Learning Research (10/2024)

Since X is the span of all neurons σ(x−br), we have fθ ∈ X and therefore ⟨κ, v⟩ = ⟨fθ − f, v⟩ = ⟨f, v⟩ .
for all v ∈ X⊥ by orthogonality. Thus, the critical point condition implies

⟨f, v⟩ = 0, v ∈ X⊥,

This condition does not depend on wr any longer and guarantees equidistribution, as we show in
the following steps of the proof.

3. Characterization of the Complement space X⊥: We construct basis functions

φr(x) =

 hrϕ́′′(x), x ∈ Ir

−hr+1ϕ̀′′(x), x ∈ Ir+1
0, else

for X⊥ supported on two consecutive intervals Ir and Ir+1. The critical point condition then yields
⟨f, φ⟩ = 0 and integration by parts

hr⟨f ′′, ϕ́r⟩Ir
= hr+1⟨f ′′, ϕ̀r+1⟩Ir+1 . (17)

Since the functions ϕ́ and ϕ̀ are non-negative bump functions, the smoothness conditions of the main
theorems imply that

∥f∥L1/2(Ir) ∼ hr⟨f ′′, ϕ́r⟩Ir
= hr+1⟨f ′′, ϕ̀r+1⟩Ir+1 ∼ ∥f∥L1/2(Ir+1). (18)

4. Refined Analysis: While the last two equations provide equidistribution on two neighbouring in-
tervals, they are insufficient: (18) has the wrong norm, L1/2 instead of L2/5, and is too inaccurate
when chaining over large numbers of intervals. (17) cannot be chained directly because the functions
ϕ́ ̸= ϕ̀ are asymmetric. A more refined analysis of the asymmetry and passing to the limit m → ∞
shows that the grid size limit h(x) = limm→∞ mhr for x ∈ Ir satisfies the differential equation

[h2f ′′]′ = 1
5h2f ′′′,

where the left hand side originates from (17) and the right hand side from the asymmetry. This
is a first order linear differential equation for h2. Solving it with an integrating factor leads to
[h2(f ′′)4/5]′ = 0 and the extra power 4/5 leads to proper grid size limit for L2/5 equidistribution.
The main result Theorem 3.3 follows from a perturbation analysis of this ODE for finite hr.

5 Unfavourable Critical Points

5.1 Critical Points with High Oscillations

Recall from (16) that critical points are given by the condition

⟨fθ − f, v⟩ = 0, v ∈ X + Ẋ.

To construct unfavourable critical points, we merely need a perturbation φ that is orthogonal to X + Ẋ.
Then fθ is also a critical point for f + φ:

⟨fθ − (f + φ), v⟩ = 0, v ∈ X + Ẋ.

It is easy to construct φ so that fθ is a bad approximation. To provide a simple example, let f = 0 so that
fθ = 0 must also be zero. Now choose two neighbouring breakpoints br and br+1 and define an oscillation
φ supported inside Ir = [br−1, br], with some margin to the boundary and orthogonal to all linear functions
P1. Then, we have φ ⊥ X + Ẋ and fθ = 0 is a critical point for approximating 0 + cφ with arbitrarily large
approximation error c∥φ∥. On the other hand, the network fθ may have an arbitrary number of breakpoints
outside of Ir. With optimal placement, they can all be used to approximate φ and make the approximation

9
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error arbitrarily small. This simple example is sufficient for our purposes, but the literature contains many
more Swirszcz et al. (2017); Safran & Shamir (2018); He et al. (2020); Ding et al. (2022); Jentzen & Riekert
(2024).

Note that by construction any small perturbation of the outer weights wr or the breakpoints br does not
change the loss for approximating 0+cφ so that the large error is imperceptible to gradient based optimizers.
In the main theorems, assumption (13) ensures that the network has sufficient resolution so that the target
f cannot have any severe sub-grid oscillations. For comparison, classical adaptive CPwL approximation
algorithms use error indicators to steer the approximation towards error equidistribution. Theoretical results
then include extra “data oscillation” error terms to capture sub-grid oscillations Cohen et al. (2002); Binev
et al. (2004); Morin et al. (2002).

5.2 Avoiding Critical Points with High Oscillations

This section provides an informal motivation how assumption (13) rules out bad local minima with sub-
grid oscillations. To this end, first note that in case the target f is a simple function, like e.g. a second
degree polynomial, it clearly cannot oscillate as φ in the counter example. Of course this is too strong an
assumption, but what if f is close to a second order polynomial? Since second order approximation converges
faster than first order approximation, for sufficiently small intervals Ir = [br−1, br], we can expect

inf
p2∈P2

∥f − p2∥L2(Ir) ≤ C inf
p1∈P1

∥f − p1∥L2(Ir) ≤ C∥f − fθ∥L2(Ir) (19)

for some arbitrarily small constant C, with the last implied by the linearity of fθ on Ir. Denoting the
minimizer on the left by p2,r, with the triangle inequality, it is easy to show (see e.g. (36)) that

(1 + C)−1∥p2,r − fθ∥L2(Ir) ≤ ∥f − fθ∥L2(Ir).(1 − C)−1∥p2,r − fθ∥L2(Ir), (20)

i.e. the error of approximating f and of approximating the simple function p2,r is about the same. Hence,
if we can prove error equidistribution for locally simple functions p2,r, we also obtain error equidistribution
for f

∥f − fθ∥L2(Ir) ∼ ∥p2,r − fθ∥L2(Ir) ∼ ∥p2,s − fθ∥L2(Is) ∼ ∥f − fθ∥L2(Is)

for any two intervals r and s. This is a slightly stronger alternative to the equidistribution of smooth-
ness in Theorem 3.3. In summary, given (19), we can reduce equidistribution from arbitrary f to simpler
equidistribution of piecewise second degree polynomials.

Before we discuss (19) more carefully, let us apply our observations to the counter example from the last
section. If the oscillation φ from the example is orthogonal to P1 and P2, the best approximations and the
network from the example satisfy p1 = p2 = fθ = 0 and we have

∥p2,r − fθ∥L2(Ir) = 0, ∥f − fθ∥L2(Is) = ∥φ∥L2(Is) ̸= 0,

which contradicts the norm equivalence (20). Hence, if we can establish (19), severe sub-grid oscillations as
in the counter example are not possible.

Let us now consider the condition (19) more carefully. Informally, it follows directly from assumption (13)
of the main theorems. Indeed, standard direct approximation inequalities (41) provide the first degree
approximation error

inf
p1∈P1

∥f − p1∥L2(Ir) ≲ h2
r∥f (2)∥L2(I),

and the second degree approximation error

inf
p2∈P2

∥f − p2∥L2(Ir) ≤ ch3
r∥f (3)∥L2(I).

Notice that the second degree approximation has a higher power on hr and therefore is much smaller for
small intervals. Assumption (13) contains a concrete criterion when this happens (replacing hr+ with hr for

10



Published in Transactions on Machine Learning Research (10/2024)

0.3 0.5
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(a) Coarse interval Ir

0.41 0.45
0.3

0.4

0.5

0.6

0.7

f
degree 1
degree 2

(b) Fine interval Ir

Figure 2: Approximation of a oscillatory f = φ = L5 − L3 constructed from Legendre basis polynomials
Li. On the coarse interval (left), the first and second degree approximation do not capture the function
correctly. On the zoom in to a fine interval (right), the second degree approximation captures the bulk of
the function, whereas the first degree approximation does not.

simplicity). It implies

inf
p2∈P2

∥f − p2∥L2(Ir) ≤ ch3
r∥f (3)∥L2(I)

(13)
≤ cCh

5
2
r min

x∈Ir

|f (2)(x)|

= cCh
5
2
r

(
1
hr

∫
Ir

min
x∈Ir

|f (2)(x)|2
) 1

2

= cCh2
r∥f (2)∥L2(I),

for some constant C that is assumed to be sufficiently small. Direct approximation results tend to be sharp
asymptotically, in which case we can directly compare the first and second order approximation to obtain
(19):

inf
p2∈P2

∥f − p2∥L2(Ir) ≲ Ch2
r∥f (2)∥L2(I) ≲ C inf

p1∈P1
∥f − p1∥L2(Ir).

A rigorous argument is e.g. in Lemma A.27, applied to f ′′ and constant polynomials p′′
2 . The lemma also

includes replacements ⟨fθ − f, v⟩Ir
≈ ⟨fθ − p2,r, v⟩Ir

of f by local polynomials for the critical point conditions
(16), which require a little more care because of missing absolute values and potential cancellation.

A simple illustration is given in Figure 2. We can see that the approximation on a coarse interval does not
capture the oscillatory f correctly. On the fine interval, the second degree approximation is fairly accurate,
and captures the bulk of f , as required by (20).

5.3 Feasibility of Assumptions

When is the main assumption (13) satisfied? A simple guarantee can be given if

• f is smooth ∥f (4)∥Lp(D), ∥f (4)∥Lp(D) ≤ S for some S > 0 and p from (13).

• f is uniformly convex (or concave) f ′′(x) ≥ C for some constant C > 0 and all x ∈ D (or a convex
region as in the main theorems).

In this case, with the crude bound ∥f (s)∥Lp(Ir) ≤ ∥f (s)∥Lp(D), s = 3, 4, the assumption reduces to

h
1
2 − 1

p

k+ S ≤ CC

for some sufficiently small C. This is clearly satisfied if the breakpoints are close so that hr = |br−1 − br|
is small. Note that practically the constants S and C−1 may be large so that we need many breakpoints to
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Figure 3: Cusp function (21) (red) and neural network approximation (blue) at each 20000-th epoch (light
to dark blue). The circle markers show the location of the breakpoints.

apply Theorems 3.3 and 3.4. However, once we can, the resulting equidistribution and approximation errors
have standard constants that are independent of C and S.

We have argued that the condition (13) is simple to verify for a given critical point. A more difficult question
is to what extent we can guarantee that these favourable critical points are the limit of gradient descent. We
can choose hr arbitrarily small at the initial breakpoints. By stability of gradient descent, one may argue
that two breakpoints that are close at the initial may remain so during training. This would entail (13) also
for the gradient descent limit. However, a rigorous argument requires a full understanding of the gradient
descent dynamics, which is not considered in this paper and left for future research.

6 Numerical Experiments

This section contains some preliminary numerical experiments. We train the target function

f(x) = 1 − |x|0.1, x ∈ [−1, 1], (21)

which has a cusp at the origin. This entails that f ′′ is not contained in L2([−1, 1]), but is contained in
L2/5([−1, 1]) so that we expect a better performance of nonlinear approximation. Intuitively, this is achieved
by moving more breakpoints to the vicinity of the cusp. Figure 3 shows the evolution of the networks and
breakpoints during gradient descent training with the following setup

• Network architecture (9).

• Network width: 16.

• Learning rate: 0.01.

• 1280 samples in 10 batches.

• 100000 epochs, with a plot of the network every 20000 epochs.

The results show that gradient descent moves the breakpoints towards the cusp at the origin, as expected.
However, the convergence is very slow and requires a substantial number of epochs in relation to the simplicity
of the problem.
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A Proof of the Main Results

We follow roughly the steps in the proof overview in Section 4:

1. Section A.1 characterizes the critical points, constructs the complement space X⊥ and provides some
of its properties.

2. Section A.2 proves the distribution of the grid size limit for infinite width in Lemma 3.2.

3. Section A.3 proves equidistribution in Theorem 3.3.

4. Section A.4 proves the approximation properties of the critical points in Theorem 3.4.

A.1 Critical Points and the Complement Space X⊥

A.1.1 Critical Points

We have already seen in the proof overview that the weights θ are a critical point if and only if ⟨κ, v⟩ = 0 for
all v ∈ X + Ẋ, with residual κ := fθ − f . For reference, this is stated again in the following lemma, together
with a characterization of the spaces X and Ẋ.
Lemma A.1. Let θ be a critical point (11), with cleaned breakpoints in ascending order 12. Then

⟨κ, v⟩ = 0, v ∈ X = {v ∈ L2(D)|v(b0) = 0, v|Ir ∈ P1, r = 1, . . . , m̄},

⟨κ, v⟩ = 0, v ∈ Ẋ = {v ∈ L2(D)|v|Ir
∈ P0, r = 1, . . . , m̄},

Proof. In (16), we have seen that the critical points are given by the condition ⟨κ, v⟩ = 0 for all v in the
span X of the partial derivatives ∂wr ℓ and in the span Ẋ of the partial derivatives ∂br ℓ. Hence, it suffices to
show that the span of the derivatives matches the two sets in the lemma. Indeed, one readily computes

∂wr
fθ = ⟨κ, σ(· − br)⟩ , ∂br

fθ = ⟨κ, wrσ̇(· − br)⟩ .

Clearly ReLU activations σ(· − br) span piecewise linear functions and their derivatives wrσ̇(· − br) span
piecewise constants because in the cleanup before Theorem 3.4 we have already dropped all neurons with
wr = 0. Finally, by the same cleanup, the leftmost breakpoint maybe inside or outside of D, but anyways,
we must have v(b0) = 0 because no partial derivative has support left of this point.

Note that the network itself is continuous piecewise linear (CPwL) so that fθ ∈ X and the first critical point
condition

⟨κ, v⟩ = 0, v ∈ X

is merely a best L2 projection for the outer weights wr. Together with the second condition

⟨κ, v⟩ = 0, v ∈ X + Ẋ (22)

this formally matches a best L2 projection onto discontinuous piecewise linear (DPwL) functions. However,
fθ is not discontinuous and instead we have to move the breakpoints br to satisfy all conditions.

Recall from the proof overview that we split X + Ẋ into X and the L2-orthogonal complement X⊥:

X + Ẋ = X ⊕ X⊥, X ⊥ X⊥.

Since the neural network fθ is contained in X, this implies ⟨f, v⟩ = ⟨fθ − f, v⟩ = ⟨κ, v⟩ for all v ∈ X⊥ and
therefore at a critical point ⟨κ, v⟩ = 0 we have

⟨f, v⟩ = 0, v ∈ X⊥. (23)

Unlike the residual κ = fθ − f , the target f does not depend on the outer weights wr and therefore the last
condition decouples the computation of the inner weights br from the outer weights wr. This will be crucial
to prove equidistribution, which also depends on the inner weights br, only.
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A.1.2 The Complement Space X⊥

In this section, we construct an explicit basis for the complement space X⊥. As is customary for e.g. finite
elements, we first define suitable functions on the reference interval Î := [0, 1] and then use the bijective
affine linear transform

Tr : Î → Ir, Tr(x̂) = (br − br−1)x̂ + br−1, T ′
r = hr, (T −1

r )′ = h−1
r

to define corresponding functions on the interval Ir. We use hat ·̂ to emphasize that a certain quantity is
defined on the reference interval.

The construction starts with the four functions
ϕ́ : Î → R, ϕ́(x) = −x3 + x2,

ϕ̀ : Î → R, ϕ̀(x) = x3 − 2x2 + x,

ϕ̄ : Î → R, ϕ̄(x) = ϕ́(x) + ϕ̀(x),
ϕ̃ : Î → R, ϕ̄(x) = ϕ́(x) − ϕ̀(x),

(24)

defined on the reference interval Î and shown in Figure 4. The corresponding functions on the interval Ir

are defined with the affine transform

ϕ̊r(x) :=
{

ϕ̊ ◦ T −1
r (x), x ∈ Ir

0 x ̸∈ Ir,
(25)

extended by zero outside of Ir, for any˚∈ {́,̀ ,̄ ,̃ }.
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Figure 4: Functions defined in (24).

From ϕ́r and ϕ̀r, we can construct all functions in X⊥ that we need for the proof of the main results, as
given in the next lemma.
Lemma A.2. Let ϕ́r and ϕ̀r be defined by (25). Then

hrϕ́′′
r − hr+1ϕ̀′′

r+1 ∈ X⊥, r = 2, . . . , m̄ − 1.

Although the second derivative might seem artificial at first, the function ϕ́r will be more useful than ϕ́′′
r

down the road.

Proof. We abbreviate φr := hrϕ́′′
r − hr+1ϕ̀′′

r . Clearly ϕ̀′′
r and ϕ́′′

r are piecewise linear so that φr ∈ X + Ẋ and
it is sufficient to show ⟨φr, Hs⟩ = 0 for a basis Hs, s = 0, . . . , m̄ of X. We choose hat functions centered at
bs, i.e.

Hs(x) =


T −1

s (x) x ∈ Is,
1 − T −1

s+1(x) x ∈ Is+1,
0 else.

Using the compact supports of ϕ́r, ϕ̀r, Hs, the derivatives T ′
r = hr, (T −1

r )′ = h−1
r , the chain rule ϕ́′′

r =
(ϕ́′′ ◦ T −1

r )h−2
r and transforming to the reference interval, we compute

⟨φr, Hr−1⟩ = h−1
r

∫
Ir

ϕ́′′ ◦ T −1
r (x)(1 − T −1

r )(x) dx =
∫

Î

ϕ́′′(x̂)(1 − x̂) dx̂ =
∫ 1

0
(−6x̂ + 2)(1 − x̂) dx̂ = 0
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and

⟨φr, Hr+1⟩ = h−1
r+1

∫
Ir+1

ϕ̀′′ ◦ T −1
r+1(x)T −1

r+1(x) dx =
∫

Î

ϕ̀′′(x̂)x̂ dx̂ =
∫ 1

0
(6x̂ − 4)x̂ dx̂ = 0

and

⟨φ, Hr⟩ = h−1
r

∫
Ir

ϕ́′′ ◦ T −1
r (x)T −1

r (x) dx − h−1
r+1

∫
Ir+1

ϕ̀′′ ◦ T −1
r+1(x)(1 − T −1

r+1)(x) dx

=
∫ 1

0
(−6x̂ + 2)x̂ dx̂ −

∫ 1

0
(6x̂ − 4)(1 − x̂) dx̂ = (−1) − (−1) = 0

All other ⟨φr, Hs⟩ have non-overlapping support and therefore evaluate to zero. In conclusion ⟨φr, Hs⟩ = 0
for a basis Hs of X⊥. Together with φr ∈ X⊥, this concludes the proof.

The following lemma is the cornerstone for showing equidistribution in Lemma 3.2 and Theorem 3.3.
Lemma A.3. Let br, r ∈ [m̄] be cleaned critical breakpoints (11), (12). Let ϕ́r, ϕ̀r, ϕ̄r, ϕ̃r be defined by
(25). Then

hr⟨f ′′, ϕ́r⟩Ir
= hr+1⟨f ′′, ϕ̀r+1⟩Ir+1 .

Since ϕ́r and ϕ̀r are non-negative bump functions, under the conditions of the main theorem, one can show
that h

2− 1
q

r ∥f ′′∥Lq(Ir) ∼ hr⟨f ′′, ϕ́r⟩ ∼ hr⟨f ′′, ϕ̀r⟩ (with an argument analogous to Lemma A.27). Therefore,
repeated application of the Lemma yields equidistribution

h
2− 1

q
r ∥f ′′∥Lq(Ir) ∼ hr⟨f ′′, ϕ́r⟩ = hr+1⟨f ′′, ϕ̀r+1⟩ ∼ h

2− 1
q

r+1 ∥f ′′∥Lq(Ir+1)

between neighbouring intervals. However, repeated application for distant intervals Ir and Is accumulates
too much error. For the main equidistribution theorem we chain the identity of the lemma directly, which
requires careful consideration of the difference ϕ̃r = ϕ̀r − ϕ̀r.

Proof. Recall from (23), that at critical points, we have ⟨f, v⟩ = 0 for all v ∈ X⊥. By Lemma A.2, the
function hrϕ́′′

r − hr+1ϕ̀′′
r+1 is contained in X⊥ and therefore we may substitute it for v to obtain

⟨f, hrϕ́′′
r − hr+1ϕ̀′′

r+1⟩ = 0, ⇔ hr⟨f, ϕ́′′
r ⟩ = hr+1⟨f, ϕ̀′′

r+1⟩. (26)

This shows the lemma, except that the two derivatives are on the wrong side of the inner product, which we
correct with integration by parts:

hr⟨f, ϕ́′′
r ⟩Ir = −f(br) − hr⟨f ′, ϕ́′

r⟩Ir = −f(br) + hr⟨f ′′, ϕ́r⟩Ir

where in the first step we have used that ϕ́′
r(br−1) = 0 and ϕ́′

r(br) = ϕ́′ ◦ T −1
r (br)h−1

r = −h−1
r and in

the second step that ϕ́r is zero on the boundary, by the boundary values in Lemma A.4 in the technical
supplements. Analogously, we obtain

hr+1⟨f, ϕ̀′′
r+1⟩Ir+1 = −f(br) − hr+1⟨f ′, ϕ̀′

r+1⟩Ir+1 = −f(br) + hr+1⟨f ′′, ϕ̀r+1⟩Ir+1

Plugging into (26), we conclude that

−f(br) + hr⟨f ′′, ϕ́r⟩Ir
= −f(br) + hr+1⟨f ′′, ϕ̀r+1⟩Ir+1 ,

which yields the lemma upon cancelling f(br).
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A.1.3 Technical Properties of ϕ́r, ϕ̀r, ϕ̄r, ϕ̃r

This section contains several technical properties of the functions ϕ́r, ϕ̀r, ϕ̄r, ϕ̃r defined in (25).
Lemma A.4. Let ϕ́r and ϕ̀r be defined by (25). Then

ϕ́(0) = 0, ϕ́(1) = 0, ϕ́′(0) = 0, ϕ́′(1) = −1,

ϕ̀(0) = 0, ϕ̀(1) = 0, ϕ̀′(0) = 1, ϕ̀′(1) = 0,

Proof. Follows directly from the explicit formulas for ϕ́ and ϕ̀ in (24).

Lemma A.5. Let ϕ́r and ϕ̀r be defined by (25). Then for all x ∈ Î

ϕ́(x) ≥ 0, ϕ̀(x) ≥ 0.

Proof. ϕ́ and ϕ̀ are third order polynomials for which the lemma follows by elementary computation.

Lemma A.6. Let ϕ́r and ϕ̀r be defined by (25). Then

⟨1, ϕ́⟩Ir
= hr

12 , ⟨T −1
r , ϕ́⟩Ir

= hr

20 , ⟨x, ϕ́⟩Ir
= h2

r

20 + hr

12 br−1,

⟨1, ϕ̀⟩Ir = hr

12 , ⟨T −1
r , ϕ̀⟩Ir = hr

30 , ⟨x, ϕ̀⟩Ir = h2
r

30 + hr

12 br−1.

Proof. For any functions v̂ and ϕ̂ defined on the reference interval Î and corresponding functions v := v̂◦T −1
r

and ϕ := ϕ̂ ◦ T −1
r on the interval Ir, we have

⟨v, ϕ⟩Ir
= hr

∫
Î

v̂(x̂)ϕ̂(x̂) dx̂.

Therefore, for v̂ = 1 and ϕ̂ = ϕ́ and ϕ̂ = ϕ̀ we have

⟨1, ϕ́r⟩Ir
= hr⟨1, ϕ́⟩Î = hr

∫
Î

−x̂3 + x̂2 dx̂ = hr

12 ,

⟨1, ϕ̀r⟩Ir
= hr⟨1, ϕ̀⟩Î = hr

∫
Î

x̂3 − 2x̂2 + x̂ dx̂ = hr

12 .

Likewise, since the transformation of x̂ → x̂ to the interval Ir is T −1
r , we have

⟨T −1
r , ϕ́r⟩Ir = hr⟨x̂, ϕ́⟩Î = hr

∫
Î

x̂(−x̂3 + x̂2) dx̂ = hr

20 ,

⟨T −1
r , ϕ̀r⟩Ir

= hr⟨x̂, ϕ̀⟩Î = hr

∫
Î

x̂(x̂3 − 2x̂2 + x̂) dx̂ = hr

30 .

Finally, the function x transformed to the reference interval is Tr(x̂) = (br − br−1)x̂ + br−1 = hrx̂ + br−1.
Thus, together with the identities above

⟨x, ϕ́r⟩Ir = hr⟨Tr, ϕ́⟩Î = h2
r⟨x̂, ϕ́⟩Î + hrbr−1⟨1, ϕ́⟩Î = h2

r

20 + hr

12 br−1,

⟨x, ϕ̀r⟩Ir = hr⟨Tr, ϕ̀⟩Î = h2
r⟨x̂, ϕ̀⟩Î + hrbr−1⟨1, ϕ̀⟩Î = h2

r

30 + hr

12 br−1,

which completes the proof.
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A.2 Equilibration for the Limit h → 0

A.2.1 Results

We have seen in Section 2 that we can achieve optimal approximation rates by equilibrating the smoothness
∥f ′′∥L2/5(Ir) on all intervals Ir. In this section, we provide an argument that in the limit of small intervals
hr → 0, the equidistribution and the critical point conditions yield the same adapted grids. This section is
kept informal, put provides intuition and guidelines for a rigorous analysis for finite hr in Section A.3.

To provide meaningful limits, we consider the grid size limit

h(x) := lim
m→∞

mhr,

where hr is the size of the interval Ir that contains x and the network width m a normalization factor. On
a uniform grid, this normalization yields h(x) = |D|. Throughout this section, we assume that the limit
exists. We first consider the limit of equidistribution in the following lemma.
Lemma A.7. Assume that the limit h(x) exists. Let f be smooth and let the intervals be equilibrated
∥f ′′∥L2/5(Ir) = ∥f ′′∥L2/5(Is) for all r, s and for all m. Then for m → ∞ the grid size limit satisfies

h(x) = c|f ′′(x)|−2/5

for some constant c.

This limit confirms the expectation that we want a fine grid wherever the function f has little smoothness,
here expressed by a large second derivative |f ′′(x)|. In comparison, the limiting grid of the critical points
satisfy the following lemma.
Lemma A.8 (Lemma 3.2 restated). Let f be smooth and for every m let br, r ∈ [m̄] be cleaned critical
breakpoints (11), (12). If the limit h(x) exists, it satisfies

h(x) = cIf ′′(x)−2/5,

with possibly a different constant cI on each interval I for which f ′′(x) is non-zero.

We observe that the grid size limit is identical to the density of the smoothness norm equidistribution in
Lemma 3.2, up to a global factor on each interval for which f ′′ is non-zero. Thus, in the limit, critical points
have a proper grid distribution on every strictly convex or concave stretch of the target function f , but may
be imbalanced between these stretches.

The proof relies on the observation that in the limit the grid size satisfies the ODE in the following lemma.
Lemma A.9. Let f be smooth and for every m let br, r ∈ [m̄] be cleaned critical breakpoints (11), (12). If
the limit h(x) exists, it satisfies the differential equation

[h(x)2f ′′(x)]′ = 1
5h(x)2f ′′′(x).

The proofs of all lemmas are given in the following section.

A.2.2 Proofs

We first prove the limit for norm equidistribution.

Proof of Lemma 3.2. Since f is smooth, we have

m5/2∥f ′′∥L2/5(Ir) = (mhr)5/2
(

1
hr

∫
Ir

|f ′′(x)|2/5 dx

)5/2
→ h(x)5/2|f ′′(x)|.
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Since by equidistribution the left hand side is independent of the interval Ir containing x, the right hand
side is independent of x and thus

h(x)5/2|f ′′(x)| = const ⇒ h(x) = const|f ′′(x)|−2/5,

which concludes the proof.

To prove the analogous result for critical points, recall that from Lemma A.3 that hr⟨f ′′, ϕ́r⟩Ir
=

hr+1⟨f ′′, ϕ̀r+1⟩Ir+1 . We show that in the limit this reduces to an ODE for the grid size h(x). To this
end, we first need some technical lemmas.
Lemma A.10. Let v be smooth and ϕ́r, ϕ̀r be defined by (25). Then

lim
m→∞

1
hr

⟨v, ϕ́r⟩Ir
= 1

12v(x),

lim
m→∞

1
h2

r

⟨v, ϕ́r − ϕ̀r⟩Ir
= 1

60v′(x).

Proof. Since v is smooth and ϕ́r non-negative (Lemma A.5), by the mean value theorem and normalization
⟨1, ϕ́⟩Ir

= hr/12 (Lemma A.6), we have

1
hr

⟨v, ϕ́r⟩Ir = v(ξ) 1
hr

⟨1, ϕ́r⟩Ir = 1
12v(ξ)

for some ξ ∈ Ir. In the limit m → ∞ and intervals Ir that contain x, this yields the first formula of the
lemma.

To show the second limit, define

Φ(x) :=
∫ x

0
ϕ́(y) − ϕ̀(y) dy = −1

2(x4 − 2x3 + x2)

and Φr := Φ ◦ (Tr)−1. Then Φ′
r = Φ′ ◦ T −1

r h−1
r = (ϕ́r − ϕ̀r)h−1

r . Furthermore, Φ has boundary values
Φ(0) = Φ(1) = 0, is non-positive on Î and

⟨1, Φr⟩Ir
= hr

∫
Î

Φ(x̂) dx̂ = −hr

60

by transforming to the reference interval with Tr and T ′
r = hr. Using integration by parts, Φ ≤ 0 and the

mean value theorem, it follows that

1
h2

r

⟨v, ϕ́r − ϕ̀r⟩Ir
= − 1

hr
⟨v′, Φr⟩Ir

= −v′(ξ) 1
hr

⟨1, Φr⟩Ir
= v′(ξ) 1

60 .

Taking the limit m → ∞, this yields the second formula of the lemma.

Next, we show that the grid size limit satisfies the ODE in Lemma A.9.

Proof of Lemma A.9. By a telescopic sum, we have

hs⟨f ′′, ϕ́s⟩Is
− hr⟨f ′′, ϕ́r⟩Ir

=
s∑

k=r+1
hk⟨f ′′, ϕ́k⟩Ik

− hk−1⟨f ′′, ϕ́k−1⟩Ik−1 .
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Since the intervals Ir originate from are a critical point, by Lemma A.3 we have hk−1⟨f ′′, ϕ́k−1⟩Ik−1 =
hk⟨f ′′, ϕ̀k⟩Ik

and therefore

hs⟨f ′′, ϕ́s⟩Is
− hr⟨f ′′, ϕ́r⟩Ir

=
s∑

k=r+1
hk⟨f ′′, ϕ́k⟩Ik

− hk⟨f ′′, ϕ̀k⟩Ik

=
s∑

k=r+1
hk⟨f ′′, ϕ́k − ϕ̀k⟩Ik

.

Multiplying by m2 yields

(mhs)2 1
hs

⟨f ′′, ϕ́s⟩Is
− (mhr)2 1

hr
⟨f ′′, ϕ́r⟩Ir

=
s∑

k=r+1
(mhk)2 1

h2
k

⟨f ′′, ϕ́k − ϕ̀k⟩Ik
hk.

By Lemma A.10, in the limit m → ∞ this converges to
1
12h(x)2f ′′(x) − 1

12h(y)2f ′′(y) = 1
60

∫ x

y

h(z)2f ′′′(z) dz,

where we have used that the terms in the Riemann sum are constant on each interval Ir so that the extra
hr at the end converges to dz. Multiplying by 12 and differentiation with respect to x yields the lemma.

It remains to solve the ODE in the last Lemma.

Proof of Lemma 3.2, A.8. We abbreviate g := f ′′. By Lemma A.9, the grid size limit h satisfies the ODE

[h2g]′ = 1
5h2g′,

which is first order linear in h2, whenever g(x) ̸= 0. To solve it, define the integrating factor µ by the ODE

gµ′ = −1
5g′µ,

with the explicit solution

gµ′ = −1
5g′µ ⇒ µ′

µ
= −1

5
g′

g
⇒ ln(µ)′ = −1

5 ln(g)′ ⇒ µ = g−1/5,

up to a global multiplicative factor. Multiplying the original ODE with µ, we obtain

[h2g]′µ = 1
5h2g′µ = −h2gµ′ ⇒ [h2g]′µ + h2gµ′ = 0 ⇒ [h2gµ]′ = 0.

Hence h2gµ is constant. Plugging in g = f ′′ and the explicit solution µ = g−1/5 yields h2(f ′′)4/5 = c for
some constant c. Solving for h yields the lemma.

A.3 Equilibrium for Finite h

In this section, we prove the main equidistribution theorem, restated here for convenience:
Theorem A.11 (Theorem 3.3, restated). Let θ be a critical point (11), with cleaned breakpoints in ascending
order 12. For r, s ∈ {2, . . . , m̄}, let I = {r, r + 1, . . . , s} be a set of consecutive neurons with DI :=

⋃
k∈I Ik

and
max

{
h

1
2 − 1

p

k+ ∥f (3)∥Lp(Ik+), h
1− 1

q

k+ ∥f (4)∥Lq(Ik+),

}
≤ C min

x∈Ik+
|f ′′(x)| (27)

for some 1 < q, p ≤ ∞ and some sufficiently small constant C > 0 independent of f and hk. Then for
l, k ∈ DI we have equidistribution

∥f ′′∥L2/5(Il) ∼ ∥f ′′∥L2/5(Ik).
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A.3.1 Notations

Throughout this section, we abbreviate

ár(v) := h−1
r ⟨v, ϕ́r⟩Ir , àr(v) := h−1

r ⟨v, ϕ̀r⟩Ir , (28)
ār(v) := h−1

r ⟨v, ϕ̄r⟩Ir
, ãr(v) := h−1

r ⟨v, ϕ̃r⟩Ir
(29)

and in case v = f ′′, even shorter

ár := ár(f ′′), àr := àr(f ′′), ār := ār(f ′′), ãr := ãr(f ′′). (30)

We will also repeatedly use the integrating factor

µr := |ār|α, α := −1
5 . (31)

analogous to the one that was used in the solution of the ODE from Lemma A.9, in the infinite width limit.

A.3.2 Overview

Recall from Lemma A.9 that for m → ∞, the grid size limit h(x) and the integrating factor µ(x) satisfy the
two ODEs

[h2f ′′]2 = 1
5h2f ′′′, f ′′µ′ = −1

5f ′′′µ,

respectively. It follows that
[h2f ′′µ]′ = [h2f ′′]′µ + h2f ′′µ′

= 1
5h2f ′′′µ − 1

5h2f ′′′µ

= 0,

(32)

where in the first step we have used the product rule and in the third the two ODEs for h and µ. For finite
hr, we follow a similar argument:

1. Lemma A.12 replaces the derivative on the left hand side with a difference and the zero on the right
hand side with perturbation terms (I) − (IV ) that we prove to be small in subsequent sections.
As result, the terms h2

rārµr are almost constant between neighbouring intervals.

2. Lemmas A.13 and A.14 bound error accumulation when comparing h2
rārµr = [h

5
2
r ās] 4

5 over multiple
intervals, resulting in equidistribution of this quantity.

3. Theorem 3.3 then follows from [h
5
2
r ās] 4

5 ∼ ∥f ′′∥
4
5
L2/5(Ir), by Lemma A.27 at the end of this section.

A.3.3 Proof of the Main Result

The assumptions for the main theorems confine the results to regions where f is convex or concave. For the
time being, we make this assumption explicit by assuming ār ≥ 0, which will be removed later.
Lemma A.12. Let br, r ∈ [m̄] be cleaned critical breakpoints (11), (12). Let ār, ãr and µr be defined by
(28), (31), ār ≥ 0 and α := −1/5. Then

h2
r+1ār+1µr+1 − h2

rārµr = (I) + (II) + (III) + (IV ),

with

(I) = h2
r[ãr+1 + ãk + α[ār+1 − ār]]µr+1,

(II) = [h2
r+1 − h2

r]ãr+1µr+1,

(III) = α2h2
rāα−1

r [ār+1 − ār]2,

(IV ) = αh2
r[ār+1 − ār]Rr + h2

rārRr.
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and for some 0 ≤ ξr ≤ 1

Rr := α(α − 1)[ξrār + (1 − ξr)ār+1]α−2[ār+1 − ār]2.

Proof. We mimic the steps in the motivation (32), starting with the product rule:

h2
r+1ār+1µr+1 − h2

rārµr = [h2
r+1ār+1 − h2

rār]µr+1 + h2
rār[µr+1 − µr]. (33)

The next step in the motivation is to invoke the ODEs for h and µ. The former is based on Lemma
A.3, which we can invoke directly (twice in the second step below) together with the observation that
h2

rár = hr⟨f ′′, ϕ́r⟩Ir
, etc., to obtain

h2
r+1ār+1 − h2

rāk = (h2
r+1ár+1 − h2

kák) + (h2
r+1àr+1 − h2

kàk)
= (h2

r+1ár+1 − h2
r+1àr+1) + (h2

rár − h2
kàk)

= h2
r+1ãr+1 + h2

rãk.

For the second term, we don’t invoke the µ ODE directly, but instead compute the derivative, or rather
difference, using the explicit formula µr = āα

r . Applying a Taylor expansion for z → zα, we obtain

µr+1 − µr = āα
r+1 − āα

r = αāα−1
r [ār+1 − ār] + Rr (34)

and Taylor remainder
Rr := α(α − 1)[ξrār + (1 − ξr)ār+1]α−2[ār+1 − ār]2 (35)

for some 0 < ξr < 1. Plugging these identities into (33) and using āα
r = µr, we obtain

h2
r+1ār+1µr+1 − h2

rārµr = [h2
r+1ãr+1 + h2

rãk]µr+1 + h2
rār[αāα−1

r [ār+1 − ār] + Rr]
= [h2

r+1ãr+1 + h2
rãk]µr+1 + αh2

rµr[ār+1 − ār] + h2
rārRr.

In the continuous motivation (32), the terms on the right hand side cancel to zero. In the discrete case, we
rearrange the right hand side into summands that we prove to be small later:

h2
r+1ār+1µr+1 − h2

rārµr = [h2
r+1 − h2

r]ãr+1µr+1

+ h2
r[ãr+1 + ãk]µr+1 + αh2

rµr+1[ār+1 − ār]
− αh2

r[µr+1 − µr][ār+1 − ār] + h2
rārRr

= [h2
r+1 − h2

r]ãr+1µr+1

+ h2
r[ãr+1 + ãk + α[ār+1 − ār]]µr+1

− αh2
r[µr+1 − µr][ār+1 − ār] + h2

rārRr.

We will see later that the third but last and last lines contain small perturbation terms and the second but
last line is zero for f ′′ ∈ P1 (Lemma A.16) and close to zero for general f ′′. For now, we eliminate the
difference µr+1 − µr by Taylor expansion (34), (35) to obtain

αh2
r[µr+1 − µr][ār+1 − ār] = α2h2

rāα−1
r [ār+1 − ār]2 + αh2

r[ār+1 − ār]Rr

and therefore

h2
r+1ār+1µr+1 − h2

rārµr = [h2
r+1 − h2

r]ãr+1µr+1

+ h2
r[ãr+1 + ãk + α[ār+1 − ār]]µr+1

− α2h2
rāα−1

r [ār+1 − ār]2 + αh2
r[ār+1 − ār]Rr + h2

rārRr

This concludes the proof, upon reordering terms.

27



Published in Transactions on Machine Learning Research (10/2024)

The previous lemma shows that h2
rārµr is comparable on two neighbouring intervals Ir and Ir+1. Applying

the argument repeatedly, allows us to compare h2
rārµr across multiple intervals. The following lemma bounds

the compound error.
Lemma A.13. Let zk ∈ R and hk ≥ 0 for k = 1, . . . , m. Assume

|zk+1 − zk| ≤ cd[hkzk + hk+1zk+1]

and the conditions

cdhk ≤ 1
2 , 1 + 2cdCd

m∑
k=1

hk ≤ Cd,
1

Cd
≤ 1 − 2cd

m∑
k=1

hk

for the two constants cd, Cd ≥ 0. Then for all r, s ∈ [m] we have

1
Cd

zr ≤ zs ≤ Cdzr.

Proof. We first show that zk does not change sign. To this end, assume zk+1 ≥ 0 and zk ≤ 0. Then, by
assumption

|zk+1| + |zk| ≤ cd[hk|zk| + hk+1|zk+1|] ≤ 1
2 |zk+1| + |zk|,

which directly implies zk = zk+1 = 0. Therefore, in the following we assume without loss of generality that
zk ≥ 0.

By symmetry it suffices to show zs ≤ Cdzr. To this end, assume without loss of generality r ≤ s and by
induction that the statement is true for all r ≤ k ≤ s − 1. We show the statement for k = s. With a
telescopic sum, we have

zs − zr =
s−1∑
k=r

zk+1 − zk ≤ cd

s−1∑
k=r

hkzk + hk+1zk+1 ≤ 2cd

s∑
k=r

hkzk

≤ 2cd

(
s∑

k=r

hk

)
max{zs, max

r≤k<s
zk} ≤ 2cd

(
s∑

k=r

hk

)
max{zs, Cdzr},

where in the second step we have used the first assumption of the lemma, in the third an index shift on the
hk+1zk+1 summands and in the last the induction hypothesis.

We proceed with the two options for the maximum separately. In case max{zs, Cdzr} = zs, we have

zs − zr ≤ 2cd

(
s∑

k=r

hk

)
zs ⇒ zs ≤

[
1 − 2cd

(
s∑

k=r

hk

)]−1

zr ≤ Cdzr,

where we have solved the first inequality for zs and then estimated the bracket by the given assumptions.

By the same reasoning, in the case max{zs, Cdzr} = Cdzr we have

zs − zr ≤ 2cd

(
s∑

k=r

hk

)
Cdzr ⇒ zs ≤

[
1 + 2cdCd

(
s∑

k=r

hk

)]
zr ≤ Cdzr,

Thus, in any case we have zs ≤ Cdzr and the lemma follows by induction.

Combining the last two lemmas shows that h2
rārµr is equidistributed across multiple intervals Ir. This

requires us to bound the terms (I) − (IV ), which is technical and deferred to Section A.3.5 later.
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Lemma A.14. Let br, r ∈ [m̄] be cleaned critical breakpoints (11), (12). Assume that

max
{

h
1
2 − 1

p

k+ ∥f (3)∥Lp(Ik+), h
1− 1

q

k+ ∥f (4)∥Lq(Ik+),

}
≤ C min

x∈Ik+
|f ′′(x)|

for some 1 < q, p ≤ ∞ and some sufficiently small constant C > 0, independent of f and hr, and r contained
in some consecutive indices I ⊂ [m̄]. Then

h2
s|ās|µs ∼ h2

r|ār|µr

for all r, s ∈ I.

Proof. First note that by Lemma A.20 in the technical supplements we have ār ∼ ār+1 so that they cannot
change sign. Upon eventually replacing f with −f , we may assume without loss of generality that ār ≥ 0.
Then, the result follows from Lemma A.13 with the choice zk = h2

kākµk. To prove its assumptions, we have
to show

h2
r+1ār+1µr+1 − h2

rārµr ≤ cd(h2
rārµr)hr + cd(h2

r+1ār+1µr+1)hr+1

for some sufficiently small cd so that the lemmas restrictions on the constants are satisfied. By Lemma A.12,
we have

h2
r+1ār+1µr+1 − h2

rārµr = (I) + (II) + (III) + (IV ),
≲ C(h2

rārµr)hr + C(h2
r+1ār+1µr+1)hr+1

for some terms (I) − (IV ) that are bounded by Lemmas A.23, A.24, A.25, A.26. These lemmas require

h
1
2 − 1

p

r+ ∥f (3)∥Lp(Ir+) ≤ C min
x∈Ir+

|f ′′(x)|,

h
1− 1

q

r+ ∥f (4)∥Lq(Ir+) ≤ C min
x∈Ir+

|f ′′(x)|,

possibly with different 1 ≤ p, q ≤ ∞ and for sufficiently small constant C. This matches the given assumption
and concludes the proof.

The technical Lemma A.27 below shows that h
5
2
r |ās| ∼ ∥f ′′∥L2/5(Ir), which allows us to conclude the proof

of the main Theorem 3.3.

Proof of Theorem 3.3. From Lemma A.14 together with the definition µr := |ār|−1/5, we have the equidis-
tribution

h2
s|ās| 4

5 ∼ h2
r|ār| 4

5

and by Lemma A.27, we have the equivalence

h2
r|ās| 4

5 = [h
5
2
r |ās|] 4

5 ∼ ∥f ′′∥
4
5
L2/5(Ir).

Combining these equivalences, the norms ∥f ′′∥
4
5
L2/5(Ir) are equilibrated and the result follows.

A.3.4 Technical Lemmas

This Section contains a collection of technical lemmas that are used to bound (I) − (IV ) in Lemma A.12.
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Lemma A.15. Let ϕ́r, ϕ̀r, ϕ̄r, ϕ̃r be defined by (25) and ār by (28). Then

ãr(1) = 0, ãr(x) = hr

60 ,

ār(1) = 1
6 , ār(x) = hr

12 + 1
6br−1,

ār+1(1) − ār(1) = 0, ār+1(x) − ār(x) = hr+1 + hr

12 .

Proof. From ϕ̃r = ϕ́r − ϕ̀r and Lemma A.6, we have

⟨1, ϕ̃r⟩Ir
= ⟨1, ϕ́r⟩Ir

− ⟨1, ϕ̀r⟩Ir
= hr

12 − hr

12 = 0,

⟨x, ϕ̃r⟩Ir
= ⟨x, ϕ́r⟩Ir

− ⟨x, ϕ̀r⟩Ir
=
(

h2
r

20 + hr

12 br−1

)
−
(

h2
r

30 + hr

12 br−1

)
= h2

r

60 .

Dividing by hr and plugging in the definition of ãr on the left hand side shows the first two identities of the
lemma. Likewise, with the definition ϕ̄r = ϕ́r + ϕ̀r, we have

⟨1, ϕ̄r⟩Ir
= ⟨1, ϕ́r⟩Ir

+ ⟨1, ϕ̀r⟩Ir
= hr

12 + hr

12 = hr

6 ,

⟨x, ϕ̄r⟩Ir
= ⟨x, ϕ́r⟩Ir

+ ⟨x, ϕ̀r⟩Ir
=
(

h2
r

20 + hr

12 br−1

)
+
(

h2
r

30 + hr

12 br−1

)
= h2

r

12 + hr

6 br−1,

which shows the second two identities of the lemma. It follows that

h−1
r+1⟨1, ϕ̄r+1⟩Ir+1 − h−1

r ⟨1, ϕ̄r⟩Ir
= 1

6 − 1
6 = 0,

h−1
r+1⟨x, ϕ̄r+1⟩Ir+1 − h−1

r ⟨x, ϕ̄r⟩Ir
=
(

hr+1

12 + 1
6br

)
−
(

hr

12 + 1
6br−1

)
= hr+1 − hr

12 + hr

6 = hr+1 + hr

12 ,

where we have used that br − br−1 = hr. Again, plugging in the definitions of ār on the left hand side shows
the remaining identities of the lemma.

Lemma A.16. Let ār and ãr be defined by (28) and α := −1/5. Then

ãr+1(p) + ãr(p) + α[ār+1(p) − ār(p)] = 0.

for all linear p ∈ P1.

Proof. Since ār(·) and ãr(·) are linear, it suffices to show the lemma for p = 1 and p = x. For the former by
Lemma A.15 we have

ãr+1(1) + ãr(1) + α[ār+1(1) − ār(1)] = 0 + 0 − α[0] = 0.

For the latter, we have

ãr+1(x) + ãr(x) + α[ār+1(x) − ār(x)] = hr+1

60 + hr

60 + α

[
hr+1 + hr

12

]
= 0,

because α = −1/5.
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Lemma A.17. Let ϕ́r and ϕ̀r be defined by (25). Then for any 0 < p < ∞ and integer s ≥ 0 the Lp norms
of the s-th derivatives are bounded by

∥ϕ́(s)
r ∥Lp(Ir) ∼ h

1
p −s
r , ∥ϕ̀(s)

r ∥Lp(Ir) ∼ h
1
p −s
r ,

with constants that depend on p and s.

Proof. On the reference interval Î, we have ∥ϕ́(s)∥Lp(Î) ∼ 1 form some constants that depend on p and s.
Hence, we only need to check the scaling for the transform to the interval Ir by integral substitution:

∥ϕ́(s)
r ∥p

Lp(Ir) =
∫

Ir

|ϕ́(s) ◦ T −1
r (x)h−s

r |p dx = h1−sp
r

∫
Ir

|ϕ́(x̂)|p dx̂ ∼ h1−sp
r .

Taking the p-th root shows the claimed equivalences for ϕ́r. The result for ϕ̀r follows analogously.

Lemma A.18. Let ār(v) and ãr(v) be defined by (28) and 1 ≤ p ≤ ∞. Define the joint interval Ir+ :=
Ir ∪ Ir+1 of size hr+ := |Ir+|. Then

1. |ār(v)| ≤ h
− 1

p
r ∥v∥Lp(Ir).

2. |ãr(v)| ≤ h
1− 1

p
r ∥v′∥Lp(Ir).

3. |ār+1(v) − ār(v)| ≤ hr+

(
h

− 1
p

r+1 + h
− 1

p
r

)
∥v′∥Lp(Ir+).

4. ār(v) ≥ 1
6 minx∈Ir

v(x) and □r(v) ≥ 1
12 minx∈Ir

v(x) for □ ∈ {á, à}.

Proof. Throughout the proof define q by 1/p + 1/q = 1 so that −1 + 1/q = −1/p.

1. By Hölder’s inequality and Lemma A.17 we have

|ār(v)| = h−1
r ⟨v, ϕ́r + ϕ̀r⟩Ir

≤ h−1
r ∥v∥Lp(Ir)∥ϕ́r + ϕ̀r∥Lq(Ir)

≤ h−1
r ∥v∥Lp(Ir)h

1
q
r ≤ h

− 1
p

r ∥v∥Lp(Ir).

2. By Lemma A.15 we have ãr(1) = 0. Hence, if c is the best Lp constant approximation to v, with
standard direct approximation inequalities ((41) in the supplementary material), we obtain

|ãr(v)| = |ãr(v − c)| = h−1
r ⟨v − c, ϕ́r − ϕ̀r⟩Ir

≤ h−1
r ∥v − c∥Lp(Ir)∥ϕ́r − ϕ̀r∥Lq(Ir) ≤ h−1

r hr∥v′∥Lp(Ir)h
1
q
r

≤ h
1− 1

p
r ∥v′∥Lp(Ir).

3. By Lemma A.15 we have ār+1(1) − ār(1) = 0. Hence, if c is the best Lp constant approximation to
v on the joint interval Ir+ := Ir+1 ∪ Ir, we have

|ār+1(v) − ār(v)| = |ār+1(v − c) − ār(v − c)|
≤ h−1

r+1|⟨v − c, ϕ̄r+1⟩Ir+1 | + h−1
r |⟨v − c, ϕ̄r⟩Ir

|.
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With standard direct approximation inequalities ((41) in the supplementary material), we estimate
the second term as before:

h−1
r |⟨v − c, ϕ̄r⟩Ir

| ≤ h−1
r ∥v − c∥Lp(Ir)∥ϕ́r − ϕ̀r∥Lq(Ir)

≤ h−1
r ∥v − c∥Lp(Ir+)h

1
q
r

≤ h−1
r hr+∥v′∥Lp(Ir+)h

1
q
r

≤ hr+h
− 1

p
r ∥v′∥Lp(Ir+).

With an analogous argument on the interval Ir+1, we obtain

|ār+1(v) − ār(v)| ≤ hr+

(
h

− 1
p

r+1 + h
− 1

p
r

)
∥v′∥Lp(Ir+).

4. By Lemma A.5 the function ϕ̄r = ϕ́r + ϕ̀r is non-negative. Therefore, by the mean value theorem
for some ξ ∈ Ir

ār(v) = h−1
k ⟨v, ϕ̄r⟩Ir

= h−1
k v(ξ)⟨1, ϕ̄r⟩Ir

≥ h−1
k min

x∈Ir

v(x)⟨1, ϕ̄r⟩Ir
= min

x∈Ir

v(x)ār(1) = 1
6 min

x∈Ir

v(x),

where in the last step we have used Lemma A.15. Analogously, one can show that ár(v) ≥
1

12 minx∈Ir v(x) and àr(v) ≥ 1
12 minx∈Ir v(x), using that ár(1) = 1

12 by normalization Lemma A.6.

Lemma A.19. Let br, r ∈ [m̄] be cleaned critical breakpoints (11), (12). Then

|h2
r+1 − h2

r| ≤ 12
minx∈Ir+ |f ′′(x)|hr+

(
h

2− 1
p

r+1 + h
2− 1

p
r

)
∥f ′′′∥Lp(Ir+).

Proof. From Lemma A.3 we have hr⟨f ′′, ϕ́r⟩Ir = hr+1⟨f ′′, ϕ̀r+1⟩Ir+1 or equivalently h2
rár = h2

r+1àr+1 and
therefore h2

r+1 = h2
rár/àr+1. This implies

h2
r+1 − h2

r =
[

ár

àr+1
− 1
]

h2
r = − 1

àr+1
[àr+1 − ár]h2

r.

We first bound [àr+1 − ár]. To this end, note that

àr+1(1) − ár(1) = h−1
r+1⟨1, ϕ̀r+1⟩Ir+1 − h−1

r ⟨1, ϕ́r⟩Ir = 1
12 − 1

12 = 0,

where in the second but last step we have used the normalization properties Lemma A.6. Hence, we obtain

|àr+1 − ár| ≤ hr+

(
h

− 1
p

r+1 + h
− 1

p
r

)
∥f ′′′∥Lp(Ir+),

with a proof that is identical to the same bound for |ār+1 − ār| in Lemma A.18. Next, we bound

1
ár+1

≤ 12
minx∈Ir+1 |f ′′(x)|

by Lemma A.18. We conclude that

|h2
r+1 − h2

r| ≤ 12
minx∈Ir+1 |f ′′(x)|hr+h2

r

(
h

− 1
p

r+1 + h
− 1

p
r

)
∥f ′′′∥Lp(Ir+),
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Starting with h2
r = h2

r+1àr+1/ár instead of h2
r+1 = h2

rár/àr+1 at the beginning of the proof, we obtain the
same inequality with the term h2

r replaced by h2
r+1. Thus, we can simplify to

|h2
r+1 − h2

r| ≤ 12
minx∈Ir+ |f ′′(x)|hr+

(
h

2− 1
p

r+1 + h
2− 1

p
r

)
∥f ′′′∥Lp(Ir+),

which completes the proof.

Lemma A.20. Let br, r ∈ [m̄] be cleaned critical breakpoints (11), (12). Assume that

h
1− 1

p

r+ ∥f ′′′∥Lp(Ir+) ≤ C min
x∈Ir+

|f ′′(x)|

for a sufficiently small constant C independent of f and hr. Then

hr ∼ hr+1, ār ∼ ār+1, µr ∼ µr+1.

Proof. All equivalences in this lemma are based on the following observation: For two numbers a, b ∈ R we
have

|a − b| ≤ 1
2 max{|a|, |b|} ⇒ 1

2a ≤ b ≤ 2a. (36)

First note that a and b have same sign. Indeed, if a ≥ 0 and b ≤ 0, we have

|a| + |b| ≤ 1
2 max{|a|, |b|} ≤ 1

2(|a| + |b|),

which implies a = b = 0. Thus, without loss of generality assume a, b ≥ 0. In case min{a, b} = a, we have

b = |b| ≤ |a| + |b − a| ≤ a + 1
2a ≤ 3

2a,

b = |b| ≥ |a| − |b − a| ≥ a − 1
2a ≥ 1

2a

and thus 1
2 a ≤ b ≤ 3

2 a. In case min{a, b} = b, analogously we have 1
2 b ≤ a ≤ 3

2 b. Rearranging this is
equivalent to 2

3 a ≤ b ≤ 2a. Using the worst of the two cases yields the claim.

We now turn to the statements of the lemma.

1. By Lemma A.19 and the given assumptions, we have

|h2
r+1 − h2

r| ≤ c
12

minx∈Ir+ |f ′′(x)|hr+

(
h

2− 1
p

r+1 + h
2− 1

p
r

)
∥f ′′′∥Lp(Ir+).

≤ c
12

minx∈Ir+ |f ′′(x)|h
2
r+h

1− 1
p

r+ ∥f ′′′∥Lp(Ir+)

≤ cCh2
r+ ≤ 1

2 max{hr, hr+1}hr+.

for sufficiently small constant C. It follows that

|hr+1 − hr| =
∣∣∣∣h2

r+1 − h2
r

hr+1 + hr

∣∣∣∣ ≤ 1
2 max{hr, hr+1}

and thus with (36) we obtain 1
2 hr ≤ hr+1 ≤ hr.
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2. By the first part of the lemma we have hr ∼ hr+1 and therefore h
−1/p
r + h

−1/p
r+1 ≲ h

−1/p
r+ . Thus, by

Lemma A.18 and the given assumptions we have

|ār+1 − ār| ≤ chr+

(
h

− 1
p

r+1 + h
− 1

p
r

)
∥f ′′′∥Lp(Ir+) ≤ ch

1− 1
p

r+ ∥f ′′′∥Lp(Ir+) ≤ cC min
x∈Ir+

|f ′′(x)| ≤ 1
2 ār.

for sufficiently small constant C. With (36) this implies 1
2 ār ≤ ār+1 ≤ ār.

3. Since µr = |ār|α, the previous part of the lemma directly implies µr ∼ µr+1.

Lemma A.21. Let P ∈ Ps−1, 1 ≤ s ∈ N be the best linear approximation of f ′′ in Lp on some interval
J ⊃ Ir and ār, ãr be defined in 28, 30. Then for 1 ≤ p ≤ ∞

|ār − ār(P )| ≲ |J |sh
− 1

p
r ∥f (s+2)∥Lp(J), |ãr − ãr(P )| ≲ |J |sh

− 1
p

r ∥f (s+2)∥Lp(J).

Proof. Let 1/p + 1/q = 1 so that −1 + 1/q = −1/p. Then

|ār − ār(P )| = |ār(f ′′ − P )| = h−1
r ⟨f ′′ − P, ϕ́r + ϕ̀r⟩Ir

≤ h−1
r ∥f ′′ − P∥Lp(J)∥ϕ́r − ϕ̀r∥Lq(Ir) ≲ h−1

r |J |s∥f (s+2)∥Lp(J)h
1
q
r

≤ |J |sh
− 1

p
r ∥f (s+2)∥Lp(J).

The result for ãr follows analogously.

Lemma A.22. Let ār(v) ≥ 0 and for some β ∈ R assume

hβ
r ∥v′∥Lp(Ir) ≤ C min

x∈Ir+
|v(x)|.

Then
min
x∈Ir

|v(x)| ≤ ār.

Proof. First assume that minx∈Ir+ |v(x)| = 0. With the given assumption, this implies v′(x) = 0 on Ir so
that v is constant and thus zero everywhere. In this case we have ār(v) = 0 and the result follows.

If minx∈Ir+ |v(x)| ≠ 0, the function v(x) does not change sign and since ār(v) ≥ 0, we must have v(x) ≥ 0
for all x ∈ Ir because ϕ̄r ≥ 0 (Lemma A.5). Then the result follows directly from Lemma A.18.

A.3.5 Bounds for (I) − (IV ) in Lemma A.12

In this section, we bound the terms (I)-(IV) in Lemma A.12. The bounds are of the form (I) − (IV ) ≤
[h2

rārµr]hr =: zrhr, all with one extra factor hr, which allows us to control the cumulative error for equidis-
tribution over longer distances by Lemma A.13.
Lemma A.23. Let br, r ∈ [m̄] be cleaned critical breakpoints (11), (12) and ār, ār+1 ≥ 0. Assume that

h
1− 1

p

r+ ∥f (4)∥Lp(Ir+) ≤ C min
x∈Ir+

|f ′′(x)|

for some constant C > 0 independent of f and hr. Then

(I) = h2
r[ãr+1 + ãk + α[ār+1 − ār]]µr+1 ≲ C[h2

rārµr]hr + 1
8[h2

r+1ār+1µr+1]hr+1.
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Proof. First note that by Lemma A.16 for all P ∈ P1 we have

ãr+1(P ) + ãr(P ) + α[ār+1(P ) − ār(P )] = 0.

Hence, in case minx∈Ir+ |f ′′(x)| = 0 the given assumption implies f (4) = 0 so that f ′′ ∈ P1 and (I) = 0. In
case minx∈Ir+ |f ′′(x)| ≠ 0, it follows that with ār = ār(f ′′), etc.,

(I) = h2
r[ãr+1 + ãk + α[ār+1 − ār]]µr+1

− h2
r[ãr+1(P ) + ãk(P ) + α[ār+1(P ) − ār(P )]]µr+1

= h2
r[ãr+1(f ′′ − P ) + ãk(f ′′ − P ) + α[ār+1(f ′′ − P ) − ār(f ′′ − P )]]µr+1.

(37)

We choose the best Lp(Ir+) approximation for P and estimate all terms separately. First, we have

h2
kāk(f ′′ − P )µk = h2

k[āk − āk(P )]µk ≲ h2
r+h

2− 1
p

r ∥f (4)∥Lp(Ir+)µk

≲ Ch2
r+hr min

x∈Ir+
|f ′′(x)|µr ≲ Ch2

r+hrārµr = C(h2
rārµr)hr,

where in the second step we have used Lemma A.21, in the third our assumptions, in the fourth |f ′′(x)| ≲ ār

analogous to Lemma A.22 with minx∈Ir+ |f ′′(x)| ≠ 0 and in the second but last hr ∼ hr+1 by Lemma A.20.
Analogously, we obtain

h2
kãk(f ′′ − P )µk ≲ C(h2

rārµr)hr,

as well as for all other combination of indices r and r + 1 because µr ∼ µr+1 by Lemma A.20. Using these
estimates for all four terms in (37), we obtain

(I) ≲ C
[
(h2

rārµr)hr + (h2
r+1ār+1µr+1)hr+1

]
,

which shows the lemma.

Lemma A.24. Let br, r ∈ [m̄] be cleaned critical breakpoints (11), (12) and ār+1 ≥ 0. Assume

h
1
2 − 1

p

r+ ∥f ′′′∥Lp(Ir+) ≤ C min
x∈Ir+

|f ′′(x)|

for some constant C > 0 independent of f and hr. Then

(II) = [h2
r+1 − h2

r]ãr+1µr+1 ≲ C[h2
r+1ār+1µr+1]hr+1.

Proof. By Lemma A.19 and the given assumptions, we have

|h2
r+1 − h2

r| ≲ 12
minx∈Ir+ |f ′′(x)|hr+

(
h

2− 1
p

r+1 + h
2− 1

p
r

)
∥f ′′′∥Lp(Ir+) ≲ Ch

5
2
r+1,

where in the last step we have used hr+1 ∼ hr by Lemma A.20. From Lemma A.18, the given assumptions,
and |f ′′(x)| ≤ ār+1 (Lemma A.22), we have

|ãr+1| ≲ h
1− 1

p

r+1 ∥f ′′′∥Lp(Ir+1) ≲ Ch
1
2
r+1 min

x∈Ir+
|f ′′(x)| ≲ Ch

1
2
r+1ār+1.

Combining these two inequalities yields the lemma.

Lemma A.25. Let br, r ∈ [m̄] be cleaned critical breakpoints (11), (12) and ār ≥ 0. Assume

h
1
2 − 1

p

r+ ∥f ′′′∥Lp(Ir+) ≤ C min
x∈Ir+

|f ′′(x)|

for some constant 0 < C ≤ 1 independent of f and hr. Then

(III) = α2h2
rāα−1

r [ār+1 − ār]2 ≲ C[h2
rārµr]hr.
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Proof. From Lemma A.18, the given assumptions, hr+1 ∼ hr (Lemma A.20) and |f ′′(x)] ≤ ār (Lemma
A.22), we have

|ār+1 − ār| ≲ hr+

(
h

− 1
p

r+1 + h
− 1

p
r

)
∥f ′′′∥Lp(Ir+) ≲ C min

x∈Ir+
|f ′′(x)| ≲ Ch

1
2
r ār.

Thus, with µr = āα
r , we have

(III) = α2h2
rāα−1

r [ār+1 − ār]2 ≲ α2h2
rāα−1

r C2hrā2
r ≲ Ch2

rārāα
r hr = C(h2

rārµr)hr.

This completes the proof.

Lemma A.26. Let br, r ∈ [m̄] be cleaned critical breakpoints (11), (12) and ār, ār+1 ≥ 0. Assume

h
1
2 − 1

p

r+ ∥f ′′′∥Lp(Ir+) ≤ C min
x∈Ir+

|f ′′(x)|

for some constant 0 ≤ C ≤ 1 independent of f and hr. Then

(IV ) = αh2
r[ār+1 − ār]Rr + h2

rārRr ≲ C(hrārµr)hr.

with Rr defined in Lemma A.12.

Proof. Recall that Rr is defined by

Rr := α(α − 1)[ξrār + (1 − ξr)ār+1]α−2[ār+1 − ār]2

for some 0 ≤ ξr ≤ 1. From Lemma A.18, the given assumptions, hr+1 ∼ hr (Lemma A.20) and |f ′′(x)] ≤ ār

(Lemma A.22), we have

|ār+1 − ār| ≲ hr+

(
h

− 1
p

r+1 + h
− 1

p
r

)
∥f ′′′∥Lp(Ir+) ≲ Ch

1
2
r min

x∈Ir+
|f ′′(x)| ≲ Ch

1
2
r ār.

From Lemma A.20 we have ār ∼ ār+1 and thus

ξrār + (1 − ξr)ār+1 ∼ ār.

Combining these estimates, with µr = āα
r , we obtain

h2
rārRr ≲ h2

rārāα−2
r C2hrā2

r ≲ C2[h2
rārµr]hr.

as well as
h2

r[ār+1 − ār]Rr ≲ h2
rCh

1
2
r ārāα−2

r C2hrā2
r ≲ C3[h2

rārµr]h
3
2
r ,

Since C ≤ 1, we have C2, C3 ≤ C, which proves the lemma.

A.3.6 Norm Equivalences

This section contains the equivalences of h2
rārµr and Lp norms.

Lemma A.27. Let 1 < p ≤ ∞ and 0 < q ≤ ∞. Let P ∈ P0 be the Lp(Ir) best constant approximation of
some function g and assume

h
1− 1

p

r+ ∥g′∥Lp(Ir+) ≤ C min
x∈Ir+

|g(x)|

for some sufficiently small constant C > 0 independent of f and hr. Then

1. ār(g) ∼ ār(P ).
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2. ∥g∥Lq(Ir) ∼ ∥P∥Lq(Ir).

3. ∥g∥Lq(Ir) ∼ h
1
q
r |ār(g)|.

Proof. Recall from the proof of Lemma A.20 that for two numbers a, b ∈ R we have

|a − b| ≤ 1
2 max{a, b} ⇒ a ∼ b. (38)

1. In case ār ≥ 0, by Lemma A.21 and |g(x)| ≤ ār (Lemma A.22) we have

|ār(g) − ār(P )| ≤ h
1− 1

p
r ∥g′∥Lp(Ir) ≲ C min

x∈Ir+
|g(x)| ≲ Cār

For sufficiently small C, with (38) this implies ār(g) ∼ ār(P ). The case ār(g) ≤ 0 follows by
replacing g with −g.

2. We first consider the case 1 ≤ q < ∞. Using direct approximation inequalities ((41) in the supple-
mentary material), we have

∣∣∥g∥Lq(Ir) − ∥P∥Lq(Ir)
∣∣ ≤ ∥g − P∥Lq(Ir) ≲ h

1+ 1
q − 1

p
r ∥g′∥Lp(Ir)

≤ Ch
1
q
r min

x∈Ir+
|g(x)| ≤ C

[∫
Ir

|g(x)|q dx

] 1
q

≤ C∥g∥Lq(Ir),

which implies ∥g∥Lq(Ir) ∼ ∥P∥Lq(Ir) with (38) for sufficiently small C.

In case q < 1, by Taylor’s theorem, we have uq − vq = q(ξu + (1 − ξ)v)q−1[u − v] for some 0 ≤ ξ ≤ 1.
With u = |g(x)| and v = |P |, this implies

∥g∥q
Lq(Ir) − ∥P∥q

Lq(Ir) =
∫

Ir

|g(x)|q − |P (x)|q dx

=
∫

Ir

q[ξ(x)|g(x)| − (1 − ξ(x))|P (x)|]q−1[|g(x)| − |P (x)|] dx

≲ min
x∈Ir

|g(x)|q−1∥g − P∥L1(Ir)

≤ min
x∈Ir

|g(x)|q−1h
1− 1

p
r ∥g − P∥Lp(Ir)

≤ min
x∈Ir

|g(x)|q−1h
2− 1

p
r ∥g′∥Lp(Ir)

≤ C min
x∈Ir

|g(x)|q−1hr min
x∈Ir

|g(x)|

≤ Chr min
x∈Ir

|g(x)|q

≤ C

∫
Ir

|g(x)|q dx

≤ C∥g(x)∥q
Lq(Ir),

where in the third step we have used q − 1 < 0 and that P = g(η) ⇒ |P | ≥ minx∈Ir
|g(x)| for some

η ∈ Ir, as can easily be seen by by first order optimality criteria and the mean value theorem. In
the fourth step we have used that ∥ · ∥L1(Ir) ≤ h

1− 1
p

r ∥ · ∥Lp(Ir) by Hölder’s inequality and in the sixth
the given assumptions. Again with (38) this implies ∥g∥q

Lq(Ir) ∼ ∥P∥q
Lq(Ir) for sufficiently small C

and thus the statement of the lemma by taking the q-th root.
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3. We first show the desired identities for P instead of g. Indeed, we have

∥P∥Lq(Ir) = h
1
q
r |P |,

h
1
q
r ār(P ) = h

1
q
r [h−1

r ⟨P, ϕ̄r⟩Ir
] = 1

12h
1
q
r P.

With the first two equivalences of this lemma, this implies

∥g∥Lq(Ir) ∼ ∥P∥Lq(Ir) = h
1
q
r |P | ∼ h

1
q
r |ār(P )| ∼ h

1
q
r |ār(g)|,

which concludes the proof.

A.4 Approximation

In this section, we prove the main approximation result, restated here for convenience:
Theorem A.28 (Theorem 3.4, restated). Let θ be a critical point (11), with cleaned breakpoints in ascending
order 12. For r, s ∈ {2, . . . , m̄}, let I = {r, r + 1, . . . , s} be a set of consecutive neurons with DI :=

⋃
k∈I Ik

and
max

{
h

1
2 − 1

p

k+ ∥f (3)∥Lp(Ik+), h
1− 1

q

k+ ∥f (4)∥Lq(Ik+),

}
≤ C min

x∈Ik+
|f ′′(x)| (39)

for some 1 < q, p ≤ ∞ and some sufficiently small constant C > 0 independent of f and hk. Then

∥fθ − f∥L2(DI) ≲ |I|−2∥f ′′∥L2/5(DI). (40)

Since we have already established equidistribution in Theorem 3.3, the approximation results is standard.

Proof. We first split the L2 norm

∥fθ − f∥2
L2(DI) =

∑
r∈I

∥fθ − f∥2
L2(Ir)

=
∑
r∈I

[
∥fθ − f∥

2
5
L2(Ir)

]5

=
∑
r∈I

[
1

|I|
∑
s∈I

∥fθ − f∥
2
5
L2(Ir)

]5

,

where in the last step we have inserted an artificial sum for later use. By (22) and the discussion thereafter
on each interval Ir the neural network is a best linear approximation and therefore by standard direct
approximation results ((41) in the supplementary material), we have

∥fθ − f∥2
L2(DI) ≲

∑
r∈I

[
1

|I|
∑
s∈I

h
2
5 (2+ 1

2 −1)
r ∥f ′′∥

2
5
L1(Ir)

]5

.

By Lemma A.27, we have

h
3
5 ∥f∥

2
5
L1(Ir) ∼ h

3
5 [hr|ār|] 2

5 = [h
5
2
r |ās|] 2

5 ∼ ∥f ′′∥
2
5
L2/5(Ir)

and therefore

∥fθ − f∥2
L2(DI) ≲

∑
r∈I

[
1

|I|
∑
s∈I

∥f ′′∥
2
5
L2/5(Ir)

]5

.
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As a side remark, we could have used ∥fθ − f∥L2(Ir) ≲ ∥f∥B2
2/5(L2/5(Ir)) directly if we would use Besov

norms. Anyways, note that the sum depends on s, but the summands depend on r, which we fix with
equidistribution ∥f ′′∥L2/5(Ir) ∼ ∥f ′′∥L2/5(Is) from Theorem 3.3. Then

∥fθ − f∥2
L2(DI) ≲

∑
r∈I

[
1

|I|
∑
s∈I

∥f ′′∥
2
5
L2/5(Is)

]5

=
∑
r∈I

[
1

|I|
∥f ′′∥

2
5
L2/5(DI)

]5

= 1
|I|4

∥f ′′∥2
L2/5(DI),

which concludes the proof.

B Technical Supplements

B.1 Besov Spaces

For integer s ≥ 0 and 1 ≤ p ≤ ∞, Sobolev norms are defined by

∥f∥p
W s,p(D) :=

s∑
r=0

|f |pW s,p(D), |f |W s,p(D) := ∥f (r)∥L2(D)

For Besov norms, define the difference operators (∆1
hf)(x) := f(x + h) − f(x) and ∆r

h := ∆1
h∆r−1

h , extended
by zero in case x + h ̸∈ D, and the r-th order modulus of smoothness

ωr(f, t)p := sup
|h|≤t

∥∆r
hf∥Lp(D).

Then for 0 < p, q < ∞, and the smallest integer r > s, the Besov norms are defined by

∥f∥Bs
q (Lp(Ω)) := ∥f∥Lp(D) + |f |Bs

q (Lp(Ω)), |f |Bs
q (Lp(Ω)) :=

{∫ ∞

0

[
t−sωr(f, t)p

]q dt

t

} 1
q

.

See DeVore & Lorentz (1993); DeVore (1998) for details.

B.2 Direct Approximation Estimates

For the best Lp approximation with polynomials Pr−1 of degree at most r − 1 on interval I it is well known
that

inf
p∈Pr−1

∥f − p∥Lp(I) ≲ |I|r+ 1
p − 1

q ∥f (r)∥Lq(I) (41)

for all r > 0 and 1 ≤ p, q ≤ ∞ with r + 1
p − 1

q > 0. See e.g. DeVore (1998), (6.9).

B.3 Main Results with Besov Norms

In the main Theorem 3.4 we use the Sobolev type norm ∥f ′′∥Lq(DI), which is unusual for q := 2/5 < 1.
This is permissible, because the assumptions (13) requires higher weak derivatives in regular Lp norms with
1 ≤ p ≤ ∞. In this section, we consider a similar result in Besov norms. These allow a larger range of q, p < 1
in the assumptions. Up to an arbitrarily small discrepancy in smoothness, the approximation bounds use
the same norms than classical adaptive approximation in (5).
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Theorem B.1. Let θ be a critical point (11), with cleaned breakpoints in ascending order 12. For r, s ∈
{2, . . . , m̄}, let I = {r, r + 1, . . . , s} be a set of consecutive neurons with DI :=

⋃
k∈I Ik and assume

h
1
2 − 1

o

k ∥(∆2
t f)′∥Lo(Ik+) ≤ C min

x∈Ik+
|(∆2

t f)(x)|, (42)

h
1
2 − 1

p

k+ |f ′′|B1
p(Lp(Ik+)) ≤ C min

x∈Ik+
|f ′′(x)| ≠ 0, (43)

h
1− 1

q

k+ |f ′′|B2
q (Lq(Ik+)), ≤ C min

x∈Ik+
|f ′′(x)| ≠ 0, (44)

uniformly for all t > 0, o = 2/5, some 1 ≤ o ≤ ∞, some 1
2 ≤ p ≤ ∞, some 1

3 ≤ q ≤ ∞ and a sufficiently
small constant C > 0 independent of f and hk. Then

∥fθ − f∥L2(DI) ≲ |I|−2|f |Bs
q (Lq(Ir))

for every s < 2.

Proof. The result is proven analogously to Theorem 3.4 with a few small changes that we point out in the
following.

1. Assumptions: Assumptions (43), (44) yield

max
{

h
1
2 − 1

p

k+ |f ′′|B1
p(Lp(Ik+)), h

1− 1
q

k+ |f ′′|B2
q (Lq(Ik+)),

}
≤ C min

x∈Ik+
|f ′′(x)| ≠ 0,

analogous to 13 with Sobolev norms replaced by Besov norms, which allow the larger ranges 1
2 ≤

p ≤ ∞ and 1
3 ≤ q ≤ ∞. Reconsidering the proof of Theorem 3.4, the non-zero condition on the

left hand side ensures the second case in the proof of Lemma A.22. Then, we replace the use of the
approximation inequality (41) with

inf
p∈Pr−1

∥f − p∥Lp(I) ≲ |I|r+ 1
p − 1

q ∥f∥Br
q (Lq(I))

with r > 0 and r + 1
p − 1

q > 0, which remains true in case q < 1, see e.g. DeVore (1998), (6.8).
We make this replacement in the proofs of Lemmas A.18, A.19, A.21 and A.27, where we obtain
minimal p, q if we approximate in the L1 norm after applying Hölder’s inequality.

2. Conclusion: By assumption (42) and Lemma A.27, for any 0 < ρ < ∞ and s < 2 by we have

h
1
q
r ω2(f, t)q ∼ h

1
p
r ω2(f, t)p ⇒ h

1
q
r |f |Bs

ρ(Lq(Ω)) ∼ h
1
p
r |f |Bs

ρ(Lp(Ω)).

For 1 ≤ p ≤ ∞, it is well known that Sobolev and Besov spaces are closely related. Using this in
the second step below and Hölder’s inequality in the first, we have

∥f ′′∥Lq(Ir) ≤ h
1
q − 1

p
r ∥f ′′∥Lp(Ir) ≤ h

1
q − 1

p
r |f |Bs

q (Lp(Ir)) ∼ |f |Bs
q (Lq(Ir)).

Plugging this into the approximation bounds of Theorem 3.4, we obtain

∥fθ − f∥L2(DI) ≲ |I|−2∥f ′′∥L2/5(DI) ≲ |I|−2|f |Bs
q (Lq(Ir))

for any s < 2, which concludes the proof.
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B.4 Networks in Inner Weights

In this section we prove Lemma 3.1. Without loss of generality, we use the domain D = [−1, 1]. We first
show an abstract characterization of critical points, similar to the proof sketch in Section 4.
Lemma B.2. For an arbitrary function θ → fθ ∈ L2(D), the weights θ ∈ Rm are a critical point of the loss
∥fθ − f∥2

L2(D) if and only if

⟨fθ − f, v⟩ = 0, v ∈ span{∂θr fθ : r ∈ [m]}.

Proof. The critical points are given by

⟨fθ − f, ∂θr
fθ⟩ = 0, r ∈ [m].

Clearly, the condition of the lemma implies the critical point condition. In the other direction, taking linear
combinations of the critical point condition directly implies the condition of the lemma.

Proof of Lemma 3.1. We first show that fW,V,B and fw,b represent the same functions and then relate their
critical points.

1. Construction of fw,b: We use the property σ(ax) = aσ(x) for all a ≥ 0 of ReLU activations to
rewrite FW,V,B as

FW,V,B :=
(

B0 +
∑

Vr=0
Wrσ(Br)

)
+ W0x +

m∑
Wr,Vr ̸=0

Wr|Vr|σ
(

sign(Vr)x − Br

|Vr|

)
.

This is already in the same format as fw,b, except for the term sign(Vr) inside the activation. We
can easily eliminate it with the formula

σ(−x + b) = σ(x − b) − (x − b) (45)

and obtain

FW,V,B :=
(

B0 +
∑

Vr=0
Wrσ(Br) −

∑
Vr<0

WrBr

)
+
(

W0 −
∑

Vr<0
Wr|Vr|

)
x+

m∑
Wr,Vr ̸=0

Wr|Vr|σ
(

x − Br

Vr

)
.

after rearranging terms. Note that the first two parenthesis are constant and thus, we can find
fw,b by matching terms. The last formula also shows that the breakpoints are Br/Vr for all r with
nonzero Wr and Vr.

2. Critical Points: Let FW,V,B be a critical point and fw,b be the corresponding network constructed
above. We show that the latter is also a critical point for optimization of w and b. To this end,
define the linear spaces

Xf := span{∂□fw,b : □ ∈ {wr, br}, r ∈ [m]}.

XF := span{∂□fW,V,B : □ ∈ {Wr, Vr, Br}, r ∈ [m]}.

Since fw,b = FW,V,B , by Lemma B.2 it suffices to show that Xf ⊂ XF . First note that

∂b0fw,b = 1 = ∂B0FW,V,B ∈ XF

∂w0fw,b = x = ∂W0FW,V,B ∈ XF .

For r > 0, we have

∂wr
fw,b = σ

(
x − Br

Vr

)
∈ span

{
1, x,

1
|Vr|

σ(Vrx − Br)
}

= span {∂B0FW,V,B , ∂W0FW,V,B , ∂Wr
FW,V,B} ⊂ XF ,
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where in the first span we have used (45) if Vr < 0 and by construction we know that Wr, Vr ̸= 0.
Analogously, we obtain

∂br
fw,b = wrσ̇

(
x − Br

Vr

)
∈ span {1, σ̇(Vrx − Br)} = span {∂B0FW,V,B , ∂Br

FW,V,B} ⊂ XF ,

Thus, all partial derivatives of fw,b are contained in XF so that Xf ⊂ XF , which concludes the
proof
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