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ABSTRACT

Finding winning strategies in different games is important area of research. In
this paper we focus on positional games only, i.e. games where players alternately
color previously uncolored verticies and players goal is to color one of the win-
ning sets. Despite simple definition [Slany (1999)] showed that even this problem
in PSPACE complete. It means that practical implementations of strategies are
limited to heuristics and AI. However, purely mathematical strategies are still im-
portant, as they can be used to compare advanced methods to them (as a baseline)
and because they require lesser amount computation. In this paper we discuss
strategies for both Maker and Breaker which guarantee win under certain condi-
tion, meaning they can be used as starting points for programming strategies for
concrete positional games that might include heuristics and AI.

From a mathematical point of view we study natural game version (maker-breaker
game) of popular branch of combinatorics Ramsey type — Ramsey theory. Those
games can be used to study Ramsey type problems, which is done in [Slany
(1999)] [Ai et al. (2025)] [Brown et al. (2020)]. Here we talk about game forms
of two families of problems (including open ones) and discuss how the strategies
work in this case.

1 INTRODUCION

Informally, Ramsey theory studies the problems of type ”Does the large size of arbitrary structure
guaranties existence of specific regular substructure”. In this paper we focus only on one popular
subclass of Ramsey type problems which state ”Given predicate P and sequence of sets S1 ⊂ S2 ⊂
. . . is it true that for any number of colors c ∈ N, exists such N ∈ N so that for any coloring of SN

in c colors, exists monochromatic subset of SN satisfying a property P ”. Monochromatic subset is
a subset which elements are colored in the same color.

This is famous branch of combinatorics with famous results such as Van der Waerden theorem
[van der Waerden (1927)], Szemeredi theorem [Szemerédi (1974)], and theorem proven by Terence
Tao on arithmetic progression consisting of prime numbers [Tao (2008)].

One of the new approaches to this type of problems is to define games associated with those prob-
lems and study them instead. Given a problem of a Ramsey type, one can construct a positional
game defined as follows ”Two players alternately pick previously unpicked elements of SN . First
player picks one element per turn, other picks c − 1 elements per move. The game ends when all
vertices are picked. First player (maker) wins if he occupies a subset of S that satisfies property
P , second player (breaker) wins otherwise.”. Our goal is to understand if we can determine which
player wins for a large enough value of N .

This approach was introduced and studied by Joseph Beck in [Beck (1981)] for Van der Waerden
game for 2 colors and was done for c colors, but the winning condition were asymptotic. In this work
we use method developed by Joseph Beck [Beck (1981)] [Beck (1982)] to give explicit formulas for
the Van der Waerden Game, its n-dimensional analogy and Hales-Jewwet game. We then take two
families of Ramsey type problems, construct associated games and solve them (we find which player
has a winning strategy).
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2 TERMINOLOGY

Our positional game can be defined by set of all vertices Sn and set F of all subsets of Sn satisfying
property P . Such structure of set F of subsets of Sn is called a hypergraph, elements of F are called
edges and elements of Sn are called vertices. Let’s denote V (F) the set of all vertices in hypergraph
F .

In this and next section we deal with finite hypergraphs (|F| < ∞∧ ∀S ∈ F ∧ |S| < ∞).

The hypergraph is called r-uniform if every its edge has exactly r vertices. For vertices v1, v2 let’s
denote dv1v2 (F) := |{S ∈ F | v1 ∈ S ∧ v2 ∈ S}| — number of edges that contain both v1 and v2.
Let’s also denote d2 (F) = max

v1,v2∈V(F))
dv1v2 (F) — maximum number of edges intersecting by at

least two vertices.

The game corresponding to the hypergraph F and number of colors c ∈ N is denoted as G (F , c).

3 GENERAL THEOREMS [BECK (1981)] [BECK (1982)]

We shall prove two theorems which provide sufficient conditions for Maker to have a winning strat-
egy and Breaker to have a winning strategy based only on relations between |F|, |V (F)|, r and
c.

Theorem 1. If F is a r-uniform hypergraph and c ∈ N satisfy |F| < cr−1, then Breaker has a
winning strategy in the G (F , c).

Theorem 2. If F is a r-uniform hypergraph and c ∈ N satisfy |F|
|V(F))| > (c− 1)

2
cr−3d2 (F) than

the Maker has a winning strategy in G (F , c).

3.1 DEFINITION OF A POTENTIAL AND IT’S PROPERTIES

Suppose on m-th move of the game first player have picked vertices {x1 . . . xm} = X and second
player have picked {y1 . . . y(c−1)m} = Y . Let’s denote potential of this position. First step is to
define potential of one edge S ∈ F as

PX,Y (S) =

{
0 if S ∩ Y ̸= ∅
c−|{S\X}| otherwise

Intuitively, PX,Y (S) is a probability that all vertexes of edge S will be picked by first player in the
end of the game if all unpicked vertices would be randomly added to X or Y with probabilities 1

c

and c−1
c respectfully.

Two notable properties of this functions are: PX,Y ∪Y ′ (S) ⩽ PX,Y (S) for all X,Y, Y ′, S ∈ F and
if S ∩ (X ′ ∪ Y ′) = ∅ then PX,Y (S) = PX∪X′,Y (S) = PX,Y ∪Y ′ (S) = PX∪X′,Y ∪Y ′ (S).

The potential of the state of the game (X,Y ) is the sum of potentials of all edges of the hypergraph
F :

P (X,Y ) =
∑
S∈F

PX,Y (S)

Intuitively, P (X,Y ) is a mathematical expectation of number of edges that would be completely
picked by Maker in the end of the game if all unpicked vertices would be randomly added to X or
Y with probabilities 1

c and c−1
c respectfully.

3.1.1 POTENTIAL AT THE BEGINNING OF THE GAME

In the begging of the game X = ∅ ∧ Y = ∅, potential of each edge is c−|S| = c−r. Thus potential
of the position P (∅, ∅) =

∑
S∈F

c−r = c−r |F|
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3.1.2 POTENTIAL IN THE END OF THE GAME

Useful non-trivial property of the potential is that by calculating potential of the position in the end
of the game we can determine which player won.

Indeed, in the end of the game potential PX,Y (S) is 0, if at least one vertex of S is picked by Breaker
and PX,Y (S) = cS\X = c0 = 1 if all vertices are occupied by Maker. This means that in the end
of the game potential is

P (X,Y ) =
∑
S∈F

PX,Y (S) =

=
∑

S∈F∧S ̸⊂X

PX,Y (S) +
∑

S∈F∧S⊂X

PX,Y (S) =

=
∑

S∈F∧S ̸⊂X

0 +
∑

S∈F∧S⊂X

1 =

= |{S ∈ F | S ⊂ X}|

(1)

If Maker won (exist edge occupied by Maker), than the potential is at least 1, if Breaker won (none
of the edges are completely occupied by Maker) potential is 0.

3.2 IDEA OF A PROOF

The idea of proof of sufficient conditions is to calculate the potential at the begging of the game,
maximum speed of its change of the potential per one turn under certain strategies of the players
and using that estimate the potential in the end of the game and thus a winner. Thus, selecting right
strategy for a player can guaranty his win.

3.3 CHANGE OF POTENTIAL

Let’s we define how much potential of the position would increase if Maker picks vertex v in position
(X,Y ) as ∆MPX,Y (v) = P (X ∪ {v}, Y )− P (X,Y ).

∆MPX,Y (v) =

=P (X ∪ {v}, Y )− P (X,Y ) =

=
∑
s∈F

(
PX∪{v},Y (S)− PX,Y (S)

)
=

=
∑
s∈F
v ̸∈S

PX∪{v},Y (S)︸ ︷︷ ︸
=PX,Y (S)

because v not in S

−PX,Y (S)

+
∑
s∈F
v∈S

PX∪{v},Y (S)︸ ︷︷ ︸
=cPX,Y (S)
because v in S

−PX,Y (S)

 =

=0 +
∑
s∈F
v∈S

(c− 1)PX∪{v},Y (S) =

= (c− 1)
∑
s∈F
v∈S

PX∪{v},Y (S)

Similary we define how much potential of the position would increase if Breaker picks vertex v in
position (X,Y ) as ∆BPX,Y (v) = P (X,Y ∪ {v})− P (X,Y ).
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∆BPX,Y (v) = (2)
=P (X,Y ∪ {v})− P (X,Y ) = (3)

=
∑
s∈F

(
PX,Y ∪{v} (S)− PX,Y (S)

)
= (4)

=
∑
s∈F
v ̸∈S

PX,Y ∪{v} (S)︸ ︷︷ ︸
=PX,Y (S)

because v not in S

−PX,Y (S)

+
∑
s∈F
v∈S

PX,Y ∪{v} (S)︸ ︷︷ ︸
=0

because v in S

−PX,Y (S)

 = (5)

=0 +
∑
s∈F
v∈S

−PX,Y (S) = (6)

=− 1

c− 1
∆MPX,Y (v) (7)

One notable property of ∆B is

∆BPX,Y ∪Y ′ (v) ⩾ ∆BPX,Y (v) for all X,Y, Y ′ ∈ F and v ∈ V (F) (8)

∆MPX,Y ∪Y ′ (v) ⩽ ∆MPX,Y (v) for all X,Y, Y ′ ∈ F and v ∈ V (F) (9)

It is true because ∆BPX,Y ∪Y ′ (v) = −
∑
s∈F
v∈S

PX,Y ∪Y ′ (S) ⩾ −
∑
s∈F
v∈S

PX,Y (S) = ∆BPX,Y (v) and

∆MPX,Y = − (c− 1)∆BPX,Y .

3.4 PROOF OF THE SUFFICIENT CONDITION FOR THE BREAKER TO HAVE A WINNING
STRATEGY

Theorem 3. If F is a r-uniform hypergraph and c ∈ N satisfy |F| < cr−1, then Breaker has a
winning strategy in the G (F , c).

Proof. Let’s define strategy for the Breaker: in each move c − 1 times pick such vertex v whose
choice reduces the potential of the position P (X,Y ) he most

y = argmin
v∈V(F)\(X∪Y )

∆BPX,Y (v) =

(
= argmax

v∈V(F)\(X∪Y )

|∆bPX,y (v)|

)
, where X and Y — are the sets of points picked by Maker and Breaker respectively up to this point.
We shall prove that this strategy guarantees winning for the Breaker.

To do this we shall prove, that in the end of the game the potential of the position is less than one.
As mentioned in 3.1.2 it would imply that Breaker has won.

Let’s split moves of players {x1, y1, · · · yc−1, x2, yc . . . y2(c−1) . . . ym} into first move of Maker
{x1}, pairs of moves one by Breaker and one by Maker {yi(c−1)+1 · y(i+1)(c−1), xi+1} and the last
move of Breaker {yi} if it exists.

Let’s see, how potential of the position changes as game progresses. Before players make any moves
the potential is P (∅, ∅) = |F| c−n ⩽ c−2.

After first move {x1} the potential of each edge increases at most in c times. Therefore after this
move the potential of position P ({x1} , ∅) ⩽ cP (∅, ∅) = c−1 < 1.

Now, we prove that if Breaker follows the strategy, after one pair of moves Y ′ = {Y1, Y2 . . . Yc−1}
and X ′ = {xm+1} potential of the position does not increase. It would proof the theorem, since
it shows that after all pairs of moves are played the potential of position is still less than 1. After
last Breaker’s move potential can’t increase, therefore at the end of the game potential is less than 1.
Thus Breaker wins if plays according to the strategy3.1.2.
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Let’s prove ?. The change of the potential is

P (X ∪X ′, Y ∪ Y ′)− P (X,Y ) = (10)

=P (X ∪X ′, Y ∪ Y ′)− P (X,Y ∪ Y ′) + P (X,Y ∪ Y ′)− P (X,Y ) = (11)

=∆MPX,Y ∪Y ′ (xm+1) + P (X,Y ∪ Y ′)− P (X,Y )︸ ︷︷ ︸
term

⩽ (12)

Since this term can be bounded
P (X,Y ∪ {Y1, Y2, . . . Yc−1})− P (X,Y ) =

= (P (X,Y ∪ {Y1, Y2, . . . Yc−1})− P (X,Y ∪ {Y1, Y2, . . . Yc−2}))︸ ︷︷ ︸
=∆BPX,Y ∪{Y1,Y2,...Yc−2}(Yc−1)

+

+ (P (X,Y ∪ {Y1, Y2, . . . Yc−2})− P (X,Y ∪ {Y1, Y2, . . . Yc−3}))︸ ︷︷ ︸
=∆BPX,Y ∪{Y1,Y2,...Yc−3}(Yc−2)

+

+ · · ·+
+ (P (X,Y ∪ {Y1})− P (X,Y ))︸ ︷︷ ︸

∆BPX,Y ∪∅(Y1)

=

= ∆BPX,Y ∪{Y1,Y2,...Yc−2} (Yc−1) + ∆BPX,Y ∪{Y1,Y2,...Yc−3} (Yc−2) + · · ·+∆BPX,Y ∪∅ (Y1) ⩽

[because Yi is selected to minimize this expression]
⩽ ∆BPX,Y ∪{Y1,Y2,...Yc−2} (Yc−1) + ∆BPX,Y ∪{Y1,Y2,...Yc−3} (Yc−1) + · · ·+∆BPX,Y ∪∅ (Yc−1) ⩽

[because Y ∪ {Y1, Y2, . . . Yi} ⊂ Y ∪ Y ′ and property 8]

⩽ ∆BPX,Y ∪Y ′\{Yc−1} (Yc−1) + ∆BPX,Y ∪Y ′\{Yc−1} (Yc−1) + · · ·+∆BPX,Y ∪Y ′\{Yc−1} (Yc−1) =

= (c− 1)∆BPX,Y ∪Y ′ (Yc−1)

We can continue calculation 12 as

⩽ ∆MPX,Y ∪Y ′ (xm+1) + (c− 1)∆BPX,Y ∪Y ′(Yc−1) ⩽ [because of 9] ⩽

⩽ ∆MPX,Y ∪Y ′\{Yc−1} (xm+1) + (c− 1)∆BPX,Y ∪Y ′(Yc−1) = 0 [because of 7]

3.5 SUFFICIENT CONDITION FOR THE MAKER TO HAVE A WINNING STRATEGY

Theorem 4. If F is a r-uniform hypergraph and c ∈ N satisfy |F|
|V(F))| > (c− 1)

2
cr−3d2 (F) than

the Maker has a winning strategy in G (F , c).

Proof. Let’s formulate the strategy for the Maker — to pick the vertex x that increases the potential
of position the most.

x = argmax
x∈F\(X∪Y )

∆MPX,Y (x)

In order to prove that this strategy guaranties win of the Maker, we shall prove, that it guarantees that
in the end potential is positive [3.1.2]. In order to prove this let’s split sequence of moves of players
{x1, y1, · · · yc, x2, yc+1 . . . y2c, . . . ym} into pairs (one move of Maker and one move of Breaker)
xi, {yic+1 . . . yic+c}. The last pair may contain less than c moves of breaker.

Let’s see, how the potential of position changes as game progresses.

The potential of position in before the first move is |F| c−n3.1.1

Let’s prove that after one pair of moves the potential of the position decreases at most by(
1− 1

c

)2
d2 (F), i.e. P (X ∪ {x}, Y ∪ Ym+1)− P (X,Y ) ⩾

(
1− 1

c

)2
d2 (F).
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This would prove the theorem since, after all |F|
c pairs of moves are played, the potential is at least

P (∅, ∅)− (c− 1)
2
c−2d2 (F)

|V (F)|
c

= |F| c−n − (c− 1)
2
c−3d2 (F) |V (F)|

which is positive under the condition of the theorem. So, at the end of the game, potential is positive,
and therefore Maker wins3.1.2.

Let’s prove3.5. To do this we need to calculate the change of the potential after one pair of moves.

Informally if potential is P (X,Y ) on m-th move then after Maker’s move the potential becomes
P (X ∪ {x}, Y ) and after second player picks c − 1 vertices Y ′ = {y1, y2, . . . yc−1} the po-
tential of the position becomes P (X ∪ {x}, Y ∪ {y1}) then P (X ∪ {x}, Y ∪ {y1, y2)}, ... then
P (X ∪ {x}, Y ∪ {y1, y2, . . . yc−1})
Formally

P (X ∪ {x}, Y ∪ Ym+1)− P (X,Y ) = (13)
= [−P (X,Y ) + P (X ∪ {x}, Y )] + (14)
+ [−P (X ∪ {x}, Y ) + P (X ∪ {x}, Y ∪ {y1})] + (15)
+ [−P (X,Y ∪ {y1}) + P (X ∪ {x}, Y ∪ {y1, y2})] + (16)
+ · · ·+ (17)
+ [−P (X,Y ∪ {y1, y2 . . . yc−2}) + P (X ∪ {x}, Y ∪ {y1, y2 . . . yc−1})] = (18)
= ∆MPX,Y (x) + ∆BPX∪{x},Y (y1) + ∆BPX∪{x},Y ∪{y1} (y2) + ∆BPX∪{x},Y ∪{y1,y2} (y3) + . . .

(19)
· · ·+∆BPX∪{x},Y ∪{y1,y2,...yc−2} (yc−1) ⩾ (20)

⩾ ∆MPX,Y (x) +
∑
y∈Y ′

∆BPX∪{x},Y (y) (21)

Since

∆BPX∪{x},Y (y) = −
∑
S∈F
y∈S

PX∪{x},Y (S) = −
∑
S∈F
y∈S
x ̸∈S

PX∪{x},Y (S)︸ ︷︷ ︸
=PX,Y (S)
because x ̸∈S

−
∑
S∈F
y∈S
x∈S

PX∪{x},Y (S)︸ ︷︷ ︸
=cPX,Y (S)
because x∈S

= (22)

= −
∑
S∈F
y∈S
x ̸∈S

PX,Y (S)−
∑
S∈F
y∈S
x∈S

cPX,Y (S) = (23)

= −
∑
S∈F
y∈S

PX∪{x},Y (S)

︸ ︷︷ ︸
=∆BPX,Y (y)

− (c− 1)
∑
S∈F
y∈S
x∈S

PX,Y (S)︸ ︷︷ ︸
≤c−2

because {x,y}⊂S\X

⩾ (24)

⩾ ∆BPX,Y (y)− (c− 1) |{S ∈ F | {x, y} ⊂ S}| c−2 ≥ (25)

⩾ ∆BPX,Y (y)− (c− 1) c−2d2 (F) (26)

6



Published as a conference paper at MathAI 2025

The calculation21 can be continued as

P (X ∪ {x}, Y ∪ Ym+1)− P (X,Y ) = (27)

⩾ ∆MPX,Y (x) +
∑
y∈Y ′

∆BPX∪{x},Y (y) ≥ (28)

⩾ ∆MPX,Y (x) +
∑
y∈Y ′

∆BPX,Y (y)−
∑
y∈Y ′

(c− 1) c−2d2 (F) ⩾ (29)

⩾ ∆MPX,Y (x)︸ ︷︷ ︸
= max

x∈F\(X∪Y )
∆MPX,Y

in Makers strategy
move x is chosen
to maximize this

− 1

c− 1

∑
y∈Y ′

∆MPX,Y (y)−
∑
y∈Y ′

(c− 1) c−2d2 (F) ≥ (30)

⩾ max
x∈F\(X∪Y )

∆MPX,Y − 1

|Y ′|
∑
y∈Y ′

∆MPX,Y (y)︸ ︷︷ ︸
⩾0

− (c− 1) (c− 1) c−2d2 (F) ⩾ (31)

⩾ (c− 1)
2
c−2d2 (F) (32)

Thus, if Maker plays according to the strategy (of picking the move that has maximize the
∆MPX,Y ), then after one pair of moves the potential can decrease only by (c− 1)

2
c−2d2 (F).

4 GAMES ASSOCIATED WITH CLASSICAL PROBLEMS AND THEIR VARIATIONS

Firstly, we’ll apply those theorems to study game forms of classic Van der Waerden problems and
their natural variations

4.1 VANDER VAN DER GAME WITH c COLORS

Van der Wander Game [Beck (1981)] with k colors is defined as Maker-Breaker game corresponding
to the hypergraph, with set of vertexes SN = {1, 2, . . . , N} and set of edges F consisting of all
arithmetic progressions of length d (d is a parameter of the game).

4.1.1 CONDITION FOR THE MAKER TO HAVE A WINNING STRATEGY

Theorem 5. If N > 2 (n− 1)
2
n (c− 1)

2
cn−3 then Maker has a winning strategy.

Proof. Let’s check that sufficient conditions for a Maker to have a winning strategy are met.

1. By definition each edge of F contains exactly n elements, so F is n-uniform

2. |V (F)| = |{1, 2 . . . N}| = N

3. For every number b < N
2 for every step s < N

2(n−1) the arithmetic progression b, b +

s, b + 2s, . . . b + (n− 1) s is contained in V (F) (and two different progressions cannot
have both same beginnings and steps). Because of that the number of edges is at least
N
2

N
2(n−1) =

N2

4(n−1)

4. By two numbers a and b and their number in arithmetic progression the can be unambigu-
ously determined. Because of that for given two numbers a and b the number of arithmetic
progressions containing both of them is at most the number of pairs of indexes, which is
(n2 ) =

n(n−1)
2

Therefore |F |
|V(F)| ⩾ N

4(n−1) ⩾ (c− 1)
2
cn−3 n(n−1)

2 = (c− 1)
2
cn−3d2 (F), so the condition for

Maker to have a winning strategy is met.
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4.1.2 CONDITION FOR THE BREAKER TO HAVE A WINNING STRATEGY

Theorem 6. If N <
√

(n− 1) cn−1 then Breaker has a winning strategy.

Proof. Let’s check that sufficient conditions for a Breaker to have a winning strategy are met.

1. F is n-uniform.

2. Since for every first element of progression (N options to choose) and for each step (at
most N

n−1 options to choose) there can be only one progression with this start and step (and

all progressions are counted that way) |F | ≤ N2

n−1 .

So, |F | = N2

n−1 < (n−1)cn−1

n−1 = cn−1

Therefore we can establish bounds on minimal N(n, c) which is enough for the Maker to have a
winning strategy. N(n, c) between

√
(n− 1) cn−1 and 2n (n− 1) (c− 1)

2
cn−3.

4.2 d-DIMENSIONAL VAN DER WAERDEN GAME

Here the game is defined by numbers N , d, amount of colors c and figure A ⊂ Rd. The set of
vertices is N -dimensional cube {1, 2, . . . N}d and set of vertexes is v + λA, where v ∈ Rd and
λ ∈ N. Van der Waerden Game is a specific case where d = 1 and A = {1, 2 . . . n}.

Despite more complex structure lower and upper bound can be obtained using similiar methods.

4.2.1 CONDITION FOR THE MAKER TO HAVE A WINNING STRATEGY

Theorem 7. If N > n (n− 1) 2ddiam (A) (c− 1)
2
cn−3, where diam (A) is minimal size of cube

that contains A, maker has a winning strategy.

Proof. Let’s check characteristics of the hypergraph F

1. F is n-uniform.

2. |V (F)| =
∣∣{1, 2, . . . N}d

∣∣ = Nd

3. For every v ∈
∣∣{1, 2, . . . N

2 }
∣∣ and every α ∈ {1, 2, . . . N

2diam(A)} gives a unique figure
v + αA that does not exceed the boundaries of {1, 2, . . . N}d. So, the amount of figures is
at least

(
N
2

)d N
2diam(A) =

Nd+1

2d+1diam(A)
.

4. Let’s calculate d2 (F) — how many edges v+αA can contain two points P1 and P2. If we
know, what points Ai and Aj of A are mapped to the P1 and P2 respectively, than there is
at most one solution of (v + αAi = P1)∧ (v + αAj = P2), since α (Ai −Aj) = P1−P2

have at most one solution for α and then v = P1 − αAi have only one solution for v.
Therefore, amount of edges v + αA, such that {P1, P2} ⊂ v + αA is at most amount of
pairs Ai, Aj i.e.

(
2
n

)
= n(n−1)

2 .

So |F |
|V(F)| ⩾

Nd+1

2d+1diam(A)
1

Nd = N
2d+1diam(A)

> (c− 1)
2
cn−3

(
2
n

)
under the condition of the theorem.

So the condition for the Maker to have a winning strategy is met.

4.2.2 CONDITION FOR THE BREAKER TO HAVE A WINNING STRATEGY

Theorem 8. If N < d+1
√

diam (A) cn−1, than Breaker has a winning strategy.

Proof. Let’s check characteristics of the hypergraph F

8
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• F is n-uniform.

• |F | ≤ Nd+1, since there is Nd options for v and N
diam(A) for α

So, |F | = 1
diam(A)N

d+1 < cn−1 under conditions of the theorem.

4.3 HALES AND JEWETT GAME

Hales and Jewett game is similar to the n-dimensional Van der Waerden Game, but instead of in-
creasing length of d-dimensional cube, we increase dimensionality of d of {1, 2 . . . n}d. Maker’s
goal is to occupy non-constant arithmetic progression containing n points. Here arithmetic progres-
sion is the set of type {a+ ib | 1 ≤ i ≤ n} for some point a and non-zero vector b.

Theorem 9. |V (F)| = 1
2

(
(n+ 2)

d − nd
)

Proof. For every arithmetic progression can be defined using start point a and step vector b as
{a + ib | 1 ≤ i ≤ n}, where a is start point and nonzero b is the step vector. For every line, there
is exactly two pairs of (a, b) that generate the line. (one defines line ”from start to finish” and one
”from finish to start”). So, in order to calculate amount of combinatorial lines, we can multiply 1

2
and the amount of pairs of pairs (a, b) , b ̸= 0 for witch no points of type a+ ib, 1 ≤ i ≤ n does go
over bounderies of the cube.

To calculate the amount of those pairs, let’s look at coordinates of a and b to an k-th axis. It is
progression arithmetic ak + ibk, which fits in {1, 2, . . . , N}. There is exactly n+ 2 such arithmetic
progressions of length n: n constant ones and 2 containing all elements. Because we can select
coordinates in each of d axis independently, there are in total (n+ 2)

d pairs of (a, b) which generate
arithmetic progression of length n which is contained inside the cube {1, 2, . . . , n}d. From those
ones there is nd ones with vector b = 0. Thus only (n+ 2)

d−(n)
d pairs generate non-constant arith-

metic progression that fits in (1, 2, . . . , n)
d. Therefore the amount of sets of arithmetic progressions

is |V (F)| = 1
2

(
(n+ 2)

d − nd
)

4.3.1 CONDITION FOR THE MAKER TO HAVE A WINNING STRATEGY

Theorem 10. If d > log 2 (c− 1)
2
cn−3 + 1− log 1 + 2

n , Maker has a winning strategy.

Proof. Let’s check characteristics of the hypergraph F

• By definition of F , every edge contains n vertices, so F is n-uniform

• |V (F)| =
∣∣{1, 2, . . . n}d∣∣ = nd

• |F| = 1
2

(
(n+ 2)

d − nd
)

• Because standard embedding of the cube in Rd is injection that transforms combinatorial
lines into n points that lie on a geometrical line in Rd and two points in Rd uniquely define
a geometrical line, two points uniquely define combinatorial line. So d2 (F ) = 1.

So |F|
|F | =

1
2

((
1 + 2

n

)d − 1
)
> (c− 1)

2
cn−3 under the condition of theorem.

9
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4.3.2 CONDITION FOR THE BREAKER TO HAVE A WINNING STRATEGY

Theorem 11. If d < (n− 1) log c− log n+ 2, then Breaker has a winning strategy.

Proof. Let’s check characteristics of the hypergraph F

• F is n-uniform.

• |F| = 1
2

(
(n+ 2)

d − nd
)
≤ (n+ 2)

d.

Therefore |F| < (n+ 2)
d
< cn−1

5 ANOTHER FAMILY OF RAMSEY TYPE PROBLEMS: GAMES ON Rd

Another interesting family of problems in Ramsey theory studies colorings of Rd:
Statement 1. The Rd is colored into c colors and there is finite figure F . Is it guarantied that exists
monocromatic (all vertices have the same color) F ′ that can be obtained as F ′ = v+gα(F )), where
v+ is translation to the vector v and gα, α ∈ Rm is some transformation.

This family includes several popular problems

• ”Is it true, that for every coloring of Rd exist monochromatic geometrical copy of A?”.
Here gα (x) = αx, where α ∈ Od. In this case simple example shows that Ramsey
statement is false.

• ”Is it true, that for every coloring of Rd exist monochromatic ”hyper-
bolic” copy version of A. Here by ”hyperbolic copy” we mean gαA,

where α ∈
{
{α1, α2, . . . αd} ∈ Rd |

n∏
i=1

αi = 1

}
and gα ({x0, x1, . . . xd}) =

(α0x0, α1x1, . . . , αd, xd). This problem in general case is still open, and best known
result is that Ramsey statement of this is true if A is a simplex Sharich et al. (2021).

• ”Is it true that for every coloring of Rd exists monochromatic figure homothetical to A”.
Here α ∈ R, and gα (x) = αx. This is continuous variation of the Van den Waerden
theorem.

5.1 GAME ASSOCIATED WITH THOSE PROBLEMS

Let A = {a0, a1, . . . , an} ⊂ U — where U is an open setset of Rd, n ⩾ 2 and Fα, α ∈ M - is family
of functions Rd → Rd. As usual we define a Maker-Breaker game for c colors G(A,U, F, c,M),
where Maker and Breaker alternately pick points on U and Maker wins if he occupies a figure of
type Fα (A) for some α ∈ M .
Theorem 12. If {Fα, α ∈ M} is a family of functions that contains a subfamily
{Fα, α ∈ M ′ ⊂ M} such that

• F is continuous by both α and v and exists α0, such that Fα0
= Id.

• For every α1, α2 ∈ M ’ holds Fα1
(A) ̸= Fα2

(A).

• Exists n ∈ N such that for every u, u′ ∈ U and a, a′ ∈ A, {{v, α} | (v + Fα (a) = u) ∧
(v + Fα (a′) = u′)} consist of less than n elements.

• Set of α for which Fα (A) ⊂ Q (A) is dense in M ′.

Then Maker has a winning strategy.

10
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Note, that these conditions does not have any restrictions on U , size of A or amount of colors c and
includes game forms of all of cases from the above.

Proof. Consider Bϵ is a ball of radius ϵ, Cϵ = A + Bϵ — set of balls around each point of A and
Qn = {p

q | p ∈ Z, q ∈ {1, 2, . . . n}} and Qn,A = {q1a1 + . . . qnan | ai ∈ A, qi ∈ Qn} and
Qn,ϵ = Qn ∩ Cϵ. We shall prove, that if we restrict set of vertices to the Qn,ϵ some n and ϵ, then
condition for a Maker to have a winning strategy is met. Therefore he has a strategy to always win
using subset of all set of vertices.

Let’s restrict all functions domains to U . Since Fα is continious on α, there exists neighbourhood

Oϵ of α0, such that

∣∣∣∣∣∣Fα − Fα0︸︷︷︸
Id

∣∣∣∣∣∣ < ϵ. Because the set of α for which Fα (A) ∈ Q (A) is dense in M ′

there are infinitely many α in Oϵ, such that Fα (A) ⊂ Q (A) in addition to |Fα − Id| < ϵ, which
implies Fα (A) ⊂ Cϵ ∩Qn. Let’s denote the set of those α-s as O′

ϵ.

Since lim
i→∞

Qi = Q we know that lim
n→∞

Qn,ϵ = Q (A) ∩ Cϵ. Therefore amount of α such that

Fα (A) ∈ Qn,ϵ approaches to infinity as n grows. Let’s denote those alphas as O′
n,ϵ, lim

n→∞

∣∣O′
n,ϵ

∣∣ =
|O′

ϵ| = ∞
Finally, let’s check the conditions for Maker to have a winning strategy. Here F = {v+ FαA | α ∈
O′

n,ϵ/2, v ∈ Qn,ϵ/2} - hypergraph of sets for Maker to win. Since both f(x) = v + x and Fα under
the conditions of the theorem move point to the distance at most ϵ/2, we can say V (F) = Qn,ϵ.

• For ϵ small enough, |Fα − Id| < ϵ implies that FαA contains |A| elements. Because v + ·
is bijection every element of F contains |A| elements. So F is |A|-uniform.

• |V (F)| = |Qn,ϵ| = 2d
∣∣Qn,ϵ/2

∣∣+ o
(∣∣Qn,ϵ/2

∣∣). The last is property of balls in Qn.

• From definition of F we can conclude |F | =
∣∣∣O′

n,ϵ/2

∣∣∣ · ∣∣Qn,ϵ/2

∣∣.
• d2 (F) < D is reformulation of ”There exists n ∈ N that for every u, u′ ∈ U and a, a′ ∈ A,
{{v, α} | (v + Fα (a) = u) ∧ (v + Fα (a′) = u′)} consist of less than n elements.” from
conditions of theorem.

Therefore |F |
|V(F)| =

|O′
n,ϵ/2|·|Qn,ϵ/2|

2d|Qn,ϵ/2|+o(|Qn,ϵ/2|) = 1
2d

∣∣∣O′
n,ϵ/2

∣∣∣ + o (1) → ∞ if n → ∞. Hence exists n

such that |F |
|V(F)| > (c− 1)

2
cn−3d2 (F ).

Let’s show that this theorem can be applied game form of each from this three problems.

5.2 GAME FORM OF ”EXISTING OF HYPERBOLICAL COPY OF A” FOR d ⩾ 2

Note: we prove for the case, where every ai − aj for i ̸= j is not parallel to any axis. In future we
want to remove this condition from the theorem.

Here figure A is fixed, M = {{α1, . . . αn} |
∏

αi = 1} = Hn - hyperboloid and transformation is
gα ({x0, x1, . . . xd}) = (α0x0, α1x1, . . . , αd, xd).

Let’s define M ′ = M . Let’s check that M ′ satisfies requirements of the theorem above.

• F is continuous on α and u.

• Let’s prove that the set {{v, α} | (v + Fα (a) = u) ∧ (v + Fα (a′) = u′)} = {{v, α} |
(v + α⊛ a = u) ∧ (v + α⊛ a′ = u′)} = {{v, α} | (α⊛ (a− a′) = u− u′) ∧
(v = u− α⊛ a)} which can contain contain at most 1 element.

• Since for every α ∈ Qd Fα (A) = {αa | a ∈ A} ⊂ Q (A) and Qd is dense everywhere in
MRd if d ⩾ 2.
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So, the condition are met. Therefore Maker has a winning strategy.

5.3 CONTINIOUS VAN DER WAERDEN GAME

Here M = R, Fα (x) = αx. Let’s take M ′ = M , then

• F is continious by α and x

• For every u, u′ ∈ U and a, a′ ∈ A, the set {{v, α} | (v + Fα (a) = u) ∧
(v + Fα (a′) = u′)} = {{v, α} | (v + αa = u) ∧ (v + αa′ = u′)} = {{v, α} |
(α (a− a′) = u− u′) ∧ (v = u− αa)} which can contain at most one element.

• For every α ∈ Q ⊂ R = M Fα (A) = αA ⊂ Q (A)

So all condition for theorem above are met, therefore Maker can force a win.

5.4 GAME FORM OF ”EXISTING OF GEOMETRICAL COPY OF A” FOR d > 2

Here M = SOn. Let’s select M ′
α, α ∈ S1 — family of all rotations ρα around a specific plane.

Let’s extend A by adding A⊥ = ρπ/2 (A). Let’s check that all conditions for Maker to have a
winning stragegy are met.

• F is continious by α and x.
• Let’s prove that the set {{v, α} | (v + Fα (a) = u) ∧ (v + Fα (a′) = u′)} can contain at

most one element. Indeed if v+ρα (a) = u and v+ρα (a′) = u′, then ρα (a− a′) = u−u′,
but that means that α must be angle between a− a′ and u− u′, so there is only one option
for α, and since v = u− ραv there is at most one option for v.

• It is known property of S1 that S1 ∩ Q2 is dense in S1. Every of those α produces
transform that can be written as ρα (a) = q1a + q2a

⊥, where q1 and q2 are rationals,
so ρα

(
A ∪A⊥) ⊂ Q

(
A ∪A⊥)

6 CONCLUSION

In this paper we studied one approach to tackle Ramsey type problems by studying Maker-Breaker
games associated with them. We found that greedy strategies work surprisingly well in this case and
on some conditions are the winning ones and they solve games in Rn almost entirely. In other they
can provide good estimates of who is winning or be a starting point to construct more complex or
game-specific strategy.
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