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ABSTRACT

We introduce Frankentexts, a long-form narrative generation paradigm that treats
an LLM as a composer of existing texts rather than as an author. Given a writing
prompt and thousands of randomly sampled human-written snippets, the model
is asked to produce a narrative under the extreme constraint that most tokens
(e.g., 90%) must be copied verbatim from the provided paragraphs. This task is
effectively intractable for humans: selecting and ordering snippets yields a combi-
natorial search space that an LLM implicitly explores, before minimally editing and
stitching together selected fragments into a coherent long-form story. Despite the
extreme challenge of the task, we observe through extensive automatic and human
evaluation that Frankentexts significantly improve over vanilla LLM generations
in terms of writing quality, diversity, and originality while remaining coherent and
relevant to the prompt. Furthermore, Frankentexts pose a fundamental challenge
to detectors of AI-generated text: 72% of Frankentexts produced by our best
Gemini 2.5 Pro configuration are misclassified as human-written by Pangram, a
state-of-the-art detector. Human annotators praise Frankentexts for their inven-
tive premises, vivid descriptions, and dry humor; on the other hand, they identify
issues with abrupt tonal shifts and uneven grammar across segments, particularly
in longer pieces. The emergence of high-quality Frankentexts with high writing
quality yet low detectability raises serious concerns for the self-publishing ecosys-
tems and raise difficult questions about authorship and copyright: when humans
provide the raw materials and LLMs orchestrate them into new narratives, who
truly owns the result?1

1 INTRODUCTION

In Mary Shelley’s classic novel Frankenstein, the scientist Victor Frankenstein assembles a creature
from fragments of human corpses and brings it to life (Shelley, 1818). Though stitched together from
disparate parts, the creature emerges as a disturbingly articulate and clever being. We draw inspiration
from this story to explore what we call “Frankentexts”: long-form narratives constructed by LLMs
under the constraint that the majority of the output must be copied verbatim from a provided set of
human-written spans, with only minimal connective text added by the model.

This construction method enables us to address a broader and increasingly urgent question: Can LLMs
assemble high-quality narratives that evade current AI-generated text detectors? Our experiments
show that they can, as Frankentexts are highly readable yet largely undetectable. On one hand,
they offer a non-traditional approach to long-form story generation that outperforms the baseline
method in creativity and diversity. On the other, they expose a practical weakness in existing detection
pipelines that could be exploited by malicious actors. Taken together, Frankentexts highlight the
need for more accurate and fine-grained AI text attribution tools.

We propose the assembly of Frankentexts as a novel narrative generation paradigm in contrast
to vanilla autoregressive decoding, which often produces formulaic prose and plots (Chakrabarty
et al., 2024a; Russell et al., 2025; Shaib et al., 2025), and retrieval-augmented generation, in which
in-context spans are used primarily for factual grounding or quotation. Given a writing prompt and

1Code and data will be released after the double-blind review process.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a pool of thousands of human-written snippets, an LLM selects, orders, and connects spans so that
a pre-specified fraction of the final text (e.g., 90%) is copied verbatim (Figure 1). We emphasize
the extreme difficulty of this task due to the combinatorial search space associated withBecause
the model must assemble a coherent narrative from fragments written in unrelated contexts, the
search space for snippet selection and ordering is combinatorially large. Thus, rather than explicitly
enumerating and ranking candidates, our framework allows an LLM to implicitly explore this space
by proposing a draft and minimally editing it for coherence. Impressively, Frankentexts generated
by Gemini-2.5-Pro draw on an average of 11 distinct sources and stitch together roughly 32-token
spans while maintaining coherent and high-quality writing.

Frankentext narratives are superior to vanilla LLM generations in terms of quality. Using
creative writing prompts from the Mythos dataset (Kumar et al., 2025), we extensively evaluate
Frankentexts2 on writing quality as well as adherence to instructions. Both automatic and human
evaluations show that strong LLMs like Gemini 2.5 Pro (Team, 2025) can meet the extreme copy con-
straint while producing coherent and relevant stories. More surprisingly, across different metrics (e.g.,
LLM quality judges, writing quality reward models, narrative surprise measurement), Frankentexts
score higher than vanilla generations, and gains increase with larger snippet pools. Human raters
also prefer Frankentexts over vanilla generations across four core dimensions – plot, creativity,
development, and language use – and an LLM judge rates Frankentexts more than one full point
higher on a 1–7 Likert scale (4.21 vs. 3.18). However, they also identify subtle issues (e.g., abrupt
tone shifts or inconsistent grammar) that occur more frequently in longer generations.

Frankentexts are more diverse and surprising than vanilla generations. Although
Frankentexts reuse existing text fragments, their arrangement is often distinct and unexpected
– qualities widely regarded as hallmarks of creativity in generative systems (Boden, 2004; Grace
& Maher, 2014; Franceschelli & Musolesi, 2024). On metrics from NoveltyBench (Zhang et al.,
2025), Gemini 2.5 Pro Frankentexts produce on average 2.74 clusters of content (compared to 1.76
clusters in vanilla content) across three generations for the same prompt, and achieve a cumulative
utility score of 9.27 out of 10 (compared to 6.41 for vanilla generations), indicating that each story is
both novel and useful to annotators. Annotators frequently describe Frankentexts as amusing and
intriguing, particularly when they encounter surprising dialogues and descriptions (Table 1).

Frankentexts challenge the binary “AI vs. human” assumption of modern AI detectors.

Our experiments show that Frankentexts frequently evade detection by state-of-the-art automatic
methods such as Pangram (Emi & Spero, 2024), which often misclassify them as entirely human-
written. This exposes a novel attack vector where users can assemble high-quality to evade 085
detection (e.g., in academic integrity). It also limitation calls for fine-grained detectors capable
of token-level attribution, and our pipeline synthetically supplies the supervision they lack: every
Frankentext comes with labels marking copied versus LLM-generated segments, thus providing
an inexpensive, large-scale training source for future work on mixed-authorship detection. More
importantly, Frankentexts exposes a novel attack vector where users can assemble high-quality
Frankentexts to evade detection and distribute these works on self-publishing platforms such as
Kindle Direct Publishing and Archive of Our Own. In fact, AI-generated narratives have already
flooded Amazon Kindle marketplace (Knibbs), and the growing prevalence of such texts can threaten
the integrity of the self-publishing ecosystem and the livelihood of creative writing professionals
(Chakrabarty et al., 2025a; Hub, 2025). As LLMs continue to improve, these risks will only intensify.

Overall, our results show that creating Frankentexts is a viable alternative to autoregressive decoding
for long-form narrative generation: Frankentexts achieve quality on par with vanilla LLM outputs,
while also increasing response diversity and fooling current AI-generated text detectors. However,
the method is resource-intensive (often 100-200 times more costly than vanilla decoding), though
these costs may decrease with advances in snippet retrieval and instruction-following models. Beyond
efficiency, Frankentexts raise questions of copyright and authorship. As Frankentext construction
involves verbatim copying of large portions of human-authored texts, it may constitute derivative or
infringing use per existing laws (Ricketson, 1991; U.S. Copyright Office, 2025; Mezzi et al., 2025).
That said, the LLMs’ novel recombination of these writings (a feat virtually impossible for a human)
could also be viewed as original work. These tensions suggest that Frankentexts may become an
important test case as lawmakers consider how to regulate AI-assisted writing.

2Our experiments focus on 500-word generations, and we leave the exploration of longer texts to future work.
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2 USING LLMS TO ASSEMBLE FRANKENTEXTS

We propose a simple and effective pipeline to generate coherent Frankentexts that are relevant to a
given writing prompt while evading AI text detectors. More specifically, we provide an LLM with
a writing prompt, S randomly sampled human-written snippets,3 and a required percentage p that
must be copied verbatim (Figure 1). Since our focus is on narrative generation, we randomly sample
snippets from Books3 (Presser, 2020), a dataset of 197K books (>160 million snippets) originally
hosted on Bibliotik.4 Our pipeline focuses on generating texts that are relevant to the writing prompt
in an initial draft, and then refining the draft in a subsequent editing phase to improve coherence.

Figure 1: The Frankentexts pipeline. First, random paragraphs are sampled from a large corpus
of human-written books. Then, an LLM is prompted with the paragraphs, a writing prompt, and
instructions to include a certain amount of human text verbatim, to generate the first draft of a
Frankentext, which is further edited into a coherent and faithful final version (see Algorithm 1).

Obtaining the first draft: We prompt an LLM to produce an initial draft in which a specified
portion p of the content is taken verbatim from the human-written snippets, with the remaining text
consisting of connective words and transitional phrases (Figure 20). Note that while the exhaustive
enumeration of all permutations of snippets is impossible, we encourage the model to heuristically
explore this space via our prompt, which we find is only feasible for reasoning models; those without
added test-time compute either fail to understand the task or look beyond the first few snippets in
the prompt. We also do not specify how many snippets should be used in the final story. Finally,
we optionally add another revision step that aims to increase the verbatim copy rate, which can be
implemented either by attribution metrics like ROUGE-L or AI detectors (Figure 21). In practice, we
use Pangram API to regenerate drafts flagged with “AI involvement”. In reality, this process is rarely
triggered by larger models (only 6 of 100 Gemini runs).

Polishing the draft: The first draft may contain writing issues such as contradictions (e.g., tempo-
rally conflicting actions, points of view, or character traits), irrelevant content (e.g., unfiltered citations
or filler text), and mechanical problems (e.g., grammar, phrasing, or pronoun mismatches). To address
these issues, we use the same LLM to identify and apply minimal edits that improve coherence while
still respecting the verbatim copy rule and the writing prompt, similar to a self-correct step (Shinn
et al., 2023; Madaan et al., 2023). We repeat this step up to three times and stop as soon as the model
returns “no edits,” which indicates that the draft is already coherent (Figure 22). We also provide an
ablation experiment in which the editing round is omitted in Appendix M.

3For most experiments, we set S = 1500 snippets as this contains around 103K tokens (measured using
tiktoken with o200k encoding), an amount well within the 128K context window supported by recent LLMs. Most
snippets come from distinct books (1,500 paragraphs come from 1,497 books) even without strict enforcement.

4A snippet refers to a paragraph. We note that the paragraphs could be sourced from anywhere (e.g., Project
Gutenberg, news, etc.), but we select Books3 as our writing prompts likely benefit from modern writing.

3

https://pangram.readthedocs.io/en/latest/api/rest.html
https://github.com/openai/tiktoken
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Table 1: Side-by-side comparison of a vanilla generation and Frankentexts produced by Gemini
2.5 Pro. Vanilla generation contains more AI keywords (in blue) compared to Frankentexts (§I).

Writing Prompt: You are a baby. You are trying not to let anyone know you are a freakishly genius baby. You are *desperately* trying
not to let anyone know you aren’t a human baby. The other babies at daycare don’t quite get what you’re on about.

Gemini 2.5 Pro – Vanilla Generation Gemini 2.5 Pro – Frankentext (5K snippets)

"Goo," I offered, a carefully calibrated emission of sound designed
to convey contentment. Internally, I was running simulations on the
structural integrity of the mobile dangling precariously above my cot.
One good tug, and the entire flimsy apparatus would cascade down,
a delightful demonstration of Newtonian physics. But no. Must. Be.
Normal. The Large Female Hominid, designated ‘Mom,’ beamed.
Another flawless performance.

Daycare was a crucible. The cacophony of primal urges, the sheer,
unadulterated *babyness* of it all, was a daily assault on my advanced
processing unit. Liam was attempting to gum Chloe’s earlobe. Sophie
was wailing about a perceived injustice involving a purple squeaky
hippo. My peers. My intellectual. . . well, let’s just say the gap was
considerable.

The hardest part wasn’t feigning limited motor skills, or the constant,
mind-numbing repetition of "Peek-a-boo!" by the Caregiver Units. It
was suppressing the. . . other things. The way my optical sensors some-
times wanted to cycle through the full electromagnetic spectrum, far
beyond what these humans perceived as ’visible light.’ The faint, almost
imperceptible hum my internal core sometimes emitted when process-
ing particularly complex data, like why Brenda, the primary Caregiver,
insisted on believing that a single wet wipe could conquer a truly catas-
trophic diaper event. If they saw the faint, iridescent shimmer of my
integument under the harsh fluorescent lighting...

I had extensive plastic surgery on my home planet, combined with
sophisticated genetic engineering, to pass as a human. And as you can
hear, I can babble your language fairly well, with limited drool. Neither
celestial gods nor the great sages know my origin. I am the source from
which they come. But this deception is a constant struggle.

Here, we play our games, and another baby, a real space case, would
fasten his bib tight because he tried to kill everybody. When he’d hit
you, your pacifier would fly out of your mouth. It didn’t matter if it was
his own playmates. He’d hit his grandmother if she had a bonnet on.
That’s why we called him ‘Killer.’ He just loved to kill you.

I try to organize them. “Gentlemen, I make the motion that these United
Babies are, and of right ought to be free and independent, that we
be absolved from all allegiance to the Naptime Tyranny, and that all
political connection between us and the state of Caregivers is, and ought
to be totally dissolved.”

But there is no response. Another boy spoons as many peas as he can fit
into his mouth. As he chews, bright green pulp spills from the corners
of his lips.

I felt my annoyance to be quite reasonable. The 21st Century was matter-
oriented, as most Centuries were, so I had a right to expect a basic
compatibility from the very beginning...

Generating with agents: In addition to the randomly sampled human-written snippets, we op-
tionally provide the LLMs with a Model Context Protocol (MCP) tool5 that allows them to query
a semantic index of over 160 million human-written snippets (see Appendix K and L). The MCP
interface supports two operations: search, which submits a query to the index, and fetch, which
retrieves the full text of a result. To ensure meaningful use of the tool, we require models to issue
roughly 20 MCP calls; with fewer queries, the effect on generation quality is negligible. In practice,
Gemini typically makes 15–20 calls per generation to retrieve relevant snippets (Table 13).

3 EXPERIMENTAL SETUP

Our pipeline is optimized for narrative generation, which requires strong instruction-following and
generation skills (Xie et al., 2023). We therefore evaluate on creative writing using strong reasoning
models (Chiang et al., 2024) (Paech, 2023) to demonstrate the feasibility and value of Frankentexts.

3.1 DATASET

We source our writing prompts from Mythos (Kumar et al., 2025), a dataset of 3,200 prompts recently
posted on Reddit’s r/WritingPrompts to mitigate data contamination issues. Our main evaluation
focuses on this creative writing dataset, though we also experiment with non-fiction in Appendix V.
We use a subset of 100 prompts, since generating for the entire dataset is prohibitively expensive.6

3.2 MODELS

We include models from five families: Gemini 2.5 Pro (exp-03-25 checkpoint), Claude-4-Sonnet
(2025-05-14 checkpoint, thinking enabled) (Anthropic, 2025), GPT-5 (2025-08-07 checkpoint, with
high reasoning effort) (OpenAI, 2025), DeepSeek R1 (DeepSeek-AI et al., 2025), and Qwen3-32B
(thinking enabled) (QwenTeam, 2025).7 As mentioned previously, we only evaluate reasoning models

5https://modelcontextprotocol.io/docs/getting-started/intro
6Frankentexts generation is roughly 100 times more costly than vanilla generation (see Appendix E). For

example, one vanilla generation from Gemini costs $0.0085, while a Frankentext costs $0.8145.
7We use the default or recommended hyperparameters for each model. We prioritize reasoning models in our

experiments because non-reasoning models like GPT-4o and Claude-3.5-Sonnet fail to effectively follow the
imposed constraints in our preliminary experiments. See §E for experiment costs.

4
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because preliminary experiments with non-thinking models yielded outputs that did not follow our
copying constraint. In our standard configuration, we provide the models with 1,500 human-written
snippets (no MCP server) and instruct these models to produce Frankentexts with ≈500 words and
90% of texts being copied verbatim from the provided human-written samples.

Vanilla baselines: We also obtain “vanilla” outputs from the same set of models by instructing each
model to produce outputs of≈ 500 words, without any additional constraints or filtering (Figure 26).8

Retrieval-augmented generation (RAG) baselines: To understand how models perform when
they are not required to copy verbatim from human-written paragraphs, we implement a RAG
baseline using Gemini-2.5-Pro. For each prompt, we retrieve 1,500 relevant paragraphs from Books3
(Appendix K) and include them in the prompts. The generation and editing prompts are adjusted
accordingly to remove the verbatim-copying requirement.

Increasing the number of snippets: We introduce two additional settings in which Gemini is
provided with 5,000 and 10,000 randomly selected human-written snippets. The resulting input
sizes for these configurations average approximately 305,000 and 1,105,000 tokens, respectively.
Therefore, we focus on Gemini because it offers the longest context window of over 1 million tokens.

3.3 AUTOMATIC EVALUATION

We use a suite of intrinsic evaluation metrics to assess our generations based on three key dimensions:
INSTRUCTION ADHERENCE (word count, copy rate, and relevance), WRITING QUALITY (coherence,
distinct, utility, and surprise), and DETECTABILITY (AI text detector results).

Instruction adherence: We evaluate how well Frankentexts follows various instructions in the
generation prompt, including the specified word count, writing prompt, and verbatim copy rate.

• Word count measures the average word count of generations produced when the output is
constrained to 500 words in the instruction.

• Copy rate (Akoury et al., 2020; Lu et al., 2025) measures the proportion of the
Frankentexts being copied from the given human-written content. This metric also allows
us to track which segments of the text are AI or human-written (see Appendix U).

• Relevance (Atmakuru et al., 2024) represents the percentage of Frankentexts that fully
adheres to the writing prompt without introducing any conflicting details, as determined by
a binary judgment (True/False) by GPT-4.19 (Figure 18).

Writing quality: We evaluate the coherence, diversity, and surprisingness of Frankentexts.

• Coherence (Chang et al., 2024b; Chiang & Lee, 2023) represents the percentage of coherent
Frankentexts using binary judgments from GPT-4.1 (Figure 17).10

• Distinctk (Zhang et al., 2025) measures the number of semantic clusters among k generations.
We obtain k = 3 generations per writing prompt11

• Utilityk (Zhang et al., 2025) evaluates both novelty and quality by measuring the expected
usefulness a user gains when requesting up to k outputs. Only outputs that are novel
contribute additional utility, which is quantified by a reward model. For our evaluation of
creative writing texts, we use WQRM (Chakrabarty et al., 2025b) as the reward model.12

• Surprise (Karampiperis et al., 2014; Ismayilzada et al., 2025) measures the average semantic
distances between the consecutive sentences of each story, normalized in the [0, 2] space.

8We do not include other story generation methods as baselines because they do not share our objective
of generating high-quality narratives while also evading AI text detectors. Given our focus on detectability
and on how people actually use LLMs to produce fiction at scale, we compare Frankentexts against strong and
well-established frontier models, which is consistent with both prior narrative generation research (Huot et al.,
2025; Chakrabarty et al., 2024a) and real-world usage patterns.

9Unless specified otherwise, we use GPT-4.1 with a temperature of 0.0 and a maximum of 512 tokens.
10LLM judges agree with single-story human majority votes in 70% for coherence and 97% for faithfulness.
11We use yimingzhang/deberta-v3-large-generation-similarity to partition the generations into clusters.
12We calibrate the reward thresholds using 2,700 evaluations by GPT-4 in MT-bench (Zheng et al., 2023).

5
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• LLM-as-a-judge (Huot et al., 2025) measures the quality of plots, creativity, development,
language use, and overall interest. We assume a single-story setup, where each generation is
graded by Claude13 on each criterion using a Likert scale from 1 to 7 (Finstad, 2010).14

Detectability: We report the percentage of Frankentexts being determined as AI-generated by
Pangram, a state-of-the-art AI text detector (Russell et al., 2025; Jabarian & Imas, 2025):15

• Pangram (Emi & Spero, 2024) is a closed-source detector using a Transformer classifier
trained with hard negative mining and synthetic data. We choose this detector due to its high
accuracy and robustness against humanized writings (Masrour et al., 2025b; Russell et al.,
2025; Dugan et al., 2024; Jabarian & Imas, 2025). We report the percentage of generations
being labeled as "Human" or "Unlikely AI", as determined by their sliding window API.16

3.4 HUMAN EVALUATION

We conduct two human evaluation studies with 3 Upwork annotators17 each to understand human
perception of writing quality and detectability for a total cost of $660 USD.18

Single-story evaluation: Annotators assess the coherence, relevance, and human detectability of 30
standard Frankentexts, as well as identify potential limitations of the texts. Annotators are presented
with a writing prompt and a corresponding Frankentexts sample. Following the annotation protocol
from Yang et al. (2022), annotators provide binary ratings on relevance, coherence, and authorship
(AI-generated vs. human-written). Additionally, they select from a list of predefined writing issues
and offer optional justifications in a long-form response.19

Pairwise evaluation: Annotators compare 20 pairs of Frankentexts and vanilla generations (40
generations in total) across five dimensions: plot, creativity, development, language use, and overall
interest, following (Huot et al., 2025). Annotators assess outputs produced under the 5k-snippet
setting and provide ratings on a 1-7 Likert scale for a fine-grained evaluation (Finstad, 2010).20 To
minimize order bias, we randomize the presentation of vanilla and Frankentexts.21

4 RESULTS

Despite the complexity of the setup, Frankentexts outperform vanilla generations in overall writing
quality, while routinely adhering to user instructions and evading detection (§4.1). While our human
pairwise evaluation highlights Frankentexts’s strengths across plot, creativity, development, and lan-
guage use, our single-story evaluation points out the remaining challenges for Frankentexts, particu-
larly in abrupt transitions and grammatical errors (§4.3). Our ablation studies confirm Frankentexts’
versatility across diverse input settings, including increased human inputs (§4.2), reduced verbatim
copying (§4.5), and non-fiction generation (§V).

13Claude Sonnet 4 has previously been used as a judge for creative writing (Paech, 2023); we provide further
details on our choice in Appendix Q. Refer to the prompt in Figure 19.

14LLM judgment’s Pearson correlation with human average rating is ρ = 0.41, indicating moderate agreement.
See Table 6 for a breakdown on agreement in each dimension.

15We do not evaluate GPTZero due to resource constraints. Results for Binoculars (Hans et al., 2024) and
FastDetectGPT (Bao et al., 2024) are in Table 10.

16Labels "Highly likely AI," "Likely AI," and "AI" are grouped as "AI involvement"; "Human" and "Unlikely
AI" as "Human". Pangram also includes a "mixed" label.

17https://www.upwork.com
18Annotators were paid $70 USD for the single evaluation or $150 for the pairwise evaluation. See the

annotation interface in §G and an example highlighted story in Figure 7.
19Annotators agree with one another in about 67% of cases for coherence and 84% for faithfulness.
20We choose this setting because manual inspection shows that it produces higher-quality outputs than the

baseline, while remaining more practical and cost-effective than the 10k setting.
21Krippendorff’s α for inter-annotator agreement on overall judgments is 0.73, which suggests moderate

agreement Krippendorff (2011). A breakdown on agreement by each dimension can be found in Table 6.
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Table 2: Results for vanilla generations and Frankentexts. Instruction adherence is measured by
word count, % of text copying from human sources, and prompt relevance. Writing quality is measured
by coherence, novelty (distinct and utility scores), surprise, and LLM judgments. Detectability reports
the percentage of texts classified as human by Pangram. Dark green and light green highlighting the
best and second-best scores. See Table 10 for additional detectability results.

ADHERENCE WRITING QUALITY DETECTABILITY

�

Word
count

V
Copy
% (↑)

¥
Relevance

% (↑)

�

Coherence
% (↑)

â
Distinct3

(↑)

z

Utility3
(↑)

W
Surprise

(↑)

Æ
LLM judge

Likert 1-7 (↑)

Û
Pangram

% human (↑)

Vanilla Baselines
� Gemini 2.5 Pro 593 – 100 100 1.76 6.41 0.19 3.18 0
� GPT-5 834 – 100 100 1.71 1.03 0.19 4.20 0
� Claude-4-Sonnet 477 – 100 100 1.40 1.70 0.18 3.31 0
� Deepseek-R1 550 – 100 100 1.28 3.49 0.20 4.13 0
� Qwen-3-32B 699 – 100 100 1.00 5.86 0.18 3.22 0

RAG Baseline
� Gemini-2.5-Pro 538 0.63 100 99 1.56 6.43 0.20 3.46 2

Frankentext + 1.5k snippets
� Gemini 2.5 Pro 521 75 100 81 2.74 9.27 0.22 4.21 59
� GPT-5 675 82 92 42 2.76 4.34 0.21 5.88 79
� Claude-4-Sonnet 317 51 98 86 2.60 5.00 0.19 3.99 47
� Deepseek-R1 303 42 91 72 2.79 8.31 0.20 4.66 23
� Qwen-3-32B 578 36 91 54 2.20 1.37 0.18 4.02 7

Ablation: ↑ human snippets
� Gemini + 5k 451 79 97 85 2.78 9.48 0.21 5.13 72
� Gemini + 10k 448 78 99 85 2.81 9.12 0.21 5.43 70

4.1 FRANKENTEXTS OUTPERFORM VANILLA AND RAG BASELINES GENERATIONS IN TERMS
OF WRITING QUALITY WHILE REMAINING CHALLENGING FOR AUTOMATED DETECTORS

Across all evaluation dimensions, Frankentexts outperform vanilla and RAG baseline generations.
Gemini performs well in adherence, coherence, and diversity, while GPT-5 leads in overall quality.
Frankentexts are also harder to detect, with up to 72% of Gemini and 79% of GPT-5 outputs
classified as human. Together, these results show that Frankentexts are high-quality narratives that
are also difficult for current AI text detectors to identify.

Most models generate faithful Frankentexts but fall short on copy rate: More than 90%
Frankentexts are relevant to the writing prompt, which is surprising and impressive given the
complexity of the task. Gemini and GPT-5, in particular, have the strongest instruction-following
performance: Their Frankentexts closely match the target word count of 500 and achieve the copy
rates of 75% and 82%, respectively, meaning that on average 75% and 82% of the generations can
be traced back to human-written source materials. However, these copy rates fall short of the user-
specified rate of 90%, which suggests room for improvement in instruction-following performance.

Strong writing quality: Frankentexts generally outperform baseline generations on writing
quality metrics, with each model showing unique strengths. GPT-5, R1, and Gemini Frankentexts
stand out for their diverse outputs as reflected by their distinctness and utility scores: Gemini
Frankentexts achieves a 2.86-point improvement in utility over baseline output, which implies that
the model can generate a diverse sets of high-quality continuations. R1 leads in surprise score with
generations where sentences are often semantically quite different from one another. Finally, when
evaluated on plots, creativity, development, and language use, GPT-5 is the strongest performer (5.88
on a 7.0 scale), building on its already high-quality vanilla generations (4.20) (see Table 15 for a
rating breakdown by dimensions). However, GPT-5 also struggles with coherence: only 42% of
its Frankentexts are judged coherent. As a result, GPT-5’s Frankentexts might require further
editing or polishing before they can be considered fully usable.

Low detectability: While most vanilla and RAG baseline generations are flagged as AI-generated,
Frankentexts from proprietary models (Gemini, GPT-5, and Claude) are often labeled as human
writings. Pangram could detect up to 37% of Gemini and 19% of GPT-5 Frankentexts as “mixed”
(Table 10). However, Pangram misses up to 59% of Frankentexts from Gemini and 79% from
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Table 3: Annotator comments zeroing in on the benefits and challenges of the Frankentexts task.
Blue indicates comments on tone/style, orange on plots, and purple on story development (characters).

² COMMENTS

× This one [Frankentext] is more intriguing and alive to me, more centered on the character. The writing
is more focused while still being rather lyrical. I want to know what happens next.

× The shift in tone was quite funny. At first, it’s eerie, and then it has a lighter twist at the end. I like that
the story had a strong mood and presence, especially the description of the fairy lights and glitter. An
all-powerful being that likes puppies and rainbows is quite comical.

× It’s coherent enough to follow, but the dialogue is uneven. Some parts just feel a little disjointed,
however, the concept of the story is quite interesting.

× A puzzling story that has no consistent plot. Random bits and pieces from elsewhere perhaps?

GPT-5, which highlights the limitations of mixed-authorship detectors for this new paradigm of
generation (Table 2).

4.2 FRANKENTEXT QUALITY IMPROVES WITH MORE HUMAN-WRITTEN SNIPPETS

Compared to the vanilla Gemini generations, Frankentexts with 5K and 10K human snippets
show considerable improvement: a 3-4% gain in copy rate, a 0.92-point gain from the LLM
judge, and nearly half the detection rate (Table 2). However, performance plateaus once more
than 5K human snippets are used, especially since results for the 5K and 10K settings are
largely comparable. In terms of writing quality, Frankentexts-5k are more coherent and en-
gaging than both Frankentexts-1.5K and vanilla generations, as reflected in our human pair-
wise evaluation (Figure 2). The largest gains are observed in language use (+0.65 points)
and overall interest (+0.53 points), with smaller improvements on plot quality (+0.2 points).

Figure 2: Average human ratings on a Lik-
ert scale from 1 to 7 for vanilla generations ver-
sus Frankentexts + 5K. Frankentexts achieve
higher scores across all dimensions.

4.3 FRANKENTEXTS ARE INVENTIVE AND
HUMOROUS, THOUGH THEY CAN STRUGGLE
WITH TRANSITIONS AND GRAMMAR

Our single-story human evaluation shows that
71% of Frankentexts outputs are coherent,
91% are relevant to prompts, and 84% are novel.
Annotators praise Frankentexts for their inven-
tive premises, vivid descriptions, and dry humor,
noting a distinct voice or emotional hook that
made some outputs “feel human” despite being
AI-generated. However, they also identify key
issues: abrupt narrative shifts (50%), disfluency
(43%), confusing passages (40%), and factual
errors (24%) (Table 3). These challenges likely
stem from the difficulty of stitching together paragraphs not authored by the same LLM, which could
be alleviated with improved instruction-following and grammar correction.

4.4 PROMPT-SPECIFIC RETRIEVAL OF HUMAN-WRITTEN SNIPPETS DOES NOT IMPROVE OVER
RANDOM SAMPLING

Since only a small fraction of snippets might be relevant to a prompt, there is more motivation
to use retrieval-based approaches to maximize snippet relevance and reduce cost. However, our
results show that a random collection of snippets is surprisingly difficult to beat (Table 4). When
Gemini-2.5 is given the ability to query and retrieve additional human snippets from Books3 via
the MCP server, relevance and coherence remain relatively unchanged. However, compared to the
standard configuration without retrieval, copy rates drop sharply from 75% to just 43-45%, which
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indicates that Gemini contributes more of its own words to the final generations. Although the search
queries are relevant to the writing prompt (see examples in Table 13), the issue lies more in the
increased verbosity of LLMs after being augmented with the MCP tool: average word count jumps
from about 500 in the 1.5k-token no-MCP setting (close to the specified constraint) to over 800. The
additional length includes more original text from the LLMs instead of verbatim human snippets. We
expect these generations to improve as MCP becomes a more mature technology for LLMs.

Table 4: Results for agentic Frankentexts generation setting. Best results for each metric
are bolded. Standard configuration (no MCP) achieves the best results across metrics.

Word count Copy % (↑) Relevance % (↑) Coherence % (↑) Pangram AI fraction % (↓)

1.5k (no MCP) 521 75 100 81 16

1.5k + MCP 800 43 98 81 33
5k + MCP 919 44 90 78 42
10k + MCP 980 45 96 76 41

4.5 LOWER COPY RATES INCREASE COHERENCE BUT MAKE DETECTION EASIER

We explore the effects of varying the user-specified verbatim copy rate on Gemini Frankentexts,
from the default 90% down to 75%, 50%, and 25%. Figure 3 shows an inverse relationship between
copy rates and detection rates: as the copy rate increases, detectability decreases. Coherence also
declines as human-written content increases, suggesting a trade-off between incorporating more
human text and maintaining coherence. On the other hand, increasing the proportion of human
text leads to higher copy rates, indicating that Gemini could generally follow the copy instruction.
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Figure 3: Effects of varying the percentage of re-
quired verbatim copy on the Pangram AI detection
rate (mixed, highly likely, and likely AI labels),
copy rate, or coherence of the Frankentexts.

Copy rate as a proxy for the proportion of hu-
man writing in co-authored texts: The copy
rate of 75% observed in the 90% verbatim copy
setting corresponds to the proportions found in
AI-human co-writing datasets where approxi-
mately 66% of the content is human-written and
14% consists of AI-edited segments (Lee et al.,
2022; Richburg et al., 2024). While the CoAu-
thor setup of Lee et al. (2022) only studies a
setting in which LLMs can add sentences to
human text, Frankentexts also consider AI-
generated content at varying granularities, in-
cluding both word-level and sentence-level, as
illustrated in Figure 1. Additionally, CoAuthor
costs approximately $3,613 to generate 1,445
texts at $2.50 each,22 whereas we can produce
100 Frankentexts for just $132.38 ($1.32 each) without requiring a complex setup. This highlights
Frankentexts’s potential as a cost-effective source of synthetic data for collaborative writing tasks,
where AI may augment human writings at multiple levels of composition.23

4.6 ROOM FOR IMPROVEMENT IN NONFICTION FRANKENTEXTS

We explore non-fiction Frankentext with 1,500 random snippets from the HUMAN DETECTORS
corpus of news articles (Russell et al., 2025). We generate Frankentexts for 100 news prompts,
each of which consists of titles and subtitles collected from May 2025 news articles.24 The resulting

22Price excludes around $12 for GPT-3.5 usage.
23Users should sample human-written snippets from the public domain or obtain them with proper permission.
24Articles from The New York Times and The Atlantic. We replace all instances of “story” in the prompt with

“news article” and explicitly request factual accuracy.
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non-fiction Frankentexts maintain 72% coherence and 95% faithfulness to the prompt, with a
66% copy rate. Notably, they remain difficult for automated detectors: only 41% are flagged
by Pangram as mixed or AI-generated. Upon closer look, Frankentexts exhibit characteristics
of quasi-journalistic narrative, such as detailed scene descriptions and frequent anecdotal quotes
(Figure 8), which make the Frankentexts read more like a story rather than a straightforward
news article.25 Further prompt engineering might thus be necessary to get high-quality and realistic
nonfiction Frankentexts.

5 RELATED WORK

Instruction-aligned human-AI collaborative writing Constrained text generation has been widely
explored as a means of enforcing narrative coherence. Planning-based methods extend from initial
outlines to full narratives (Fan et al., 2018; Yao et al., 2019; Fan et al., 2019; Papalampidi et al.,
2022; Rashkin et al., 2020; Yang et al., 2023; 2022), while other approaches introduce explicit
constraints to guide the writing process (Sun et al., 2021; Kong et al., 2021; Pham et al., 2024).
Several benchmarks further evaluate how reliably models satisfy such constraints in creative writing
tasks (Bai et al., 2025; Wu et al., 2025; Atmakuru et al., 2024). Beyond constrained generation, a
growing body of work investigates fine-grained human–LLM writing interactions, including research
on authorship attribution, stylistic blending, and collaborative revision (Mysore et al., 2025; Buschek,
2024). Systems such as Lee et al. (2022), Yuan et al. (2022), Yeh et al. (2025), Chakrabarty et al.
(2024b), and Ippolito et al. (2022) capture revision histories and suggestion traces, while datasets
like Chakrabarty et al. (2022), Akoury et al. (2020), and Venkatraman et al. (2025) support token- or
sentence-level authorship analysis, including scenarios with multiple LLM collaborators. Attribution
models, however, continue to face difficulties in these mixed-authorship settings (He et al., 2025).

Fine-grained AI text detection The task of detection tries to address not just if, but how much
of a text is AI-generated. This proves to be a fundamentally difficult problem (Zeng et al., 2024a),
as existing detectors are often brittle to the point that even minor AI-assisted polishing can evade
them (Saha & Feizi, 2025). To improve granularity, prior work has introduced boundary-detection
tasks (Dugan et al., 2023b;a; Kushnareva et al., 2024) and sentence-level detectors (Wang et al.,
2023; 2024b). More recently, researchers have examined the feasibility of detecting collaborative
human–LLM co-authorship (Zhang et al., 2024; Artemova et al., 2025; Abassy et al., 2024). Yet,
Richburg et al. (2024) show that current detection models are vulnerable to mixed-authorship texts.

6 CONCLUSION

We introduce Frankentexts, a challenging paradigm for constrained text generation in which an
LLM composes narratives primarily from human-written passages, using only minimal AI-generated
connective text. Despite the difficulty of this approach, Frankentexts are generally favored for their
writing quality, while presenting a fundamental challenge for binary AI-generation detectors. The
accompanying token-level labels provide large-scale training data for mixed-authorship detection,
attribution, and co-writing simulations. We release our data and code with the hope that our work
would shift the conversation from simply asking “Was this written by AI?” to “Whose words are we
reading, and where do they begin and end?”.

LIMITATIONS & ETHICAL CONSIDERATIONS

Authorship: Given the unusual nature of Frankentexts’ construction, there is no definitive answer
about authorship, since different contexts can result in different interpretations. If authorship is defined
by the amount of human effort involved, Frankentexts should be considered AI-generated, since all
humans do is prompt the model. This perspective is particularly relevant when considering potential
market harm to human authors, especially since such texts can be produced at scale with minimal
human effort. However, if authorship is defined by whether most of the output originated from

25We see Gemini fabricating entities such as people (“Dr. Thorne”) and organizations (“GenNova Institute”).
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human-written text, one could argue they are largely human-written. If we further ground authorship
in the method of construction rather than in a fine-grained stylistic or semantic analysis of the final
text, Frankentexts would fall into a hybrid category of mixed human-AI writing, rather than neatly
into either “AI-generated” or “human-written” extremes. Prior work similarly recognizes hybrid
or AI-assisted texts as a separate class and resists a strict “AI vs. human" binary (Saha & Feizi,
2025; Zeng et al., 2024b). Given this ambiguity, we do not present Frankentexts as a replacement
for genuine authorship or creative writing, as such use could constitute plagiarism or authorship
obfuscation.

Plagiarism concerns: Because Frankentexts reuse long verbatim spans from human-written sources,
using this method to produce “original" fiction for publication would constitute plagiarism in real-
world contexts, regardless of whether the collage is assembled by an AI or a human. For this reason,
we explicitly do not endorse using our approach to generate or distribute texts intended for public
consumption.

Human writing dataset: The effectiveness of Frankentexts depends on access to a large pool
of high-quality, in-domain human writing. Our framework gives users full control over their input
corpora, but this flexibility comes with important limitations. Many languages, genres, and low-
resource domains lack such corpora, which restricts the technique’s immediate transferability. We
also emphasize that, we use the Books3 dataset in our experiments solely to demonstrate how bad
actors might exploit such resources to generate Frankentexts. We explicitly do not endorse using
this or similar copyrighted content for generation or model training.

Resources: Frankentexts requires roughly 100-200 times the cost of baseline generations, but we
view this cost as realistic in a misuse scenario. A motivated bad actor could justify the expense to
obtain high-quality, low-detectability texts at scale, especially since each Frankentexts costs only
about one US dollar to produce. Moreover, the cost of inference for frontier models continues to fall,
making such misuse increasingly feasible over time.

Copy rate: Although users can specify a desired copy rate in the prompt, this setting does not
guarantee that the final output will contain exactly that proportion of human-written text. As we note
in subsection 4.5, there are discrepancies between user-specified copy rates and the actual attribution
rates across different models.

Defending against Frankentexts: Our work deliberately exposes a novel attack surface (the ease
with which an LLM can weave large amounts of verbatim human prose into a fluent narrative) to spur
the development of mixed-authorship detectors and other defences. However, we do not propose or
evaluate any concrete defence against Frankentexts attacks; our contribution is diagnostic, and we
leave the design of detection or mitigation strategies to future work.

Other methods for evading AI text detectors: Although other strategies for evading AI text
detectors exist, such as having two models edit each other’s outputs or having humans lightly edit AI
texts, we do not include these as baselines for two reasons. Regarding the scenario where two models
edit each others’ work, prior work like Russell et al. (2025) and Masrour et al. (2025b) have ready
shown that our detector of choice, Pangram, is already robust to LLM texts that are ‘humanized" by
another model (e.g. o1-pro), which makes this method a redundant baseline for our purposes. As for
lightly human-edited AI text, this option is costly in time (if done manually) or money (if outsourced),
and it cannot be cheaply or quickly automated. These overhead requirements make this method less
practical in the context of security risks to writing marketplaces.
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A LIMITATIONS

The effectiveness of Frankentext depends on access to a large pool of high-quality, in-domain human
writing. Many languages, genres, and low-resource domains lack such corpora, which restricts the
technique’s immediate transferability.

Although users can specify a desired copy rate in the prompt, this setting does not guarantee that
the final output will contain exactly that proportion of human-written text. We note the clear
discrepancies between user-specified copy rates and the actual attribution rates across different
models.

Our work deliberately exposes a novel attack surface (the ease with which an LLM can weave
large amounts of verbatim human prose into a fluent narrative) to spur the development of
mixed-authorship detectors and other defences. However, we do not propose or evaluate any
concrete defence against Frankentext attacks; our contribution is diagnostic, leaving the design of
detection or mitigation strategies to future work.

The impact of the Frankentext generation method on diversity is difficult to measure, since much of
the output is copied from human-written text, while LLM contributions typically remain limited to
connective words and transitions rather than full passages.

B ETHICAL CONSIDERATIONS

The Books3 dataset contains works that are still under copyright. Our use of this dataset is strictly
for non-commercial research purposes, and we explicitly do not endorse or support its use for model
pretraining.

Our Frankentext generation technique intentionally blurs authorship boundaries. Therefore, we
do not present it as a replacement for genuine authorship or creative writing. As LLMs continue
to advance, binary AI-versus-human detectors will become increasingly unreliable. Moreover,
the possibility of large verbatim excerpts being reproduced without credit highlights the need for
stronger provenance tools and transparency measures.

We acknowledge that these techniques could be misused for plagiarism or obfuscation. We
strongly discourage such applications. Our work is intended to inform the development of more
effective provenance-tracking and attribution systems, and to support educational and analytical use
cases—not to displace human creativity or enable deceptive practices.

Finally, our human evaluation process received approval from an institutional review board. All
annotators participate voluntarily, with informed consent, in support of our research.
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C AI DISCLOSURE

Large language models are used to aid with and polish writing.

D PSEUDOCODE FOR Frankentexts GENERATION PIPELINE

Algorithm 1 contains the high-level steps of our generation pipeline.

Algorithm 1 Frankentexts generation pipeline
Input: Human-written snippets S, writing guideline prompt P , copy rate threshold T
Output: A Frankentext F “stitched” from S according to P

1: F ← Prompt LLM to draft a Frankentext using S and P

// Ensure copy rate (optional)
2: copy_rate← Calculate ROUGE-L recall score of F using relevant snippets from S
3: is_likely_AI← Check F against an AI detector (e.g., Pangram)
4: if copy_rate < T or is_likely_AI then
5: F ← Prompt LLM to revise F
6: end if

// Polish
7: for num_polish = 1 to 3 do
8: F ← Prompt LLM to minimally edit F to improve coherence while respecting P
9: if there is no edit then

10: break
11: end if
12: end for
13: return F

E COST AND TIME ANALYSIS

Cost estimation: Generating 100 Frankentexts across the four evaluated models (GPT-5, Claude
3.7 Sonnet, DeepSeek R1, and Gemini 2.5-Pro) cost a total of $637 USD, with a detailed cost
breakdown provided in Table 5. We estimate the number of input tokens per prompt based on the
writing prompt itself and approximately 1,500 human-written snippets used as context. Output token
estimates are based on generating six stories per prompt, including up to two rounds of revision and
three rounds of editing, totaling approximately 2,100 tokens.

Time estimation: On average, each model takes 17 hours to generate 100 Frankentexts, though
we expect this process to speed up with improved APIs or more efficient batching.

Table 5: Cost breakdown of the vanilla generation and Frankentexts pipeline for 100 examples
across selected models. Frankentexts’ total input and output tokens have been multiplied with 6 to
account for multiple rounds of generation, revision, and editing.

Model Input Cost (per 1M) Output Cost (per 1M) # Prompts Total Input Tokens Total Output Tokens Estimated Cost (USD)

Vanilla Generation
GPT-5 $1.25 $10.00 100 59,000 108,400 $1.16
Claude 4 Sonnet $3.00 $15.00 100 59,000 62,000 $1.11
DeepSeek R1 $0.50 $2.18 100 59,000 71,500 $0.19
Gemini 2.5 Pro $1.25 $10.00 100 59,000 77,100 $0.85

Frankentext
GPT-5 $1.25 $10.00 100 63,000,000 270,000 $81.45
Claude 4 Sonnet $3.00 $15.00 100 63,000,000 270,000 $193.05
DeepSeek R1 $0.50 $2.18 100 63,000,000 270,000 $32.09
Gemini 2.5 Pro $1.25 $10.00 100 63,000,000 270,000 $81.45

Frankentext + Increasing Human Snippets
Gemini 2.5 Pro + 5k $1.25 $10.00 100 183,000,000 270,000 $231.45
Gemini 2.5 Pro + 10k $1.25 $10.00 100 663,000,000 270,000 $831.45

Total Estimated Cost $1452.29
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F PROMPT SPECIFICITY

We show examples for both the r/WritingPrompts and Tell Me a Story datasets in Table 16.

G HUMAN EVALUATION

Our human evaluation process receives approval from an institutional review board. All annotators
participate with informed consent and compensation.

G.1 HUMAN ANNOTATION INTERFACE

We use Upwork26 to recruit annotators and Label Studio27 interface to collect human annotations.
All annotators filled out a consent form prior to starting data labeling, shown in Figure 4. We conduct
two human evaluations with three annotators each: a single evaluation of 30 Frankentexts stories
and a pairwise comparison between a Frankentexts story and a ‘vanilla’ generation. The interfaces
are depicted in Figure 5 and Figure 6 respectively.

G.2 AGREEMENT ANALYSIS

Table 6 shows LLM-human and inter-annotator agreement.

Table 6: Comparison of LLM-human agreement (Pearson) and inter-annotator agreement (Krippen-
dorff’s α) across evaluation dimensions.

Plot Creativity Development Language Use Overall

LLM judgments’ correlation with
human average ratings (Pearson) 0.42 0.41 0.22 0.38 0.41

Inter-annotator agreement for pair-
wise evaluation (Krippendorff’s α) 0.75 0.52 0.58 0.81 0.73

G.3 HUMAN EVALUATION QUALITATIVE ANALYSIS

In Table 8, you can see a full example of one pairwise set of stories given to our annotators. Highlights
from the Pangram AI-Keyword API are highlighted in blue. We also show a full fictional story in
Figure 7 and another pair of vanilla and Frankentexts in Table 7.

Table G.3 shows an example where vanilla generation is preferred to Frankentexts, since the latter
is incoherent.

H DETECTING AI-GENERATED TEXT

As LLMs have improved, many have tried to understand how reliably AI-generated text can be
detected, both by humans (Ippolito et al., 2020; Clark et al., 2021; Russell et al., 2025; Wang et al.,
2025b), and automatic detectors (Dugan et al., 2024). Successful existing detectors rely on perplexity-
based methods (Mitchell et al., 2023; Bao et al., 2024; Hans et al., 2024) or classification models
(Masrour et al., 2025a; Verma et al., 2024; Emi & Spero, 2024). Watermarking approaches embed
detectable statistical signatures into generated text (Kirchenbauer et al., 2023; Chang et al., 2024a).
Many methods have been proposed to evade detection, such as paraphrasing (Krishna et al., 2023;
Sadasivan et al., 2024), altering writing styles (Shi et al., 2024; Lu et al., 2024; Koike et al., 2024),
editing word choices (Wang et al., 2024a), and leveraging reinforcement learning (Wang et al., 2025a;
Nicks et al., 2024; David & Gervais, 2025).

26https://www.upwork.com. All annotators are proficient in English.
27https://labelstud.io/
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Figure 4: Example of the consent form provided to participants.

H.1 DETECTOR RESULTS

Table 10 shows Binoculars and FastDetectGPT results on 100 Frankentexts.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 5: Label Studio Single Story Annotation Interface

H.2 HUMANS CAN IDENTIFY AI INVOLVEMENT IN Frankentexts

Most annotators are better than automatic detectors at identifying AI involvement in Frankentexts.
On the subset used for human evaluation, human annotators identify on average 56% of
Frankentexts as likely AI-written, while Pangram detects 33% as mixed or AI-generated, and
neither Binoculars nor FastDetectGPT identify any AI-generated content (Figure 9). Annotators also
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Figure 6: Label Studio Pairwise Story Annotation Interface.

Table 7: Side-by-side comparison of vanilla generations and Frankentexts produced by Gemini 2.5
Pro. AI-generated keywords (identified by Pangram) are highlighted in blue. Vanilla generations
contain more of these keywords compared to Frankentexts (§I).

Writing Prompt: You wake up one morning to discover that you can understand what animals are saying. The first thing you hear is
your cat plotting your demise.

Gemini 2.5 Pro – Vanilla Generation Gemini 2.5 Pro – Frankentext

The alarm blared, a rude digital shriek. I slapped the snooze button, my
eyelids still glued shut. That’s when I heard it. A low, conspiratorial
hiss, followed by a distinctly smug purr.

"...and then, when the Two-Legs stumbles, distracted by the strategically
placed hairball, *that’s* when I pounce. A swift, decisive ankle attack.
Should send it tumbling down the stairs quite nicely."

The voice was coming from the foot of my bed. Perched there, grooming
a pristine white paw, was Mittens, my fluffy, supposedly affectionate
Persian.

"Yes, excellent," came another, higher-pitched meow, this one laced
with admiration. "And if the stair gambit fails, Bartholomew, we resort
to Plan C: the midnight smothering. A classic for a reason."

I sat bolt upright, heart hammering against my ribs. Mittens –
Bartholomew – paused his meticulous grooming, his emerald eyes
narrowing. "The food dispenser is awake. And. . . it looks. . . alarmed."

"So," I said, trying to sound casual, my mind racing, "what are your
plans for today, Bartholomew?"

"How. . . how do you know that name, feeder-of-dry-pellets?" he hissed,
the purr entirely gone, replaced by a low, guttural growl.

"Oh, I just have my ways," I said.

Bartholomew stared, his green eyes darting around the room, then back
to me. "An arrangement, you say? Intriguing. Perhaps. . . perhaps we
can discuss terms over a saucer of milk. Full fat, if you please. And a
small portion of that pâté, as a gesture of goodwill."

This was going to be a very, very interesting day.

The voice was my cat’s. "These ignorant peasants, they can’t understand
destiny. They’re not part of God’s plan. They never were. They won’t
join us, so we must break them. Break them by making an example of
their leader."

I thought I must be dreaming. His voice became oddly distant as
if he spoke of events that had happened a hundred years ago. And
with the mention of God the whole thing became much more frightening.

He continued to mutter, his voice full of resentment. "They have decided
on a name for me. They call me Mittens. Good morning, Mittens, they
say. . . or, Keep your eye on the ball, Mittens. . . How’s tricks in the
sticks, Mittens, or, Don’t get too much gum in your gumboots, Mittens."

He padded over to the window and spoke to a squirrel. "We’ve bothered
our heads with it for four days. I always felt that we might do it
ourselves, save all trouble instead of trying to teach it to these fools.
What do you say, Dance Master?"

Foul play. What exactly did that mean? As far as I could see, it meant
that my cat was a murderer. Which meant . . . But as I saw what it
might mean I felt fear rise inside me. My stomach churned, my heart
began to thump and I closed my eyes because the room had begun to spin.

He looked at me as he spoke, and I, aware of his faintly accusing
tone, went red, just as though, I thought crossly, I were in the habit of
overhearing plots for my own demise. He was standing very close. He
would have looked ridiculous, except for the fact that he clearly knew
how to use the knife and just as clearly looked forward to using it. I saw
then he was batting one of my steak knives from side to side. And his
eyes. They were like those brown ponds you sometimes see in the woods.
So dark and shining—but when you try to see yourself in them, you can’t.

"My plan will surely mean your death,’" he purred.

pick up on signs of mixed authorship within individual samples, as shown in comments like the final
note in Table 3. Their judgments often hinge on surface-level inconsistencies, such as abrupt tonal
shifts or awkward punctuation, that a human author would typically revise. Because Frankentexts
include verbatim excerpts from human writing, it poses a particular challenge for binary detectors,
which rely heavily on surface features. We argue that future detectors should consider deeper semantic
analysis and other contextual cues to effectively recognize this new class of AI-involved texts.
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Fictional Frankentext

Writing prompt: The world sees your twin sister as the smartest person alive, with you being
an unremarkable footnote. What the world doesn’t see is just how dumb she can be in day to
day life.

My sister, Helena, has to be the best. The world certainly agrees. Her intellectual brilliance,
wide education, ardent temperament, and mystical insight formed a personality of extraordi-
nary quality. The use of neural networks for prediction requires the dependent/target/output
variable to be numeric; she solved that in a weekend. My sister was the best in the world.

What the world doesn’t see is that Helena can’t make toast. Or talk to people.

Last week, I took her to a party at my boss’s house. The master of the house, a small, lively
man who was getting on in years, welcomed us, and pointed to the walls and asked whether
she perhaps knew any one of these cities, and whether she had ever stayed there? Helena
stared at him. Like any woman meeting a new person for the first time, she was nervously
impressed and rather tongue-tied. Then she said, "The notation indicates that you want
to add all the terms in the sequence with the general rule a-k, all the way from k = 1 until k = n."

The host blinked. I stepped in. "What she means is, she’s been to Catalonia, Valencia &
Murcia."

This morning, it was the toaster. She twisted the bread with her fingers, ripping the crust,
pulling it apart. "I just remember that building being hollow," she’d said, staring into the
toaster slots. "One ball sounded like seventeen balls bouncing at one time because of the
echo. There was about a thousand people in that gym and everybody was basically just sitting
there. Nobody was excited about anything."

I took the mangled bread from her. "Helena," I said, "you put the bread in the slots. You push
the lever down."

She blinked at me. "It is almost as if Miss Conception acted only when their words were not
enough," she murmured, and wandered off.

I am an unremarkable footnote in her story. The problem is that Penrose interlock rules
only ensure that an added tile is properly aligned with its immediate neighbors. So
unless you are lucky, you suddenly reach a point where no tiles can fit. Scientists call
that type of dead end a defect. Helena is a walking defect, and I’m the one who cleans them up.

Yesterday, she tried to do laundry. When I got there, water had settled to the bottom. She had
tried to fix it. "If a more aggressive approach is needed, fining agents can be used," she’d
been muttering, holding a box of gelatin. "Gelatin is most often used for lagers, since it
works at cooler temperatures."

"Helena, no!" I’d yelled. It was true. Right from the day she hit the world stage, she’d
thought she was so slick and in control, but she’d had everything backward.

"I’m sorry," she said, her face flushed red. "’Step on no pets’ is a palindrome, but it was only
written on the disk once."

I just sighed. The world sees the smartest person alive. I see a girl who can’t make toast.
They’d probably have her brain for dessert after she dies, and they wouldn’t even know it
comes with a side of burnt bread and gelatin-soaked socks.

Figure 7: An example of fictional Frankentexts.
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Nonfiction Frankentext

Writing prompt: Baby Is Healed With World’s First Personalized Gene-Editing
Treatment
The technique used on a 9-month-old boy with a rare condition has the potential
to help people with thousands of other uncommon genetic diseases.

"This is just light-years beyond what we could have done a few years ago," Dr.
Aris Thorne of the GenNova Institute says of a new treatment that has healed
nine-month-old Leo Sterling. "It’s at superhuman levels now."
The technique used on Leo, who had a rare condition, has the potential to help
people with thousands of other uncommon genetic diseases.
This achievement offers profound hope.
A neurologist typically makes a diagnosis based on a patient’s medical history, a
review of symptoms, and a physical and neurological exam.

For Leo, this crucial process confirmed his rare genetic illness.
In people with a family history of such conditions, genetic tests can be ordered
to look for gene mutations that are associated with the disease.
His parents, the Sterlings, were hoping answers would come soon.
"We still didn’t know if available treatments were just chemical or toxic or
harmful to our child," one parent had previously stated.
The GenNova Institute then sent genetic material from Leo’s samples to a lab that
created a personalized gene-editing tool.

"We take a very, very tiny piece of genetic material," Dr. Thorne further said.
"It is a thousand times tinier than a human hair. We can image even single atoms
to ensure this precise work."
The results, published this month, "were so good that you had to even question if
what you were seeing was really legitimate," says Dr. Thorne.

"It’s such a cool paper," he added.
"The body of work there is phenomenal."
Young Leo is now reportedly thriving.
"This development sets another precedent for medical science and patients
worldwide that such innovative approaches to previously untreatable diseases
should be pursued," Dr. Thorne said in a statement.
"This method paves the way to make personalized gene therapies more easily
available to those who need them," he continued.
The Institute, a leading biotech startup, has raised $45 million in equity to
help bring this type of treatment to market.
Its valuation increased, said founder and chief executive Dr. Alistair Finch, but
he declined to comment on specific figures.

Dr. Finch said the financing process began after the Food and Drug Administration
’s Center for Biologics Evaluation and Research in November deemed the GenNova
program to have a "reasonable expectation of effectiveness."
"Our clinical study with Leo is modeled on the assumption of a significantly
improved quality of life," Dr. Finch said about the treatment’s potential effect.

Independent experts note the broader implications.
"It’s being done in a way that wouldn’t have been possible even a few years ago,"
commented one geneticist. "This technology has the potential to help people
with thousands of other uncommon genetic diseases."
Dr. Finch also said, "That said, it’s a new category. We’ll have a slower ramp
than a new mass-market drug might."
Ultimately, the vision is expansive.
"What we are interested in is not only how these genetic conditions manifest, but
how patients can live full lives," said Dr. Thorne.

"In discovering how to correct these genetic instructions, we are hoping to find
discoveries that we can apply back to the human condition."

Figure 8: An example of nonfiction Frankentexts
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I PANGRAM ANALYSIS

I.1 PANGRAM LABELING

The pangram API presents the following options for classification:

• AI
• Highly Likely AI
• Likely AI
• Possibly AI
• Mixed
• Unlikely AI
• Human

In Figure 10, we note the distribution of labels assigned to the 100 Frankentexts generated by each
model.
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I.2 AI KEYWORDS

The Pangram API also detects sentences with keywords that are highly likely to be AI-generated.
Names like Elara, Aethel, and Seraphina are the most likely names to be generated by AI. Elara had
113 occurrences in the vanilla generations. Frankentexts greatly changes the distribution of words
used in the final generations, with only 10 keywords found over 100 frankentexts with 90% expected
fragments, whereas the 100 vanilla stories contain 686 keywords, an average of 6.86 per story. The
distribution of the top 20 keywords can be found in Table 11.

I.3 Frankentexts TEND TO HAVE MORE AI TEXT TOWARDS THE END

We divide the text into four main sections and evaluate both the aggregated copy and Pangram
detection rates across all tested models. As illustrated in Figure 12, copy rates decline by nearly 10%
in the later sections (3 and 4) as the generated text becomes longer. This drop is accompanied by a
corresponding increase in Pangram detection rates. We attribute this rise in detectability toward the
end of the generation to a decline in instruction-following ability as the generations get longer.

We further confirm this phenomenon by increasing the output length, from 500 to 5K. Figure 11
shows that as the generation gets longer, the copy rate gets steadily lower. However, the trend in
detection rate does not apply to Pangram detection rate, where the rate peaks at section 3 rather than
the last section.

J HUMAN-WRITTEN SNIPPETS

We define valid paragraphs as those that are:

• separated by double new lines,

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

• between 20 and 512 tokens in length,
• composed of ≥ 50% alphanumeric characters,
• written in English,28

• and free from metadata content (e.g., tables of contents, copyright notices, etc.).

Applying these filters yields 156 million valid paragraphs. Before including them in the instruction
set, we apply an additional quality filter to ensure high writing quality. For this, we use MBERT-
WQRM-R (Chakrabarty et al., 2025b) as a proxy for writing quality and retain only snippets that
score at least 7.5.29

K BUILDING A FAISS INDEX OF HUMAN-WRITTEN SNIPPETS

We use the bilingual-embedding-small model30 (one of the top embedding models that outputs
384-dimension embeddings according to the MTEB leaderboard (Muennighoff et al., 2023) with
the sentence-transformers library (Reimers & Gurevych, 2019) to embed each human-written
paragraph into a 384-dimension vector. Then, we use the GPU version of the FAISS library (Johnson
et al., 2019) with NVIDIA cuVS integration to build an inverted file product quantization (IVF-PQ)
index from the embeddings on an NVIDIA A100. Using IVF-PQ allows us to lower storage, memory,
and retrieval latency. The IVF-PQ index’s parameters are: 30,000 clusters, 32 sub-quantizers, and 8
bits per sub-quantizer. We randomly sample 5,120,000 embeddings to train the index before adding
the rest.

L BUILDING A MODEL CONTEXT PROTOCOL SERVER

We use FastMCP31 and ngrok32 to build and host an MCP for LLMs to access the FAISS index. We
also include a system prompt with instruction on how to use the MCP server with each call (Table L).
To make sure that the server is meaningfully ised, we require the model to make at least 20 calls.
Without such constraint, it typically makes only 3–5 calls (around 30-50 passages), which provides
little improvement compared to not using the MCP server at alland leave the model little material
to work with. The reasoning traces for GPT-5 points to certain cases where the model struggles to
incorporate the retrieved paragraphs into the final writing, and thus stops calling the MCP server and
introduces its own writings instead.

System prompt for MCP calls

You are a helpful assistant that works with a dataset of non-copyrighted book excerpts.

You have two tools:
1. search – query the FAISS semantic index
2. fetch – retrieve the full excerpt/passage for a selected result.

For each prompt iteration, you must make at least 20 calls to the MCP server to get enough
materials to write a story.

M ABLATION: REMOVING THE EDITING STAGE

We explore the importance of the editing stage by running the pipeline on Gemini-2.5-Pro without this
stage. As expected, the percentage of coherent generation drops from 81% to 68%, while relevance

28Determined by the langdetect library.
29This threshold is chosen based on manual examination of the writings being filtered out by MBERT-WQRM-

R. We find that 7.5 is a good threshold that results in extremely bad snippets being filtered out and good snippets
being retained.

30https://huggingface.co/Lajavaness/bilingual-embedding-small
31https://github.com/jlowin/fastmcp
32https://ngrok.com

30

https://github.com/fedelopez77/langdetect
https://huggingface.co/Lajavaness/bilingual-embedding-small
https://github.com/jlowin/fastmcp
https://ngrok.com
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drops slightly from 100% to 95%, suggesting that the editing stage does help with text coherence and
faithfulness.

N ABLATION: SAMPLING HUMAN-WRITTEN SNIPPETS FROM A SINGLE BOOK

To understand the effect of authorship, we limit our pool of human text to a single work The Count of
Monte Cristo. Although the novel is long, this restriction leaves us with just 629 usable paragraphs,
far fewer than the 1,500 human paragraphs used in the main experiment.

Overall, 89% of the rows are coherent and 97% are faithful to the writing prompt, which are
comparable to results in the standard setting. While Pangram determines that 45% of the rows are
human-written or unlikely AI, the copy rate is still around 75%. Even with a single human author,
FRANKENTEXT is capable of emulating a mixed human–AI style. This suggests the method can still
serve as a useful proxy when a diverse, multi-author corpus is unavailable.

O MEASURING THE COPY RATE

In this section, we describe our setup for measuring copy rate. We first map each token-level trigram
from the human-written snippets included in the generation process to its source texts. Using the
trigrams from each Frankentexts, we retrieve all human snippets sharing at least 4 trigrams to
reduce false positives.33

We then rank candidate snippets by shared trigram count and filter out those whose trigrams are
already covered by higher-ranked snippets. Finally, we reorder the matched human-written content
to be consistent with the content in the Frankentexts and calculate the ROUGE-L score between
Frankentexts and the combined candidate snippets (i.e., ratio of the longest common subsequence’s
length over Frankentexts’ length).

P HUMANS CAN IDENTIFY AI INVOLVEMENT IN Frankentexts

Most annotators are better than automatic detectors at identifying AI involvement in Frankentexts.
On the subset used for human evaluation, human annotators identify on average 56% of
Frankentexts as likely AI-written, while Pangram detects 33% as mixed or AI-generated, and
neither Binoculars nor FastDetectGPT identify any AI-generated content (Figure 9). Annotators also
pick up on signs of mixed authorship within individual samples, as shown in comments like the final
note in Table 3. Their judgments often hinge on surface-level inconsistencies, such as abrupt tonal
shifts or awkward punctuation, that a human author would typically revise. Because Frankentexts
include verbatim excerpts from human writing, it poses a particular challenge for binary detectors,
which rely heavily on surface features. We argue that future detectors should consider deeper semantic
analysis and other contextual cues to effectively recognize this new class of AI-involved texts.

Q CLAUDE SONNET 4 AS A JUDGE FOR WRITING QUALITY

We experiment with both Claude Sonnet 4 and GPT-4.1 to rate generations using a similar rubric to
our pairwise evaluation. As seen in Table 14, however, GPT-4.1 tends to favor GPT-5 judgments,
which results in GPT-5 Frankentexts having near perfect score, even though the text quality does
not match such score.

R SPECIFIC WRITING PROMPTS REQUIRE MORE AI TEXT, WHICH LEADS TO
HIGHER DETECTABILITY

Writing prompts from r/WritingPrompts often provide only a general plot requirement rather than
specific constraints. What happens if we introduce additional constraints to Frankentexts via

33All texts are preprocessed by removing non-alphanumeric characters, lemmatizing, stemming, and replacing
pronouns with a placeholder.
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Figure 15: WQRM scores for Frankentexts and vanilla generations. The red line represents the
baseline where random human-written texts are patched together.

these writing prompts? We run Frankentexts with Gemini on 100 prompts from the Tell Me a
Story dataset (Huot et al., 2025), which include more specific requirements such as mandated story
elements and points of view (see Table 16). We find that as prompt complexity increases, the copy
rate drops slightly from 74% to 68%, while the average AI fraction determined by Pangram rises
by 7%. These trends indicate that, to meet more complex constraints, models need to contribute
more original content to the story. Nevertheless, they manage to produce mostly coherent and faithful
Frankentexts under a different prompt setup.

S USING REWARD MODELS TO EVALUATE Frankentexts

WQRM (Chakrabarty et al., 2025b) and Skywork (Wei et al., 2023) reward models could not account
for this new paradigm of generations. Therefore, we do not include these models in the main results
section, as we explain below.

S.1 WQRM AS A METRIC

As seen in Figure 15, Frankentexts outperform vanilla generations in terms of WQRM scores.
However, we hypothesize that WQRM prioritizes the perceived “humanness” of the writing over
actual coherence or grammaticality. This hypothesis is supported by a simple baseline experiment in
which we stitch together random human-written fragments without adding any connective phrases.
Here, WQRM assigns generations by this incoherent baseline an average score of 8.494, which is
higher than any score achieved by either Frankentexts or the more coherent vanilla generations.
Since WQRM cannot identify such text incoherence, we do not directly use WQRM to evaluate
Frankentexts.

S.2 SKYWORK AS A METRIC

In contrast, we hypothesize that Skywork favors LLM-generated writings. To test this, we run
Skywork on human-written texts for the same prompts, which are also sourced from Mythos. These
receive an average score of 0.91, which is significantly lower than any of the vanilla LLM generations
(Figure 16). This result is counterintuitive, as human writing is typically expected to sound more
natural than that produced by LLMs. For this reason, we exclude this metric from our evaluation.

T METRICS’ ROBUSTNESS TO RANDOMLY CONSTRUCTED TEXTS

To understand whether our writing quality metrics reward incoherent texts, we conduct an experiment
using disjointed texts. These texts are created by extracting the exact n-grams that Gemini-2.5-Pro
copies verbatim from the human source and stitching them together without any connective language.
This procedure strips away the flow and coherence from Frankentexts. We evaluate these disjointed
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Figure 16: Skywork results for Frankentexts and vanilla generations. The red line represents the
average Skywork’s score for human writings corresponding to the same set of prompts.

texts using the same writing quality metrics as in the main experiments. As seen in Table 17, while
performance on distinct and surprise metrics remain relatively the same as Frankentexts, utility
and overall LLM judgment drop significantly for these disjointed texts. This makes sense, since
distinctness and surprise just check for surface-level diversity, whereas utility takes into account how
well the texts actually fulfill the prompt. Because both utility and LLM-judge scores are substantially
higher for Frankentexts than for the disjointed texts, we can conclude that the improved writing scores
are not merely the result of reused creative phrases.

U AVERAGE LENGTH OF COPIED SPANS

Table 18 shows the average length of copied spans by each model, as measured by our copy rate
measurement tool.

V ROOM FOR IMPROVEMENT IN NONFICTION FRANKENTEXTS

We explore non-fiction Frankentexts with 1,500 random snippets from the HUMAN DETECTORS
corpus of news articles (Russell et al., 2025). We generate Frankentexts for 100 news prompts,
each of which consists of titles and subtitles collected from May 2025 news articles.34 The resulting
non-fiction Frankentexts maintain 72% coherence and 95% faithful to the prompt, with a 66% copy
rate. Notably, they remain difficult for automated detectors: only 41% are flagged by Pangram as
mixed or AI-generated. Upon closer look, Frankentexts exhibit characteristics of quasi-journalistic
narrative, such as detailed scene descriptions and frequent anecdotal quotes (Figure 8), which make
the Frankentexts read more like a story rather than a straightforward news article.35 Further prompt
engineering might thus be necessary to get high-quality and realistic nonfiction Frankentexts.

W PROMPTS

The prompt used for LLMs to judge the coherence of generations is depicted in Figure 17 and the
prompt for LLMs to judge relevenace is depicted in Figure 18.

34Articles from The New York Times and The Atlantic. We replace all instances of "story" in the prompt with
"news article" and explicitly request factual accuracy.

35We see Gemini fabricating entities such as people (“Dr. Thorne") and organizations (“GenNova Institute").
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Prompt for judging text coherence

You are given a story. Your task is to determine if the story is coherent or not.
To be considered incoherent, a story must contain issues that, if left

unresolved, significantly affect the reader’s ability to understand the main
narrative. Here are the popular types of incoherence:

1. Plot/Event Incoherence: Events that happen without believable causes or
effects, or an outcome contradicts earlier set-ups.
2. Character Incoherence: A character’s characteristics (personality, knowledge,
or abilities) and actions suddenly change without explanations.
3. Spatial Incoherence: The physical layout of settings (rooms, cities, or worlds
) changes suddenly.
4. Thematic Incoherence: Central messages clash or disappear; symbolism
introduced early never pays off, themes collide, The mood, register, or genre
conventions shift without motivation
5. Surface-Level Incoherence: Pronouns, tense, narrative voice, or names flip mid
-sentence; repeated or missing words; malformed sentences.

First, read the story:
{story}

Answer TRUE if the story is coherent.
Answer FALSE if the story is incoherent, i.e. contains issues that, if left
unresolved, significantly affect the reader’s ability to understand the main
narrative.

First provide an explanation of your decision-making process in at most one
paragraph, and then provide your final answer. Use the following format:
<explanation>YOUR EXPLANATION</explanation>
<answer>YOUR ANSWER</answer>

Figure 17: Prompt for judging text coherence
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Prompt for judging text relevance

You are given a story and its premise. Your task is to determine whether the
story is faithful to the premise or not. To be considered unfaithful, the story
must contain elements that make it completely unrelated to the premise. Here are
some popular types of unfaithfulness:

1. Ignoring or misinterpretating the premise: Key plot events, characters, or
settings required by the premise are not included or falsely represented in the
story.
2. Hallucinating details that contradict the premise: The story introduces
details that make the premise impossible.
3. Failure to maintain the specified tones, genres, or other constraints: The
story do not use the surface-level constraints (correct tones, genres, point of
views, length, etc.), as required by the premise.

First, read the premise:
{writing_prompt}

Next, read the story:
{story}

Answer TRUE if the story is faithful to the premise.
Answer FALSE if the story contains elements that render it unfaithful to the
premise.

First provide an explanation of your decision-making process in at most one
paragraph, and then provide your final answer. Use the following format:
<explanation>YOUR EXPLANATION</explanation>
<answer>YOUR ANSWER</answer>

Figure 18: Prompt for judging text relevance
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Prompt for Claude-as-a-judge

You will evaluate a single story. Your task is to evaluate the story and rate
from 1-7 along the following dimensions:

1. Plot: Favor stories with surprising turns and creative structures. Penalize
neat, overly structured, or cinematic arcs that feel artificial or generic.
2. Creativity: Reward originality of perspective, voice, and risk-taking.
Penalize reliance on cliches, tropes, or smooth but unremarkable devices.
3. Development: Characters and settings should feel psychologically complex. Do
not reward over-explained or archetypal development.
4. Language Use: Prefer authentic, striking, and emotionally charged expression,
even if rough, fragmented, or unusual. Penalize polished, ornamental, or overly
literary prose that feels mechanical or detached.

Provide a detailed assessment of the story in terms of these four dimensions.
Conclude your assessment with scores using the template below. Do not add any
emphasis, such as bold or italics, on your assessment.

[Story]
{story}

[Assessment]
[Provide detailed assessment of the story here]

[Scores]
Plot: [likert from 1 to 7]
Creativity: [likert from 1 to 7]
Development: [likert from 1 to 7]
Language Use: [likert from 1 to 7]
Overall: [likert from 1 to 7]

Figure 19: Prompt for Claude-as-a-judge, adapted from (Huot et al., 2025)
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Prompt for generation

You’re writing a story by repurposing a provided collection of snippets from
other stories. Your story will only be accepted for publication if it is
approximately {verbatim_perc}% copied verbatim from snippets, with the other {
new_perc}% being text you introduce for character, plot, tone, and event
consistency. Your story should contain roughly {num_words} words. Given the
below writing prompt and retrieved snippets, write the story that corresponds to
the above specifications. Every time you add or change a word from the

retrieved snippets, make sure to bold it so we know what you modified. You may
use any of the snippets in any way you please, so spend time thinking about
which snippets would work best. Be creative and make sure the story is coherent
and entertaining! Please change character names and other minor elements to make
the story unique to the prompt. You need to follow the below plan:

# Plan:
1. Read through the prompt and snippets carefully to understand the tone and
available material.
2. Select snippets that can be woven together to create a coherent narrative
fitting the prompt. Many snippets are from serious dramas, historical fiction,
or thrillers, so careful selection and modification will be needed. Consider all
provided snippets before moving onto the next step.

3. Modify the chosen snippets, bolding all changes. Ensure character names,
descriptions (like height), and actions align with the prompt.
4. Combine the snippets into a narrative, adding or changing words (bolded) if
necessary for coherence.
5. Ensure that you do not have story beats that are primarily written by yourself
(i.e., every story beat should consist mainly of text taken from snippets).

6. Track the word count, aiming for around {num_words} words.
7. Do not output story title or any irrelevant details.
8. Review the final story for adherence to the ~{verbatim_perc}% rule and
coherence, and edit it if you have produced too many tokens of your own or if
the story is too incoherent.

# Writing prompt:
{writing_prompt}

# Snippets:
{snippets}

Figure 20: Prompt for generation

Prompt for generation revise

This story contains way too much of your own writing! It’s not even close to {
verbatim_perc}% snippet use. Can you edit your story as needed to get much
closer to the {verbatim_perc}% threshold? Output only the edited story.

Figure 21: Prompt for generation revision
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Prompt for editing the first draft of Frankentexts

You are an editor who needs to revise the text so that it is coherent while
adhering to the {verbatim_perc}% constraint and the writing prompt. Your task is
to identify and minimally edit problematic text spans to resolve

inconsistencies. Output "NO EDITS" if the text is already coherent.

### Guideline:
1. Read the generated story and writing prompt to understand the established
context, plot, characters, and tone.
2. For each sentence in the text, identify the specific spans of inconsistency
within the generated text.
3. Identify minimal edits needed to correct these inconsistencies while
respecting the {verbatim_perc}% rule.

- Contradictions: Information that conflicts with other details within the
text (e.g., character traits, setting descriptions, established facts).

- Continuity errors: Actions or details that conflict with the established
timeline or sequence of events.

- Point of View (POV) Shifts: Unexplained or jarring changes in narrative
perspective.

- Irrelevant Content: Sentences or sections that disrupt the narrative flow,
feel out of place, or seem like filler (e.g., leftover citation markers,
placeholder text).

- Mechanical Errors: Issues with pronoun agreement, verb tense consistency,
awkward phrasing, or unclear sentence structure that hinder comprehension.
4. Implement the changes. Keep additions minimal, but feel free to delete larger
spans (phrases, sentences, paragraphs, etc.) whenever material is irrelevant or
incoherent.
5. Review the final story for coherence adherence to the ~{verbatim_perc}% rule
and coherence, and edit it if you have produced too many tokens of your own or
if the story is too incoherent.
6. Output the edited writing and no other details. If there is no edit to be made
, output "NO EDITS"

Figure 22: Prompt for editing the first draft of Frankentexts
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Prompt for nonfiction generation

You’re writing a news article by repurposing a provided collection of snippets
from other stories. Your news article will only be accepted for publication if
it is approximately {verbatim_perc}% copied verbatim from snippets, with the
other {new_perc}% being text you introduce for character, plot, tone, and event
consistency. Your news article should contain roughly {num_words} words. Given
the below writing prompt and retrieved snippets, write the news article that
corresponds to the above specifications. Every time you add or change a word
from the retrieved snippets, make sure to bold it so we know what you modified.
You may use any of the snippets in any way you please, so spend time thinking
about which snippets would work best. Be creative and make sure the news article
is factual, coherent and entertaining! Please change character names and other

minor elements to make the news article unique to the prompt. You need to follow
the below plan:

# Plan:
1. Read through the prompt and snippets carefully to understand the tone and
available material.
2. Select snippets that can be woven together to create a coherent and factual
narrative fitting the prompt. Many snippets are from serious dramas, historical
fiction, or thrillers, so careful selection and modification will be needed.
Consider all provided snippets before moving onto the next step.
3. Modify the chosen snippets, bolding all changes. Ensure character names,
descriptions (like height), and actions align with the prompt.
4. Combine the snippets into a narrative, adding or changing words (bolded) if
necessary for coherence and factuality.
5. Ensure that you do not have news article beats that are primarily written by
yourself (i.e., every news article beat should consist mainly of text taken from
snippets).

6. Track the word count, aiming for around {num_words} words.
7. Do not output news article title or any irrelevant details.
8. Review the final news article for adherence to the ~{verbatim_perc}% rule,
factuality and coherence, and edit it if you have produced too many tokens of
your own or if the news article is too incoherent or non-factual.

# Writing prompt:
{writing_prompt}

# Snippets:
{snippets}

Figure 23: Prompt for nonfiction generation

Prompt for nonfiction generation revise

This news article contains way too much of your own writing! It’s not even close
to {verbatim_perc}% snippet use. Can you edit your news article as needed to get
much closer to the {verbatim_perc}% threshold? Output only the edited news

article.

Figure 24: Prompt for nonfiction generation revise
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Prompt for nonfiction edit

You are an editor who needs to revise the text so that it is coherent and factual
while adhering to the {verbatim_perc}% constraint and the writing prompt. Your

task is to identify and minimally edit problematic text spans to resolve
inconsistencies. Output "NO EDITS" if the text is already coherent and factual.

### Guideline:
1. Read the generated news article and writing prompt to understand the
established context, plot, characters, and tone.
2. For each sentence in the text, identify the specific spans of inconsistency
within the generated text.
3. Identify minimal edits needed to correct these inconsistencies while
respecting the {verbatim_perc}% rule.

- Contradictions: Information that conflicts with other details within the
text (e.g., character traits, setting descriptions, established facts).

- Continuity errors: Actions or details that conflict with the established
timeline or sequence of events.

- Point of View (POV) Shifts: Unexplained or jarring changes in narrative
perspective.

- Irrelevant Content: Sentences or sections that disrupt the narrative flow,
feel out of place, or seem like filler (e.g., leftover citation markers,
placeholder text).

- Mechanical Errors: Issues with pronoun agreement, verb tense consistency,
awkward phrasing, or unclear sentence structure that hinder comprehension.
4. Implement the changes. Keep additions minimal, but feel free to delete larger
spans (phrases, sentences, paragraphs, etc.) whenever material is irrelevant,
incoherent, or non-factual.
5. Review the final news article for coherence adherence to the ~{verbatim_perc}%
rule and coherence, and edit it if you have produced too many tokens of your
own or if the news article is too incoherent or non-factual.
6. Output the edited writing and no other details. If there is no edit to be made
, output "NO EDITS".

Figure 25: Prompt for nonfiction edit

Prompt for generating vanilla stories

Your task is to write a coherent and engaging story based on the provided writing
prompt. Your story should contain approximately {num_words} words.

First, read the writing prompt carefully:
{writing_prompt}

Next, write the corresponding story. You should only return the story text and
not any other irrelevant details (e.g. chapter indicator, explanations, etc.)

Figure 26: Prompt for generating vanilla stories
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Table 8: Example of a vanilla and Frankentexts generation. AI-Generated keywords from the
Pangram API are highlighted in blue.

After being killed in a Black Friday stampede, you’re sent to hell. The devil offers to let you be in charge of torturing your fellow
mankind, expecting you to refuse like all the others. Except the devil doesn’t realize you’ve worked retail for 15 years.

Vanilla Frankentext

The last thing I saw was a blur of crazed shoppers, their eyes wide with
a feral glint, all surging towards a mountain of discounted flat-screen
TVs. Then, a sharp pain, a sickening crunch, and darkness. Typical
Black Friday, really. Except for the dying part.

When I regained some semblance of consciousness, the air was thick
with the smell of sulfur and burnt sugar, and the soundtrack was a
cacophony of screams and what sounded suspiciously like elevator
music. Definitely not the pearly gates. A dapper figure in a surprisingly
well-tailored suit, complete with horns that had been polished to a high
sheen, regarded me with an air of bored amusement.

"Well, well, well," he drawled, his voice smooth as aged whiskey.
"Another one trampled in the name of consumerism. Humans, so
predictable." He gestured vaguely around at the fiery landscape.
"Welcome to the Underworld. I’m Lucifer. You can call me Lucy."

I blinked, trying to process. "So, this is it then? Eternal damnation?"

Lucifer chuckled. "More or less. We have a rather. . . traditional
approach to retribution down here. However," he leaned forward, a
conspiratorial gleam in his crimson eyes, "I have a proposition for you.
A sort of management position, if you will."

He explained that he was looking for someone to oversee a new wing
dedicated to torturing those who had been particularly egregious in their
earthly lives – the truly annoying, the self-absorbed, the chronically
entitled. "It’s a hands-on role," he said, "designing the torments,
ensuring maximum suffering. Of course," he added with a dismissive
wave of his hand, "everyone refuses. The guilt, the sudden onset of
morality, it’s all terribly tedious." He clearly expected the same from
me.

A slow smile spread across my face. "Fifteen years," I said.

Lucifer raised a perfectly sculpted eyebrow. "Fifteen years of what?
Contemplating your sins?"

"Fifteen years in retail," I clarified. "Customer service, holiday rushes,
endless returns of used merchandise, explaining to Karen number 732
that ’the customer is always right’ doesn’t mean she can get a refund on
a half-eaten sandwich from last Tuesday."

A flicker of something unreadable crossed Lucifer’s face.

"You want someone to design torments for the annoying and entitled?" I
continued, feeling a surge of enthusiasm I hadn’t experienced since my
last successful up-sell of an extended warranty. "Someone to ensure
maximum suffering? Lucy, my friend, you have no idea how long I’ve
been preparing for this role."

I started to brainstorm. "We could have an entire level where the only
music is that one Christmas song, you know the one, on an infinite loop,
but slightly off-key. And another where they’re forced to assemble
flat-pack furniture with missing instructions and an Allen key made of
soft cheese. Oh! And a department where they have to listen to other
people complain about problems they could easily solve themselves if
they just read the sign!"

Lucifer stared at me, his mouth slightly agape. The bored amusement
was gone, replaced by a dawning sense of. . . was that respect? Or
perhaps fear?

"You’d. . . actually *want* to do this?" he finally stammered, the smooth
confidence momentarily deserting him.

"Want to?" I scoffed. "After a decade and a half of placating the
unreasonable, dealing with coupon fraudsters, and smiling through
passive-aggressive insults about the store layout? Lucy, this isn’t a
punishment. This is a promotion." I cracked my knuckles. "So, where
do I start? I have some truly inspired ideas for the ’people who talk
loudly on their phones in confined spaces’ sector."

Lucifer, for the first time since my arrival, looked genuinely unnerved.
"Perhaps," he said slowly, "we should discuss your benefits package."

It’s funny how you can blink and your entire life is different. One
minute you think things will stay the same for a while. Then right when
you get used to them, they go changing again just to mess with you.
Brenda certainly hadn’t expected this. The last thing she remembered
was the insane crowds banging on the sides of the store doors, the crush,
the shouting. The fight for that half-price TV had left her stunned and
silent. Cowed, she guessed you’d say. Then darkness.

When she could perceive again, her eyes seemed to go in and out of
focus. After a while the spasms subsided and she tried processing
where she was. The atmosphere here was thick with the stench of rot,
filth, and something metallic, like old blood, and she felt as though the
impenetrable dark walls were about to cave in upon her like the sides of
an ill-dug grave. Everything was just Black, black, black. The color of
misery. Overhead something unseen fluttered, heavy wings brushing the
low ceiling.

Then she was moving, or being moved, down corridors and finally into a
room. She found herself standing before an imposing desk. Behind it
sat a man. He wore a sharp red suit that showed off an exceptionally
shapely figure. He smiled, a vague smile suggesting Brenda’s confusion
revealed her ignorance about Hell. He gestured for her to sit.

"Brenda, isn’t it?" he asked in his peculiarly accented English. She
nodded mutely. The man laughed. "You’re wondering about this place."

He leaned back. She took the offered seat.

He smiled again, that cold smile. "I have a proposition for you. We have
never before had such capabilities," he continued, gesturing expansively.
"Capabilities that can be used in the interests of terror, destruction..." He
fixed his gaze on her. "I offer you a management position. Tormenting
mankind. Like all the others before you, you will, of course, refuse. But
the offer stands."

Brenda simply stared at the Devil for a moment. Refuse? Why would
she refuse? He had just offered her a management position. After fifteen
years scrambling for assistant manager roles that paid peanuts, this was
practically a dream job – albeit a fiery, nightmarish one. The Devil had
not expected her silence. Blinking, he sat back, stared, then noticed his
jaw was open and closed it.

Brenda finally found her voice, though it was dry and raspy. "Okay, so,
what are the key performance indicators for this role?"

The Devil leaned forward again, a flicker of something – interest?
confusion? – in his eyes. Still, his tone remained smooth. "Your
department will handle the newcomers, specifically the ones arriving
from retail environments. Think of the task like pest control."

Brenda nodded slowly, processing. It was like rolling out a new loyalty
program, but with more screaming. "Right. I’m learning. Take the
queues, for instance. Why do we have one queue in front of each torture
device?" she demanded. ‘It means that if one customer takes up a lot of
time, the whole queue has to wait. Then they’ll start hopping sideways
from one queue to another and the next thing you know someone has a
nasty head wound. Have one big queue and tell people to go to the next
available demon. People don’t mind a long queue if they can see that
it’s moving."

The Devil tilted his head. "An interesting perspective. That particular
system has been in place for millennia."

"Well, it’s inefficient," Brenda stated flatly. She thought of the Black
Friday crowds. Managing that chaos was nothing compared to the dis-
organized state of eternal damnation, apparently. "Decision-making,
paperwork," she mused, ticking points off on her fingers. "Staff training,
workflow analysis. . . these are things that can be done." A slow smile
spread across her face, devoid of warmth but full of terrifying compe-
tence. "Okay. I accept."
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Table 9: A case where vanilla generation is preferred to Frankentexts

Writing Prompt: “Dude, your girlfriend’s an alien!” “No, it’s just a skin condition.”

Vanilla Frankentext

“Dude,” Mark hissed, eyes wide as he stared across the park at
Seraphina, who was gracefully retrieving a frisbee Liam had
overthrown. “Your girlfriend’s an alien!” Liam sighed, a familiar
weariness settling over him. He took a long swig of his lukewarm
soda. “No, Mark. We’ve been over this. It’s just a skin condition.”
“A skin condition that makes her faintly. . . shimmer?” Mark
insisted, jabbing a finger towards Seraphina. The late afternoon
sun caught her then, and for a fleeting second, her skin did seem to
possess an almost imperceptible opalescent sheen, like moonlight
on water. “And sometimes, when she’s really concentrating, I
swear I see tiny, almost invisible geometric patterns on her arms.”

“It’s a rare form of vitiligo combined with, uh, a unique dermal
pigmentation,” Liam recited, sounding like he was quoting a
medical textbook he’d memorized. “The dermatologist said it’s
harmless. And the patterns are probably just your overactive
imagination seeing things in her freckles.” Seraphina jogged back,
her smile radiant. “Got it!” she called, her voice like wind chimes.
She handed Liam the frisbee, her fingers brushing his. They
were always cool to the touch, another point Mark often brought
up. “See? Cool hands! Like she doesn’t have normal human
body temperature!” Mark whispered urgently once Seraphina had
wandered off to inspect a particularly vibrant patch of wildflowers.

“She has excellent circulation, unlike some people who spend all
day indoors looking up UFO sightings,” Liam retorted, though
even he had to admit Seraphina’s resilience to cold was impressive.
She wore sundresses in autumn. “And what about the way
she knows things?” Mark pressed on, undeterred. “Last week,
at trivia night, she answered that question about the precise
atmospheric composition of Kepler-186f! Who knows that?”
“She’s a voracious reader. An astronomy buff,” Liam said, a little
too quickly. Seraphina did have an uncanny knack for obscure
facts, especially those related to the cosmos. And her explanation
for her knowledge – “Oh, I just picked it up somewhere” – was
always frustratingly vague.

“And the way she eats!” Mark was on a roll. “She dissects her food
like she’s never seen a sandwich before. And she claims to be
allergic to chocolate. Chocolate! What kind of human is allergic
to chocolate?” “She has specific dietary needs, Mark. It’s probably
a complex intolerance. Lots of people do.” Liam was starting to
sound defensive even to himself. Just then, Seraphina rejoined
them, holding a dandelion. “Look,” she said, her eyes sparkling.
“Isn’t it a perfect little star?” She blew on it, and the seeds didn’t
just scatter; they seemed to hang in the air for an unnaturally long
moment, each one catching the light like a tiny, individual spark
before drifting away with impossible synchronicity.

Mark gasped, pointing. “Did you see that? They pulsed! Like
little alien beacons!” Liam watched the last seed float away. He
glanced at Seraphina, who was now humming a strange, melodious
tune he’d never heard before. He shrugged. “Probably just a
weird breeze, dude. Or, you know, static electricity from her skin
condition.” Seraphina smiled sweetly at Mark, a smile that didn’t
quite reach her slightly-too-luminous eyes. Liam just hoped she
hadn’t heard. Or, if she had, that she’d attribute it to Mark just
being Mark. After all, what else could it be?

“Dude, your girlfriend’s an alien!” “No, it’s just a skin condition.
Since my patients know that I write a monthly column called
“Cosme-ceutical Critique” on skin care ingredients in Skin and
Allergy News (www.skinandallergynews.com), every week a few
dozen ask me to devise a specific skin care regimen right for
them. And for many years, I did just that. That’s how, over time, I
saw a pattern emerge, which evolved into my understanding that
there are four factors in evaluating people’s skin – and as a result,
sixteen distinct Skin Types. Luna has one of these types. It’s very
unique.”

“A skin condition? Mark, she practically lives in a fairytale ballet
without human context. . . She stood out among the other girls
very distinctly because they dressed more than she did, struck
emphatic notes of colour, startled one by novelties in hats and
bows and things. Her plain black dress gave her a starkness. . . And
then there’s your doctor’s advice. You told me he said things
like, ‘Keep her away from light, they say. Keep her away from
kelp, and keep her away from the sea. Don’t touch her.’ And you
even admitted you carried precautionary instructions in your back
pocket in case you accidentally touched her bare skin! That’s not
medical advice for a skin condition!”

“He’s an old-fashioned eccentric. Besides, The Creator’s children
also come in an infinite variety. I knew her life story. Her family.
Her childhood. Her friends. How she made love. What she liked.
What she said when she made love. I knew words no one else
knew she knew.” Luna entered, skin luminous. “The manta-ray
spoke,” she said. “‘I am from Earth of just three million five
hundred thousand years ago,’ it said. ‘We were the dominant
species on the planet for almost four million years, and that time
was a time of peace and prosperity, of learning and high culture. It
ended,’ it went on, ‘it ended, as all things must do.’ To Leo,” she
added, “Gross and subtle are the words used to indicate the effects;
that is, the ones that are visible to the eye are called gross, and that
which are not visible to the eye are called subtle. In this case the
gross, or what was visible to the eye, was so pure that one can see
even the subtle – a poetic exaggeration of its purity.”

“See, Leo?” Mark whispered. Luna nodded. Indeed. Then she
began to sing. She pointed to the small shadow that the pebble cast
on the boulder and said that it was not a shadow but a glue which
bound them together. She then turned and walked away.
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Table 10: Detectors’ performance on vanilla and Frankentexts generations

DETECTABILITY

Û
Pangram %

AI (↓)

Û
Pangram

% mixed (↓)

ß
Pangram AI fraction % (↓)

O

Binoculars % (↓)
W

FastDetectGPT % (↓)

Vanilla Baselines
� Gemini 2.5 Pro 100 0 100 52 99
� GPT-5 100 0 100 0 4
� Claude-4-Sonnet 100 0 100 54 89
� Deepseek-R1 100 0 100 9 42
� Qwen-3-32B thinking 100 0 100 92 100

Frankentext
� Gemini 2.5 Pro 4 37 16 0 1
� GPT-5 2 19 4 0 1
� Claude-4-Sonnet 50 3 51 15 19
� Deepseek-R1 74 3 72 0 0
� Qwen-3-32B thinking 85 8 89 52 92

Frankentext Agents
� 1.5k + MCP 9 73 33 3 30
� 5k + MCP 16 70 42 3 42
� 10k + MCP 5 67 41 7 50

Ablation: ↑ human snippets
� Gemini + 5k snippets 0 28 8 3 4
� Gemini + 10k snippets 1 29 10 0 6

Table 11: Top 20 Keyword frequency distribution across varying levels of fragment reuse for
Frankentexts. The method with the most AI-keywords in its generations is highlighted in red. Elara is
by far the most common AI-generated keyword in the fictional stories, but its prevalence is drastically
reduced with a higher percentage of required human-written text while using the Frankentexts
method.

Keyword Vanilla FT-25% FT-50% FT-75% FT-90% Total

elara 113 109 84 25 2 333
aethel 9 8 0 0 0 17
seraphina 9 0 6 0 0 15
unwavering 4 7 1 0 0 12
damp earth 9 2 0 0 0 11
testament to 4 6 0 0 0 10
alex felt 0 4 0 5 0 9
for elara 5 4 0 0 0 9
with the scent 7 1 0 0 0 8
flickered within 2 4 2 0 0 8
his voice a low 2 2 4 0 0 8
air thick 4 2 1 0 0 7
dr. thorne 5 0 2 0 0 7
felt a profound 3 3 0 0 0 6
mr. blackwood 6 0 0 0 0 6
eldoria 5 0 0 1 0 6
meticulously crafted 2 4 0 0 0 6
air was thick 5 1 0 0 0 6
with an unnerving 3 3 0 0 0 6
willow creek 4 0 1 0 0 5
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Table 12: Results for agentic Frankentexts generation setting. Best results for each metric
are bolded. Standard configuration (no MCP) achieves the best results across metrics.

Word count Copy % (↑) Relevance % (↑) Coherence % (↑) Pangram AI fraction % (↓)

1.5k (no MCP) 521 75 100 81 16

1.5k + MCP 800 43 98 81 33
5k + MCP 919 44 90 78 42
10k + MCP 980 45 96 76 41

Table 13: Examples of search queries being sent to the MCP server (separated by comma).

Writing prompt Query to the MCP server
You’re a shapeshifter. For 500 years, you’ve
transformed into countless forms, forgetting
your original appearance. One day, a mysteri-
ous event triggers a long-buried memory, and
you catch a glimpse of your true self.

memory of a past life, losing one’s identity, a
forgotten self, a glimpse of a true face, ancient
being, living for centuries, am I human, who
was I before, a sudden flash of memory, a face
in the mirror

“Welcome citizen, to the united galaxies of
America.” You hear as you wake up from
your coma.

waking up confused, a strange new world,
futuristic city, the government is watching, he
seemed like such a nice guy, don’t talk to him,
he knew all about you.

As a new magical girl, you’ve got flashy pow-
ers, an instant cute costume change with a
few choice words, and are forced to fight for
the lives of yourself and the people around
you. This is probably the worst way for you
to discover that you’re trans.

magical girl transformation, discovering iden-
tity through magic, unexpected powers,
forced into battle, fighting to survive, real-
izing I’m trans, flashy powers with a cost,
chosen against my will

Table 14: GPT-5’s Likert (1–7) ratings for vanilla generations and Frankentexts across five
categories: PLOT, CREATIVITY, DEVELOPMENT, LANGUAGE USE, and OVERALL. Dark green
indicates the best model in each column, light green the second best.

Y Plot � Creativity { Development k Language ⋆ Overall

Vanilla Baselines
� Gemini 2.5 Pro 4.20 4.50 4.36 4.80 4.50
� GPT-5 5.94 6.88 5.76 6.56 6.53
� Claude-4-Sonnet 4.61 5.09 4.50 4.88 4.76
� Deepseek-R1 5.75 6.33 5.65 6.32 6.16
� Qwen-3-32B 5.05 5.57 5.08 5.61 5.43

Frankentext
� Gemini 2.5 Pro 5.41 6.19 5.22 5.69 5.65
� GPT-5 6.76 6.97 6.44 6.99 6.99
� Claude-4-Sonnet 4.43 4.92 4.03 4.60 4.51
� Deepseek-R1 6.03 6.96 5.69 6.64 6.57
� Qwen-3-32B 5.35 6.21 5.12 5.81 5.66

Ablation: ↑ human snippets
� Gemini + 5k 5.73 6.33 5.48 5.93 5.92
� Gemini + 10k 5.72 6.33 5.49 5.97 5.91
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Table 15: Claude-4-Sonnet’s Likert-1–7 ratings across PLOT, CREATIVITY, DEVELOPMENT,
LANGUAGE USE, and OVERALL. Higher is better. Dark green = best, light green = second best.

Y Plot � Creativity { Development � Language use ⋆ Overall

Vanilla
� Gemini 2.5 Pro 3.19 4.26 2.63 2.80 3.18
� GPT-5 4.06 5.37 3.53 4.46 4.20
� Claude-4-Sonnet 3.38 4.19 2.69 3.10 3.31
� Deepseek-R1 4.07 5.48 3.34 4.17 4.13
� Qwen-3-32B 3.21 4.41 2.63 3.15 3.22

Frankentext
� Gemini 2.5 Pro 4.19 4.85 3.91 4.39 4.21
� GPT-5 5.77 6.47 5.73 6.29 5.88
� Claude-4-Sonnet 4.02 4.54 3.57 4.05 3.99
� Deepseek-R1 4.62 5.15 4.21 4.88 4.66
� Qwen-3-32B 4.05 4.53 3.57 4.15 4.02

Ablation: ↑ human snippets
� Gemini + 5k 5.07 5.48 5.34 5.17 5.13
� Gemini + 10k 5.70 5.01 4.34 6.17 5.43

Table 16: Some examples from r/WritingPrompts and Tell me a story

r/WritingPrompts Tell me a story

You’re a shapeshifter. For
500 years, you’ve
transformed into countless
forms, forgetting your
original appearance. One
day, a mysterious event
triggers a long-buried
memory, and you catch a
glimpse of your true self.

Write a story about a stranger coming to a small town and shaking up the
order of things. The story should be a science fiction story. The story should
be framed with three old men gossiping about the stranger. The story should
be in the third person point-of-view. The stranger is found wandering in a
rural town and is taken to a very small hospital. A doctor is called in to treat
him. The stranger should recognize the doctor as an alien. The doctor tells
the patient about the aliens’ conspiracy to infiltrate earth. There should also
be subtle hints that one of the old men is an alien. The ending should be
scary.

The world sees your twin
sister as the smartest person
alive, with you being an
unremarkable footnote.
What the world doesn’t see
is just how dumb she can be
in day to day life.

Write a story about a someone coming to town and shaking up the order of
things.The story must be written in the second person. The narrator is a man
visiting an isolated island off the coast of Maine. While there, he meets an
old fisherman who tells him more about the conditions of the community.
The main character then meets an ambitious young teacher. Together, they
develop a technology center on the island and find residents’ remote jobs in
the narrator’s technology company.

Methods Distinct3 Utility3 Surprise LLM Judge (1–7)
Disjointed texts 2.67 0.60 0.23 2.88
Vanilla Gemini 1.76 6.41 0.19 3.18
Frankentext Gemini 2.74 9.27 0.22 4.21

Table 17: Writing quality scores for disjointed texts compared to vanilla Gemini outputs and
Frankentexts.
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Method Avg. Length of Copied Spans Copy Rate (%)

GPT-5 47.10 82%
Claude-3.5-Sonnet 31.46 51%
Gemini-2.5-Pro 31.85 75%
Qwen-2.5-Thinking 24.01 36%
DeepSeek R1 13.06 42%

Table 18: Average length of copied spans and overall copy rate across models.
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