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Abstract

Online reinforcement learning (RL), a setting in which an agent learns directly
from interactions with the environment, has shown remarkable improvements with
the advent of tools enabling faster and more efficient parallel training. However,
learning a policy in an offline setting, where the agent is trained from trajecto-
ries collected earlier on an environment, has yet to make similar strides. World
modelling, where a representation of the underlying environment is trained from
offline data, enables an agent to sample trajectories from a learned model without
ever interacting with the true environment. Policies learned in world models are
often brittle as agents frequently learn to exploit inaccuracies in the world model
rather than to behave according to the true underlying dynamics. Methods under
the umbrella of Unsupervised Environment Design (UED) address robustness by
designing a ‘difficult but solvable’ autocurriculum for the agent. Unfortunately,
UED has been confined to simple environments definable by a set of selected pa-
rameters. This paper presents a novel approach that integrates the robustness of
UED with the descriptive power of world models, achieving strong test-time per-
formance in a range of environments while training using only offline data. Our
approach provides benefits in both sparse and rich data regimes. As such, it offers
huge potential for decision making in real-world settings without the need for any
expensive real-world sampling.

1 Introduction

Recent advancements in machine learning have demonstrated the importance of exploiting large
amounts of data. Generative models like large language models (e.g., (OpenAI et al., 2024; Touvron
et al., 2023)), text-to-image models (e.g., (Imagen-Team-Google et al., 2024; Betker et al., 2023))
or text-to-video models (e.g., (Brooks et al., 2024)) have improved drastically in the past few years
with the advent of larger models and, importantly, more data (Sutton, 2019). Reinforcement learning
(Sutton and Barto, 2018, RL) is not an outlier to this phenomenon; the introduction of search, a
compute- and data-intensive procedure, was paramount to the success of AlphaGo (Silver et al.,
2016a). However, the same scale of success has not yet propagated to the majority of RL research.

One way to leverage data in RL—which generally consist of sequences of observations, actions and
rewards tuples—is to train world models (Ha and Schmidhuber, 2018). World models are networks
trained to be learned simulators of the real environment, attempting to replicate the transitions be-
tween sequential states. Importantly, world models can serve as generative models in RL settings.
Rather than training a policy by continuously sampling from the real environment, which is expen-
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sive and potentially dangerous in real world settings, the policy can be learned by sampling from a
world model trained on a pre-collected offline dataset.

While increasing the dataset size can improve the fidelity of learned world models, they are rarely
perfect recreations of the underlying environment. Ha and Schmidhuber (2018) demonstrate how
RL agents frequently learn to exploit discontinuities and edge cases in dynamics to receive large
spikes in simulated reward. This drastically limits the transfer capabilities and robustness of an
agent from the world model to the true environment.

On a separate note, recent methods under the class of regret-based Unsupervised Environment De-
sign (UED) have emerged with the objective of improving an agent’s robustness to challenging, or
worst-case, dynamics (Dennis et al., 2020; Jiang et al., 2021a,b; Parker-Holder et al., 2022). UED
is concerned with designing, or selecting, the next levels (i.e., environment configurations) an agent
should learn on. In theory, UED produces agents that minimize their maximum regret (how far the
agent is from an optimal policy on that level) over a space of levels (Dennis et al., 2020).

In our work, we combine the robustness characteristics of UED with the sample efficiency and ef-
fectiveness of world modelling. In particular, by training a number of world models on an offline RL
dataset, each world model exhibits slightly different behaviours and can be adversarially sampled
as a level within the UED framework. Using the robustness guarantees from UED (Dennis et al.,
2020), and given that the true dynamics are within the support of the world models, our method
minimizes the worst-case regret, effectively optimizing transfer performance. In addition to theoret-
ical guarantees on the agent’s transfer performance, we show that agents learned using our method
empirically outperform those trained on world models or domain randomization alone.

2 Background

2.1 Reinforcement Learning

Markov Decision Process We consider a finite horizon Markov Decision Process (MDP). The
MDP is defined by the tuple ⟨S0,S,A, T,R, I,O⟩. Here S is the state space, A is the action space
and T : S × A → ∆(S) is the transition dynamics, defining a distribution over next states given
an initial state and action.2 S0 denotes the initial state distribution. The scalar reward function is
R : S ×A → R and the reward at time t for action at taken on state st is denoted as rt = R(st, at).
I : S → ∆(O) is the observation function that maps states to observations; in a fully observable
environment, the state and observation are equivalent. At time t, the agent has the observation
ot and takes action at. Thus, the actions-observation history or agent trajectory at time t is τt =
⟨o0, a0, ..., ot−1, at−1, ot⟩.
A policy π maps an observation in O to an action distribution in A. For a recurrent π, as is used in
this work, the action is conditioned on the entire past trajectory such that at ∼ π(τt). The policy is
trained to maximize discounted episodic return Jπ

M for a given MDP M with fixed episode length
T :

Jπ
M := Ea0:T∼π,s0∼S0,s1:T∼T

[
T∑

t=0

rt

]
. (1)

Offline Reinforcement Learning This set of RL methods aims to maximize Jπ using a dataset D
consisting of a set of transition tuples {(sn, an, rn, sn+1)}Nn=1 with s0 ∼ S0 as described above.
D is collected by deploying a behavior policy πb on the real environment. The behavior policy can
have varying levels of expertise and exploration and D is therefore not guaranteed to have complete
coverage over all of the environment states. The offline RL algorithm should always produce policies
that achieve meaningful results in the true environment.

2.2 World Models

Definition As defined by Ha and Schmidhuber (2018), world models are compact representations
of the dynamics of an environment which are independent of the agent’s interactions with it; from
the agent’s perspective, a trained world model can be interacted with in the same way as the true

2∆(X ) is the set of all probability distributions over the set X .
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environment. In this work, we assume a one-step predictive world model. Thus, we make the as-
sumption that the environment dynamics are Markovian. World models are generally represented
using a neural network, denoted here as Fθ with learnable parameters θ. Therefore, one-step tran-
sition dynamics of the environment can be modelled as ôt+1, r̂t+1 ← Fθ (ôt, at), where the world
model predicts both the observation transition and the reward of the agent.

Errors and Hacking An agent trained entirely in a world model can also learn to take advantage
of out-of-distribution or discontinuous areas of the world model’s state space (Levine et al., 2020;
Ha and Schmidhuber, 2018). These discontinuities do not exist in the true underlying environment,
and thus the agent learns a policy which does not perform well in practice. Learned world models,
much like other model-based RL methods, are also subject to compounding error where the differ-
ence between the world model outputs and the environment outputs diverge further as the episode
proceeds Saleh et al. (2022). As a result, agents trained in fully offline long-horizon rollouts often
lack robustness in transfer to the real environment. Our method empirically demonstrates strong
performance when training on full-length episodes entirely inside world models.

2.3 Unsupervised Environment Design

Unsupervised environment design (UED) is a class of autocurriculum methods for RL, where an ad-
versary proposes tasks (commonly referred to as levels) for an agent to train on. In one commonly-
used paradigm (Dennis et al., 2020), environments are modelled as an Underspecified Partially Ob-
servable Markov Decision Process (UPOMDP) ⟨S0,S,A, T,R, I,O,Θ⟩.
In a UPOMDP, Θ represents the set of free parameters of an environment which can be adjusted to
change an environment’s characteristics; θ denotes a specific instance of parameters, called a level,
e.g., Θ could refer to block placement in a grid (Chevalier-Boisvert et al., 2023) with θ being their
precise locations. Each θ instantiates a concrete POMDP.

While there are multiple ways to choose these tasks (Tobin et al., 2017; Matiisen et al., 2020; Flo-
rensa et al., 2018; Portelas et al., 2019), the recent approach of Minimax Regret (MMR) UED has
emerged as a promising way to train robust agents (Dennis et al., 2020; Jiang et al., 2021a,b; Parker-
Holder et al., 2022). Here, the adversary chooses levels that maximise the agent’s regret, defined as:
Uθ(π

∗
θ)− Uθ(π), where U denotes the discounted sum of returns of a particular policy on the level

θ, and π∗
θ is the optimal policy on θ.

Dennis et al. (2020) posed the UED setting as a two-player, zero-sum game between the adversary
and the policy. Furthermore, they showed that if the adversary aims to maximize regret, and it is in
Nash equilibrium with the policy, the policy satisfies the following equation:

π ∈ argmin
π∈Π
{argmax

θ∈Θ
{Regretθ(π)}}. (2)

Therefore, the policy’s minimizes its worst-case regret. This confers a degree of robustness to the
policy, as its regret in any level θ ∈ Θ must be below this bound.

2.4 Prioritized Level Replay

Prioritized Level Replay (Jiang et al., 2021a) is an empirically successful curriculum method that
relies on curating high-scoring levels. In practice, PLR maintains a buffer of previous high-scoring
levels, and either samples from this buffer, or samples new levels. The agent is then rolled out on
these new levels, and they are scored depending on how the agent performed. High-scoring levels
are then also added to the buffer, and the agent trains on the collected experience. It is not necessary
to sample new levels, however; in some cases, the level set may be predefined and fixed (Tzannetos
et al., 2024).

Scoring functions The original PLR scores each level θi using a time-averaged L1 value loss of
each agent’s last trajectory on the level (Jiang et al., 2021a). In order to achieve minimax robustness,
a scoring function should account for regret as described in Section 2.3. Jiang et al. (2021b) propose
different scoring functions that more closely approximate the regret. Ultimately, the choice of a
scoring function is a design choice depending on the nature of the environment. We further elaborate
on the scoring function choices in section 3.
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3 Prioritized World-Model Replay: Robustness Through Adversity
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on 

Figure 1: An overview of Prioritized world-model replay. Dataset D is collected by training a behavior policy
in the real world (left). The data is used to train multiple world models. A probability distribution Preplay

(middle) over the different world models is updated as different world models are sampled during the fully
offline adversarial training loop of policy π (right).

For our method illustrated in Figure 1, we start by training a collection of world models consistent
with the provided data. We then treat these models as levels and apply UED to train a robust, trans-
ferable policy. We make the empirically justified assumption that our neural network architecture
is expressive enough to capture the true environment dynamics, enabling minimax regret robustness
with respect to these dynamics.

3.1 Training Multiple World Models

Given some finite dataset of transitions from the environment, there are multiple possible world
models θ that fit this data reasonably well (say, e.g., with a loss L2 < ϵ) and, by our assumption,
the true dynamics is also within this set; we denote this as θ∗. We leverage this by training multiple
distinct world models, using different random initializations of the neural network, and training on
different permutations of the data. Due to the variability of stochastic gradient descent used to update
the weights of the world model, each of these will have slightly different dynamics (Amari, 1993).
However, an agent trained in any one of these world models is not guaranteed to transfer well to the
real environment, and it is this problem we tackle through UED where the world models effectively
serve as our level buffer.

3.2 World Models as levels for adversarial training

If we treat each world model θ as a level, we can apply standard minimax regret algorithms to
our setting. More formally, we consider the two-player game between an adversary G and stu-
dent policy π, such that the adversary generates a level (i.e., a world model) θ ∈ Θ that mini-
mizes the agent’s regret, and the agent trains as normal on the provided levels. Note, we define
Θ=̇{θ : L2(θ,D) < ϵ} to be the set of all world models that have loss over the dataset D of less
than some threshold ϵ. At Nash equilibrium of this game, Dennis et al. (2020) showed that the policy
satisfies Equation (2). In other words, the policy’s maximum regret on any θ ∈ Θ is bounded by
W =̇minπ∈Π{maxθ∈Θ{Regretθ(π)}}. Since we have assumed that θ∗ ∈ Θ, this bound further ap-
plies to the true environment dynamics. Moreover, since the adversary is constrained to only choose
levels within Θ, i.e., those that have loss less than a certain value, it cannot be overly adversarial and
provide totally unrealistic dynamics to train the agent on.

In order to make this procedure practical, we use the high-performing PLR algorithm, treating dif-
ferent world models θ as levels. Despite PLR not guaranteeing convergence to a Nash equilibrium,
it generally results in improved zero-shot generalisation to out-of-distribution tasks. Jiang et al.
(2021b) show that the original L1 value loss on Jiang et al. (2021a) can bias towards high variance
policies and propose alternative scoring functions that instead approximate regret. Since regret for
a given world model is not always known, we use the standard regret approximations of Positive
Value Loss for level θi: Si =

1
T

∑T
t=0 max

(∑T
k=t(γλ)

k−tδk, 0)
)

.
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4 Experimental Setup

This section outlines our experimental setup, covering offline data collection, world model training,
RL process details, and baseline descriptions.

4.1 Dataset Curation and World Model Training

One factor guiding our dataset curation strategy is the notion of state coverage due to the reasons
states in 2.2. Any one particular behaviour policy πb may only explore a small subset of the full state
space. Therefore, we use multiple behaviour policies to collect the data (illustration on A.2). In par-
ticular, we train an agent in the real environment using Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), and periodically checkpoint it throughout training, and use these checkpoints as
our behaviour policies. This means that the data in our dataset is collected from a range of policies,
spanning from randomly initialized to solving the task at hand.

In order to test our method for different numbers of collected transitions, we uniformly subsample
the transitions dataset D to varying sizes. We then use different seeds to initialize the world model
network, and shuffle the order the data is passed through it. More training details can results can be
found on Table 1 in Appendix A.3.

4.2 Reinforcement Learning Training

The agent is implemented as a recurrent actor-critic network following the template from Pure-
JaxRL (Lu et al., 2022). The agent’s actions depend on the current observation and episode trajec-
tory, implemented as the recurrent state of the actor-critic network. We use the recurrent state to test
the agent’s ability to perform system identification across the world models it is trained on. This is
also done to verify that the world models have distinct dynamics. Hidden state visualization can be
found in A.5.

We implement a suite of adversarial methods to train on the world models: Prioritized Level Replay
(PLR) as described in section 2.4 with an L1 value loss function, PLR with a Positive Value Loss
(PLR PVL) scoring as described in 3.2 to approximate regret, Domain Randomization (DR) im-
plemented by randomly selecting a new world model θ from a uniform distribution over the world
model buffer Θtrain and DR STEP where we change θi at every individual timestep of the agent in
a fixed length episode instead of only doing it at every reset. We use training on only a single world
model (WM) without any adversity or curriculum curation as a baseline for the aforementioned
methods.

The PLR implementations are based on JaxUED (Coward et al., 2024). We evaluate the policies
on the same environment the world model training dataset was collected in and use RLiable li-
brary as presented by Agarwal et al. (2021) to measure the performance. The entire pipeline, from
data collection to wold model and subsequent policy training is implemented in the JAX Ecosys-
tem (DeepMind et al., 2020) to leverage hardware acceleration and speed up training.

5 Results

In this section we show the most notable results that elucidate important aspect of our approach.
A complete compilation of the results can be found in the Appendix. We collect data from and
evaluate on environments from the Gymnax (Lange, 2022) and Brax (Freeman et al., 2021) suites.
All the evaluations are performed on full trajectories across 10 random seeds on the corresponding
real environments.

In Figure 2a, all the methods trained using the adversarial world model selection reach the highest
episodic return possible on Cartpole in less than half the transitions counts than the single world
model. Training on multiple world models beats the single world models baseline in a simple envi-
ronment. Figure 2b shows our methods consistently outperform training on a single world model for
sparser data and even achieve returns higher than the behavior policy that was learned online. The
effectiveness of our approach is further supported by the results on Hopper (Figure 2c). PLR PVL
on top of other adversarial training methods perform better than single world models across transi-
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tion counts. This shows that for increasingly realistic tasks and higher dataset sizes, methods using
regret approximation for robustness are the most promising.

(a) Evaluation on Cartpole (b) Evaluation on Acrobot (c) Evaluation on Hopper
Figure 2: Comparison of Evaluation Metrics Across Different Environments

Additionally, we demonstrate signs of overall policy improvement on Pendulum-v1 through three
common metrics in RL evaluation with their respective 95 % confidence intervals. On 19 · 103
transitions, the interquartile mean (IQM) of the episodic returns is already higher than that of the
behavior policy πb in Figure 3. As the number of transitions increases, the regret-based prioritization
performs best and becomes more likely to match or exceed the performance of the online-trained
behavior policy indicated by the red line.

Figure 3: Interquartile Mean (IQM), Mean, and Median of the
offline trained policy evaluated on the real environment

Our claim is that the world models have
sufficiently distinct dynamics and can
therefore serve as levels in the UED
framework. If true, regret-based train-
ing should help the agent adapt to all
these dynamics. We demonstrate this
by deploying our agent across multiple
world models and on the real environ-
ment. We then train a classifier on the re-
current states and achieve an average of
62% accuracy on the DR, 60% on PLR
and 45% on PLR PVL; all above the
10% random prediction accuracy. More
in A.6,A.5.

6 Future Work and Limitations

Regardless of our theoretical guarantees and empirical results showing the scaling of performance
with larger datasets on more difficult environments, our problem setting requires more rigorous the-
oretical analysis of the underlying assumptions. We assume that a neural network is sufficiently
expressive to model the real dynamics but lack a more specific definition of such ’modeling capac-
ity’.

Moreover, this work would benefit from a more principled and interpretable method of sampling the
possible world models from Θ set – as defined in 3.2 – other than simply changing the shuffling and
initialization seeds. A natural extension is that of level generation to have an expanding buffer of
available levels during the adversarial training.

The results in physical engines like Brax should be extended to real physical platforms and address
the engineering challenges posed by the sim2real gap, especially in sensitive settings where online
training can be physically hazardous.

7 Conclusion

In this work we present a novel way to guarantee transfer robustness to the real environment over
world models fitted on offline data. To the best of our knowledge, this is the first work that performs
adversarial training under this specific fully offline and fully paramteric constraint. Our method
naturally lends itself to other architectures and vectors of adversity and can blaze the trails towards
meaningful deployment of state-of-the-art RL algorithms into the real world.
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A Appendix

A.1 Related Work

Reinforcement Learning has achieved impressive results, some of the most notable ones being
Go (Silver et al., 2016b), Starcraft (Vinyals et al., 2019), Atari (Mnih et al., 2015) and more recent
advances focusing on multi-task generalizations (Bruce et al., 2024; Hafner et al., 2023). Despite
these impressive results, RL methods fail to generalize to settings even slightly different than the
training environments (Cobbe et al., 2019; Mediratta et al., 2023), indicating that the generalization
to real world settings remains an open challenge.

One promising way to increase the generalization capabilities of an agent trained via RL is to ensure
that the agent is exposed to a sufficiently diverse set of environments in training time. The Unsuper-
vised Environment Design (UED) (Dennis et al., 2020; Jiang et al., 2021b) line of work achieves this
by relaxing the definition of the environment to a combinatorially large set of possible configurations
captured by a set of parameters, commonly referred to as levels. The choice of the parameter space
is specifically tailored to the general task domain also known as the underspecified environments
(e.g. a maze environment is parameterized by the placement of the walls, start and goal position
whereas a one dimensional bipedal environment is parameterized by the roughness of the terrain).
UED uses Minimax regret (Savage, 1951) to make the agent robust to the most challenging envi-
ronment configurations without prior knowledge of which set of parameters it will act in. While
these approaches are meant to exemplify deployment in challenging situations, they remain reliant
on semantically informed choices of parameters that capture useful levels of difficulty (the color of
the background is not as useful in curating the training of a bipedal walker as the roughness of the
train). Jiang et al. (2021b) was very helpful in bridging the intuitive algorithm of Prioritized Level
Replay with new regret approximations that provide minimax guarantees.

World models (Ha and Schmidhuber, 2018) propose a different approach where the agent is equipped
with a compact representation of the real environments trained using a dataset of transitions in said
environment. More recent work shows that world models can serve as task-agnostic Continual
Reinforcement Learning baselines (Kessler et al., 2023) or used in online RL to achieve human-
level performance on Atari (Hafner et al., 2020). In principles, world modelling does not hinge
on task-specific heuristics and only relies on increasing the robustness of the agent by tuning the
uncertainty inside the world model.

A recent combination of the world model and Minimax Regret approach by Rigter et al. (2023)
trains a world model that can derive robust policies. This is done through an exploration policy
seeking maximal model uncertainty, similar to the self-supervised world model methods by Sekar
et al. (2020). These methods require sufficient exploration of states that can be physically dangerous
to the agent and disrupt operation altogether (Kumar et al., 2020, 2021).

Offline RL work has provided a useful signal on the importance of using offline datasets (Kumar
et al., 2020, 2021), the common challenges that arise form the distribution shift between the behavior
and learned policy (Levine et al., 2020) and model error (Saleh et al., 2022) alongside the most
common workarounds like truncated rollouts (Jackson et al., 2024). Model-based offline (Rigter
et al., 2022) and online (Chua et al., 2018) RL methods have served as useful blueprints to manage
uncertainty through multiple dynamic models.

The work of Li and Liang (2018) and the foundational work of Amari (1993) have paved the intu-
ition that shuffling the data and most importantly, changing the initializations, would be effective in
training sufficiently distinct models on a shared offline dataset.
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A.2 Dataset Curation

The checkpointing frequency and number of trajectories collected per checkpoint is heuristically
determined by the environment’s episode length and the monotonicity of the training and evaluation
curves. Figure 4 illustrates the frequency at which the behavior policy trajectories are collected for
the Hopper environment to capture different levels of agent’s abilities.

Figure 4: Data collection using different πb checkpoints marked by the vertical lines are used to collect
trajectories for D

A.3 World Model Training Results

The world models are trained on the same data with an L2 test loss but show different final test
losses and slightly different dynamics.

We set the number of gradient updates for each world model to be the same to ensure consistent
levels of training across dataset sizes. The world models in our experiments are implemented as
fully connected networks with a concatenated input of actions and observations and an output of the
concatenated next observations and reward. At inference time, we add Gaussian Noise to the outputs
equal to the square root of the L2 test loss, to represent the fact that the world models are modelling
a distribution over next states.
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Table 1: Training results for different D ratios across environment
Environment % of |D| Train Mean Train Median Test Mean Test Median

Pendulum-v1 1 1.201 · 10−7 1.19 · 10−7 5.87 · 10−4 5.83 · 10−4

5 2.20 · 10−6 2.19 · 10−6 5.93 · 10−5 5.91 · 10−5

10 4.28 · 10−6 4.39 · 10−6 3.02 · 10−5 3.01 · 10−5

20 6.85 · 10−6 6.90 · 10−6 1.87 · 10−5 1.86 · 10−5

50 9.35 · 10−6 9.34 · 10−6 1.33 · 10−5 1.34 · 10−5

70 3.99 · 10−1 1.02 · 10−5 4.08 · 10−1 1.28 · 10−5

100 3.99 · 10−1 1.11 · 10−5 4.08 · 10−1 1.23 · 10−5

Acrobot 1 8.86 · 10−7 9.11 · 10−7 1.20 · 10−2 1.20 · 10−2

5 7.53 · 10−6 7.35 · 10−6 2.55 · 10−3 2.57 · 10−3

10 1.71 · 10−5 1.69 · 10−5 1.17 · 10−3 1.18 · 10−3

20 3.37 · 10−5 3.37 · 10−5 5.05 · 10−4 5.05 · 10−4

50 7.60 · 10−5 7.60 · 10−5 3.01 · 10−4 3.02 · 10−4

70 9.14 · 10−5 9.09 · 10−5 2.67 · 10−4 2.66 · 10−4

100 1.40 · 10−4 1.39 · 10−4 2.81 · 10−4 2.81 · 10−4

Cartpole 1 1.95 · 10−8 1.86 · 10−8 3.57 · 10−5 3.60 · 10−5

5 2.97 · 10−7 2.89 · 10−7 4.20 · 10−6 4.15 · 10−6

10 4.86 · 10−7 4.85 · 10−7 2.22 · 10−6 2.23 · 10−6

20 6.49 · 10−7 6.47 · 10−7 1.52 · 10−6 1.52 · 10−6

50 8.05 · 10−7 8.03 · 10−7 1.15 · 10−6 1.14 · 10−6

70 8.61 · 10−7 8.61 · 10−7 1.08 · 10−6 1.08 · 10−6

100 8.98 · 10−7 8.98 · 10−7 1.05 · 10−6 1.04 · 10−6

Hopper 1 7.51 · 10−7 7.33 · 10−7 2.03 · 10−2 2.01 · 10−2

5 1.22 · 10−4 1.22 · 10−4 1.19 · 10−2 1.18 · 10−2

10 4.21 · 10−4 4.13 · 10−4 9.79 · 10−3 9.77 · 10−3

20 8.29 · 10−4 8.29 · 10−4 7.66 · 10−3 7.66 · 10−3

50 1.37 · 10−3 1.37 · 10−3 6.33 · 10−3 6.33 · 10−3

70 1.72 · 10−3 1.77 · 10−3 5.68 · 10−3 5.68 · 10−3

100 2.27 · 10−3 2.27 · 10−3 5.06 · 10−3 5.06 · 10−3

Mountaincar-Discrete 1 5.68 · 10−8 4.76 · 10−8 1.15 · 10−6 1.10 · 10−6

5 4.44 · 10−8 4.49 · 10−8 1.44 · 10−7 1.40 · 10−7

10 1.03 · 10−7 1.02 · 10−7 1.51 · 10−7 1.50 · 10−7

20 1.19 · 10−7 1.16 · 10−7 1.27 · 10−7 1.24 · 10−7

50 1.28 · 10−7 1.28 · 10−7 1.25 · 10−7 1.26 · 10−7

70 1.26 · 10−7 1.20 · 10−7 1.23 · 10−7 1.18 · 10−7

100 1.20 · 10−7 1.19 · 10−7 1.08 · 10−7 1.08 · 10−7
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A.4 Hyperparameters

Table 2: Hyperparameters for the world model training
Hyperparameter Value

Learning Rate 1 · 10−4

Batch Size 64
Hidden Size 256
Gradient Updates 5 · 103

Table 3: Hyperparameter Ranges Considered for Each RL Environment
Hyperparameter Acrobot CartPole Hopper MountainCar Pendulum

Learning Rate 5 · 10−4 2.5 · 10−4 3 · 10−4 1 · 10−3 1 · 10−3

Number of Environments 16 4 512 16 32
Total Timesteps 5 · 105 5 · 105 5 · 108 5 · 105 1 · 107
PPO Update Epochs 4 4 4 64 4
Number of Minibatches 4 4 32 4 4
Gamma 0.99 0.99 0.99 0.99 0.99
GAE Lambda 0.95 0.95 0.95 0.95 0.95
Clip EPS 0.2 0.2 0.2 0.2 0.2
Entropy Coefficient 0.01 0.01 0.0 0.003 0.01
Value Function Coef 0.5 0.5 0.5 0.5 0.5
Max Grad Norm 1 0.5 0.5 1 1.0
Activation Function tanh tanh tanh tanh tanh
Anneal Learning Rate true true false true true
Number of Eval Envs 1 1 1 1 1
Eval Frequency 4 4 100 4 4
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A.5 Hidden States Visualization

The PCA for RNN states of different agents trained with different algorithms

Figure 5: PCA of the hidden recurrent state for agents trained on different algorithms

Each row illustrates the episodic progression, with Figure 5 depicting the 2-dimensional Principal
Component Analysis (PCA) of the 256-dimensional hidden states. These hidden states are collected
from 10 differently initialized rollouts of the same agent. The rollouts are performed across 9 differ-
ent world models and the real environment, ensuring a fair and balanced classification dataset. No-
tably, no pattern of stability emerges with the DR-trained agent. However, the PLR and PLR PVL
agents exhibit stabilization midway through the episode, within a smaller range on the principal
components compared to the PCA of their initial state. While this warrants further investigation,
we can intuitively infer that the agent learns to act optimally across all world models, and that this
optimal behavior tends to become increasingly similar—though still distinct—across the different
world models and environments.

A.6 Hidden States Classification

The confusion matrix for the classification of the world model using the agent’s recurrent state from
all the steps of the episode.
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Table 4: Classification accuracy of 9 world models and the real environment. The ones below the
10% random guessing are marked in red

% of |D| DR PLR PLR PVL
1 0.68325 0.10875 0.47375
5 0.4115 0.65275 0.67200

10 0.62325 0.68325 0.39975
20 0.67425 0.67075 0.08525
50 0.7595 0.66225 0.35775
70 0.67875 0.58225 0.36850

100 0.54025 0.85000 0.79000

Figure 6: Classification accuracy of the hidden states from agents trained with DR, PLR, and PLR PVL for
a dataset of trajectories from 9 world models and the real environment. The dashed black line is the random
prediction accuracy for the 10 classes.

17



(a) DR on 5% of |D| (b) DR on 50% of |D| (c) DR on 100% of |D|

(d) PLR on 5% of |D| (e) PLR on 50% of |D| (f) PLR on 100% of |D|

(g) PLR PVL on 5% of |D| (h) PLR PVL on 50% of |D| (i) PLR PVL on 100% of |D|

Figure 7: Confusion Matrix for classifying 10 different levels or training environments using the RNN hidden
states. Label 0 corresponds to the real Pendulum environment. Every row is a different training method
where, DR is Domain Randomization, PLR is Prioritized Level Replay with an L1 value loss score function
and PLR PVL refers to Prioritized Level Replay with an Positive Value Loss score function.
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