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Abstract

High-dimensional prediction with limited samples poses a significant challenge
due to severe overfitting. While existing approaches tackle this via regularization,
clustering, or representation learning, we introduce a novel framework rooted
in causal inference, explicitly uncovering and exploiting latent causal structures
linking predictors and responses. Our approach employs a new causal-clustering
technique guided by a similarity metric that quantifies shared predictor-response
dependencies, grouping variables connected through hidden mediators or common
confounders. These identified causal features are then incorporated into an
augmented regression model, resulting in sparser, more robust, and generalizable
predictions. Experiments across synthetic and real-world datasets, including
S&P 500 market data, demonstrate that our method achieves higher regression
performance and markedly reduces overfitting compared to existing baselines.

1 Introduction

High-dimensional multivariate regression aims to predict a set of n2 response variables Y ∈ RN×n2

from n1 predictors X ∈ RN×n1 using N samples. The standard formulation estimates a coefficient
matrix A ∈ Rn1×n2 via ordinary least squares (OLS), ÂOLS = argminA

∥∥Y−XA
∥∥2
F

. However, in
modern applications—from ecological modeling (Kocev et al., 2009) to stock selection in economics
(Ghosn & Bengio, 1997)—the number of predictors and responses often exceeds the number of
samples (n1, n2 > N ), rendering OLS ill-posed and prone to overfitting (Hastie et al., 2015). In
such regimes, the learned models tend to memorize the training data rather than uncover meaningful
structure, leading to poor generalization. Many methods have been proposed to address this problem,
most of which fall into three broad categories: regularization-based estimators, latent representation
models, and clustering-based methods.

Regularization-based methods impose penalties on the coefficient matrix A to discourage undesired
properties such as large values or complexity. Sparse regression techniques such as Lasso (Tibshirani,
1996) apply an ℓ1 penalty to perform implicit variable selection, while Ridge regression (Hoerl &
Kennard, 1970) uses an ℓ2 penalty to control multicollinearity. Elastic Net (Zou & Hastie, 2005)
combines both to balance sparsity and stability. Adaptations of these methods specifically for
multi-response regression include imposing block-regularizations on A (Jalali et al., 2010), using
Group Lasso to promote joint sparsity across responses (Yuan & Lin, 2006), and developing screening
procedures for ultra-high-dimensional outputs (Kolar & Xing, 2010). Other methods exploit low-rank
assumptions, such as the adaptive reduced-rank estimator of Wu et al. (2020), which prunes singular
values to estimate effective model rank. Zhou & Zhao (2015) also integrates task clustering to enforce
shared sparsity across related responses.

Representation learning methods approach the problem by projecting predictors or responses into
lower-dimensional latent spaces before regression. Classical approaches include Principal Component
Regression (PCR) (Jolliffe, 1982) and Partial Least Squares (PLS) (Wold, 1982), which reduce
dimensionality via linear transformations of the input features. More recent techniques, such as
Supervised Variational Autoencoders (S-VAE) (Kingma & Welling, 2014; Siddharth et al., 2017),
learn task-aware nonlinear embeddings. Yet another approach is SHORE (Li et al., 2024), which
compresses the high-dimensional output space Y under a sparsity assumption, enabling more efficient
and stable estimation in extreme multi-output regimes.
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Clustering-based methods capture structured dependencies by grouping predictors or responses.
The core idea is that variables within a group share underlying characteristics, thus if predictors
are clustered, each response can be predicted using only its relevant predictor cluster(s), reducing
input dimensionality. Tree Lasso (Kim & Xing, 2010) models and clusters responses via overlapping
group penalties, whereas Wang & Ye (2015) introduces screening rules tailored to tree-structured
sparsity. The broader principle—leveraging group structure to reduce complexity—extends naturally
to multi-task problems, as in Zhou & Zhao (2015), where similar tasks are clustered via so-called
representative tasks.

While the aforementioned methods perform advanced high-dimensional regression, they rely on
empirical statistical patterns or impose pre-specified structural constraints, such as fixed sparsity
assumptions or pre-defined variable clusters, rather than explicitly modeling the latent causal
mechanisms that might govern the relationships between variables. A crucial aspect often overlooked
is the explicit modeling and exploitation of latent causal mechanisms that frequently underpin the
observed relationships in complex, high-dimensional systems.

To this end, we introduce Causal Feature Augmentation (CFA), a novel framework for high-dimensional
and low-sample multi-response regression rooted in a causality-informed perspective. In many real-
world datasets, the dependencies between predictors X and responses Y are partly shaped by
unobserved causal structures, such as latent mediators (where groups of predictors influence responses
via an aggregated signal) or common confounders (where clusters of predictors and responses are
jointly influenced by a shared hidden driver). CFA is designed to systematically uncover these hidden
causal pathways and distill them into a set of information-rich new "causal features". These extracted
causal features are then integrated with the original predictors X to perform an augmented regression.
Crucially, although this augmentation increases the total number of predictors fed into the model, it
simplifies the underlying learning task. By explicitly representing these causally-derived features,
the model can potentially achieve a far sparser and more robust solution, one that is less prone to
overfitting and demonstrates superior generalization.

Our main contributions are threefold:

• We propose Causal Feature Augmentation (CFA), a new regression framework designed for
high-dimensional and low-sample multivariate settings. CFA explicitly accounts for latent causal
structures by extracting and leveraging unobserved mediators and confounders.

• We develop a multi-stage algorithm for CFA that first extracts causally-related clusters of predictors
based on their shared influence on responses. It then classifies these clusters into mediator
or confounder structures, constructs new causal features accordingly, and solves an augmented
regression problem using the causal-features. This approach results in models that are sparser, more
robust, and achieve the same predictive performance in low-sample regimes that baselines require
more samples to match.

• We provide empirical validation on synthetic datasets and multiple real-world datasets, including
financial time series data. Our results demonstrate that CFA consistently and significantly
outperforms a wide array of baselines.

2 CFA regression model

In standard linear regression, we assume that the response variables Y are generated as a linear
combination of the predictors X, i.e., Y = XA+E, where A captures unknown coefficients and E
denotes residual noise. The task is then to learn A from data using various regularization or estimation
techniques as explained in the previous section. Implicit in this setup is a structural assumption about
how data is generated—namely, that all dependencies between X and Y are direct and linear.

In this work, we adopt a more realistic, causally-informed perspective and propose a richer generative
model that accounts for hidden causal pathways connecting X to Y. Specifically, we posit that some
predictors influence the responses through unobserved mediators or share latent common causes.
This leads us to the following regression model:

Y = XB(d) + Z(m) B(m) + Z(c) B(c) + E, (1)
where B(d) ∈ Rn1×n2 captures direct effects of X on Y, Z(m) ∈ RN×nm are mediator features
(cluster-averages of some subsets of X) with coefficients B(m) ∈ Rnm×n2 , Z(c) ∈ RN×nc are

2
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Figure 1: CFA model: confounders induce correlated
clusters of predictors, mediators summarize subsets of
predictors, and both affect the responses alongside direct
effects from individual predictors.
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Figure 2: Predicted vs true similarity
scores for pairs of predictors in a syn-
thetic dataset.

confounder features (latent variables causing some clusters of X) with coefficients B(c) ∈ Rnc×n2 ,
and E is the residual noise.

Figure 1 illustrates this generative structure, highlighting how predictors are organized into clusters
either caused by latent confounders or summarized through mediators, both of which influence the
response. This model enriches the regression setup by explicitly incorporating such causal structure,
which we argue leads to simpler, sparser, and more generalizable regression solutions.

In the following subsections, we provide further details on these two causal structures—mediators
and confounders—and how leveraging them improves prediction and interpretability.

2.1 Mediator structure

In many applications, responses often depend more on aggregated signals than on individual predictors.
For instance in finance, equity returns are well known to co-move with sector or industry averages.
Practitioners routinely use the mean return of all firms in a given sector as a key factor in forecasting
individual stock performance.

Motivated by this, we assume that some of the predictors in X form nm disjoint mediator clusters
I(m)
1 , . . . , I(m)

nm ⊆ {1, . . . , n1}, not necessarily covering every variable. For each cluster I(m)
i , we

define Z
(m)
i = 1

|I(m)
i |

∑
j∈I(m)

i
Xj , and Z(m) = [Z

(m)
1 | · · · | Z(m)

nm ]. In the full model in eq. (1),

the mediator coefficients B(m) capture the influence of these averages on Y, while B(d) still allows
for direct effects of all predictors (including those not in any mediator cluster). If the true relationship
relies heavily on cluster-averages, many rows of B(d) corresponding to clustered variables will
become zero, and the total number of nonzeros in (B(d),B(m)) can be much smaller than in a simple
regression model that does not add mediators.
Example 1. Suppose

[Y1 | Y2 | Y3] = [X1 | X2 | X3 | X4]A + [e1 | e2 | e3], A =


1
2

1
4 1

1
2

1
4 0

1
2 0 1

3

1
2 1 1

3

 ,

with ten nonzeros. Define two mediator clusters I(m)
1 = {1, 2} and I(m)

2 = {3, 4}, and

Z
(m)
1 = X1+X2

2 , Z
(m)
2 = X3+X4

2 , Z(m) = [Z
(m)
1 | Z(m)

2 ].

The augmented model eq. (1) becomes

[Y1 | Y2 | Y3] = [X1 | X2 | X3 | X4]B
(d) + [Z

(m)
1 | Z(m)

2 ]B(m) + [e1 | e2 | e3],

3
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with

B(d) =


0 0 1

0 0 0

0 0 0

0 1 0

 , B(m) =

(
1 1

2 0

1 0 2
3

)
.

By adding just these two mediator features, the total number of nonzero parameters drops from ten in
A to six in (B(d),B(m)), so a fit on the augmented model is potentially less prone to overfitting.

In Section 3, we will present our procedure for discovering these unknown mediator clusters.

2.2 Confounder structure

In many real-world settings, predictors in X exhibit strong correlations due to unobserved common
causes—latent variables that simultaneously influence multiple features. These hidden variables, or
confounders, often drive systematic dependencies among subsets of the predictors.

Crucially, such confounders frequently affect the responses Y as well. As a result, every predictor
influenced by a shared confounder may appear marginally correlated with Y, even if the true source
of variation is the latent variable itself. This induces a situation where multiple predictors act as noisy
proxies for the same underlying causal factor, which leads to unnecessarily denser direct-effect matrix
B(d) in eq. (1). If we were able to identify and explicitly recover these latent confounders, we could
include them as features in the regression. Their effects would then be captured by B(c), allowing
B(d) to focus on residual dependencies, yielding a sparser model.

Formally, we assume that some subset of predictors is partitioned into nc disjoint confounder clusters
J (c)
1 , . . . ,J (c)

nc ⊆ {1, . . . , n1}, where each cluster J (c)
i is influenced by an unobserved latent

variable Z(c)
i . We model the generative process for predictors in each cluster as

Xj = γj Z
(c)
i + ηj , for j ∈ J (c)

i , (2)

where γj is an unknown scalar coefficient indicating the strength of dependence of predictor Xj

on the latent confounder Z(c)
i , and ηj is the residual variation. We denote by Z(c) ∈ RN×nc the

matrix whose columns correspond to the confounder variables Z(c)
1 , . . . , Z

(c)
nc . When included in the

regression model eq. (1), these features capture the shared variation via B(c). We note that, unlike
mediator features, which can be directly constructed as cluster averages, recovering latent confounders
from data is more challenging. We will address this in Section 3.3.

3 Method

Given our regression model in the previous section, we now describe our algorithm for constructing
the causally-informed features Z(m) and Z(c) and fitting the augmented regression model eq. (1). Our
approach for solving the CFA model proceeds through four main steps:

1. Causal clustering: finds clusters over the predictor set {X1, . . . , Xn1
} using a tailored similarity

metric that captures latent mediator and confounder structure.1

2. Cluster classification: labels each cluster as a mediator cluster or a confounder cluster based on
intra-cluster correlation patterns.

3. Feature construction: builds mediator features by averaging within mediator clusters, and recovers
latent confounder features using PCA.

4. Augmented regression: solves the final regression in eq. (1) using Elastic Net.

We now describe each step in turn, noting that the core of our method is Step 1.
1While clusters are technically defined over predictor indices {1, . . . , n1}, we will often abuse notation and

refer to clusters of predictors {X1, . . . , Xn1} for the sake of clarity.

4
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3.1 Causal-clustering via novel similarity metric

Our goal is to group predictors into clusters that correspond to either shared mediators or latent
confounders. To this end, we define a pairwise similarity metric s(i, j) between any two predictors
Xi, Xj , which increases with the likelihood that they belong to the same cluster. More specifically, it
directly quantifies their common associations with the response variables Y1, . . . , Yn2

. We then apply
a standard clustering algorithm (e.g., hierarchical clustering) to the similarity matrix Sij = s(i, j).

3.1.1 Similarity metric definition

We define a pairwise similarity score between distinct predictors Xi and Xj as

s(i, j) =
∣∣{ k : Xi ⊥̸⊥ Yk and Xj ⊥̸⊥ Yk}

∣∣, (3)

i.e., the number of response variables that simultaneously depend on both Xi and Xj . Thus s(i, j) is
an integer in {0, 1, . . . , n2}. In what follows, we show from a causal perspective that larger values of
s(i, j) are indicative of Xi and Xj belonging to the same mediator or confounder cluster. This makes
s(i, j) a suitable similarity metric for clustering, even though it does not by itself distinguish between
mediators and confounders—this classification will be addressed in Section 3.2.

3.1.2 Theoretical justification of the similarity metric

Next, we provide a theoretical justification for the similarity metric s(i, j) defined in eq. (3), and
show that it is a meaningful proxy for clustering Xi and Xj . Specifically, under reasonable structural
assumptions, we will prove that

P
(
Xi ⊥̸⊥ Yk and Xj ⊥̸⊥ Yk | Xi and Xj in the same cluster

)
> P

(
Xi ⊥̸⊥ Yk and Xj ⊥̸⊥ Yk | Xi and Xj in different clusters

)
. (4)

This inequality will justify the definition of s(i, j): two predictors that belong to the same causal
cluster (mediator or confounder) are more likely to exhibit joint dependence on the same response
variables than predictors from different clusters.

To show this, we will first characterize all possible causal graph structures that can give rise to the
joint dependencies Xi ⊥̸⊥ Yk and Xj ⊥̸⊥ Yk. Then, we will analyze the likelihood of these structures
given Xi and Xj being in the same cluster versus different clusters.

To this end, we enumerate in Table 1 all possible local dependency patterns that may arise under our
generative model for a variable pair (Xi, Xj), where both are dependent on a response Yk. Note
that we can group these structures using the five possible cluster assignments of the variable pair
(Xi, Xj): (i) whether Xi and Xj belong to the same or different clusters, and (ii) whether those
clusters are of confounder type, mediator type, or mixed. For each of these five, a family of relevant
causal subgraphs involving (Xi, Xj , Yk) is depicted in Table 1.

Now, for any fixed triple (Xi, Xj , Yk), let Gijk denote the set of causal subgraphs of the true
underlying model that match one of these patterns illustrated in Table 1. In the following theorem,
proven in Appendix D, we formally state that these structures are indeed the only structures where
both Xi and Xj are dependent on Yk.
Theorem 3.1 (Dependence via causal graph structures). Under the generative model described in
Section 2, for any distinct pair of responses (Xi, Xj), and any response variable Yk, we have:

Xi ⊥̸⊥ Yk and Xj ⊥̸⊥ Yk ⇐⇒ Gijk is non-empty.

Next, we discuss the likelihood of these graphs under the following edge-generation process.
Assumption 1. As a prior over cluster types, each predictor Xj is independently assigned to a
confounder cluster with probability πc, and to a mediator cluster with probability πm = 1−πc. Edges
from predictors Xj to responses Yk are independently included with probability pxy; edges from
mediators Z(m)

i to Yk with probability pmy; and edges from confounders Z(c)
i to Yk with probability

pcy. All edge-generation events are mutually independent. We assume that all edge probabilities
are small (i.e., pxy, pmy, pcy ≪ 1) and higher-order terms (e.g., p2xy) are negligible compared to
lower-order terms such as pmy and pcy .

5
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This assumption is natural in high-dimensional settings: high-dimensional systems are well approxi-
mated by a few latent factors plus a sparse residual graph, so true direct X→Y edges are rare and
events requiring two such edges occur with probability O(p2xy), negligible relative to first-order factor
paths (pmy, pcy) (Fan et al., 2013; Meinshausen & Bühlmann, 2006).
Theorem 3.2 (Probabilistic justification of the similarity metric). Under the edge-generation model
of Assumption 1, Table 1 lists the probabilities of Gijk being non-empty conditioned on each of the
five cases of the table. These probabilities, which are a consequence of Assumption 1, imply

P (|Gijk| > 0 | Xi, Xj in the same cluster) > P (|Gijk| > 0 | Xi, Xj in different clusters) ,

where |Gijk| denotes the cardinality of the set of causal subgraphs compatible with the underlying
model of Section 2.

Theorems 3.1 and 3.2 together imply eq. (4), which justifies s(i, j) as an apt similarity metric for
clustering predictors.

To further validate our theoretical findings, Figure 2 visualizes the similarity scores for a synthetic
dataset generated according to our model in Section 2, with the same configuration we use for the
synthetic experiments in Section 4. Each dot corresponds to a pair (Xi, Xj), colored orange if
both belong to the same confounder cluster, blue if both are in the same mediator cluster, and gray
otherwise. The x-axis shows the true similarity score (computed from the ground-truth graph),
while the y-axis shows the empirical similarity (estimated from samples). While sampling noise
and imperfect statistical tests introduce deviations from the diagonal y = x, the separation is clear:
orange and blue points tend to lie to the right of gray ones, confirming our theoretical prediction that
same-cluster pairs tend to share more response dependencies.

3.2 Cluster classification

To determine whether a given predictor cluster corresponds to a mediator or a confounder, we
leverage intra-cluster correlation patterns. In a confounder cluster, the shared latent variable induces
correlation among all predictors, whereas in a mediator cluster, no such correlation is expected among
its members. Therefore, in our method, for each detected cluster, we compute all pairwise correlations
between its member variables and perform a two-tailed hypothesis test, where the null hypothesis is
that each correlation is zero. If the null hypothesis is rejected for a significant proportion of pairs, we
classify the cluster as a confounder; otherwise, we classify it as a mediator.

3.3 Feature construction

Given the clustered and classified predictors, we now construct the augmented features Z(m) and Z(c)

used in the regression model eq. (1). For each mediator cluster I(m)
i , we define the corresponding

feature as a simple average: Z(m)
i = 1

|I(m)
i |

∑
j∈I(m)

i
Xj .

Confounder features are recovered differently. Recall the generative model eq. (2), where each Xj in a
confounder cluster is a noisy linear function of a latent variable Z(c)

i with unknown loadings. For each
confounder cluster I(c)

i , we estimate Z(c)
i as the first principal component of the subset of predictors

in that cluster. This procedure is well motivated under a linear factor model with independent noise:
when the confounder induces the dominant direction of variation, PCA consistently estimates the
latent variable up to scale (Anderson, 1958; Tipping & Bishop, 1999; Paul, 2007). Importantly, the
true confounder is not identifiable in absolute terms—only its direction up to scaling can be recovered.
However, this is sufficient for our purposes, since the scale ambiguity is absorbed into the learned
coefficients B(c) during regression.

3.4 Augmented regression

Having constructed the mediator and confounder features Z(m) and Z(c), we now augment the
original predictors X with these new variables and solve a regularized regression problem. In
our implementation, we use Elastic Net (Zou & Hastie, 2005), which combines both ℓ1 and ℓ2
regularization to promote sparsity while mitigating instability in correlated settings. Concretely, given

6
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Table 1: Causal subgraphs and their likelihood probabilities for triplet (Xi, Xj , Yk), where Xi and
Xj are pairwise dependent with Yk, categorized by cluster assignment of Xi and Xj . Solid edges
mark the connections that must exist, while missing edges remain permissible. Dashed edges indicate
that at least one of the variables in the dashed box must connect to Yk.

Same cluster (t1 = t2) Different cluster (t1 ̸= t2)

i
∈
I(

m
)

t 1
,
j
∈
I(

m
)

t 2

Xi

Xj

Z
(m)
t

Yk

Xi

Xj

Z
(m)
t

Yk

Xi Z
(m)
t1

Xj Z
(m)
t2

Yk

pmy + (1− pmy)p
2
xy ≈ pmy (1− (1− pxy)(1− pmy))

2 ≈ (pmy + pxy)
2

i
∈
J

(c
)

t 1
,
j
∈
J

(c
)

t 2

I(c)
t

Z
(c)
t

Xi

Xj

Yk

I(c)
t1

I(c)
t2

Z
(c)
t1

Xi

Z
(c)
t2

Xj

Yk

1− (1− pcy)(1− pxy)
mc ≈ pcy +mcpxy (1− (1− pcy)(1− pxy)

mc)
2 ≈ (pcy +mcpxy)

2

i
∈
I(

m
)

t 1
,
j
∈
J

(c
)

t 2

Impossible
I(c)
t1

Z
(c)
t1

Xi

Xj Z
(m)
t2

Yk

(1− (1− pxy)(1− pmy))
(
1− (1− pcy)(1− pxy)

mc
)

≈ (pmy + pxy)(pcy +mcpxy)

X,Z(m),Z(c), we solve:

min
B(d),B(m),B(c)

1

2N

∥∥∥Y −XB(d) − Z(m)B(m) − Z(c)B(c)
∥∥∥2
F

+ λ
(1)
d ∥B(d)∥1,1 + λ(1)

m ∥B(m)∥1,1 + λ(1)
c ∥B(c)∥1,1

+ λ
(2)
d ∥B(d)∥2F + λ(2)

m ∥B(m)∥2F + λ(2)
c ∥B(c)∥2F .

(5)

Note that our core contribution is the augmentation with causally motivated features; the downstream
regressor can be any suitable linear model—Elastic Net is a natural choice.

3.5 Scope of CFA

It is important to emphasize that CFA does not attempt causal discovery, nor does it require
recovering the true mediators or confounders. If the augmented features Z(m),Z(c) are uninformative,
the Elastic Net penalty shrinks their coefficients toward zero, so performance matches a strong
regularized baseline. When approximate mediator/confounder patterns are present, the augmentation
captures shared variation and reduces effective complexity, yielding sparser solutions and better
generalization—even if the augmented features do not coincide with any unobservable ground truth.
In abundant-data regimes, the gap between CFA and Elastic Net narrows, with the most significant
gains from CFA arising in low-sample settings, precisely our target regime.

4 Experiments

In this section, we present experiments on a synthetic dataset and a real-world financial dataset to
evaluate the performance of CFA against several baselines. We provide further details on the setup

7
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Figure 3: Test correlation of each algorithm versus changing sample size N (in log-scale) on the
synthetic dataset. The shaded area represents the 95% confidence interval.

and implementation in Appendix A. For the sake of space, we include additional experiments on
four real-world datasets and true graph recovery in Appendix B, and time complexity analysis in
Appendix C.

4.1 Baselines

We compare our CFA method against several baselines, categorized as: (i) optimization-based,
including ElasticNet Zou & Hastie (2005), Lasso Tibshirani (1996), and Ridge Hoerl &
Kennard (1970); (ii) clustering-based, represented by a custom Cluster Regressor (CR) that groups
predictors based on their correlation and trains separate ElasticNet models for each response using only
predictors from its corresponding cluster; and (iii) representation learning-based, including SHORE
Li et al. (2024), which first compresses the high-dimensional output space into a latent representation,
performs regression, and then reconstructs sparse outputs, Principal Component Regression (PCR)
Jolliffe (1982), Partial Least Squares Regression (PLS) Wold (1982), and Supervised Variational
Autoencoder (S-VAE) Kingma & Welling (2014). Full details are given in Appendix A.1.

4.2 Synthetic dataset

We consider a synthetic multi-task regression dataset generated from the model in Section 2. More
specifically, we consider a high-dimensional setting with n1 = n2 = 1000 predictors and responses,
nm = 250 mediator clusters, and nc = 250 confounder clusters. We randomly sample predictors,
confounders, and noise from a normal distribution with varying variances. For complete details on
the data generation process, please refer to Appendix A.2.

We use an 80%/20% split for training, and test sets, respectively, and use 3-fold cross-validation
on the training set to tune hyperparameters. We use the correlation between the predicted and true
responses as the metric. Full details on the experimental setup are provided in Appendix A.1.

Results. Figure 3 illustrates the test correlation as a function of the number of samples N ∈
[100, 5000] on our synthetic dataset. CFA (blue solid line) consistently outperforms all baselines
across the entire range of sample sizes evaluated. While several optimization-based methods (Ridge,
Lasso, ElasticNet) and the representation-learning-based PCR also eventually converge to a perfect
correlation as N increases, CFA gets there much more rapidly, particularly in the critical low-sample
regime, which is precisely the target regime of CFA.

For instance, with merely N = 160 total samples (corresponding to 112 training samples), CFA
attains a test correlation of 83%. This is substantially (50%) higher than the next best performing
baseline, ElasticNet, which achieves 56% under the same conditions. Other approaches, including
the clustering-based CR and further representation learning methods like S-VAE, PLS, and SHORE,
exhibit significantly lower performance, especially at smaller sample sizes. This demonstrates CFA’s
superior sample efficiency and robustness against overfitting, particularly when data is scarce.
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Table 2: Train and test Pearson correlations (%) across rolling three-year windows on the S&P 500
dataset. Each cell reports the correlation ± uncertainty, where uncertainty is the Fisher-z 95% CI
width. Bold indicates the highest test within each window. Rows sorted by test correlation.

Window 2020-2022 2021-2023 2022-2024 2023-2025
Metric Train Test Train Test Train Test Train Test

CFA 77.27± 1.62 1.76± 0.13 51.60± 2.91 1.38± 0.12 68.54± 2.12 3.17± 0.09 81.75± 1.34 2.92± 0.09

ElasticNet 66.63± 2.22 1.51± 0.19 62.37± 2.44 0.87± 0.21 62.36± 2.44 2.32± 0.22 73.73± 1.83 2.37± 0.17

Ridge 94.73± 0.42 1.41± 0.21 92.07± 0.62 1.03± 0.18 92.07± 0.62 1.84± 0.27 97.94± 0.17 2.19± 0.20

CR 22.20± 3.74 1.08± 0.27 21.03± 3.76 1.36± 0.12 17.72± 3.81 0.68± 0.36 40.01± 3.32 2.38± 0.17

PCR 58.73± 2.61 1.00± 0.28 1.25± 3.93 −0.27± 0.35 72.98± 1.87 1.80± 0.28 75.13± 1.75 2.07± 0.21

PLS 50.29± 2.96 1.17± 0.25 51.45± 2.92 −1.36± 0.39 48.11± 3.05 1.38± 0.32 43.26± 3.22 0.00± 0.38

S-VAE 54.20± 2.81 0.01± 0.38 0.11± 3.93 0.22± 0.30 1.98± 3.93 −0.26± 0.39 39.94± 3.32 0.99± 0.32

SHORE 37.26± 3.40 0.55± 0.34 32.15± 3.54 0.00± 0.33 25.16± 3.69 0.43± 0.37 30.75± 3.57 1.21± 0.30

Lasso 20.60± 3.77 −0.52± 0.39 8.44± 3.90 −0.03± 0.33 8.03± 3.90 −0.48± 0.39 18.45± 3.80 −0.86± 0.39

4.3 Real-world dataset: S&P 500 stock returns

Real-world data often exhibits complex dependencies among predictors and responses, ones that may
not even be modeled by our assumed generative process. However, our central hypothesis is that even
in messy, real-world systems, patterns that approximate our mediator and confounder structures are
common and highly predictive. CFA then acts as a powerful pattern-matcher, extracting these "good
enough" proxies to produce more robust and accurate predictions. To evaluate this hypothesis, we first
apply our method to a financial dataset, and also on four other real-world datasets in Appendix B.1.

We evaluate our method on data derived from daily closing prices of S&P 500 constituents for the
period of 2020–2025, with the goal of predicting next-day log returns of each stock using yesterday’s
log returns of all stocks. Predicting these returns is notoriously difficult because of high market
efficiency, inherent noise, and complex interdependencies. To capture varying market conditions,
we create multiple datasets using a rolling three-year window. For each window, we select stocks
with complete price data, ranging from 479 to 498, forming a multi-task regression problem where
n1 = n2 equals the number of selected stocks for that period. The number of samples N is the
number of trading days in the window, typically around 750, except the last window, which has 680
samples. The dataset is split chronologically into training, validation, and test sets, with a split of
70%/15%/15%. A detailed description of the data preprocessing steps is provided in Appendix A.3.

Results. Table 2 summarizes the train and test correlations between predicted and target log returns.
CFA consistently delivers strong out-of-sample performance, achieving the highest test correlation
in all four windows and showing smaller train–test gaps and thus reduced overfitting than strong
baselines; for example, Ridge often records higher training scores but does not generalize as well.
SHORE underperforms, likely due to its inherent assumption of sparse outputs, a characteristic
typically absent in financial time-series data.

Note that while the test correlations appear low, predicting next-day S&P 500 returns is notoriously
difficult due to market efficiency and high noise. Thus, in this literature, low single-digit out-of-sample
correlations are already meaningful and the 2–3% test correlations in Table 2 reflect genuine signal
rather than noise, making CFA’s consistent edge practically relevant.

5 Conclusion

We introduced Causal Feature Augmentation, a regression framework designed for high-dimensional,
multi-output regression by explicitly modeling latent causal structures—namely unobserved mediators
and confounders. We then proposed a multi-stage algorithm, CFA, that extracts these causal
relationships, constructs corresponding features, and solves an augmented regression problem.
Experiments on both synthetic and real-world datasets demonstrate that CFA outperforms baselines
by yielding sparser, more robust models with superior generalization. Promising future directions
include extending CFA to non-linear settings, incorporating soft clustering to capture overlapping
causal structure, and exploring alternative augmented regression formulations.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility statement

We have taken several steps to ensure reproducibility. An anonymous repository with Python
source code is provided at https://anonymous.4open.science/r/CFA. The source code
includes implementations of our CFA method in addition to all tested baselines, data generation
scripts, and experiment scripts. Moreover, the code is well-documented using the Google style. The
full experimental setup, including hardware specifications, dataset details, hyperparameter tuning,
and algorithmic specifics, is described in Appendix A. All theoretical assumptions and complete
proofs are provided in Appendix D.

LLM usage

We used LLMs as general-purpose assistive tools for (i) language polishing and paraphrasing, (ii)
drafting and refining TikZ figures from our own sketches/specifications, and (iii) writing and
debugging non-core code (e.g., experiment scripts, plotting utilities, small refactors). LLMs did
not contribute to research ideation, problem formulation, algorithmic design, theoretical results, or
the interpretation of experiments. Thus, LLM usage here was not significant enough to warrant
authorship.
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Appendix

A Additional experimental details

Here, we provide more details on the experiments presented in Section 4. Note that all experiments,
coded in Python 3.11, were conducted on a machine equipped two Intel Xeon E5-2680 v3 CPUs,
256GB of RAM, and running Ubuntu 24.04.1 LTS.

Metric We evaluate the predictive performance of all models using the average Pearson correlation
coefficient. Given the true target matrix Y ∈ RN×n2 and the corresponding prediction matrix
Ŷ ∈ RN×n2 , where N is the number of samples and n2 is the number of response variables (or
tasks), we first compute the Pearson correlation for each individual response variable. Specifically,
for each column j (where j = 1, . . . , n2), we calculate ρj = corr(Y:,j , Ŷ:,j), where Y:,j and Ŷ:,j

are the j-th columns of the true and predicted matrices, respectively. The final reported metric is the
arithmetic mean of these individual correlation coefficients. This metric ranges from -1 to 1, where 1
indicates perfect positive linear correlation, -1 indicates perfect negative linear correlation, and 0
indicates no linear correlation. Higher values signify better predictive accuracy.

A.1 Algorithms

Here, we provide the details of the parameters used and tuned for our approach as well as each
baseline. For all methods, hyperparameters are tuned using Hyperopt Bergstra et al. (2013),2 with the
Tree-structured Parzen Estimator (TPE), minimizing negative Pearson correlation on the validation set
for the S&P 500 dataset, and 3-fold cross validation for others. The number of Hyperopt evaluations
is 50.

• CFA: For dependency testing between predictors and responses, we use a thresholded 2-tailed
correlation t-test. We tune its p-value threshold in [0.01, 0.1]. We use bottom-up hierarchical
clustering with average linkage, for which we tune the number of clusters nc + nm ∈ [2, n1/5].
For cluster classification, we also tune the p-value threshold for the independence test in [0.01, 0.1].
After clustering, we use the Elastic Net regressor, detailed below, to solve the augmented regression
problem. To ensure a fair comparison with Elastic Net, we constrained the regularization to be
uniform across all feature types, using a single, global L1/L2 ratio and a single overall regularization
strength for the combined feature set [X,Z(m),Z(c)]. As a result, the final regression step in our
implementation of CFA has the exact same number of hyperparameters to tune as the standard
Elastic Net baseline.

• ElasticNet: We use the Elastic Net regressor from Scikit-learn Pedregosa et al. (2011),3 which
combines L1 and L2 penalties. We tune the regularization strength α ∈ [10−6, 102] and ℓ1-ratio
∈ [0, 1].

• Lasso: We use the Lasso regressor Tibshirani (1996) from Scikit-learn, which uses only the L1

penalty. We tune the regularization strength α ∈ [10−6, 102].
• Ridge: We use the Ridge regressor Hoerl & Kennard (1970) from Scikit-learn, which uses only the
L2 penalty. We tune the regularization strength α ∈ [10−6, 102].

• SHORE: The SHORE (Sparse & High-dimensional-Output REgression) regressor Li et al. (2024)
addresses multi-output regression by first compressing the high-dimensional output space into
a lower-dimensional latent space. It then learns a linear regressor in this compressed space and
finally predicts sparse, high-dimensional outputs through a specific iterative algorithm. We use
their official implementation.4 We tune its prediction singular value threshold (integer in [10, 100]),
number of compressed dimensions (integer in [10, n1/5]), and PGD learning rate ([10−4, 10−1]).

• PCR (Principal Component Regression): PCA is first applied to the predictors X, followed by an
ElasticNet regressor on the principal components. We tune the number of components in PCA to
retain a proportion of variance in [0.8, 0.99], and the Elastic Net’s hyperparameters as described
above.

2https://hyperopt.github.io/hyperopt/
3https://scikit-learn.org
4https://github.com/renyuanli/Solving_SHORE_via_compression/tree/main
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• CR (ClusterRegressor): A custom baseline for time-series forecasting where predictors X are first
clustered based on their Pearson correlation matrix. For each response Yj , an ElasticNet model is
trained using only the predictors Xi belonging to the same cluster as Xj . We tune the number of
clusters, clustering method (hierarchical or spectral), and for each ElasticNet, its regularization
strength α ∈ [10−1, 101] (log-uniform) and ℓ1-ratio ∈ [0, 1] (uniform).

• PLS (Partial Least Squares Regression): We use the PLS regression implementation of Scikit-
learn and we tune the number of PLS components (integer in [2, n1/5] for synthetic experiments).

• S-VAE (Supervised Variational Autoencoder): A VAE model with an additional regression
head that predicts Y from the latent space Z, trained end-to-end. We tune the encoder/decoder
hidden layer dimensions (choices from pre-defined architectures like [128, 64]), latent space
dimensionality (integer in [5, n1/5]), learning rate ([10−6, 10−1]), and the weights for VAE loss
αV AE ∈ [10−3, 101] and supervised loss βsup ∈ [10−3, 101].

A.2 Synthetic Dataset

The synthetic dataset is generated using the following procedure:

1. Latent Confounders (Z(c)): nc latent confounder variables Z(c)
k are drawn independently, with

each Z
(c)
k ∼ N (0, σ2

zc,k
) where standard deviations σzc,k are sampled uniformly from U(2, 4).

2. Predictors (X): The n1 predictors are randomly assigned to one of the nm + nc clusters.
• For Xi in a confounder cluster k: Xi = wiZ

(c)
k + ϵXi , where the weight wi ∼ U(2, 4) and

ϵXi
∼ N (0, σ2

x,i) with σx,i ∼ U(2, 4).
• For Xi in a mediator cluster: Xi ∼ N (0, σ2

xm,i) with σxm,i ∼ U(5, 7) to ensure these predictors
have substantial variance.

3. Mediator Features (Z(m)): The nm mediator features Z(m)
k are constructed by averaging the

predictors Xi within each respective mediator cluster.
4. Responses (Y): The n2 responses are generated via the linear model Y = XB(d) +Z(m)B(m) +

Z(c)B(c) + E. The coefficient matrices B(d) ∈ Rn1×n2 , B(m) ∈ Rnm×n2 , and B(c) ∈ Rnc×n2

are sparse. Non-zero entries are drawn from U([−1.5,−0.5] ∪ [0.5, 1.5]) for B(d) and B(c), and
from U([−3,−1] ∪ [1, 3]) for B(m) (reflecting stronger mediator effects). The sparsity pattern is
determined by probabilities pxy = 0.006 for X → Y direct effects, pzmy = 0.04 for Z(m) → Y

mediator effects, and pzcy = 0.04 for Z(c) → Y confounder effects. The final noise E consists of
columns Ej ∼ N (0, σ2

noise,j), where σnoise,j ∼ U(1, 2).

A.3 S&P 500 Dataset

We generate a series of datasets using a rolling window approach, starting from 2020-01-01 until
2025-08-30. Each dataset corresponds to a three-year period of market data (e.g., 2020-01-01 to
2022-12-31 for the "2020-2022" window), with the start year of these windows rolling forward
annually from 2020 up to 2023. For each three-year window, we perform the following processing
steps:

1. Stock Selection: We retain only those S&P 500 stocks that have complete daily closing price data
throughout the specific three-year window. This results in a varying number of stocks (ns) for
each dataset window, where n1 = n2 = ns. The average number of stocks across all datasets is
approximately 495.

2. Predictor Generation (X): The predictors are based on past 1-day log returns. For each stock i
and day t, the daily log return is ri,t = log(Pi,t/Pi,t−1). These returns are then cross-sectionally
demeaned for each day t (i.e., r̃i,t = ri,t − 1

ns

∑ns

j=1 rj,t). Finally, an Exponentially Weighted
Moving Average (EWMA) with a halflife of 3 days is applied to these demeaned log returns to
form the predictor features Xi,t.

3. Response Generation (Y): The responses are the 1-day ahead future log returns. For each
stock i and day t, the future log return is yi,t = log(Pi,t+1/Pi,t). These future returns are also
cross-sectionally demeaned, similar to the predictors.
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Table 3: The number of stocks and trading days in each three-year window of the S&P 500 dataset.

Window 2020–2022 2021–2023 2022–2024 2023–2025

Nr. of stocks (n1 = n2) 490 495 496 498
Nr. of trading days (N ) 754 751 750 680

4. Alignment and Cleaning: Days for which either predictor or response data are incomplete (due
to initial shifts or EWM calculations) are removed.

5. Train-Validation-Test Split: For each three-year window dataset, the available daily samples
are split chronologically into training, validation, and testing sets. The first 70% of the temporal
data forms the training set, the subsequent 15% and 15% constitute the validation and test sets,
ensuring no future information leakage.

6. Standardization: Both the training predictors Xtrain and training responses Ytrain are standardized
independently (to have zero mean and unit variance). The scaling parameters learned from the
training set are then applied to standardize Xtest and Ytest.

Table 3 summarizes the number of stocks and trading days in each three-year window of the S&P 500
dataset. The number of stocks varies slightly across windows due to the rolling nature of the dataset,
while the number of trading days is consistent across most windows, with a slight reduction in the last
window due to the incomplete data at the time of writing.

B Additional experimental results

B.1 Mixed real-world datasets

We further evaluate our method on four other real-world datasets (Spyromitros-Xioufis et al., 2016)
from diverse domains, with mixtures of continuous, discrete, and categorical data. These are:

• Airline ticket prices (ATP-7D): This time-ordered dataset involves predicting the minimum
ticket price over the next 7 days for 6 different flight preferences. The 411 input features are
highly heterogeneous, including the number of days until departure, boolean day-of-the-week
indicators, and a wide array of price and quote statistics from multiple airlines and stopover
options, providing a rich mix of variable types.

• Occupational employment survey (OES-10): Sourced from the US Bureau of Labor
Statistics, this dataset presents a cross-sectional regression task. The goal is to predict
the number of full-time employees for a set of target job types within 403 different US
cities. The input variables are the employment numbers for other job categories, creating
a high-dimensional problem where latent economic factors likely confound employment
across different sectors.

• River flow (RF-2): This dataset contains hourly time-series data from 8 sites in the
Mississippi River network. The task is to predict river flows 48 hours into the future, using
past flow observations from all sites as well as discrete precipitation forecasts. The physical
connectivity of the river network provides a strong real-world basis for the existence of
mediator and confounder structures.

• Supply chain management (SCM-1D): Derived from a complex trading agent competition,
this dataset requires predicting the next-day mean price for 16 different products. The
features include current and time-lagged prices from a simulated economy with 18 competing
games.

We use a 80%/20% split for training and testing. We tune the hyperparameters of each method
using TPE and 3-fold cross-validation on the training set, selecting the best configuration based on
validation performance. We then retrain the model on the full training set with these hyperparameters
and evaluate on the test set.
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Figure 4: F1-score of CFA in recovering the true latent graph on synthetic data, varying the number
of samples N . The shaded area represents the 95% confidence interval over 20 runs.

Results. The final training and test Pearson correlations are reported in Table 4. Across all four
datasets, CFA delivers the highest test-set performance. Crucially, its training performance is not
always the highest; methods like Ridge and Lasso achieve near-perfect training scores but generalize
poorly, indicating severe overfitting. CFA’s ability to find a solution that is both highly accurate and
robust demonstrates its superior ability to prevent overfitting. This supports our central hypothesis:
simply regularizing the learning process is less effective than proactively identifying latent structures
and constructing new, information-rich causal features. By simplifying the underlying learning task,
CFA enables the model to achieve better and more reliable generalization.

Table 4: Train and test Pearson correlations (%) on datasets from Mulan (Spyromitros-Xioufis et al.,
2016). Each cell reports value ± uncertainty, where uncertainty is the Fisher-z 95% CI width. Bold
indicates the highest test within each window. Rows sorted by test correlation.

ATP-7D OES-10 RF-2 SCM-1D
Train Test Train Test Train Test Train Test

CFA 93.5± 1.6 80.3± 4.4 98.0± 0.5 96.1± 1.0 98.7± 0.3 93.9± 1.5 95.1± 1.2 89.6± 2.5

ElasticNet 93.8± 1.5 75.6± 5.3 96.8± 0.8 92.9± 1.7 98.5± 0.4 90.3± 2.3 95.8± 1.0 86.6± 3.1

Lasso 98.0± 0.5 70.6± 6.2 98.3± 0.4 92.6± 1.8 95.8± 1.0 90.7± 2.2 98.0± 0.5 84.8± 3.5

Ridge 99.0± 0.2 72.9± 5.8 99.6± 0.1 92.8± 1.7 99.6± 0.1 85.8± 3.3 99.1± 0.2 83.6± 3.7

PCR 79.2± 4.6 74.4± 5.5 94.7± 1.3 92.3± 1.8 89.6± 2.5 81.3± 4.2 86.5± 3.1 80.5± 4.4

PLS 97.3± 0.7 52.3± 9.0 96.9± 0.8 93.0± 1.7 97.2± 0.7 67.1± 6.8 94.3± 1.4 84.8± 3.5

SHORE 82.4± 4.0 73.2± 5.8 87.1± 3.0 92.0± 1.9 76.7± 5.1 51.7± 9.1 89.9± 2.4 78.5± 4.8

S-VAE 43.1± 10.1 31.8± 11.2 88.2± 2.8 91.4± 2.0 76.7± 5.1 63.7± 7.4 74.1± 5.6 66.8± 6.9

B.2 True latent graph recovery

Here, we analyze the ability of CFA to recover the true latent graph structure when given data that is
actually generated from the causal model we assume (i.e., the model in Section 2). Specifically, we
evaluate how well our causal clustering step correctly identifies which predictors belong to which
mediator and confounder clusters, and which clusters are connected to which responses. We report
the F1-score for this cluster assignment task across different sample sizes.

The results, shown in Figure 4, demonstrate that CFA is indeed capable of accurately recovering the
true underlying model, and its recovery performance improves rapidly with more data. As shown,
even with only 200 samples, CFA achieves an F1-score of 0.92, and it approaches perfect recovery
with 300 samples. This provides strong empirical evidence that our method is not just a black-box
predictive model but is successfully identifying and leveraging the ground-truth causal structures as
intended, when such structures exist.
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C Computational complexity analysis

In this section, we analyze the computational complexity of our proposed CFA method, both
theoretically and empirically.

C.1 Theoretical analysis

The scalability of CFA before the augmented regression is determined by its most computationally
intensive stage: Causal Clustering. The complexities of the other pre-processing steps (cluster
classification and feature construction) are subsumed by this stage. A naive approach would compute
a dense n1 × n1 similarity matrix, costing O(n2

1n2). Our implementation, however, relies on an
optimized approach that builds a sparse similarity graph directly. This is highly effective because,
in most real-world high-dimensional systems, causal dependencies are localized—a given predictor
typically affects only a small subset of responses.

The optimized algorithm proceeds in two main steps:

1. Dependency identification: We first perform pairwise dependency tests between all predictors
and all responses. This step costs O(Nn1n2) and is embarrassingly parallelizable.

2. Sparse similarity construction: For each response Yk, we identify the subset of dk predictors
that are dependent on it. We then only increment the similarity scores for pairs of predictors within
this much smaller subset. The total cost for this step across all responses is O(

∑n2

k=1 d
2
k).

Therefore, the total time complexity of CFA is

O

(
Nn1n2 +

n2∑
k=1

d2k

)
+ TElasticNet(N,n1 + nc + nm, n2),

where TElasticNet(N,n1 + nc + nm, n2) is the cost of the Elastic Net regression with N samples,
n1 + nc + nm predictors, and n2 responses. Given that an Elastic Net solver requires O(n2N(n1 +
nc + nm)K) time, where K is the number of iterations, the full complexity is

O

(
Nn1n2 +

n2∑
k=1

d2k + n2N(n1 + nc + nm)K

)
.

This complexity is nearly linear in the number of predictors and avoids the quadratic or cubic scaling
bottlenecks. Thus, the CFA framework is computationally scalable to large-scale applications.

C.2 Empirical analysis

To empirically validate this theoretical analysis, we measured the wall-clock time of our method on
synthetic data with N = 500 samples while varying the number of predictors (n1) and responses
(n2). The results, shown in Table 5, confirm that CFA is highly scalable in practice. For instance,
even in a challenging high-dimensional setting with 4,000 predictors and 4,000 responses, our
Python implementation completes in just over 1.5 minutes on a standard laptop (MacBook Pro M1),
demonstrating its feasibility for large-scale applications.

D Proofs

Theorem 3.1 (Dependence via causal graph structures). Under the generative model described in
Section 2, for any distinct pair of responses (Xi, Xj), and any response variable Yk, we have:

Xi ⊥̸⊥ Yk and Xj ⊥̸⊥ Yk ⇐⇒ Gijk is non-empty.

Remark D.1. The proof of Theorem 3.1 relies on the notion of d-separation (Pearl, 2009), which
characterizes conditional independence relations in a causal graph. In general, equivalence between
d-separation and conditional independence requires the assumption of faithfulness. However, for our
purposes, we only require the milder assumption that marginal independence between any pair of
variables implies d-separation (i.e., no active paths between them).
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Table 5: Empirical wall-clock time (in minutes) of CFA on synthetic data with N = 500 samples,
varying the number of predictors (n1) and responses (n2). Each entry reports the mean and standard
deviation over 20 runs.

n1\n2 500 1000 2000 4000

500 0.01 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.06 ± 0.01
1000 0.03 ± 0.01 0.05 ± 0.01 0.09 ± 0.01 0.20 ± 0.01
2000 0.07 ± 0.01 0.13 ± 0.01 0.25 ± 0.02 0.56 ± 0.05
4000 0.20 ± 0.02 0.41 ± 0.03 0.78 ± 0.06 1.57 ± 0.14

Proof. We begin with the following lemma.

Lemma D.1. Under the causal generative model in Section 2, a variable Xi is dependent on Yk (i.e.,
Xi ⊥̸⊥ Yk) if and only if they share at least one common ancestor5. This ancestor may be Xi itself or
an upstream latent variable.

This lemma follows from the standard d-separation criterion in causal graphical models (see, e.g.,
Pearl (2009)). We now prove the theorem by enumerating the five cluster configurations in Table 1 and
applying Lemma D.1 to characterize all possible structures in which both Xi and Xj are dependent
on Yk.

Case (i): Xi, Xj ∈ I(m)
t . There are two graph structures shown in Table 1: (1) Both Xi and Xj

directly causing Yk, and (2) both cause a shared mediator Z(m)
t , which then cause Yk. In either case,

both Xi and Xj are ancestors of Yk, thus Lemma D.1 implies they are each dependent on Yk.

For the converse, suppose both Xi and Xj are dependent on Yk. Lemma D.1 implies they both
have a common ancestor with Yk. Since the only ancestors of both Xi and Xj are themselves, they
both should be ancestors of Yk. Hence, either both have direct edges to Yk, or the mediator Z(m)

t is
connected to Yk, which are the structures shown in the table.

Case (ii): Xi, Xj ∈ I(c)
t . Table 1 lists a dashed box around Z

(c)
t and its children, with a dashed edge

to Yk indicating that at least one of them causes Yk. If any such connection exists, then Z
(c)
t becomes

a common ancestor of both Xi and Yk, and similarly of Xj and Yk, ensuring both dependencies by
Lemma D.1.

Conversely, suppose Xi ⊥̸⊥ Yk. If Xi is not directly connected to Yk, it must be d-connected via a
common ancestor. Since its only ancestor is Z(c)

t , either Z(c)
t or one of its other children must cause

Yk, again implying one of the structures shown in the table. The same argument applies symmetrically
to Xj .

Case (iii): Xi ∈ I(m)
t1 , Xj ∈ I(m)

t2 , with t1 ̸= t2. Table 1 shows the structures where each of Xi

and Xj (or their corresponding mediators) causes Yk. In these cases, both predictors are ancestors of
Yk, so dependence follows by Lemma D.1.

Conversely, if both Xi and Xj are dependent on Yk, they must each be ancestors of Yk, as neither
has any other ancestors. This occurs if either they directly cause Yk or their respective mediators
do—matching the graphs in the table.

Case (iv): Xi ∈ I(c)
t1 , Xj ∈ I(c)

t2 , with t1 ̸= t2. This case follows directly from the reasoning in
Case (ii), applied separately to Xi and Xj and their respective confounders Z(c)

t1 and Z
(c)
t2 . Since

these confounders are disjoint, both dependencies occur if and only if the structures in the table hold.

5A variable A is an ancestor of variable B if there exists a directed path from A to B.
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Case (v): Xi ∈ I(m)
t1 , Xj ∈ I(c)

t2 . This case directly combines the arguments from Cases (iii) and
(iv), applied respectively to Xi and Xj . Each must satisfy the structural conditions identified in their
corresponding cases for both to be dependent on Yk. Hence, the structures shown in the table are both
necessary and sufficient.

Theorem 3.2 (Probabilistic justification of the similarity metric). Under the edge-generation model
of Assumption 1, Table 1 lists the probabilities of Gijk being non-empty conditioned on each of the
five cases of the table. These probabilities, which are a consequence of Assumption 1, imply

P (|Gijk| > 0 | Xi, Xj in the same cluster) > P (|Gijk| > 0 | Xi, Xj in different clusters) ,

where |Gijk| denotes the cardinality of the set of causal subgraphs compatible with the underlying
model of Section 2.

Proof. We first compute the exact probabilities in each of the five valid cases in Table 1.

Same-cluster cases: (i) If Xi, Xj ∈ I(m)
t , the graphs in Gijk arise either from edges Z(m)

t → Yk

or both Xi → Yk and Xj → Yk. These events are independent with probabilities pmy and p2xy, and
their intersection occurs with probability pmy · p2xy . Thus

P(|Gijk| > 0 | Xi, Xj ∈ I(m)
t ) = pmy + p2xy − pmyp

2
xy = pmy + (1− pmy)p

2
xy.

(ii) If Xi, Xj ∈ I(c)
t , both share the same latent confounder Z(c)

t . The response Yk must be connected
either to this confounder (with probability pcy) or to any of the mc predictors in the cluster (each
connected with probability pxy). The probability that all these fail is (1− pcy)(1− pxy)

mc , hence

P(|Gijk| > 0 | Xi, Xj ∈ I(c)
t ) = 1− (1− pcy)(1− pxy)

mc .

Different-cluster cases: (iii) If Xi ∈ I(m)
t1 , Xj ∈ I(m)

t2 , t1 ̸= t2, the graphs arise when at least one
of {Xi, Z

(m)
t1 } and one of {Xj , Z

(m)
t2 } connect to Yk. These two events are independent, and each of

them occurs with probability 1− (1− pxy)(1− pmy), yielding

P(|Gijk| > 0 | Xi ∈ I(m)
t1 , Xj ∈ I(m)

t2 ) = (1− (1− pxy)(1− pmy))
2
.

(iv) If Xi ∈ I(c)
t1 , Xj ∈ I(c)

t2 with t1 ̸= t2, the causal structures connecting Xi and Xj to Yk are
independent. For each confounder cluster, dependence arises if either the confounder itself or one of
its children (i.e., the variables in the corresponding cluster) is connected to Yk. The probability that
none of these are connected is (1− pcy)(1− pxy)

mc . Thus, the probability that the graph Gijk is not
empty is

P(|Gijk| > 0 | Xi ∈ I(c)
t1 , Xj ∈ I(c)

t2 ) = (1− (1− pcy)(1− pxy)
mc)

2
.

(v) If Xi ∈ I(m)
t1 , Xj ∈ I(c)

t2 , the event |Gijk| > 0 occurs if both blocks I(m)
t1 and I(c)

t2 induce
dependence with Yk. For the mediator-side, dependence arises from either Xi or Z(m)

t1 connecting
to Yk, which happens with probability 1− (1− pxy)(1− pmy). For the confounder-side, the same
logic as in Case (iv) applies, giving probability 1− (1− pcy)(1− pxy)

mc . Since these two sides are
independent, the probability that the graph Gijk is not empty is

P(|Gijk| > 0 | Xi ∈ I(m)
t1 , Xj ∈ I(c)

t2 ) = (1− (1− pxy)(1− pmy)) (1− (1− pcy)(1− pxy)
mc) .

We now derive the approximations listed in Table 1, using the assumption that all edge probabilities
pxy, pmy, pcy ≪ 1, and retaining only first- or second-order terms as appropriate:

(i) P(|Gijk| > 0 | Xi, Xj ∈ I(m)
t ) = pmy + (1− pmy)p

2
xy ≈ pmy, since p2xy is second order and

negligible compared to pmy .

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(ii) P(|Gijk| > 0 | Xi, Xj ∈ I(c)
t ) = 1 − (1 − pcy)(1 − pxy)

mc . Expanding and discarding
second-order terms like pcypxy and pkxy for k ≥ 2, we get the approximation

≈ pcy +mcpxy.

(iii) P(|Gijk| > 0 | Xi ∈ I(m)
t1 , Xj ∈ I(m)

t2 ) = (1− (1− pxy)(1− pmy))
2 ≈ (pxy + pmy)

2.

(iv) P(|Gijk| > 0 | Xi ∈ I(c)
t1 , Xj ∈ I(c)

t2 ) = (1− (1− pcy)(1− pxy)
mc)

2. As in (ii), we
approximate it by

≈ (pcy +mcpxy)
2.

(v) P(|Gijk| > 0 | Xi ∈ I(m)
t1 , Xj ∈ I(c)

t2 ) = (1− (1− pxy)(1− pmy)) ×
(1− (1− pcy)(1− pxy)

mc), which we approximate as
≈ (pxy + pmy)(pcy +mcpxy).

We now complete the proof using the calculated probabilities. Let πc ∈ [0, 1] denote the prior
probability that a given predictor Xj belongs to a confounder cluster; thus, the prior probability of
belonging to a mediator cluster is πm = 1− πc. Note that the assignments of variables to clusters are
independent. Conditioned on same-cluster membership, the probability that (Xi, Xj) belong to a
mediator cluster is

P(same mediator cluster | same cluster) =
π2
m

π2
m + π2

c

,

and similarly for confounder clusters:

P(same confounder cluster | same cluster) =
π2
c

π2
m + π2

c

.

Therefore,

P(|Gijk| > 0 | Xi, Xj in same cluster) =
π2
m

π2
m + π2

c

· P same
mm +

π2
c

π2
m + π2

c

· P same
cc ,

where
P same
mm := P(|Gijk| > 0 | Xi, Xj ∈ I(m)

t ), P same
cc := P(|Gijk| > 0 | Xi, Xj ∈ I(c)

t ).

For different-cluster pairs, the three configurations occur with probabilities:
P(mm-diff) = π2

m, P(cc-diff) = π2
c , P(mc-diff) = 2πmπc.

Hence,
P(|Gijk| > 0 | Xi, Xj in different clusters) = π2

m · P diff
mm + π2

c · P diff
cc + 2πmπc · P diff

mc .

Substituting the approximations:
P same
mm ≈ pmy,

P same
cc ≈ pcy +mcpxy,

P diff
mm ≈ (pmy + pxy)

2,

P diff
cc ≈ (pcy +mcpxy)

2,

P diff
mc ≈ (pmy + pxy)(pcy +mcpxy),

we conclude:

P(|Gijk| > 0 | Xi, Xj in same cluster) ≈ π2
m

π2
m + π2

c

pmy +
π2
c

π2
m + π2

c

(pcy +mcpxy),

P(|Gijk| > 0 | Xi, Xj in different clusters) ≈ π2
m(pmy + pxy)

2 + π2
c (pcy +mcpxy)

2

+2πmπc(pmy + pxy)(pcy +mcpxy) = (πm(pmy + pxy) + πc(pcy +mcpxy))
2.

Since the first probability is a first-order quantity and the second one is second-order in small
parameters, for sufficiently small pxy, pmy, pcy , the inequality holds, completing the proof.
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