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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable text generation
capabilities, and recent advances in training paradigms have led to breakthroughs
in their reasoning performance. In this work, we investigate how the reasoning
effort of such models scales with problem complexity. We use the infinitely scal-
able Tents puzzle, which has a known linear-time solution, to analyze this scaling
behavior. Our results show that reasoning effort scales with problem size, but only
up to a critical problem complexity. Beyond this threshold, the reasoning effort
does not continue to increase, and may even decrease. This observation highlights
a critical limitation in the logical coherence of current LLMs as problem com-
plexity increases, and underscores the need for strategies to improve reasoning
scalability. Furthermore, our results reveal significant performance differences
between current state-of-the-art reasoning models when faced with increasingly
complex logical puzzles.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable abilities in a wide range
of natural language tasks, from text generation to complex problem-solving. Recent ad-
vances, particularly with models trained for enhanced reasoning, have pushed the bound-
aries of what machines can achieve in tasks requiring logical inference and deduction.

Figure 1: An example instance of
a partially solved 6 by 6 tents puz-
zle. Tents need to be placed next
to trees, away from other tents and
fulfilling the row and column con-
straints.

A critical factor in the success of these advanced models is the
ability to leverage increased computational resources at test
time, allowing them to explore more intricate solution spaces.
This capability raises a fundamental question: how does the
”reasoning effort” of these models scale as the complexity of
the problem increases?

Understanding this scaling relationship is crucial for several
reasons. First, it sheds light on the fundamental nature of rea-
soning within LLMs, moving beyond simply measuring accu-
racy on isolated tasks. By examining how the computational
demands, reflected in token usage, evolve with problem diffi-
culty, we can gain insights into the efficiency and potential bot-
tlenecks of current LLM architectures. Second, characterizing
this scaling behavior is essential for designing more effective
and resource-efficient reasoning models in the future.

In this work, we address this question by investigating the scal-
ing of reasoning effort in LLMs using a specific, infinitely scal-
able logic puzzle: the Tents puzzle1 (see Figure 1). This puzzle
offers a controlled environment for studying algorithmic rea-
soning, as its problem size can be systematically increased, and it possesses a known linear-time

1The puzzle is available to play in the browser at https://www.chiark.greenend.org.uk/
˜sgtatham/puzzles/js/tents.html
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solution. Our analysis focuses on how the number of tokens used by state-of-the-art reasoning
LLMs changes as the puzzle grid size grows. In addition to reasoning effort, we also evaluate the
success rate across different puzzle sizes to provide a comprehensive view of their performance.

2 RELATED WORK

The exploration of reasoning abilities in large language models (LLMs) is a rapidly evolving field
with significant implications for artificial intelligence. Several benchmarks have been developed to
evaluate the reasoning capabilities of LLMs across various domains. These benchmarks provide
standardized tasks and evaluation metrics to assess and compare different models. Notable bench-
marks include GSM8K (Cobbe et al., 2021), ARC-AGI (Chollet, 2019), GPQA (Rein et al., 2023),
MMLU (Hendrycks et al., 2020), SWE-bench (Jimenez et al., 2023) and NPhard-eval (Fan et al.,
2023). These benchmarks cover topics from mathematics to commonsense reasoning and coding.
More recently, also math competitions such as AIME2024 (of America, 2024) have been used to
evaluate the newest models. Estermann et al. (2024) have introduced PUZZLES, a benchmark fo-
cusing on algorithmic and logical reasoning for reinforcement learning. While PUZZLES does not
focus on LLMs, except for a short ablation in the appendix, we argue that the scalability provided by
the underlying puzzles is an ideal testbed for testing extrapolative reasoning capabilities in LLMs.

The reasoning capabilities of traditional LLMs without specific prompting strategies are quite lim-
ited (Huang & Chang, 2022). Using prompt techniques such as chain-of-thought (Wei et al., 2022),
least-to-most (Zhou et al., 2022) and tree-of-thought (Yao et al., 2023), the reasoning capabilities
of traditional LLMs can be greatly improved. Lee et al. (2024) have introduced the Language of
Thought Hypothesis, based on the idea that human reasoning is rooted in language. Lee et al. pro-
pose to see the reasoning capabilities through three different properties: Logical coherence, compo-
sitionality and productivity. In this work we will mostly focus on the aspect of algorithmic reasoning,
which falls into logical coherence. Specifically, we analyze the limits of logical coherence.

With the release of OpenAI’s o1 model, it became apparent that new training strategies based on
reinforcement learning are able to boost the reasoning performance even further. Since o1, there
now exist a number of different models capable of enhanced reasoning (Guo et al., 2025; DeepMind,
2025; Qwen, 2024; OpenAI, 2025). Key to the success of these models is the scaling of test-time
compute. Instead of directly producing an answer, or thinking for a few steps using chain-of-thought,
the models are now trained to think using several thousands of tokens before coming up with an
answer.

3 METHODS

3.1 THE TENTS PUZZLE PROBLEM

In this work, we employ the Tents puzzle, a logic problem that is both infinitely scalable and solvable
in linear time2, making it an ideal testbed for studying algorithmic reasoning in LLMs. The Tents
puzzle, popularized by Simon Tatham’s Portable Puzzle Collection (Tatham), requires deductive
reasoning to solve. The puzzle is played on a rectangular grid, where some cells are pre-filled with
trees. The objective is to place tents in the remaining empty cells according to the following rules:

• no two tents are adjacent, even diagonally

• there are exactly as many tents as trees and the number of tents in each row and column
matches the numbers around the edge of the grid

• it is possible to match all tents to trees so that each tent is orthogonally adjacent to its own
tree (a tree may also be adjacent to other tents).

An example instance of the Tents puzzle is visualized in Figure 1 in the Introduction. The scalability
of the puzzle is achieved by varying the grid dimensions, allowing for systematic exploration of
problem complexity. Where not otherwise specified, we used the ”easy” difficulty preset available

2See a description of the algorithm of the solver as part of the PUZZLES benchmark here: https://
github.com/ETH-DISCO/rlp/blob/main/puzzles/tents.c#L206C3-L206C67
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in the Tents puzzle generator, with ”tricky” being evaluated in Appendix A.2.1. Crucially, the Tents
puzzle is designed to test extrapolative reasoning as puzzle instances, especially larger ones, are
unlikely to be present in the training data of LLMs. We utilized a text-based interface for the Tents
puzzle, extending the code base provided by Estermann et al. (2024) to generate puzzle instances
and represent the puzzle state in a format suitable for LLMs.

Models were presented with the same prompt (detailed in Appendix A.1) for all puzzle sizes and
models tested. The prompt included the puzzle rules and the initial puzzle state in a textual format.
Models were tasked with directly outputting the solved puzzle grid in JSON format. This one-shot
approach contrasts with interactive or cursor-based approaches previously used in (Estermann et al.,
2024), isolating the reasoning process from potential planning or action selection complexities.

3.2 EVALUATION CRITERIA

Our evaluation focuses on two key metrics: success rate and reasoning effort. Success is assessed
as a binary measure: whether the LLM successfully outputs a valid solution to the Tents puzzle in-
stance, adhering to all puzzle rules and constraints. We quantify problem complexity by the problem
size, defined as the product of the grid dimensions (rows × columns). To analyze the scaling of
reasoning effort, we measure the total number of tokens generated by the LLMs to produce the final
answer, including all thinking tokens. We hypothesize a linear scaling relationship between problem
size and reasoning effort, and evaluate this hypothesis by fitting a linear model to the observed token
counts as a function of problem size. The goodness of fit is quantified using the R2 metric, where
scores closer to 1 indicate that a larger proportion of the variance in reasoning effort is explained by
a linear relationship with problem size. Furthermore, we analyze the percentage of correctly solved
puzzles across different problem sizes to assess the performance limits of each model.

3.3 CONSIDERED MODELS

We evaluated the reasoning performance of the following large language models known for their
enhanced reasoning capabilities: Gemini 2.0 Flash Thinking (DeepMind, 2025), OpenAI o3-
mini (OpenAI, 2025), DeepSeek R1 Guo et al. (2025), and Qwen/QwQ-32B-Preview Qwen (2024).

4 RESULTS
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Figure 2: (a) Reasoning effort in number of reasoning tokens versus problem size for DeepSeek R1,
o3-mini, and Qwen/QwQ-32B-Preview. Successful attempts only. Linear fits are added for each
model. Gemini 2.0 Flash Thinking is excluded due to unknown number of thinking tokens.
(b) Solved percentage versus problem size for all models. No model solved problems larger than
size 100. o3-mini achieves the highest success rate, followed by DeepSeek R1 and Gemini 2.0 Flash
Thinking. Qwen/QwQ-32B-Preview struggles with problem instances larger than size 20.

The relationship between reasoning effort and problem size reveals interesting scaling behaviors
across the evaluated models. Figure 2a illustrates the scaling of reasoning effort, measured by the
number of reasoning tokens, as the problem size increases for successfully solved puzzles. For
DeepSeek R1 and o3-mini, we observe a roughly linear increase in reasoning effort with problem
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size. Notably, the slopes of the linear fits for R1 and o3-mini are very similar, suggesting compara-
ble scaling behavior in reasoning effort for these models, although DeepSeek R1 consistently uses
more tokens than o3-mini across problem sizes. Qwen/QwQ-32B-Preview shows a weaker linear
correlation, likely due to the limited number of larger puzzles it could solve successfully.

The problem-solving capability of the models, shown in Figure 2b, reveals performance limits as
problem size increases. None of the models solved puzzles with a problem size exceeding 100. o3-
mini demonstrates the highest overall solvability, managing to solve the largest problem instances,
followed by DeepSeek R1 and Gemini 2.0 Flash Thinking. Qwen/QwQ-32B-Preview’s performance
significantly degrades with increasing problem size, struggling to solve instances larger than 25.
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Figure 3: (a) Reasoning effort in number of reasoning tokens versus problem size for o3-mini.
A peak in reasoning effort is observed around problem size 100, followed by a decline for larger
problem sizes. (b) Reasoning effort in number of reasoning tokens versus problem size for o3-mini,
categorized by low, medium, and high reasoning effort strategies. Steeper slopes are observed for
higher reasoning effort strategies. High reasoning effort enables solving larger instances but also
increases token usage for smaller, already solvable problems.

A more detailed analysis of o3-mini’s reasoning effort (Figure 3a) reveals a non-monotonic trend.
While generally increasing with problem size initially, reasoning effort peaks around a problem size
of 100. Beyond this point, the reasoning effort decreases, suggesting a potential ”frustration” effect
where increased complexity no longer leads to proportionally increased reasoning in the model. The
same behavior could not be observed for other models, see Appendix A.2.2. It would be interesting
to see the effect of recent works trying to optimize reasoning length would have on these results
(Luo et al., 2025).

Figure 3b further explores o3-mini’s behavior by categorizing reasoning effort into low, medium,
and high strategies. The steepness of the scaling slope increases with reasoning effort, indicating
that higher effort strategies lead to a more pronounced increase in token usage as problem size grows.
While high reasoning effort enables solving larger puzzles (up to 10x10), it also results in a higher
token count even for smaller problems that were already solvable with lower effort strategies. This
suggests a trade-off where increased reasoning effort can extend the solvable problem range but may
also introduce inefficiencies for simpler instances.

5 CONCLUSION

This study examined how reasoning effort scales in LLMs using the Tents puzzle. We found that rea-
soning effort generally scales linearly with problem size for solvable instances. Model performance
varied, with o3-mini and DeepSeek R1 showing better performance than Qwen/QwQ-32B-Preview
and Gemini 2.0 Flash Thinking. These results suggest that while LLMs can adapt reasoning effort to
problem complexity, their logical coherence has limits, especially for larger problems. Future work
should extend this analysis to a wider variety of puzzles contained in the PUZZLES benchmark
to include puzzles with different algorithmic complexity. These insights could lead the way to find
strategies to improve reasoning scalability and efficiency, potentially by optimizing reasoning length
or refining prompting techniques. Understanding these limitations is crucial for advancing LLMs in
complex problem-solving.
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A APPENDIX

A.1 FULL PROMPT

The full prompt used in the experiments is the following, on the example of a 4x4 puzzle:

You a r e a l o g i c p u z z l e e x p e r t . You w i l l be g i v e n a l o g i c p u z z l e t o
s o l v e . Here i s a d e s c r i p t i o n o f t h e p u z z l e :

You have a g r i d o f s q u a r e s , some of which c o n t a i n t r e e s . Your aim
i s t o p l a c e t e n t s i n some of t h e r e m a i n i n g s q u a r e s , i n such a way
t h a t t h e f o l l o w i n g c o n d i t i o n s a r e met :
There a r e e x a c t l y a s many t e n t s a s t r e e s .
The t e n t s and t r e e s can be matched up i n such a way t h a t each t e n t

i s d i r e c t l y a d j a c e n t ( h o r i z o n t a l l y o r v e r t i c a l l y , b u t n o t
d i a g o n a l l y ) t o i t s own t r e e . However , a t e n t may be a d j a c e n t t o
o t h e r t r e e s a s w e l l a s i t s own .
No two t e n t s a r e a d j a c e n t h o r i z o n t a l l y , v e r t i c a l l y o r d i a g o n a l l y .
The number o f t e n t s i n each row , and i n each column , matches t h e
numbers g i v e n i n t h e row or column c o n s t r a i n t s .
Gras s i n d i c a t e s t h a t t h e r e c a n n o t be a t e n t i n t h a t p o s i t i o n .
You r e c e i v e an a r r a y r e p r e s e n t a t i o n o f t h e p u z z l e s t a t e a s a g r i d .

Your t a s k i s t o s o l v e t h e p u z z l e by f i l l i n g o u t t h e g r i d wi th t h e
c o r r e c t v a l u e s . You need t o s o l v e t h e p u z z l e on your own , you

c a n n o t use any e x t e r n a l r e s o u r c e s o r run any code . Once you have
s o l v e d t h e puzz l e , t e l l me t h e f i n a l answer w i t h o u t e x p l a n a t i o n .
Re tu rn t h e f i n a l answer as a JSON a r r a y o f a r r a y s .
Here i s t h e c u r r e n t s t a t e o f t h e p u z z l e a s a s t r i n g o f t h e
i n t e r n a l s t a t e r e p r e s e n t a t i o n :

A 0 r e p r e s e n t s an empty c e l l , a 1 r e p r e s e n t s a t r e e , a 2
r e p r e s e n t s a t e n t , and a 3 r e p r e s e n t s a g r a s s p a t c h .
T e n t s p u z z l e s t a t e :
C u r r e n t g r i d :
[ [ 0 0 1 0]

[0 1 0 0]
[1 0 0 0]
[0 0 0 0 ] ]

The column c o n s t r a i n t s a r e t h e f o l l o w i n g :
[1 1 0 1]
The row c o n s t r a i n t s a r e t h e f o l l o w i n g :
[2 0 0 1]

A.2 ADDITIONAL FIGURES

A.2.1 EASY VS. TRICKY PUZZLES
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Figure 4: (a) Reasoning effort in number of reasoning tokens versus problem size for o3-mini with
reasoning effort low. Successful tries only. Linear fits are added for each model. (b) Solved per-
centage versus problem size for o3-mini with reasoning effort low.
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Figure 5: (a) Reasoning effort in number of reasoning tokens versus problem size for o3-mini with
reasoning effort medium. Successful tries only. Linear fits are added for each model. (b) Solved
percentage versus problem size for o3-mini with reasoning effort medium.
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Figure 6: (a) Reasoning effort in number of reasoning tokens versus problem size for o3-mini with
reasoning effort high. Successful tries only. Linear fits are added for each model. (b) Solved
percentage versus problem size for o3-mini with reasoning effort high.
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A.2.2 REASONING EFFORT FOR ALL MODELS
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Figure 7: Reasoning effort in tokens for Qwen QwQ.
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Figure 8: Reasoning effort in tokens for Deepseek R1.
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Figure 9: Reasoning effort quantified by response time for Gemini-2.0-flash-thinking.

A.3 COST

Total cost of these experiments was around 80 USD in API credits.
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