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Abstract

Recent work on foundation models for time series forecasting has been accompa-1

nied by benchmarks such as GIFT-Eval, which aim to standardize comparison and2

establish leaderboards. These studies typically include simple baselines such as3

Seasonal Naïve or DLinear, establishing a low bar that new foundation models are4

expected to surpass. However, we show that this bar can be substantially raised:5

with careful tuning, a vanilla linear regression model achieves surprisingly strong6

performance, outperforming many deep learning methods (e.g., iTransformer) and7

even popular foundation models such as Chronos Base. This finding highlights8

the need to recalibrate evaluation practices in time series forecasting, both by9

adopting stronger baselines that meaningfully challenge foundation models and by10

incorporating more diverse, non-linear datasets. We argue that linear regression11

can serve as a litmus test for benchmark design, revealing that current evaluation12

practices may obscure progress in foundation model forecasting.13

1 Introduction14

Time series forecasting has long been recognized as a challenging problem, owing to the fundamental15

differences between time series data and other modalities such as text or images. Time series are16

highly heterogeneous across domains, including energy, retail, finance, mobility, and weather, while17

also exhibiting nonstationarity, variable sampling rates, multiple seasonalities, and diverse forecasting18

horizons. These characteristics make the design and evaluation of general-purpose forecasting models19

particularly complex.20

In recent years, the field has witnessed a surge of interest in large-scale deep learning architectures,21

particularly foundation models (FMs) that promise strong performance across domains without task-22

specific tuning. While these models have quickly gained traction, their empirical improvements over23

prior methods have often been modest, and their evaluation practices have not always been rigorous.24

In particular, comparisons are frequently made against very simple baselines such as Seasonal Naïve25

or DLinear [17] that may not adequately capture the difficulty of the task. As a result, it remains26

unclear whether foundation models truly provide consistent and meaningful advances in time series27

forecasting.28

In this paper, we revisit an overlooked yet surprisingly competitive baseline (further called Linear++):29

a single linear layer, coupled with RevIN normalization [9] and a context length selected by validation.30

Despite its simplicity, this model achieves strong results in both deterministic and probabilistic31

forecasting settings. Our study builds on the spirit of Zeng et al. [17], who introduced DLinear and32

demonstrated that linear models could outperform transformer architectures at the time.33
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We take this line of inquiry further by (a) slightly refining the linear regression formulation, (b) com-34

paring it against modern architectures and recent foundation models on two benchmarks, including35

GIFT-Eval [1], and (c) exploring its capabilities in the probabilistic and deterministic setting.36

Figure 1: Performance of forecasting models sorted by year.

Our results reveal that a carefully37

tuned linear regression model can ri-38

val, and in some cases outperform,39

state-of-the-art deep learning methods40

such as iTransformer [12] as well as41

foundation models with millions or42

even hundreds of millions of parame-43

ters, such as Chronos Base [3]. This44

finding suggests that evaluation prac-45

tices in time series forecasting need to46

be recalibrated, considering stronger47

baselines to ensure that new methods48

surpass more than trivial models, and49

incorporating more complex datasets50

where sophisticated architectures truly51

add value. We argue that linear regres-52

sion can serve as a litmus test for benchmark design, helping to clarify whether progress in foundation53

model forecasting is genuine or simply a byproduct of insufficient evaluation.54

2 Methodology55

In this section, we introduce the framework and present our proposed baseline.56

2.1 Problem Setup57

Given a D-dimensional time series of length L (context size) X ∈ RD×L, the goal of time series58

forecasting is to predict next H values (prediction horizon), denoted by Y ∈ RD×H . We assume that59

we have access to a training set that consists of N observations (X ,Y) = ({X(i)}Ni=0, {Y(i)}Ni=0).60

We aim to train a predictor fω : RD×L → RD×H (deterministic) or fω : RD×L → P(RD×H)61

(probabilistic) parameterized by ω.62

Deterministic setting: The model outputs point predictions and is trained by minimizing the Mean63

Squared Error (MSE):64

Ldet(ω) =
1

ND

N∑
i=0

∥Y(i) − fω(X
(i))∥2F. (1)

The evaluation metric is the standard mean squared error (MSE).65

Probabilistic setting: The model outputs a predictive distribution and is trained by minimizing66

negative log-likelihood:67

Lprob(ω) = − 1

N

N∑
i=1

logP (Y(i) | X(i);ω). (2)

We forecast the entire horizon yt+1:t+H under the assumption that each future value follows an68

independent Student-t distribution. For every step h ∈ {1, . . . ,H} the network therefore outputs69

the three parameters that characterise this density µt+h, scale σt+h > 0, and degrees-of-freedom70

νt+h > 2 and is trained by minimising the sum of Student-t negative log-likelihoods over the horizon.71

The Student-t likelihood and its parameterisation are taken from GLUONTS [2].72

In practice, to evaluate the accuracy of predicted cumulative distribution functions, the Continuous73

Ranked Probability Score (CRPS) [6] is typically employed.74

2.2 Proposed Method75

Our proposed baseline, Linear++, is frustratingly easy. We employ a linear layer W : RL → RH that76

is shared between all the channels. Before and after the linear layer we apply instance normalization77
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and de-normalization (RevIN), respectively, which improve stability and align all the channels to78

same units. Inspired by Xu et al. [16] and recent practices on GIFT-Eval, we tune the context size L79

(using a grid search with values proportional to the horizon) based on a hold-out validation set, which80

helps the model to find the right periodicity (if any) for each dataset. We also tune the learning rate81

and the weight decay, though the linear model is not very sensitive to these hyperparameters. We82

provide more details in Appendix.83

3 Experiments84

In this section, we present our experimental results when comparing Linear++ with various supervised85

and foundation models on two benchmarks.86

3.1 Experimental Setup87

We evaluate Linear++ on two benchmarks used in literature. First, Gift-Eval [1] consists of 24 datasets88

tested under various conditions. These datasets span short-, medium-, and long-term horizons, as89

well as multiple frequencies, resulting in a total of 97 evaluation settings. The evaluation adheres90

to the benchmark protocols, using the mean absolute scaled error (MASE) and Continuous Ranked91

Probability Score (CRPS). In practice, CRPS is approximated by the mean weighted quantile loss92

(WQL) over nine quantiles ranging from 0.1 to 0.9 in increments of 0.1. To compute aggregated93

performance, each evaluation score is first normalized against a seasonal naive baseline, and then94

combined using the geometric mean across all settings. Our second benchmark is the one used in95

long-term mutlivariate forecasting literature with 6 datasets [7]: ETTh1, ETTh2, ETTm1 ETTm2,96

Exchange Rate, Weather. In this case, the evaluation is deterministic only, and MSE is used for97

evaluation.98

3.2 GIFT-Eval Benchmark99

The results show that Linear++ achieves strong performance across diverse time series datasets,100

outperforming many supervised models (iTransformer [12], TFT [10], N-BEATS [14]) and even101

foundation models (Moirai Small/Large [11], Chronos Small/Base [3], YingLong 6M [15]). A relative102

comparison with all methods on all datasets from GIFT-Eval can be found in Appendix B.1. Linear++103

also significantly surpasses DLinear, which is probably connected to the hyperparameter tuning and104

integration of RevIN. In their paper, they showed that the proposed trend/seasonality decomposition105

improves the performance, so tuning properly DLinear will probably boost its performance. It is106

important to mention that Linear++ ignores the multivariate nature of data as it learns one layer for107

all channels. From the multi-task learning perspective [8], it means that we assume that all channels108

collaborate without needing to introduce individual channel biases. A quite high performance of109

Linear++ can be explained by RevIN, but may be also due to the lack of diversity of multivariate110

problems.111

Figure 2: Performance results on GIFT-Eval benchmark.
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In addition, our comparison of methods reveal that there are datasets where almost all models are112

worse than Linear++ in terms of performance. For example, this is the case for bizitobs l2c/5T (Figure113

8), a highly periodic dataset close to linear forecasting. On the other hands, ett2/W (Figure [9]) is the114

dataset which contains different subpopulations, so it is more suitable for foundation models, while a115

linear model is less appropriate in this context.116

3.3 Deterministic Long-term Forecastin Benchmark117

In this benchmark, we compare Linear++ with such methods as SAMformer, [7], PatchTST [13],118

iTransformer [12], TSMixer [5] and DLinear [17]. The performance results are displayed in Table 1.119

Table 1: The test MSE averaged over different prediction horizons H ∈ {96, 192, 336, 720}. We
extract results from Ilbert et al. [7] and the full table can be found in Appendix B.2.

Dataset Linear++ SAMformer TSMixer DLinear iTransformer PatchTST
ETTh1 0.413 0.410 0.439 0.423 0.454 0.469
ETTh2 0.379 0.344 0.357 0.431 0.383 0.387
ETTm1 0.387 0.373 0.385 0.357 0.407 0.387
ETTm2 0.185 0.269 0.289 0.267 0.288 0.281
Exchange 0.385 0.445 0.593 0.296 0.360 0.366
Weather 0.239 0.261 0.267 0.246 0.258 0.259

We can see that Linear++ is again a strong baseline while being the most lightweight model. Although120

both PatchTST and SAMformer made attempts to improve the transformer architecture, the advantage121

of transformers remains unclear for this benchmark.122
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Figure 3: Forecasting examples on ETTh1 and Exchange Rate for horizon H = 96.

In Figure 3, we visualize some examples of predictions and true responses from ETTh1 and Exchange123

Rate datasets to compare forecasting quality of Linear++ and Chronos Base. We can see that124

for clearly periodic data (ETTh1), Linear++ estimated the periodicity very well, though failing to125

anticipate the change of the trend; meanwhile, Chronos has a phase shift problem. When the data126

is complex and non-periodic as Exchange Rate, a linear model is not able to capture any intrinsic127

patterns, predicting roughly the mean value, which interestingly is a very strong baseline, and we can128

see that Chronos fails to do so.129

4 Conclusion and Future Work130

We raised concerns about the current evaluation setup in time series forecasting. While foundation131

models enable zero-shot forecasting, we argue they should at least surpass strong linear baselines. Our132

results show that a carefully tuned linear regression model remains highly competitive, suggesting that133

existing benchmarks set the bar too low. Although recent models such as TiRex [4] report stronger134

performance, issues like data leakage and benchmark overfitting highlight the need for caution. We135

call for fairer evaluation practices, including stronger baselines and more complex datasets, to ensure136

that progress in foundation model forecasting is both genuine and meaningful.137
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A Appendix198

A.1 Linear++199

Given an input time series X ∈ RD×L, the predictor fω is defined as:200

fω(X) = g1 (W · g0(X)) ,

where:201

• g0 : RD×L → RD×L is the RevIN normalization transformation,202

• g1 : RD×H → RD×H is the inverse RevIN denormalization,203

• W ∈ RH×L is the weight matrix of the linear layer (shared across all channels).204

A.2 Probabilistic Linear++205

Let X ∈ RD×L be the context window and Y ∈ RD×H the forecast horizon. The model directly206

predicts the three natural Student-t parameters (µ, σ, ν) simultaneously over the horizon.207

Linear layer predicting parameters. The model uses a single linear layer with weights W ∈208

R3H×L, shared by all channels, to output simultaneously all 3 parameters for the horizon:209

Ẑk = WX̃k ∈ R3H ,

where Ẑk concatenates the raw predictions for
(
µk,1:H , log σk,1:H , log νk,1:H

)
.210

Predictive distribution.

Yk,t+h|X ∼ Student-t(µk,h, σk,h, νk,h), h = 1, . . . ,H.

Loss function. Training minimises the negative log-likelihood of the Student-t, summed across all211

steps h and all channels k:212

L = −
N∑
i=1

D∑
k=1

H∑
h=1

log pStudent-t(yi,k,t+h|µk,h, σk,h, νk,h).

De-normalization. The network outputs are de-normalized with inverse RevIN to align location213

and scale to the original time series units.214

A.3 Probabilistic Metrics215

For a predicted distribution with CDF F and ground truth value y, the CRPS is defined as:216

CRPS(F, y) =

∫ 1

0

2Λα(F
−1(α), y)dα,

where the quantile loss Λα(q, y) is given by: Λα(q, y) = (α− I{y < q})(y − q).217

In practice, we approximate the CRPS using a discrete sum over quantile levels:218

CRPS ≈ 1

K

K∑
k=1

wQL[αk],

where K is the number of quantile levels, and {α1, α2, . . . , αK} are selected quantile levels (e.g.,219

αk = 0.1k for k = 1, 2, . . . , 9 when K = 9). The weighted quantile loss wQL[α] for quantile level220

α is calculated as:221

wQL[α] = 2

∑
t Λα(q̂t(α), yt)∑

t |yt|
,

where: q̂t(α) is the predicted α-quantile at time step t, yt is the actual observed value at time t,222

Λα(q̂t(α), yt) is the quantile loss at time t for quantile level α.223
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A.4 RevIN224

We adopt the formalism presentend in [7]. RevIN uses trainable affine parameters β, γ ∈ RK .225

For a sample X(i) ∈ RK×L and feature k ∈ {1, . . . ,K}, let’s define the empirical mean and standard226

deviation:227

µ̂
(i)
k =

1

L

L∑
t=1

X
(i)
kt , σ̂

2 (i)
k =

1

L

L∑
t=1

(
X

(i)
kt − µ̂

(i)
k

)2
. (3)

The input sequence is normalized feature-wise to X̃(i) ∈ RK×L:228

X̃
(i)
kt = γk,

X
(i)
kt − µ̂

(i)
k√

σ̂
2,(i)
k + ε

βk, (4)

with a small ε > 0 to avoid division by zero. The network takes X̃(i) as input and produces229

Ỹ(i) ∈ RK×H .230

The forecast used for evaluation is the denormalized Ŷ(i) ∈ RK×H :231

Ŷ
(i)
kt =

√
σ̂
2,(i)
k + ε;

Ỹ
(i)
kt − βk

γk
µ̂
(i)
k . (5)

As noted by [9], the tuple (µ̂, σ̂2,β,γ) carries the non-stationary information of each input sequence232

X(i).233

B Experimental Details234

B.1 GIFT-Eval Benchmark235

In this Section we display the ranking of the models with geometric mean computed over datasets for236

MASE and CRPS. In addition to that we add 4 heatmaps that show a performance gap of forecasting237

methods with respect to 2 baselines, Seasonal Naive and Linear++, for two metrics, MASE and CRPS.238

The ratio is calculated as MASE(model)
MASE(baseline) − 1 , where values below 0 (blue regions) indicate the model239

outperforms the baseline, and values above 0 (red regions) indicate the baseline is superior.240

From Figure 4, 5, 6, 7 we can see that Linear++ significantly increases a low bar both for deterministic241

and probabilistic forecasting. In addition, Figure 8 and 9 illustrate some examples from 2 datasets,242

which are discussed in Section 3.2.243
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Table 2: Performance Ranking vs Seasonal Naive Baseline (sorted by MASE)

Rank Model MASE CRPS
1 TiRex 0.724 0.498
2 Moirai2 0.728 0.516
3 TimeCopilot 0.741 0.508
4 Toto Open Base 1.0 0.750 0.517
5 sundial base 128m 0.750 0.559
6 TTM-R2-Finetuned 0.756 0.583
7 timesfm 2.0 500m 0.758 0.550
8 TabPFN-TS 0.771 0.544
9 TEMP-ENSEMBLE 0.788 0.462
10 YingLong 300m 0.798 0.548
11 Chronos bolt base 0.808 0.574
12 YingLong 110m 0.809 0.557
13 Chronos bolt small 0.822 0.577
14 YingLong 50m 0.822 0.567
15 PatchTST 0.849 0.587
16 VisionTS 0.863 0.755
17 Chronos large 0.870 0.647
18 Linear++ 0.870 0.630
19 Moirai large 0.875 0.599
20 Chronos base 0.876 0.652
21 YingLong 6m 0.880 0.609
22 Chronos small 0.892 0.663
23 iTransformer 0.893 0.620
24 Moirai base 0.901 0.610
25 TFT 0.915 0.605
26 N-BEATS 0.938 0.816
27 Moirai small 0.946 0.650
28 Seasonal naive 1.000 1.000
29 TTM-R2-Pretrained 1.020 0.873
30 DLinear 1.061 0.846
31 Auto Arima 1.074 0.912
32 timesfm 1.077 0.680
33 TTM-R1-Pretrained 1.079 0.891
34 Auto Theta 1.090 1.244
35 TIDE 1.091 0.772
36 Timer 1.136 0.970
37 Auto ETS 1.212 7.489
38 Lag-Llama 1.228 0.880
39 Naive 1.270 1.591
40 DeepAR 1.343 0.853
41 Crossformer 2.574 1.637
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Figure 4: MASE Ratios Heatmap (Reference: Seasonal Naive)
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Figure 5: CRPS Ratios Heatmap (Reference: Seasonal Naive).
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Figure 6: MASE Ratios Heatmap (Reference: Linear++).
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Figure 7: CRPS Ratios Heatmap (Reference: Linear++).
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Figure 8: Example of instances for Bizitobs-l2c long term dataset.

Figure 9: Example of instances for ETT2 weekly short term dataset.
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B.2 Long-term Forecasting Benchmark244

Table 3: Performance comparison between our model (Linear++) and baselines for multivariate
long-term forecasting with different horizons H.

Dataset H Linear++ SAMformer TSMixer DLinear iTransformer PatchTST
E

T
T

h1

96 0.366±0.005 0.381±0.003 0.398±0.001 0.375 0.386 0.414
192 0.401±0.008 0.409±0.002 0.426±0.003 0.405 0.441 0.460
336 0.427±0.009 0.423±0.001 0.435±0.003 0.439 0.487 0.501
720 0.459±0.002 0.427±0.002 0.498±0.076 0.472 0.503 0.500

E
T

T
h2

96 0.279±0.000 0.295±0.002 0.308±0.003 0.289 0.297 0.302
192 0.372±0.001 0.340±0.002 0.352±0.004 0.383 0.380 0.388
336 0.416±0.002 0.350±0.000 0.360±0.002 0.448 0.428 0.426
720 0.449±0.006 0.391±0.001 0.409±0.006 0.605 0.427 0.431

E
T

T
m

1 96 0.315±0.012 0.329±0.001 0.336±0.004 0.299 0.334 0.329
192 0.380±0.034 0.353±0.006 0.362±0.006 0.335 0.377 0.367
336 0.405±0.030 0.382±0.001 0.391±0.003 0.369 0.426 0.399
720 0.449±0.028 0.429±0.000 0.450±0.006 0.425 0.491 0.454

E
T

T
m

2 96 0.126±0.029 0.181±0.005 0.211±0.014 0.167 0.180 0.175
192 0.162±0.047 0.233±0.002 0.252±0.005 0.224 0.250 0.241
336 0.198±0.061 0.285±0.001 0.303±0.004 0.281 0.311 0.305
720 0.253±0.085 0.375±0.001 0.390±0.003 0.397 0.412 0.402

E
xc

ha
ng

e 96 0.089±0.001 0.161±0.007 0.343±0.082 0.081 0.086 0.088
192 0.181±0.001 0.246±0.009 0.342±0.031 0.157 0.177 0.176
336 0.372±0.004 0.368±0.006 0.484±0.062 0.305 0.331 0.301
720 0.899±0.005 1.003±0.018 1.204±0.028 0.643 0.847 0.901

W
ea

th
er 96 0.168±0.000 0.197±0.001 0.214±0.004 0.176 0.174 0.177

192 0.211±0.001 0.235±0.000 0.231±0.003 0.220 0.221 0.225
336 0.256±0.000 0.276±0.001 0.279±0.007 0.265 0.278 0.278
720 0.320±0.001 0.334±0.000 0.343±0.024 0.323 0.358 0.354
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Table 4: Relative difference (% reduction in MSE) of Linear++ vs. baselines: ∆% = 100 ×
Baseline−Linear++

Baseline . Positive = Linear++ better (lower MSE).

Dataset H vs SAMformer vs TSMixer vs DLinear vs ITransformer vs PatchTST

E
T

T
h1

96 3.9% 8.0% 2.4% 5.2% 11.6%
192 2.0% 5.9% 1.0% 9.1% 12.8%
336 -0.9% 1.8% 2.7% 12.3% 14.8%
720 -7.5% 7.8% 2.8% 8.7% 8.2%

E
T

T
h2

96 5.4% 9.4% 3.5% 6.1% 7.6%
192 -9.4% -5.7% 2.9% 2.1% 4.1%
336 -18.9% -15.6% 7.1% 2.8% 2.3%
720 -14.8% -9.8% 25.8% -5.2% -4.2%

E
T

T
m

1 96 4.3% 6.3% -5.4% 5.7% 4.3%
192 -7.6% -5.0% -13.4% -0.8% -3.5%
336 -6.0% -3.6% -9.8% 4.9% -1.5%
720 -4.7% 0.2% -5.6% 8.6% 1.1%

E
T

T
m

2 96 30.4% 40.3% 24.6% 30.0% 28.0%
192 30.5% 35.7% 27.7% 35.2% 32.8%
336 30.5% 34.7% 29.5% 36.3% 35.1%
720 32.5% 35.1% 36.3% 38.6% 37.1%

E
xc

ha
ng

e 96 44.7% 74.1% -9.9% -3.5% -1.1%
192 26.4% 47.1% -15.3% -2.3% -2.8%
336 -1.1% 23.1% -22.0% -12.4% -23.6%
720 10.4% 25.3% -39.8% -6.1% 0.2%

W
ea

th
er 96 14.7% 21.5% 4.5% 3.4% 5.1%

192 10.2% 8.7% 4.1% 4.5% 6.2%
336 7.2% 8.2% 3.4% 7.9% 7.9%
720 4.2% 6.7% 0.9% 10.6% 9.6%
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C Experimental Details245

C.1 Gift-Eval benchmark246

Datasets. We run our experiments on the GIFT-EVAL benchmark, which spans 45 public data sets247

covering a wide range of domains, frequencies and target dimensions.248

Each data set is provided in three regime splits short, medium and longexactly as defined by the249

benchmark.250

Hyper-parameter optimisation. For every (data set, regime) pair we launch an OPTUNA study251

with 20 trials, minimising the validation loss. The search space is:252

253

254 Table 5: Search space used in the OPTUNA study.

Hyper-parameter Interval / Set Distribution

learning-rate [10−5, 10−2] log-uniform
weight-decay [10−6, 10−2] log-uniform
context-multiplier {2, 5, 10, 15, 20} categorical

where the effective context length equals L = context-multiplier × prediction length.255

Training protocol. Each trial trains for at most 15 epochs during optimisation and up to 150 epochs256

for the final model, both with early stopping (patience = 5). The optimiser is Adam with the sampled257

learning rate and weight decay.258

Evaluation. We report the official Gift-Eval metrics: MSE, MAE, RMSE, MAPE, SMAPE, ND,259

MSIS and MEAN_WEIGHTED_SUM_QUANTILE_LOSScomputed with the open-source evaluation260

module of GLUONTS.261
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