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Abstract

Recent work on foundation models for time series forecasting has been accompa-
nied by benchmarks such as GIFT-Eval, which aim to standardize comparison and
establish leaderboards. These studies typically include simple baselines such as
Seasonal Naive or DLinear, establishing a low bar that new foundation models are
expected to surpass. However, we show that this bar can be substantially raised:
with careful tuning, a vanilla linear regression model achieves surprisingly strong
performance, outperforming many deep learning methods (e.g., iTransformer) and
even popular foundation models such as Chronos Base. This finding highlights
the need to recalibrate evaluation practices in time series forecasting, both by
adopting stronger baselines that meaningfully challenge foundation models and by
incorporating more diverse, non-linear datasets. We argue that linear regression
can serve as a litmus test for benchmark design, revealing that current evaluation
practices may obscure progress in foundation model forecasting.

1 Introduction

Time series forecasting has long been recognized as a challenging problem, owing to the fundamental
differences between time series data and other modalities such as text or images. Time series are
highly heterogeneous across domains, including energy, retail, finance, mobility, and weather, while
also exhibiting nonstationarity, variable sampling rates, multiple seasonalities, and diverse forecasting
horizons. These characteristics make the design and evaluation of general-purpose forecasting models
particularly complex.

In recent years, the field has witnessed a surge of interest in large-scale deep learning architectures,
particularly foundation models (FMs) that promise strong performance across domains without task-
specific tuning. While these models have quickly gained traction, their empirical improvements over
prior methods have often been modest, and their evaluation practices have not always been rigorous.
In particular, comparisons are frequently made against very simple baselines such as Seasonal Naive
or DLinear [17] that may not adequately capture the difficulty of the task. As a result, it remains
unclear whether foundation models truly provide consistent and meaningful advances in time series
forecasting.

In this paper, we revisit an overlooked yet surprisingly competitive baseline (further called Linear++):
a single linear layer, coupled with RevIN normalization [9] and a context length selected by validation.
Despite its simplicity, this model achieves strong results in both deterministic and probabilistic
forecasting settings. Our study builds on the spirit of Zeng et al. [17], who introduced DLinear and
demonstrated that linear models could outperform transformer architectures at the time.

Under review at the NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT?S).
Do not distribute.



34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55

56

57

58
59
60

61
62

63
64

65

66
67

68
69
70
71
72

73
74

75

76
77

We take this line of inquiry further by (a) slightly refining the linear regression formulation, (b) com-
paring it against modern architectures and recent foundation models on two benchmarks, including
GIFT-Eval [1]], and (c) exploring its capabilities in the probabilistic and deterministic setting.

Our results reveal that a carefully Model Performance Evolution
tuned linear regression model can ri- ;| ¢
val, and in some cases outperform, -
state-of-the-art deep learning methods 2

such as iTransformer [[12] as well as
foundation models with millions or
even hundreds of millions of parame-
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incorporating more complex datasets

where sophisticated architectures truly Figure 1: Performance of forecasting models sorted by year.
add value. We argue that linear regres-

sion can serve as a litmus test for benchmark design, helping to clarify whether progress in foundation
model forecasting is genuine or simply a byproduct of insufficient evaluation.

2 Methodology

In this section, we introduce the framework and present our proposed baseline.

2.1 Problem Setup

Given a D-dimensional time series of length L (context size) X € RP*L, the goal of time series

forecasting is to predict next H values (prediction horizon), denoted by Y € RP*H  We assume that
we have access to a training set that consists of N observations (X,)) = ({X@}N . {YD}N ).

We aim to train a predictor f,, : RP*L — RP>*H (deterministic) or f,, : RP*XE — P(RP*H)
(probabilistic) parameterized by w.

Deterministic setting: The model outputs point predictions and is trained by minimizing the Mean
Squared Error (MSE):

Lan() = 5 ZHY - LX) (1)
The evaluation metric is the standard mean squared error (MSE).

Probabilistic setting: The model outputs a predictive distribution and is trained by minimizing
negative log-likelihood:

Lpron(w :——ZlogP YO | X0 w). )

We forecast the entire horizon y;11.¢4+ 5 under the assumption that each future value follows an
independent Student-r distribution. For every step h € {1,..., H} the network therefore outputs
the three parameters that characterise this density p;1p, scale oy, > 0, and degrees-of-freedom
Veyp > 2 and is trained by minimising the sum of Student- negative log-likelihoods over the horizon.
The Student-¢ likelihood and its parameterisation are taken from GLUONTS [2].

In practice, to evaluate the accuracy of predicted cumulative distribution functions, the Continuous
Ranked Probability Score (CRPS) [6] is typically employed.

2.2 Proposed Method

Our proposed baseline, Linear++, is frustratingly easy. We employ a linear layer W : R — R¥ that
is shared between all the channels. Before and after the linear layer we apply instance normalization
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and de-normalization (RevIN), respectively, which improve stability and align all the channels to
same units. Inspired by Xu et al. [16] and recent practices on GIFT-Eval, we tune the context size L
(using a grid search with values proportional to the horizon) based on a hold-out validation set, which
helps the model to find the right periodicity (if any) for each dataset. We also tune the learning rate
and the weight decay, though the linear model is not very sensitive to these hyperparameters. We
provide more details in Appendix.

3 Experiments

In this section, we present our experimental results when comparing Linear++ with various supervised
and foundation models on two benchmarks.

3.1 Experimental Setup

We evaluate Linear++ on two benchmarks used in literature. First, Gift-Eval [[1]] consists of 24 datasets
tested under various conditions. These datasets span short-, medium-, and long-term horizons, as
well as multiple frequencies, resulting in a total of 97 evaluation settings. The evaluation adheres
to the benchmark protocols, using the mean absolute scaled error (MASE) and Continuous Ranked
Probability Score (CRPS). In practice, CRPS is approximated by the mean weighted quantile loss
(WQL) over nine quantiles ranging from 0.1 to 0.9 in increments of 0.1. To compute aggregated
performance, each evaluation score is first normalized against a seasonal naive baseline, and then
combined using the geometric mean across all settings. Our second benchmark is the one used in
long-term mutlivariate forecasting literature with 6 datasets [7]: ETTh1, ETTh2, ETTm1 ETTm?2,
Exchange Rate, Weather. In this case, the evaluation is deterministic only, and MSE is used for
evaluation.

3.2 GIFT-Eval Benchmark

The results show that Linear++ achieves strong performance across diverse time series datasets,
outperforming many supervised models (iTransformer [12], TFT [10], N-BEATS [14]) and even
foundation models (Moirai Small/Large [11]], Chronos Small/Base [3]], YingLong 6M [13])). A relative
comparison with all methods on all datasets from GIFT-Eval can be found in Appendix [B.1] Linear++
also significantly surpasses DLinear, which is probably connected to the hyperparameter tuning and
integration of RevIN. In their paper, they showed that the proposed trend/seasonality decomposition
improves the performance, so tuning properly DLinear will probably boost its performance. It is
important to mention that Linear++ ignores the multivariate nature of data as it learns one layer for
all channels. From the multi-task learning perspective [8], it means that we assume that all channels
collaborate without needing to introduce individual channel biases. A quite high performance of
Linear++ can be explained by RevIN, but may be also due to the lack of diversity of multivariate
problems.

Model Performance Comparison: MASE vs CRPS
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Figure 2: Performance results on GIFT-Eval benchmark.
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In addition, our comparison of methods reveal that there are datasets where almost all models are
worse than Linear++ in terms of performance. For example, this is the case for bizitobs 12¢/5T (Figure
[8), a highly periodic dataset close to linear forecasting. On the other hands, ett2/W (Figure [9]) is the
dataset which contains different subpopulations, so it is more suitable for foundation models, while a
linear model is less appropriate in this context.

3.3 Deterministic Long-term Forecastin Benchmark

In this benchmark, we compare Linear++ with such methods as SAMformer, [7]], PatchTST [13]],
iTransformer [[12]], TSMixer [5]] and DLinear [[17]. The performance results are displayed in Tablem

Table 1: The test MSE averaged over different prediction horizons H € {96,192, 336, 720}. We
extract results from Ilbert et al. [[7] and the full table can be found in Appendix

Dataset Linear++ SAMformer TSMixer DLinear iTransformer PatchTST

ETThl 0413 0.410 0.439 0.423 0.454 0.469
ETTh2 0.379 0.344 0.357 0.431 0.383 0.387
ETTml1 0.387 0.373 0.385 0.357 0.407 0.387
ETTm2 0.185 0.269 0.289 0.267 0.288 0.281
Exchange 0.385 0.445 0.593 0.296 0.360 0.366
Weather 0.239 0.261 0.267 0.246 0.258 0.259

We can see that Linear++ is again a strong baseline while being the most lightweight model. Although
both PatchTST and SAMformer made attempts to improve the transformer architecture, the advantage
of transformers remains unclear for this benchmark.

Exchange Rate Dataset ETTh1 Dataset
15
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Figure 3: Forecasting examples on ETTh1 and Exchange Rate for horizon H = 96.

In Figure[3] we visualize some examples of predictions and true responses from ETTh1 and Exchange
Rate datasets to compare forecasting quality of Linear++ and Chronos Base. We can see that
for clearly periodic data (ETTh1), Linear++ estimated the periodicity very well, though failing to
anticipate the change of the trend; meanwhile, Chronos has a phase shift problem. When the data
is complex and non-periodic as Exchange Rate, a linear model is not able to capture any intrinsic
patterns, predicting roughly the mean value, which interestingly is a very strong baseline, and we can
see that Chronos fails to do so.

4 Conclusion and Future Work

We raised concerns about the current evaluation setup in time series forecasting. While foundation
models enable zero-shot forecasting, we argue they should at least surpass strong linear baselines. Our
results show that a carefully tuned linear regression model remains highly competitive, suggesting that
existing benchmarks set the bar too low. Although recent models such as TiRex [4] report stronger
performance, issues like data leakage and benchmark overfitting highlight the need for caution. We
call for fairer evaluation practices, including stronger baselines and more complex datasets, to ensure
that progress in foundation model forecasting is both genuine and meaningful.
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A Appendix

A.1 Linear++

Given an input time series X € RP <L the predictor f,, is defined as:

Jo(X) = g1 (W - g0(X)),

where:

s go : RP*L 5 RPXL is the RevIN normalization transformation,
o g1 : RPXH 5 RPXH jg the inverse RevIN denormalization,
* W € RH¥*L js the weight matrix of the linear layer (shared across all channels).

A.2 Probabilistic Linear++

Let X € RP*E be the context window and Y € RP*H the forecast horizon. The model directly
predicts the three natural Student-¢ parameters (u, o, v) simultaneously over the horizon.

Linear layer predicting parameters. The model uses a single linear layer with weights W &€
R3H XL shared by all channels, to output simultaneously all 3 parameters for the horizon:

Zy = WX, € R
where Zj, concatenates the raw predictions for (ung, log oy 1.0, log ijl;H).

Predictive distribution.

Yk:,t+h|X ~ StUdent‘t(Mk,ha Ok,h» Z/k,h)7 h = 1,... 7H'

Loss function. Training minimises the negative log-likelihood of the Student-z, summed across all
steps h and all channels k:

N D H
E E ElogpStudentt Yik,t+h | k,hs Ok by Vie,h) -

i=1 k=1h=1

De-normalization. The network outputs are de-normalized with inverse RevIN to align location
and scale to the original time series units.

A.3 Probabilistic Metrics
For a predicted distribution with CDF F' and ground truth value y, the CRPS is defined as:
1
CRPS(F,y) = / 20 (F~Y(a),y)da,
0

where the quantile loss Ay (g, ) is given by: Ao (q,y) = (o — I{y < ¢})(y — q)-

In practice, we approximate the CRPS using a discrete sum over quantile levels:

K
1
CRPS ~ - > wQL[ax],
k=1
where K is the number of quantile levels, and {a, aa, ..., ax } are selected quantile levels (e.g.,

ap =0.1kfork =1,2,...,9 when K = 9). The weighted quantile loss wQL[«a/] for quantile level

« is calculated as: A (é
wQlL[a] = 222t Aal@(@).yr)
Zt |Z/t|

where: §;(«) is the predicted a-quantile at time step ¢, y; is the actual observed value at time ¢,
Ao (G (), ye) is the quantile loss at time ¢ for quantile level a.
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A.4 RevIN

We adopt the formalism presentend in [7]. RevIN uses trainable affine parameters 3,7 € RE.

For a sample X () € RX*L and feature k € {1,..., K}, let’s define the empirical mean and standard
deviation:
() _ 1y~ 2) _ 1§ (30 _ (032
My :szkw O :ZZ(Xk‘t_Mk)' 3)
t=1 t=1
The input sequence is normalized feature-wise to X () ¢ RE*L:
» X0 _ 0
X = 7’“2 Mg, )
620 4o

with a small € > 0 to avoid division by zero. The network takes X as input and produces
Y ¢ REXH

The forecast used for evaluation is the denormalized Y () € RE*H.

(7 ~2,(7 YO)_ﬂ ~ (2
Y = \fopD gy TR0, o)

Yk

As noted by [9], the tuple (f1, 52, 3, ) carries the non-stationary information of each input sequence
X,

B Experimental Details

B.1 GIFT-Eval Benchmark

In this Section we display the ranking of the models with geometric mean computed over datasets for
MASE and CRPS. In addition to that we add 4 heatmaps that show a performance gap of forecasting
methods with respect to 2 baselines, Seasonal Naive and Linear++, for two metrics, MASE and CRPS.

The ratio is calculated as % — 1, where values below 0 (blue regions) indicate the model

outperforms the baseline, and values above 0 (red regions) indicate the baseline is superior.

From Figure[d] [5] [6] [7]we can see that Linear++ significantly increases a low bar both for deterministic
and probabilistic forecasting. In addition, Figure [8]and O] illustrate some examples from 2 datasets,
which are discussed in Section[3.2]



Table 2: Performance Ranking vs Seasonal Naive Baseline (sorted by MASE)

Rank | Model MASE | CRPS
1 TiRex 0.724 0.498
2 Moirai2 0.728 0.516
3 TimeCopilot 0.741 | 0.508
4 Toto Open Base 1.0 0.750 | 0.517
5 sundial base 128m 0.750 0.559
6 TTM-R2-Finetuned 0.756 0.583
7 timesfm 2.0 500m 0.758 0.550
8 TabPFN-TS 0.771 0.544
9 TEMP-ENSEMBLE | 0.788 0.462
10 YingLong 300m 0.798 | 0.548
11 Chronos bolt base 0.808 0.574
12 YingLong 110m 0.809 | 0.557
13 Chronos bolt small 0.822 0.577
14 YingLong 50m 0.822 | 0.567
15 PatchTST 0.849 0.587
16 VisionTS 0.863 0.755
17 Chronos large 0.870 | 0.647
18 Linear++ 0.870 0.630
19 Moirai large 0.875 | 0.599

20 Chronos base 0.876 0.652
21 YingLong 6m 0.880 | 0.609
22 Chronos small 0.892 0.663
23 iTransformer 0.893 0.620
24 Moirai base 0.901 0.610
25 TFT 0915 0.605
26 N-BEATS 0.938 0.816
27 Moirai small 0.946 0.650
28 Seasonal naive 1.000 1.000
29 TTM-R2-Pretrained 1.020 0.873
30 DLinear 1.061 0.846
31 Auto Arima 1.074 0.912
32 timesfm 1.077 0.680
33 TTM-R1-Pretrained 1.079 0.891
34 Auto Theta 1.090 1.244
35 TIDE 1.091 0.772
36 Timer 1.136 0.970
37 Auto ETS 1.212 7.489
38 Lag-Llama 1.228 | 0.880
39 Naive 1.270 1.591
40 DeepAR 1.343 0.853
41 Crossformer 2.574 1.637
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Figure 5: CRPS Ratios Heatmap (Reference: Seasonal Naive).
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Figure 6: MASE Ratios Heatmap (Reference: Linear++).
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Figure 7: CRPS Ratios Heatmap (Reference: Linear++).
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Figure 8: Example of instances for Bizitobs-12c long term dataset.
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Figure 9: Example of instances for ETT2 weekly short term dataset.
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244 B.2 Long-term Forecasting Benchmark

Table 3: Performance comparison between our model (Linear++) and baselines for multivariate
long-term forecasting with different horizons H.

Dataset H Linear++ SAMformer TSMixer DLinear iTransformer PatchTST

_ 96 0.366+0.005 0.38110.003 0.398+0.001 0.375 0.386 0414
ﬁ 192 040110008 0.409+0.002 0.42640.003 0.405 0.441 0.460
E 336 0.427+0.000 0.42310.001 0.43510.003 0.439 0.487 0.501

720 inOOQ 0-427i()‘002 0-498i0.076 0472 0503 0500
o 96  0.279+0.000 0.295+0.002 0.308+0.003 0.289 0.297 0.302
= 192 0.37240.001  0.34010.002 0.35240.004 0.383 0.380 0.388
E 336 0.416+0.002 0.35040.000 0.360+0.002 0.448 0.428 0.426

720  0.44910.006 0.39110.001 0.409+0.006 0.605 0.427 0.431
— 96  0.315+0.012  0.32940.001  0.336+0.004 0.299 0.334 0.329
E 192 0.380+0.034 0.35340.006 0.362+0.006 0.335 0.377 0.367
B~ 336  0.40540.030 0.38240.001 0.391+0.003 0.369 0.426 0.399
H 720  0.44940.028 0.429+0.000 0.4504+0.006 0.425 0.491 0.454
« 96 0.126+0.029 0.18140.005 0.211+0.014 0.167 0.180 0.175
E 192 016210047 0.23310.002 0.25240.005 0.224 0.250 0.241
~ 336 0.198+0.061 0.285+0.001  0.303+0.004 0.281 0.311 0.305
H 720 0.25310.085 0.375+0.001  0.390+0.003 0.397 0.412 0.402
o 96  0.089+0.001 0.16140.00r 0.343+0.082 0.081 0.086 0.088
E 192 0.181+0.001 0.24640.009 0.34240.031 0.157 0.177 0.176
S 336 0.372+0.004 0.368+0.006 0.48410.062 0.305 0.331 0.301
&3} 720 0.899+0.005 1.003+0.018 1.204+0.028 0.643 0.847 0.901
E 96 0.168i04000 0-197i0.001 0.214i0.004 0.176 0.174 0.177
< 192 0.21140.001 0.23510.000 0.23140.003 0.220 0.221 0.225
8 336 0.25610.000 0.27610.001  0.27940.007 0.265 0.278 0.278
= 720 0.32040.001  0.33410.000 0.34310.024 0.323 0.358 0.354
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Table 4: Relative difference (% reduction in MSE) of Linear++ vs. baselines: A% = 100 x

W. Positive = Linear++ better (lower MSE).

Dataset H vs SAMformer vs TSMixer vs DLinear vs ITransformer vs PatchTST

96 3.9% 8.0% 2.4% 52% 11.6%

5 192 2.0% 5.9% 1.0% 9.1% 12.8%
= 336 -0.9% 1.8% 2.7% 12.3% 14.8%
720 7.5% 7.8% 2.8% 8.7% 8.2%

o 96 5.4% 9.4% 35% 6.1% 7.6%
= 192 9.4% 5.7% 2.9% 2.1% 4.1%
= 336 -18.9% -15.6% 7.1% 2.8% 2.3%
720 -14.8% 9.8% 25.8% 5.2% 42%

_ 96 3% 6.3% 5.4% 5.7% 43%
£ 192 7.6% 5.0% 13.4% -0.8% 3.5%
» 336 -6.0% -3.6% -9.8% 4.9% -1.5%
o 720 4.7% 0.2% -5.6% 8.6% 1.1%
o 96 30.4% 40.3% 24.6% 30.0% 28.0%
£ 192 30.5% 35.7% 27.7% 35.2% 32.8%
» 336 30.5% 34.7% 29.5% 36.3% 35.1%
e 720 32.5% 35.1% 36.3% 38.6% 37.1%
Py 96 47% 741% 9.9% 335% 11%
£ 192 26.4% 47.1% -15.3% 2.3% 2.8%
g 336 1.1% 23.1% 22.0% -12.4% 23.6%
s 720 10.4% 25.3% -39.8% 6.1% 0.2%
H 96 47% 21.5% 5% 3.4% 51%
£ 192 10.2% 8.7% 4.1% 4.5% 6.2%
s 336 7.2% 8.2% 3.4% 7.9% 7.9%
= 720 42% 6.7% 0.9% 10.6% 9.6%
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225 C Experimental Details

246 C.1 Gift-Eval benchmark

247 Datasets. We run our experiments on the GIFT-EVAL benchmark, which spans 45 public data sets
248 covering a wide range of domains, frequencies and target dimensions.

249 Each data set is provided in three regime splits short, medium and longexactly as defined by the
250 benchmark.

251 Hyper-parameter optimisation. For every (data set, regime) pair we launch an OPTUNA study
252 with 20 trials, minimising the validation loss. The search space is:
253

254 Table 5: Search space used in the OPTUNA study.

Hyper-parameter Interval / Set Distribution
learning-rate [1075, 1072] log-uniform
weight-decay (1076, 1072 log-uniform

context-multiplier {2, 5, 10, 15, 20}  categorical

255 where the effective context length equals L = context-multiplier x prediction length.

256 Training protocol. Each trial trains for at most 15 epochs during optimisation and up to 150 epochs
257 for the final model, both with early stopping (patience = 5). The optimiser is Adam with the sampled
258 learning rate and weight decay.

259 Evaluation. We report the official Gift-Eval metrics: MSE, MAE, RMSE, MAPE, SMAPE, ND,

260 MSIS and MEAN_WEIGHTED_SUM_QUANTILE_LOSScomputed with the open-source evaluation
261 module of GLUONTS.
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