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Abstract

It is assumed that sparse autoencoders (SAEs) decompose polysemantic activations1

into interpretable linear directions, as long as the activations are composed of2

sparse linear combinations of underlying features. However, we find that if an3

SAE is more narrow than the number of underlying “true features” on which it is4

trained, and there is correlation between features, the SAE will merge components5

of correlated features together, thus destroying monosemanticity. In LLM SAEs,6

these two conditions are almost certainly true. This phenomenon, which we call7

feature hedging, is caused by SAE reconstruction loss, and is more severe the8

narrower the SAE. In this work, we introduce the problem of feature hedging9

and study it both theoretically in toy models and empirically in SAEs trained on10

LLMs. We suspect that feature hedging may be one of the core reasons that SAEs11

consistently underperform supervised baselines. Finally, we use our understanding12

of feature hedging to propose an improved variant of matryoshka SAEs. Our work13

shows there remain fundamental issues with SAEs, but we are hopeful that that14

highlighting feature hedging will catalyze future advances that allow SAEs to15

achieve their full potential of interpreting LLMs at scale.16

1 Introduction17

As large language models (LLMs) are deployed in real-world applications, it is increasingly important18

to understand their internal workings. Sparse autoencoders (SAEs) decompose the dense, polyseman-19

tic activations of LLMs into interpretable latent features [6, 2] using sparse dictionary learning [19].20

SAEs have the advantage of operating completely unsupervised, and can easily be scaled to millions21

of neurons in its hidden layer (hereafter called “latents”) [22, 11].22

While SAEs showed promising results, recent work has cast doubt on the performance of SAEs23

relative to baseline techniques. Wu et al. [24] show that SAEs underperform on both concept steering24

and detection relative to baselines, and Kantamneni et al. [13] show that SAEs underperform simple25

linear probes on both in-domain and out-of-domain detection, even when the probes have very few26

training samples. The question, then, is why do SAEs underperform relative to other techniques?27

And if we can identify the problems holding back SAEs, can we then fix those problems?28

One fundamental issue with SAEs is the problem of feature absorption [5], where a more specific29

latent suppresses the firing a more general latent. For instance, an SAE may have a latent that30

appears to track “Cities in USA” but that arbitrarily fails to fire on the specific cities “New York” and31

“Detroit”, where a city-specific latent fires instead. Feature absorption requires underlying features to32

exist in a hierarchy, with a parent feature fp and a child feature fc, where fc can only fire if fp is33

firing (fc =⇒ fp). Feature absorption is caused by SAE sparsity penalty, and becomes more severe34

the wider the SAE. An SAE encoder/decoder under feature absorption is shown in Figure 1b.35
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Table 1: Comparing feature hedging and feature absorption
Feature absorption Feature hedging

Learns gerrymandered latents Mixes correlated features into latents
Caused by sparsity loss Caused by MSE reconstruction loss
Features are all tracked in the SAE One feature is in the SAE, the other is not
Affects the encoder and decoder asymmetrically Affects encoder and decoder symmetrically
Gets worse the wider the SAE Gets worse the narrower the SAE
Requires hierarchical features Requires only correlation between features

In this paper, we identify another fundamental issue with SAEs which we call feature hedging. In36

hedging, an SAE is too narrow to represent both features fa and fb with their own latents la and lb.37

Ideally, an SAE should assign a latent l to either fa or fb, and ignore the feature not being tracked.38

However, if fa and fb are either hierarchical as in absorption, or (anti-)correlated, then the SAE latent39

l can reduce reconstruction error by incorrectly mixing in components of both fa and fb. A sample40

SAE encoder and decoder experiencing hedging is shown in Figure 1a. In an LLM SAE, hedging will41

look like each SAE latent has noise mixed into it, likely reducing the performance of the latent for42

both detection and steering. Unlike with absorption, hedging becomes worse the narrower the SAE:43

thus trying to reduce absorption by making the SAE narrower will simply result in more hedging44

instead. The differences between feature hedging and feature absorption are shown in Table 1.45

In LLM SAEs, the SAE is almost certainly narrower than the number of underlying features, as even46

extremely wide LLM SAEs appear to still miss features [22]. Furthermore, we should expect that47

nearly every feature in an LLM has some correlation to other features. We thus expect that hedging is48

the norm in SAEs trained on LLM activations and will distort the performance of LLM SAEs.49
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(a) When the SAE is only wide enough to represent
one of the two features, we see feature hedging. La-
tent l1 mainly tracks f1, but a small component of
f2 is incorrectly mixed into the latent l1 as well. f2
is mixed symmetrically into both the encoder and
decoder.
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(b) If the SAE is wide enough to track both features,
we see feature absorption. The decoder for l1 per-
fectly tracks f1, but its encoder turns off if f2 is also
active. l2 tracks f2, but its decoder merges together
both f1 and f2. This asymmetry between encoder
and decoder is characteristic of feature absorption.

Figure 1: SAE encoder and decoder patterns for hierarchical features f1 and f2, where f1 =⇒ f2.
These features lead to either hedging or absorption depending on the width of the SAE.

A solution to feature absorption has been proposed in the form of matryoshka SAEs [4]. Matryoshka50

SAEs use nested SAE loss terms to enforce a hierarchy on the SAE latents, solving absorption by51

forcing the narrow inner levels of the SAE to reconstruct inputs on their own. However, as we show in52

this paper, matryoshka SAEs suffer more from hedging due to the inner matryoshka levels essentially53

being very narrow SAEs. Matryoshka SAEs thus trade off absorption for hedging.54

In this work, we define and study feature hedging both theoretically in toy models and empirically in55

LLM SAEs. We show that hedging is worse the more narrow the SAE, and introduce a technique to56

characterize the amount of hedging present in a given SAE. We also study hedging and absorption57

in matryoshka SAEs, and show that it is possible to improve the monosemanticity of matryoshka58

SAEs by tuning the relative loss coefficients in each level of the matryoshka SAE to better balance59

the competing forces of absorption and hedging—though both problems remain present.60
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2 Background61

Sparse autoencoders (SAEs). An SAE decomposes an input activation a ∈ RD into a hidden state62

f consisting of L hidden neurons, called “latents”. An SAE is composed of an encoder Wenc ∈ RL×D,63

a decoder Wdec ∈ RD×L, a decoder bias bdec ∈ RD, and encoder bias benc ∈ RL, and a nonlinearity64

σ, typically ReLU or a variant like JumpReLU [20], TopK [11] or BatchTopK [3].65

f =σ(Wenc(a− bdec) + benc) (1)
â =Wdecf + bdec (2)

The SAE is trained with a reconstruction loss, typically Mean Squared Error (MSE), and a sparsity-66

inducing loss consisting of a function S that penalizes non-sparse representation with corresponding67

sparsity coefficient λ. For standard L1 SAEs, S is the L1 norm of f . For TopK and BatchTopK SAEs,68

there is no sparsity-inducing loss (S = 0) as the TopK function directly induces sparsity. There is69

sometimes also an additional auxiliary loss Laux with coefficient α to ensure all latents fire. Standard70

L1 SAEs typically do not have an auxiliary loss [18]. The general SAE loss is71

L = ∥a− â∥22 + λS + αLaux. (3)

Tied SAEs. A tied SAE has Wenc = W T
dec. The biases have different dimensions and are untied.72

Matryoshka SAEs. A matryoshka SAE [4] extends the SAE definition by summing losses created73

by prefixes of SAE latents. This forces each sub-SAE to reconstruct input activations on its own, and74

incentivizes the SAE to place more common, general concepts into latents with smaller index number.75

A matryoshka SAE uses nested prefixes with sizes M = m1,m2, ...mn where m1 < m2 < . . . <76

mn = L, where L is the number of latents in the full dictionary. Matryoshka SAE loss is:77

L =
∑

m∈M

(
∥a− âm∥22 + λSm

)
+ αLaux (4)

Where âm is the reconstruction for the SAE using the first m latents, and Sm is the sparsity penalty78

applied to the first m latents. For TopK and BatchTopK Matryoshka SAEs, there is no sparsity penalty79

(Sm = 0) as the TopK function directly imposes sparsity.80

3 Studying hedging in single-latent SAEs81

We begin by investigating hedging in the simplest possible toy SAE setting: an SAE with a single82

latent. We use a model with two true features f1 and f2. Each true feature f is a random direction83

with unit-norm in R50, and f1 ⊥ f2. Each feature fires with magnitude 1.0. Since we only have two84

features, an activation a can consist of a ∈ {0, f1, f2, f1 + f2}. There is no bias term added to the85

activations. Unless otherwise specified, f1 fires with probability 0.25, and f2 fires with probability86

0.2. We use SAELens [1] to train a single-latent SAE on these activations.87

3.1 Fully independent features88

We first study the case when f1 and f2 fire independently. We find that the SAE correctly represents f189

without any interference from f2. However, the decoder bias has incorrectly learned to represent the90

direction of f2, but with magnitude 0.2, equal to the probability of f2 firing. The cosine similarities91

of the single SAE latent and SAE bias term with the true features is shown in Figure 2.92

We consistently find this pattern of the decoder bias merging in positive components of features not93

tracked by their own latent. In this sense, the decoder bias can be thought of as tracking an always-on94

feature, and thus is in a hierarchical relationship with every other feature of the model.95
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(a) The SAE encoder and decoder both correctly learn just f1.
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(b) The decoder bias incorrectly learns f2.

Figure 2: Encoder, decoder, and decoder bias patterns for a toy model with 2 independent features.

3.2 Hierarchical features96

Next, we investigate what happens if f1 and f2 are in a hierarchy, so f2 can only fire if f1 fires, but f197

can still fire on its own (f2 =⇒ f1). We adjust the firing probability of f2 so that P (f2|f1) = 0.2,98

and P (f2|¬f1) = 0 (thus, P (f2) = 0.05). In a two-latent SAE this setup would cause feature99

absorption. We plot the cosine similarities of our single latent with f1 and f2 in Figure 3a.100
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(a) When features f1 and f2 form a hierarchy
(f2 =⇒ f1), the SAE incorrectly merges a compo-
nent of f2 into its single latent l1.
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(b) When features f1 and f2 are anti-correlated, the
SAE incorrectly merges a negative component of f2
into its single latent l1.

Figure 3: Hedging occurs with hierarchical features or anti-correlated features.

Here we clearly see feature hedging. The single SAE latent has now merged in a component of f2101

into its single latent, so it’s now a mixture of f1 and f2. f2 is merged roughly symmetrically into both102

the encoder and decoder of the SAE latent (cos(f2, l1) is about 1/4 of cos(f1, l1) in both encoder and103

decoder). This is unlike in feature absorption where there is an asymmetry in the encoder and decoder.104

This merging of features reduces the MSE loss of the SAE despite being a degenerate solution.105

Increasing the L1 penalty of the SAE does not solve this problem. f2 only fires if f1 fires, so adding106

a positive component of f2 into the encoder does not cause the latent to fire any more often.107

3.3 Positively correlated features108

Next, we change our setup so that P (f2|¬f1) = 0.1 instead of 0. We still keep P (f2|f1) = 0.2, so109

that f2 is more likely to fire if f1 fires, but it can still fire on its own as well. The features are now110

merely correlated rather than following a strict hierarchy.111

We now see hedging depending on the strength of the L1 penalty. When the L1 penalty is low,112

hedging is apparent. However, if the L1 penalty is high enough and the level of correlation is low113

enough, then the SAE will learn the correct features, as positive hedging increases the L0 of the SAE114

slightly relative to learning just f1. Plots of the cosine similarity of the SAE encoder and decoder115

compared to true features are shown in Figure 4 with high and low sparsity penalties. If we use a116

full-width SAE, the SAE learns the true features despite the correlation (see Appendix A.1).117
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(a) Hedging still occurs with L1 coefficient of 0.001.
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(b) No hedging occurs with L1 coefficient of 0.1.

Figure 4: Hedging occurs with positively-correlated features depending on the sparsity penalty.
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3.4 Anti-correlated features118

Next, we reverse the conditional probabilities of f2 so that P (f2|f1) = 0.1 and P (f2|¬f1) = 0.2.119

Now f2 is more likely to fire on its own than it is to fire along with f1. A plot of the cosine similarity120

of the SAE with the true features is shown in Figure 3b.121

Now the SAE latent has actually merged a negative component of f2 into its single latent instead of a122

positive component. Furthermore, increasing L1 penalty does nothing to solve this, as the negative123

component of hedging in the encoder does not increase L0 of the SAE. If we use a full-width SAE,124

we again see the SAE learns the true features despite the correlation (see Appendix A.1).125

3.5 Hedging is caused by reconstruction loss: curves for single-latent SAEs126

What causes hedging? We hypothesize that it is a combination of not enough latents to represent127

every feature, and the fact that MSE loss incentivizes reconstructing multiple features imperfectly as128

opposed to only one feature perfectly.129

To test this, we analyze the loss curves for a single-latent tied SAE with a parent-child relationship130

between the two features f1 and f2, so f2 =⇒ f1. The ideal SAE latent must be some combination131

of these two features. As there are no other interfering features to break the symmetry between132

encoder and decoder, the SAE can be expressed by a single unit norm latent. We set the SAE latent133

l to an interpolation of these two features, l = αf2 + (1− α)f1 (adjusted to have unit norm). We134

calculate expected SAE loss consisting of MSE + L1 loss for 0 ≤ α ≤ 1.135

First, we set P (a = f1) = 0.3 and P (a = f1 + f2) = 0.1. We characterize the probabilities this136

way since there are only two firing possibilities we need to consider: either f1 is firing on its own or137

f1 and f2 are firing together. We use L1 coefficient of 0 and 0.1 to explore the effect of the sparsity138

penalty on loss. We also consider the case where both features fire together more than they fire on139

their own, with P (a = f1) = 0.1 and P (a = f1 + f2) = 0.3. Loss curves are shown in Figure 5.140

0.0 0.2 0.4 0.6 0.8 1.0

α

0.1

0.2

0.3

0.4

E
xp

ec
te

d
L

os
s

skew parent (p(f1 + f2) < p(f1))

L1 Coeff.
0.0
0.1

Loss curves for single-latent SAE

(a) Loss curves when the parent feature f1 fires more
on its own than with child feature f2. Loss is mini-
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(b) Loss curves when the parent feature f1 fires less
on its own than it does with the child feature f2. Loss
is incorrectly minimized between f1 and f2. Sparsity
penalty does not change the minimum.

Figure 5: Loss curves for an SAE with a single latent l and 2 hierarchical features, where f2 =⇒ f1.
The minimum loss is indicated with a dot on each plot. α = 0 means that l = f1, and α = 1 means
l = f2. In all cases, loss is minimized when the latent l is a combination of f1 and f2.

In these plots, α = 0 corresponds to the SAE latent being exactly f1, and α = 1 corresponds to the141

latent being f2, and α = 0.5 corresponds to f1 + f2. We clearly see that the SAE loss has a single142

minimum between f1 and f1 + f2, showing that the MSE minimum is attained with feature hedging.143

4 Quantifying hedging in LLM SAEs144

While we have demonstrated hedging in a synthetic setting, it remains a question how much hedging145

occurs in LLM SAEs. We next study the effect of adding new latents to an existing SAE. Based146

on our understanding of hedging in toy models, we expect that when a new latent is added to an147

SAE, this should pull the component of the new feature out of existing SAE latents. Thus if hedging148
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occurs, the change in existing latents after a new latent is added should project onto that new latent.149

If hedging did not exist, then adding a new latent should not have any effect on existing latents.150

Hedging affects the encoder and decoder of the SAE symmetrically, so we should be able to detect151

hedging in either the encoder or decoder. We look at the decoder to distinguish hedging from152

absorption, as absorption affects the encoder. Under feature absorption, if a newly added latent is a153

child feature of an existing latent, then the encoder for the parent latent adds a negative component of154

the new child latent to avoid firing when the child is active, but the parent decoder remains unchanged.155

This corresponds to adding a new latent to Figure 1a and arriving at Figure 1b. Thus, any change to156

existing decoder latents cannot be attributed to absorption and must be due to hedging.157

We expect that even if there were no hedging at all, simply due to noise, existing SAE decoder latents158

may undergo a change that has some small projection onto new added latents. We want to make sure159

that anything we quantify as hedging must be larger than what we would expect from random noise.160

Hedging degree Taking this into account, we define a metric called hedging degree, h. We take161

an existing SAE s0 with L latents and add N new latents to the SAE. After adding these latents, we162

continue training the SAE and arrive at a new SAE, s1, with L+N latents. We also continue training163

s0 on the same tokens that we train s1 on to ensure that any difference between s0 and s1 is due only164

to the newly added latents. W 0
dec refers to the new decoder of s0, and W 1

dec refers to the decoder of s1.165

We define the difference in the original L latents between s0 and s1 as:166

δL = W 1
dec[0 : L]−W 0

dec[0 : L] (5)

where W 1
dec[L : L+N ] refers to the newly added decoder latents. Wrand[0 : N ] refers to a decoder167

consisting of N randomly initialized latents. All decoders are normalized to have latents of unit norm.168

We define the projection of a vector v onto a subspace spanned by W as:169

Proj(v,W ) = ∥W (WTW )−1WT v∥ (6)

The hedging degree h is then defined as:170

h =
1

L

L∑
i

∥Proj(δL[i],W 1
dec[L : L+N ])∥︸ ︷︷ ︸

Projection of δL onto N new latents

− ∥Proj(δL[i],Wrand[0 : N ])∥︸ ︷︷ ︸
Projection of δL onto N random latents

(7)

Any value of h > 0 corresponds to hedging above what we would expect from random noise, as h171

subtracts the projection along N randomly initialized latents as part of the computation.172

The choice of the number of new latents N is a hyperparameter of hedging degree. We use N = 64173

for our hedging degree calculation. We explore the effect of different choices on N in Appendix A.3.174

4.1 Results175

We experiment with SAEs trained on Gemma-2-2b [21], as this model is commonly used for SAE176

research due to the thoroughness of the Gemma Scope suite of SAEs [15], as well as Llama-3.2-177

1b [7] to validate results on another LLM. All SAEs are trained first on 250M tokens of the Pile178

uncopyrighted [10]. After adding N = 64 latents, we continue training for another 250M tokens.179

The version of the SAE without latents added is also trained for another 250M tokens, so each SAE180

is trained for 500M tokens total. The pair of extended and non-extended SAEs is used to calculate181

hedging degree. SAE training details are in Appendix A.2.182

We first calculate hedging degree vs SAE width in Figure 6a, with widths ranging from 128 to 65536.183

Hedging degree is dramatically higher at narrower widths, especially at 4096 width and below. While184

the hedging rate drops a lot with increasing SAE width, even at our max width of 65536 no SAE185

achieves 0 hedging degree, indicating there is still hedging occurring.186

We next calculate hedging degree vs L0 (the average number of active latents) in Figure 6c, with L0187

ranging from about 5 to 200. Very low L0 seems to lead to more hedging for BatchTopK SAEs, but188

the effect is minor compared with the effect of SAE width on hedging degree.189
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Figure 6: Hedging degree for SAEs trained on Gemma-2-2b layer 12. Unless otherwise specified,
SAEs have width 8192, BatchTopK SAEs have K=25. Shaded area in plots is 1 std.

Finally, we calculate hedging degree vs layer in Figure 6b. The hedging degree for L1 and TopK190

SAEs appears to merge around the end of the SAE, but overall the layer does not appear to have a191

massive effect on hedging degree.192

It also appears that BatchTopK SAEs have more hedging than L1 SAEs. This may be due to L1 loss193

reducing hedging from positively correlated features, as we saw in Section 3.3.194

5 Case study: adding a new latent to an existing SAE195

We next explore how hedging affects a real SAE. We trained a L1 SAE on Gemma-2-2b layer 12196

with width 8192 for 250M tokens on the Pile [10], then add a new latent to the SAE, and continue197

training both the original SAE and the extended SAE for another 250M tokens.198

0.3/ css / bootstrap.min .

/ bootstrap.min . css _integrity="sha3"

/ bootstrap.min . css ">____ link

(a) Newly added case-study latent, latent 8192. The
latent appears to track CSS scripts in HTML.

>____< link _rel =" stylesheet" _type ="

8"/>< link _rel = stylesheet_href="..//doc
png">< link _rel =" manifest"_href="

(b) Latent 3094, which had the largest negative δ-
projection after adding latent 8192. This latent tracks
“rel” in HTML, used for CSS scripts in HTML.

Figure 7: Sample top activating examples for case study latents.

We examine inputs that cause the newly added latent to fire to get a sense of what it represents. We199

reproduce a portion of the top activating examples for the new latent in Figure 7a. This latent appears200

to fire on CSS scripts included in HTML. A larger set of inputs is shown in Appendix A.4.201

Next, we look at the magnitude of change in existing latents projected on the new latent. Based on202

our understanding of hedging, if a latent loses a large component of the newly added latent, this203

corresponds to a likely hierarchical relationship with the new latent. The latent which lost the largest204

component of the new latent is latent 3094, which seems to track the “rel” HTML attribute used205

mainly for linking CSS scripts. We show top activating examples for latent 3094 in Figure 7b.206

Since CSS scripts are just one type of asset that can be linked using “rel”, this appears to be exactly207

the sort of hierarchical relationship we expect to be heavily impacted by hedging.208

6 Balancing hedging and absorption in matryoshka SAEs209

Matryoshka SAEs [4] combat absorption with nested SAE loss prefixes. Each level acts like a small210

SAE, and is forced to reconstruct the input on its own. This forces the SAE to learn more general211

concepts in earlier levels, and makes it difficult for the SAE to make holes in the recall of parent212

latents for absorption, as this would hurt the reconstruction of earlier matryoshka levels.213

However, since early matryoshka levels are effectively narrow SAEs, they suffer from feature hedging.214

As we saw in Section 4.1, the more narrow an SAE is, the more the severe the feature hedging.215

Matryoshka SAEs thus solve feature absorption at the expense of exacerbating feature hedging.216
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Inspecting the effect of hedging and absorption on the SAE encoder in Figure 1b shows that hedging217

and absorption have opposite effects. For hierarchical features, hedging adds a positive component of218

child features into the parent encoder latent, but absorption does the opposite and adds a negative219

component of child features into the parent latent. If we balance the negative component of child220

latents from absorption with the positive component from hedging, these effects can cancel out.221

Balance matryoshka SAE We extend the definition of a matryoshka SAE from Equation 4 to allow222

applying a scaling coefficient βm to the loss for each matryoshka level:223

L =
∑

m∈M
βm

(
∥a− âm∥22 + λSm

)
+ αLaux (8)

We refer to this extension as a balance matryoshka SAE, where each βm ≥ 0 controls the relative224

balance of each level. If each βm = 1 this is a standard matryoshka SAE. If βm = 0 for all225

matryoshka levels except the outer-most level, this reduces to a standard (non-matryoshka) SAE.226

We demonstrate this balancing in a toy model of hierarchical features. The toy model has 4 features,227

with feature 1 being the parent feature and features 2-4 being children (features 2-4 can only fire228

if feature 1 is also firing). Feature 1 fires with probability 0.25, and each child feature fires with229

probability 0.15 if feature 1 is firing. We train a matryoshka SAE with a single inner level consisting230

of only latent 1 with balance coefficient β. For more details on this toy setup, see Appendix A.5.231
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Figure 8: Balancing hedging and absorption in a toy model of hierarchical features. Child features
2-4 only fire if parent feature 1 fires. The matryoshka SAE has a single inner level with 1 latent.

We show results in Figure 8. When β is too high or too low this results in hedging or absorption,232

respectively. When β = 0.25, these balance out and the SAE learns a near perfect representation.233

Next, we train LLM balance matryoshka SAEs with different balance ratios on Gemma-2-2b layer 12.234

The SAEs are BatchTopK with k=40, trained on 500M tokens. The SAEs have 5 matryoshka levels235

of sizes 128, 512, 2048, 8192, and 32768 (so the full SAE has width 32768). We set the outermost236

β5 = 1, and set a constant multiplier between each subsequent βm, so multiplier = βm/βm+1. If the237

multiplier is 0.5, then βm = 0.5(5−m).238

We train 10 seeds for each multiplier and show results in Figure 9 for absorption rate, targeted probe239

pertubation (TPP), Spurious Concept Removal (SCR), K-sparse probing, and feature-splitting metrics240

from SAEBench [14], and k=1 sparse probing results [12] for a Parts of Speech (POS) dataset we241

created using Treebank POS tagged sentences [16]. We add a POS dataset for probing since POS are242

very general concepts, and should be learned in the earliest levels of a matryoshka SAE.243

For TPP, feature splitting, and sparse probing, using a compound multiplier of around 0.75 achieves244

better results than either a standard matryoshka SAE or a standard (non-matryoshka) SAE, providing245

evidence that balancing matryoshka losses can improve the performance. Using a multiplier of 0.75246

still scores well on the absorption metric as well. Strangely, the SCR metric appears to perform better247

at higher multipliers. SCR and TPP should measure the same thing, so we do not fully understand248

the discrepancy between these metrics. We provide further results and more details in Appendix A.7.249

While balancing each βm can improve performance on most metrics, we do not expect this to perfectly250

solve absorption and hedging. We show in Appendix A.6 that balancing all hedging and absorption251
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with a single βm is not always possible. We thus expect that it may be possible to further improve252

SAE performance by learning different balancing coefficients per latent, but this is left to future work.253

7 Related work254

Other work has highlighted theoretical problems with SAEs. Till [23] investigated a problem where255

SAEs may increase sparsity by inventing features. For instance, an SAE may fabricate a “red triangle”256

feature in addition to “red” and “triangle” features. Templeton et al. [22] dicuss the problem of257

feature splitting, where an SAE may not learn features at a desired level of specificity. Engels et al.258

[8] investigates SAE errors and finds that SAE error may be pathological and non-linear. Engels et al.259

[9] further shows that there are features that cannot be expressed as a simple linear direction, and260

thus SAEs may struggle to represent these features. Wu et al. [24] and Kantamneni et al. [13] both261

investigate the empirical performance of SAEs and find that SAEs underperform baselines.262

8 Discussion263

SAEs remain a promising technique for decomposing the residual stream of LLMs in an unsupervised264

manner. However, given recent work showing that SAEs underperform relative to baselines [24, 13],265

it is imperative that we understand the reasons for this underperformance so they can be addressed.266

In this work, we introduced the problem of feature hedging in SAEs, showing it both theoretically267

in toy models, and empirically in SAEs trained on real LLMs. We suspect that hedging, along with268

absorption, may be one of the core theoretical problems leading to poor SAE performance.269

Using our understanding of hedging, we introduced the balance matryoshka SAE architecture,270

allowing balancing of hedging and absorption against each other, improving interpretability. We271

view balance matryoshka SAEs as a starting point, and expect this architecture can be improved by272

optimizing the balance coefficients. There may not be a single coefficient that perfectly balances273

hedging and absorption for all features, so we expect there may be further gains from learning a274

different balancing coefficients per latent in the SAE. We leave these improvements to future work.275

9 Limitations276

We only test hedging in SAEs up to 65k latents on LLMs with 2b parameters due to compute277

constraints. Our method for detecting hedging requires fine-tuning SAEs, which is expensive.278
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A Technical Appendices and Supplementary Material478

A.1 Full-width SAE toy model results479
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(a) Full-width SAE with correlated features. The
SAE is still able to perfectly learn the underlying
features despite the correlation.
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(b) Full-width SAE with anti-correlated features. The
SAE is still able to perfectly learn the underlying
features despite the correlation.

Figure 10: Full-width SAE results on correlated and anti-correlated toy models.

We extend the discussion of single-latent SAEs to explore what happens if the SAE has two latents,480

the same number of latents as the number of true features. We use the same toy model as in Section 3.3481

for the positive correlation case, and the same toy model as in Section 3.4 for the anti-correlated case.482

We use L1 penalty of 1e-3 for the positive correlation case, the same as the L1 penalty that caused483

hedging in single-latent SAEs.484

We plot the results in Figure 10. In both cases, the full-width SAEs are able to perfectly recover485

the true features despite the correlation, and despite the low L1 penalty. This shows that hedging is486

caused by the SAE being too narrow, as increasing the width of the SAE solves the problem.487

A.2 Training details for LLM SAEs488

All SAEs are trained on the Pile uncopyrighted [10], using a batch size of 4096 activations and489

context length of 1024 tokens. For L1 SAEs, we use a linear L1 warm-up of 10k steps. SAEs are490

trained on a single 80gb Nvidia H100 GPU. Model weights are loaded in fp32 precisions, but autocast491

to bfloat16 during training. We initialize the SAE so that the encoder and decoder are identical, where492

each latent has norm 0.1, following the procedure described in [18]. All L1 SAEs are trained with493

learning rate 7e-5, and BatchTopK SAEs are trained with learning rate 3e-4. SAEs are trained using494

SAELens [1].495

Unless otherwise specified, BatchTopK SAEs use k=25. For SAEs trained on Gemma-2-2b, we496

conduct most experiments at layer 12 (roughly in the middle), and L1 SAEs trained on Gemma-2-2b497

use L1 coefficient of 10. This coefficient does not reuslt in dead extension latents, and yields a L0498

around 50. For SAEs trained on Llama-3.2-1b, we conduct most experiments at layer 7 (roughly in499

the middle of the model), and for L1 SAEs trained on Llama-3.2-1b, we use L1 coefficient of 0.5.500

This coefficient does not result in dead extension latents, and yields a L0 around 50.501

A.3 Choice of hedging hyperparameter N502
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Our hedging degree metric requires adding N new latents onto an existing SAE to extend it, naturally503

leading to the question of what is a reasonable choice of N. We plot hedging degree vs N for Gemma-504

2-2b layer 12, given an initial BatchTopK SAE of width 8192 in Figure 11. We find that hedging505

degree increases until about N=250. We choose N=64 for our experiments, as 64 is still a small506

number of latents relative to the size of the residual stream (2304 for Gemma-2-2b), while still being507

large enough to hopefully reduce noise from any specific latent that gets added. Furthermore, as we508

see in the plot, the hedging degree from N=64 is about in the middle of the curve, further validating509

that this is a reasonable choice.510

A.3.1 Extending LLM SAEs511

We train two versions of extension SAEs - one for L1 loss SAEs and one for BatchTopK SAEs. In512

both cases, we begin with a pretrained SAE and add N latents randomly initialized with norm 0.1, and513

with the same encoder and decoder directions, following Olah et al. [18]. For the BatchTopK SAEs,514

we simply train the SAE from this point as normal, as the TopK auxiliary loss [11] will naturally515

ensure that the newly added latents do not simply die off.516

For L1 SAEs with high L1 penalty, dead latents become a more serious problem. We find that most517

of the newly added extension latents will rapidly be killed off if we simply train as normal. To518

combat this, we re-warm-up the L1 penalty. However, we cap the minimum L1 penalty at λmin, so519

for the portion of the warm-up where the L1 penalty would normally be below λmin, the L1 penalty520

is left at λmin instead. This capping helps ensure the existing SAE latents are not very disturbed by521

this change in the L1 penalty. If the final L1 penalty is λmin or below, then we do not perform this522

warm-up at all, as the L1 penalty is not strong enough to immediately kill off the newly added latents.523

For Gemma-2-2b SAEs, we set λmin = 10.0. For Llama-3.2-1b SAEs, we set λmin = 0.5.524

This warm-up procedure is only used for the high-L1 variants in Figure 6c - for all other plots the L1525

coefficient used is less than λmin, so no warmup is needed.526

A.4 Additional case study dashboards527

Figure 12: Dashboard for the newly added case study latent representing CSS scripts in HTML.

A.5 Toy balance matryoshka SAEs528

To explore the effect of balancing matryoshka losses in a simple toy setting, we create a toy model529

with 4 true features, all mutually orthogonal and with unit norm in a 50 dimensional space. We set530

up a hierarchical relationship between these features, so feature 1 fires with probability 0.25, and531

features 2, 3, and 4 all fire with probability 0.15 only if feature 1 fires. Thus, feature 1 is the parent532

feature in the hierarchy and features 2, 3, and 4 are all child features.533

We train a matryoshka SAE with 4 latents on 100,000,000 samples from this toy model. The534

matryoshka SAE has a single inner level consisting of 1 latent, to match the number of parent latents535

in our hierarchy. Since our goal with this toy is just to build intuition, we initialize the SAE to the536

correct solution and allow the training to thus pull it away from this correct solution. This also ensures537
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Figure 13: Dashboard for latent 3094, representing the “rel” HTML attribute used for CSS scripts.
This latent has the highest negative δ-projection on the newly added case study latent.

that each variation of our SAE with different balancing co-efficients learns the same latents in the538

same order, so visual comparison is easy.539

A.6 Toy unbalanceable matryoshka SAEs540

The situation above where each child feature has the same probability of firing is unrealistic - we541

would expect that child features all fire with different probabilities from each other. Can we still542

balance the SAE perfectly in this situation? We adjust the toy model from above so that the 3 child543

features fire with probabilities 0.02, 0.2, and 0.5 for features f2, f3, and f4, respectively. We then try544

to manually balance this SAE, finding that β = 0.17 gives roughly the best balance. We plots the545

resulting encoder/decoder cosine similarities in Figure 14.546
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Figure 14: SAE encoder and decoder vs true feature cosine similarities for a balance matryoshka
SAE where the child features fire with different probabilities. It’s no longer possible to perfectly
balance all 3 child features with the same β, but we can still do reasonably well.

We now see it is no longer possible to choose a single β that perfectly balances all 3 children. We547

see slight hedging of feature 4 in latent 1, and slight absorption of feature 2 in latent 1. Still, this548

looks decent compared to the full hedging or full absorption scenario, so we still expect that while549

balancing is not a perfect solution, it should be an improvement. We believe it should be possible to550

finding ways of better balancing the contribution of each outer latent on each inner latent, but this is551

left to future work.552

A.7 SAE evaluation553

A.7.1 SAEBench evals554

We evaluate our SAEs mainly using SAEBench [14]. All evals are performed using default settings.555

We run all evaluations on an Nvidia H100 GPU with 80gb GPU memory. We evaluate on the556

following SAEBench tasks:557
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K-sparse probing k-sparse probing builds on the work of Gurnee et al. [12], where the goal is to558

create a linear probe from model activations using only k neurons as input to the probe. This was559

adapted for use as an SAE evaluation technique by Gao et al. [11]. We focus mainly on k = 1 sparse560

probing, which means finding the single best SAE latent that serves as a classifier for a given concept,561

and evaluating the accuracy of that latent. SAEBench includes supervised classification datasets on562

which k-sparse probing is evaluated.563

Feature absorption The feature absorption metric in SAEBench is a variation on the metric defined564

in the original feature absorption work [5]. This metric uses a first-letter spelling task and first565

identifies the “main” latents for that task using k-sparse probing [12]. Then, the metric identifies566

cases where a linear probe is able to correctly perform the first-letter classification task, but the “main”567

SAE latents fail to perform the task. The metric also looks for other latents that project onto the linear568

probe direction and fire in place of the “main’ latents. Lower absorption is better.569

The SAEBench absorption metric also includes “absorptions fraction”, “feature splitting”, and “first-570

letter k=1 sparse probing” results as well, which we include in our extended results. Absorption571

fraction detects partial absorption, where a parent latent can still fire but weaker when an absorbing572

child latent fires as well. Feature splitting detects the amount of interpretable feature splitting573

occurring in the SAE. Interpretable feature splitting is still considered negative, as we would prefer574

that features do not split at all and the SAE can still represent general, high-level concepts. The575

k-sparse probing results for the first-letter spelling task is calculated as part of the absorption metric,576

but is an interesting sparse-probing result in and of itself.577

Spurious concept removal (SCR) SCR builds on the SHIFT method from Marks et al. [17] to578

detect how well an SAE isolates concepts. The metric uses datasets where two properties are perfectly579

entangled, for instance “profession” and “gender”, and trains a biased probe on these concepts. The580

SCR metric then detects how well k SAE latents can be ablated to de-bias the probe. If the SAE581

latents learn disentangled concepts, then it should only take a few SAE latents to perfectly de-bias582

the probe. A high SCR score means the SAE latents represent disentangled concepts.583

Targeted probe perturbation (TPP) The TPP metric extends SCR to multi-class labels. Binary584

probes are trained for each class, and TPP measures how well ablating k SAE latents can degrade the585

performance of just one of the probes without degrading performance on the other probes. A high586

TPP score means that concepts are represented by distinct sets of SAE latents, rather than latents587

being entangled with many concepts.588

A.7.2 Parts of speech (POS) probing dataset589

We are interested as well in general, high-frequency concepts that we expect should be learned in590

the inner-most levels of a matryoshka SAE. These concepts should be the most affected by both591

absorption and hedging, as these concepts can be considered parent concepts to most other concepts.592

Parts of speech (POS) is a great test-case for these general concepts, and are not covered by the593

SAEBench sparse probing task. As such, we create our own custom POS dataset using the Penn594

Treebank tagged sentences [16].595

We simplify the Treebank parts of speech to the following core set:596

"TO", "IN", "DT", "CC", "NNS", "PRP", "POS"597

We pass these tagged sentences through an LLM, and then collect activations for the final token of598

position of each word at a given layer in the LLM. We create a binary classification dataset for each599

of these parts of speech, and perform k-sparse probing [12] on SAE latents to find the top k latents600

that act as a classifier for each of these parts of speech.601

A.7.3 Balance matryoshka SAE full results602
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NeurIPS Paper Checklist603

1. Claims604

Question: Do the main claims made in the abstract and introduction accurately reflect the605

paper’s contributions and scope?606

Answer: [Yes]607

Justification: We provide evidence of the claims in the abstract and introduction in the toy608

models in Section 3, in LLM SAEs in Section 4, and balance matryoshka SAEs in Section 6.609

Guidelines:610

• The answer NA means that the abstract and introduction do not include the claims611

made in the paper.612

• The abstract and/or introduction should clearly state the claims made, including the613

contributions made in the paper and important assumptions and limitations. A No or614

NA answer to this question will not be perceived well by the reviewers.615

• The claims made should match theoretical and experimental results, and reflect how616

much the results can be expected to generalize to other settings.617

• It is fine to include aspirational goals as motivation as long as it is clear that these goals618

are not attained by the paper.619

2. Limitations620

Question: Does the paper discuss the limitations of the work performed by the authors?621

Answer: [Yes]622

Justification: Limitations are discussed in Section 9.623

Guidelines:624

• The answer NA means that the paper has no limitation while the answer No means that625

the paper has limitations, but those are not discussed in the paper.626

• The authors are encouraged to create a separate "Limitations" section in their paper.627

• The paper should point out any strong assumptions and how robust the results are to628

violations of these assumptions (e.g., independence assumptions, noiseless settings,629

model well-specification, asymptotic approximations only holding locally). The authors630

should reflect on how these assumptions might be violated in practice and what the631

implications would be.632
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• The authors should reflect on the scope of the claims made, e.g., if the approach was633

only tested on a few datasets or with a few runs. In general, empirical results often634

depend on implicit assumptions, which should be articulated.635

• The authors should reflect on the factors that influence the performance of the approach.636

For example, a facial recognition algorithm may perform poorly when image resolution637

is low or images are taken in low lighting. Or a speech-to-text system might not be638

used reliably to provide closed captions for online lectures because it fails to handle639

technical jargon.640

• The authors should discuss the computational efficiency of the proposed algorithms641

and how they scale with dataset size.642

• If applicable, the authors should discuss possible limitations of their approach to643

address problems of privacy and fairness.644

• While the authors might fear that complete honesty about limitations might be used by645

reviewers as grounds for rejection, a worse outcome might be that reviewers discover646

limitations that aren’t acknowledged in the paper. The authors should use their best647

judgment and recognize that individual actions in favor of transparency play an impor-648

tant role in developing norms that preserve the integrity of the community. Reviewers649

will be specifically instructed to not penalize honesty concerning limitations.650

3. Theory assumptions and proofs651

Question: For each theoretical result, does the paper provide the full set of assumptions and652

a complete (and correct) proof?653

Answer: [NA]654

Justification: We do not include theoretical results, only empirical results.655

Guidelines:656

• The answer NA means that the paper does not include theoretical results.657

• All the theorems, formulas, and proofs in the paper should be numbered and cross-658

referenced.659

• All assumptions should be clearly stated or referenced in the statement of any theorems.660

• The proofs can either appear in the main paper or the supplemental material, but if661

they appear in the supplemental material, the authors are encouraged to provide a short662

proof sketch to provide intuition.663

• Inversely, any informal proof provided in the core of the paper should be complemented664

by formal proofs provided in appendix or supplemental material.665

• Theorems and Lemmas that the proof relies upon should be properly referenced.666

4. Experimental result reproducibility667

Question: Does the paper fully disclose all the information needed to reproduce the main ex-668

perimental results of the paper to the extent that it affects the main claims and/or conclusions669

of the paper (regardless of whether the code and data are provided or not)?670

Answer: [Yes]671

Justification: We include all relevant hyperparameters and training software / datasets used672

for all cases where we train an SAE, and include all code necessary to reproduce our results.673

Guidelines:674

• The answer NA means that the paper does not include experiments.675

• If the paper includes experiments, a No answer to this question will not be perceived676

well by the reviewers: Making the paper reproducible is important, regardless of677

whether the code and data are provided or not.678

• If the contribution is a dataset and/or model, the authors should describe the steps taken679

to make their results reproducible or verifiable.680

• Depending on the contribution, reproducibility can be accomplished in various ways.681

For example, if the contribution is a novel architecture, describing the architecture fully682

might suffice, or if the contribution is a specific model and empirical evaluation, it may683

be necessary to either make it possible for others to replicate the model with the same684

dataset, or provide access to the model. In general. releasing code and data is often685
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one good way to accomplish this, but reproducibility can also be provided via detailed686

instructions for how to replicate the results, access to a hosted model (e.g., in the case687

of a large language model), releasing of a model checkpoint, or other means that are688

appropriate to the research performed.689

• While NeurIPS does not require releasing code, the conference does require all submis-690

sions to provide some reasonable avenue for reproducibility, which may depend on the691

nature of the contribution. For example692

(a) If the contribution is primarily a new algorithm, the paper should make it clear how693

to reproduce that algorithm.694

(b) If the contribution is primarily a new model architecture, the paper should describe695

the architecture clearly and fully.696

(c) If the contribution is a new model (e.g., a large language model), then there should697

either be a way to access this model for reproducing the results or a way to reproduce698

the model (e.g., with an open-source dataset or instructions for how to construct699

the dataset).700

(d) We recognize that reproducibility may be tricky in some cases, in which case701

authors are welcome to describe the particular way they provide for reproducibility.702

In the case of closed-source models, it may be that access to the model is limited in703

some way (e.g., to registered users), but it should be possible for other researchers704

to have some path to reproducing or verifying the results.705
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Answer: [Yes]710

Justification: We include all code necessary to reproduce our results, and all datasets used711

for training are also open source.712
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• While we encourage the release of code and data, we understand that this might not be717

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not718
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• The instructions should contain the exact command and environment needed to run to721

reproduce the results. See the NeurIPS code and data submission guidelines (https:722

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.723

• The authors should provide instructions on data access and preparation, including how724

to access the raw data, preprocessed data, intermediate data, and generated data, etc.725

• The authors should provide scripts to reproduce all experimental results for the new726

proposed method and baselines. If only a subset of experiments are reproducible, they727

should state which ones are omitted from the script and why.728

• At submission time, to preserve anonymity, the authors should release anonymized729

versions (if applicable).730

• Providing as much information as possible in supplemental material (appended to the731

paper) is recommended, but including URLs to data and code is permitted.732

6. Experimental setting/details733

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-734
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results?736
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• The answer NA means that the paper does not include experiments.740

• The experimental setting should be presented in the core of the paper to a level of detail741

that is necessary to appreciate the results and make sense of them.742

• The full details can be provided either with the code, in appendix, or as supplemental743

material.744

7. Experiment statistical significance745

Question: Does the paper report error bars suitably and correctly defined or other appropriate746

information about the statistical significance of the experiments?747

Answer: [Yes]748

Justification: We run multiple seeds for all experiments and provide errors bars on all results.749

We mention that the error bars are 1 standard deviation.750

Guidelines:751

• The answer NA means that the paper does not include experiments.752

• The authors should answer "Yes" if the results are accompanied by error bars, confi-753

dence intervals, or statistical significance tests, at least for the experiments that support754

the main claims of the paper.755

• The factors of variability that the error bars are capturing should be clearly stated (for756

example, train/test split, initialization, random drawing of some parameter, or overall757

run with given experimental conditions).758

• The method for calculating the error bars should be explained (closed form formula,759

call to a library function, bootstrap, etc.)760

• The assumptions made should be given (e.g., Normally distributed errors).761

• It should be clear whether the error bar is the standard deviation or the standard error762

of the mean.763

• It is OK to report 1-sigma error bars, but one should state it. The authors should764

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis765

of Normality of errors is not verified.766

• For asymmetric distributions, the authors should be careful not to show in tables or767

figures symmetric error bars that would yield results that are out of range (e.g. negative768

error rates).769

• If error bars are reported in tables or plots, The authors should explain in the text how770

they were calculated and reference the corresponding figures or tables in the text.771

8. Experiments compute resources772

Question: For each experiment, does the paper provide sufficient information on the com-773

puter resources (type of compute workers, memory, time of execution) needed to reproduce774

the experiments?775

Answer: [Yes]776

Justification: We mention that all experiments are performed on an Nvidia H100 with 80gb777

memory.778

Guidelines:779

• The answer NA means that the paper does not include experiments.780

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,781

or cloud provider, including relevant memory and storage.782

• The paper should provide the amount of compute required for each of the individual783

experimental runs as well as estimate the total compute.784

• The paper should disclose whether the full research project required more compute785

than the experiments reported in the paper (e.g., preliminary or failed experiments that786

didn’t make it into the paper).787

9. Code of ethics788

Question: Does the research conducted in the paper conform, in every respect, with the789

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?790

Answer: [Yes]791
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Justification: Our research conforms to the NeurIPS Code of Ethics.792

Guidelines:793

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.794

• If the authors answer No, they should explain the special circumstances that require a795

deviation from the Code of Ethics.796

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-797

eration due to laws or regulations in their jurisdiction).798

10. Broader impacts799

Question: Does the paper discuss both potential positive societal impacts and negative800

societal impacts of the work performed?801

Answer: [NA]802

Justification: Our work does not have a societal impact.803

Guidelines:804

• The answer NA means that there is no societal impact of the work performed.805

• If the authors answer NA or No, they should explain why their work has no societal806

impact or why the paper does not address societal impact.807

• Examples of negative societal impacts include potential malicious or unintended uses808

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations809

(e.g., deployment of technologies that could make decisions that unfairly impact specific810

groups), privacy considerations, and security considerations.811

• The conference expects that many papers will be foundational research and not tied812

to particular applications, let alone deployments. However, if there is a direct path to813

any negative applications, the authors should point it out. For example, it is legitimate814

to point out that an improvement in the quality of generative models could be used to815

generate deepfakes for disinformation. On the other hand, it is not needed to point out816

that a generic algorithm for optimizing neural networks could enable people to train817

models that generate Deepfakes faster.818

• The authors should consider possible harms that could arise when the technology is819

being used as intended and functioning correctly, harms that could arise when the820

technology is being used as intended but gives incorrect results, and harms following821

from (intentional or unintentional) misuse of the technology.822

• If there are negative societal impacts, the authors could also discuss possible mitigation823

strategies (e.g., gated release of models, providing defenses in addition to attacks,824

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from825

feedback over time, improving the efficiency and accessibility of ML).826

11. Safeguards827

Question: Does the paper describe safeguards that have been put in place for responsible828

release of data or models that have a high risk for misuse (e.g., pretrained language models,829

image generators, or scraped datasets)?830

Answer: [NA]831

Justification: Our work does not pose such risks.832

Guidelines:833

• The answer NA means that the paper poses no such risks.834

• Released models that have a high risk for misuse or dual-use should be released with835

necessary safeguards to allow for controlled use of the model, for example by requiring836

that users adhere to usage guidelines or restrictions to access the model or implementing837

safety filters.838

• Datasets that have been scraped from the Internet could pose safety risks. The authors839

should describe how they avoided releasing unsafe images.840

• We recognize that providing effective safeguards is challenging, and many papers do841

not require this, but we encourage authors to take this into account and make a best842

faith effort.843
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12. Licenses for existing assets844

Question: Are the creators or original owners of assets (e.g., code, data, models), used in845

the paper, properly credited and are the license and terms of use explicitly mentioned and846

properly respected?847

Answer: [Yes]848

Justification: All datasets and models used in the work are properly credited and their license849

is respected.850

Guidelines:851

• The answer NA means that the paper does not use existing assets.852

• The authors should cite the original paper that produced the code package or dataset.853

• The authors should state which version of the asset is used and, if possible, include a854

URL.855

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.856

• For scraped data from a particular source (e.g., website), the copyright and terms of857

service of that source should be provided.858

• If assets are released, the license, copyright information, and terms of use in the859

package should be provided. For popular datasets, paperswithcode.com/datasets860

has curated licenses for some datasets. Their licensing guide can help determine the861

license of a dataset.862

• For existing datasets that are re-packaged, both the original license and the license of863

the derived asset (if it has changed) should be provided.864

• If this information is not available online, the authors are encouraged to reach out to865

the asset’s creators.866

13. New assets867

Question: Are new assets introduced in the paper well documented and is the documentation868

provided alongside the assets?869

Answer: [NA]870

Justification: No new assets are introduced in the paper.871

Guidelines:872

• The answer NA means that the paper does not release new assets.873

• Researchers should communicate the details of the dataset/code/model as part of their874

submissions via structured templates. This includes details about training, license,875

limitations, etc.876

• The paper should discuss whether and how consent was obtained from people whose877

asset is used.878

• At submission time, remember to anonymize your assets (if applicable). You can either879

create an anonymized URL or include an anonymized zip file.880

14. Crowdsourcing and research with human subjects881

Question: For crowdsourcing experiments and research with human subjects, does the paper882

include the full text of instructions given to participants and screenshots, if applicable, as883

well as details about compensation (if any)?884

Answer: [NA]885

Justification: We did not perform any crowdsourcing experiments or any experiments886

involving human subjects.887

Guidelines:888

• The answer NA means that the paper does not involve crowdsourcing nor research with889

human subjects.890

• Including this information in the supplemental material is fine, but if the main contribu-891

tion of the paper involves human subjects, then as much detail as possible should be892

included in the main paper.893
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,894

or other labor should be paid at least the minimum wage in the country of the data895

collector.896

15. Institutional review board (IRB) approvals or equivalent for research with human897

subjects898

Question: Does the paper describe potential risks incurred by study participants, whether899

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)900

approvals (or an equivalent approval/review based on the requirements of your country or901

institution) were obtained?902

Answer: [NA]903

Justification: We do not perform any experiments on human subjects.904

Guidelines:905

• The answer NA means that the paper does not involve crowdsourcing nor research with906

human subjects.907

• Depending on the country in which research is conducted, IRB approval (or equivalent)908

may be required for any human subjects research. If you obtained IRB approval, you909

should clearly state this in the paper.910

• We recognize that the procedures for this may vary significantly between institutions911

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the912

guidelines for their institution.913

• For initial submissions, do not include any information that would break anonymity (if914

applicable), such as the institution conducting the review.915

16. Declaration of LLM usage916

Question: Does the paper describe the usage of LLMs if it is an important, original, or917

non-standard component of the core methods in this research? Note that if the LLM is used918

only for writing, editing, or formatting purposes and does not impact the core methodology,919

scientific rigorousness, or originality of the research, declaration is not required.920

Answer: [NA]921

Justification: We do not use LLMs as an important component of the core methods of this922

research.923

Guidelines:924

• The answer NA means that the core method development in this research does not925

involve LLMs as any important, original, or non-standard components.926

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)927

for what should or should not be described.928
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