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Abstract

It is assumed that sparse autoencoders (SAEs) decompose polysemantic activations
into interpretable linear directions, as long as the activations are composed of
sparse linear combinations of underlying features. However, we find that if an
SAE is more narrow than the number of underlying “true features” on which it is
trained, and there is correlation between features, the SAE will merge components
of correlated features together, thus destroying monosemanticity. In LLM SAE:s,
these two conditions are almost certainly true. This phenomenon, which we call
feature hedging, is caused by SAE reconstruction loss, and is more severe the
narrower the SAE. In this work, we introduce the problem of feature hedging
and study it both theoretically in toy models and empirically in SAEs trained on
LLMs. We suspect that feature hedging may be one of the core reasons that SAEs
consistently underperform supervised baselines. Finally, we use our understanding
of feature hedging to propose an improved variant of matryoshka SAEs. Our work
shows there remain fundamental issues with SAEs, but we are hopeful that that
highlighting feature hedging will catalyze future advances that allow SAEs to
achieve their full potential of interpreting LLMs at scale.

1 Introduction

As large language models (LLMs) are deployed in real-world applications, it is increasingly important
to understand their internal workings. Sparse autoencoders (SAEs) decompose the dense, polyseman-
tic activations of LLMs into interpretable latent features [6} 2] using sparse dictionary learning [19].
SAEs have the advantage of operating completely unsupervised, and can easily be scaled to millions
of neurons in its hidden layer (hereafter called “latents”) [22} [11]].

While SAEs showed promising results, recent work has cast doubt on the performance of SAEs
relative to baseline techniques. Wu et al. [24]] show that SAEs underperform on both concept steering
and detection relative to baselines, and Kantamneni et al. [13]] show that SAEs underperform simple
linear probes on both in-domain and out-of-domain detection, even when the probes have very few
training samples. The question, then, is why do SAEs underperform relative to other techniques?
And if we can identify the problems holding back SAEs, can we then fix those problems?

One fundamental issue with SAEs is the problem of feature absorption [S], where a more specific
latent suppresses the firing a more general latent. For instance, an SAE may have a latent that
appears to track “Cities in USA” but that arbitrarily fails to fire on the specific cities “New York™ and
“Detroit”, where a city-specific latent fires instead. Feature absorption requires underlying features to
exist in a hierarchy, with a parent feature f,, and a child feature f., where f. can only fire if f, is
firing (f. == f,). Feature absorption is caused by SAE sparsity penalty, and becomes more severe
the wider the SAE. An SAE encoder/decoder under feature absorption is shown in Figure[Tb]
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Table 1: Comparing feature hedging and feature absorption

Feature absorption Feature hedging

Mixes correlated features into latents
Caused by MSE reconstruction loss

One feature is in the SAE, the other is not
Affects encoder and decoder symmetrically
Gets worse the narrower the SAE

Requires only correlation between features

Learns gerrymandered latents

Caused by sparsity loss

Features are all tracked in the SAE

Affects the encoder and decoder asymmetrically
Gets worse the wider the SAE

Requires hierarchical features

In this paper, we identify another fundamental issue with SAEs which we call feature hedging. In
hedging, an SAE is too narrow to represent both features f, and f, with their own latents [, and l.
Ideally, an SAE should assign a latent [ to either f, or f;, and ignore the feature not being tracked.
However, if f, and f are either hierarchical as in absorption, or (anti-)correlated, then the SAE latent
[ can reduce reconstruction error by incorrectly mixing in components of both f,; and f;. A sample
SAE encoder and decoder experiencing hedging is shown in Figure[Ta] In an LLM SAE, hedging will
look like each SAE latent has noise mixed into it, likely reducing the performance of the latent for
both detection and steering. Unlike with absorption, hedging becomes worse the narrower the SAE:
thus trying to reduce absorption by making the SAE narrower will simply result in more hedging
instead. The differences between feature hedging and feature absorption are shown in Table[T]

In LLM SAEs, the SAE is almost certainly narrower than the number of underlying features, as even
extremely wide LLM SAEs appear to still miss features [22]. Furthermore, we should expect that
nearly every feature in an LLM has some correlation to other features. We thus expect that hedging is
the norm in SAEs trained on LLM activations and will distort the performance of LLM SAE:s.
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(a) When the SAE is only wide enough to represent
one of the two features, we see feature hedging. La-
tent [; mainly tracks fi, but a small component of
f2 is incorrectly mixed into the latent I; as well. fo
is mixed symmetrically into both the encoder and
decoder.

(b) If the SAE is wide enough to track both features,
we see feature absorption. The decoder for [ per-
fectly tracks f1, but its encoder turns off if f> is also
active. [ tracks fo, but its decoder merges together
both fi and f>. This asymmetry between encoder
and decoder is characteristic of feature absorption.

Figure 1: SAE encoder and decoder patterns for hierarchical features f; and fo, where fi; — f5.
These features lead to either hedging or absorption depending on the width of the SAE.

A solution to feature absorption has been proposed in the form of matryoshka SAEs [4]. Matryoshka
SAEs use nested SAE loss terms to enforce a hierarchy on the SAE latents, solving absorption by
forcing the narrow inner levels of the SAE to reconstruct inputs on their own. However, as we show in
this paper, matryoshka SAEs suffer more from hedging due to the inner matryoshka levels essentially
being very narrow SAEs. Matryoshka SAEs thus trade off absorption for hedging.

In this work, we define and study feature hedging both theoretically in toy models and empirically in
LLM SAEs. We show that hedging is worse the more narrow the SAE, and introduce a technique to
characterize the amount of hedging present in a given SAE. We also study hedging and absorption
in matryoshka SAEs, and show that it is possible to improve the monosemanticity of matryoshka
SAEs by tuning the relative loss coefficients in each level of the matryoshka SAE to better balance
the competing forces of absorption and hedging—though both problems remain present.
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2 Background

Sparse autoencoders (SAEs). An SAE decomposes an input activation & € R” into a hidden state
f consisting of L hidden neurons, called “latents”. An SAE is composed of an encoder W, € REXP,
a decoder Wye. € RP*L | a decoder bias bgec € RP, and encoder bias be,e € R, and a nonlinearity
o, typically ReLU or a variant like JumpReLU [20]], TopK [[L1] or BatchTopK [3]].

f :U<Wenc(a - bdec) + benc) (1)
a :Wdecf + bdec (2)

The SAE is trained with a reconstruction loss, typically Mean Squared Error (MSE), and a sparsity-
inducing loss consisting of a function S that penalizes non-sparse representation with corresponding
sparsity coefficient A. For standard L1 SAEs, § is the L1 norm of f. For TopK and BatchTopK SAEs,
there is no sparsity-inducing loss (S = 0) as the TopK function directly induces sparsity. There is
sometimes also an additional auxiliary loss L., with coefficient « to ensure all latents fire. Standard
L1 SAE:s typically do not have an auxiliary loss [18]. The general SAE loss is

L=lla—al?+ S+ alax. 3)
Tied SAEs. A tied SAE has W, = WdTeC. The biases have different dimensions and are untied.

Matryoshka SAEs. A matryoshka SAE [4] extends the SAE definition by summing losses created
by prefixes of SAE latents. This forces each sub-SAE to reconstruct input activations on its own, and
incentivizes the SAE to place more common, general concepts into latents with smaller index number.
A matryoshka SAE uses nested prefixes with sizes M = mq, ma, ...m,, where m; < mo < ... <
m.,, = L, where L is the number of latents in the full dictionary. Matryoshka SAE loss is:

L= (la=amll3+ASm) + L )
meM

Where a,,, is the reconstruction for the SAE using the first m latents, and S,, is the sparsity penalty
applied to the first m latents. For TopK and BatchTopK Matryoshka SAEs, there is no sparsity penalty
(S, = 0) as the TopK function directly imposes sparsity.

3 Studying hedging in single-latent SAEs

We begin by investigating hedging in the simplest possible toy SAE setting: an SAE with a single
latent. We use a model with two true features f; and f5. Each true feature f is a random direction
with unit-norm in R®°, and f; | f>. Each feature fires with magnitude 1.0. Since we only have two
features, an activation a can consist of a € {0, f1, fa2, f1 + f2}. There is no bias term added to the
activations. Unless otherwise specified, f; fires with probability 0.25, and f> fires with probability
0.2. We use SAELens [1] to train a single-latent SAE on these activations.

3.1 Fully independent features

We first study the case when f; and f5 fire independently. We find that the SAE correctly represents f;
without any interference from f>. However, the decoder bias has incorrectly learned to represent the
direction of f5, but with magnitude 0.2, equal to the probability of f5 firing. The cosine similarities
of the single SAE latent and SAE bias term with the true features is shown in Figure[2]

We consistently find this pattern of the decoder bias merging in positive components of features not
tracked by their own latent. In this sense, the decoder bias can be thought of as tracking an always-on
feature, and thus is in a hierarchical relationship with every other feature of the model.
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(a) The SAE encoder and decoder both correctly learn just f;. (b) The decoder bias incorrectly learns fo.

Figure 2: Encoder, decoder, and decoder bias patterns for a toy model with 2 independent features.

3.2 Hierarchical features

Next, we investigate what happens if f; and fo are in a hierarchy, so f> can only fire if f; fires, but f;
can still fire on its own (fo = f1). We adjust the firing probability of f5 so that P(fs|f1) = 0.2,
and P(f2|-f1) = 0 (thus, P(f2) = 0.05). In a two-latent SAE this setup would cause feature
absorption. We plot the cosine similarities of our single latent with f; and f> in Figure[3a]
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(a) When features f; and fo form a hierarchy
(f2 = f1), the SAE incorrectly merges a compo-
nent of f> into its single latent /;.

(b) When features f; and f2 are anti-correlated, the
SAE incorrectly merges a negative component of f
into its single latent {;.

Figure 3: Hedging occurs with hierarchical features or anti-correlated features.

Here we clearly see feature hedging. The single SAE latent has now merged in a component of f5
into its single latent, so it’s now a mixture of f; and fs. fs is merged roughly symmetrically into both
the encoder and decoder of the SAE latent (cos(f2,{1) is about V4 of cos(f1,11) in both encoder and
decoder). This is unlike in feature absorption where there is an asymmetry in the encoder and decoder.
This merging of features reduces the MSE loss of the SAE despite being a degenerate solution.

Increasing the L1 penalty of the SAE does not solve this problem. f, only fires if f; fires, so adding
a positive component of f5 into the encoder does not cause the latent to fire any more often.

3.3 Positively correlated features

Next, we change our setup so that P(f2|—f1) = 0.1 instead of 0. We still keep P(f2|f1) = 0.2, so
that fo is more likely to fire if f; fires, but it can still fire on its own as well. The features are now
merely correlated rather than following a strict hierarchy.

We now see hedging depending on the strength of the L1 penalty. When the L1 penalty is low,
hedging is apparent. However, if the L1 penalty is high enough and the level of correlation is low
enough, then the SAE will learn the correct features, as positive hedging increases the LO of the SAE
slightly relative to learning just f;. Plots of the cosine similarity of the SAE encoder and decoder
compared to true features are shown in Figure ] with high and low sparsity penalties. If we use a
full-width SAE, the SAE learns the true features despite the correlation (see Appendix [A.T).
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(a) Hedging still occurs with L1 coefficient of 0.001. (b) No hedging occurs with L1 coefficient of 0.1.

Figure 4: Hedging occurs with positively-correlated features depending on the sparsity penalty.
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3.4 Anti-correlated features

Next, we reverse the conditional probabilities of f5 so that P(f2|f1) = 0.1 and P(f2|—f1) = 0.2.
Now f5 is more likely to fire on its own than it is to fire along with f;. A plot of the cosine similarity
of the SAE with the true features is shown in Figure [3b]

Now the SAE latent has actually merged a negative component of f5 into its single latent instead of a
positive component. Furthermore, increasing L1 penalty does nothing to solve this, as the negative
component of hedging in the encoder does not increase L0 of the SAE. If we use a full-width SAE,
we again see the SAE learns the true features despite the correlation (see Appendix [A.T).

3.5 Hedging is caused by reconstruction loss: curves for single-latent SAEs

What causes hedging? We hypothesize that it is a combination of not enough latents to represent
every feature, and the fact that MSE loss incentivizes reconstructing multiple features imperfectly as
opposed to only one feature perfectly.

To test this, we analyze the loss curves for a single-latent tied SAE with a parent-child relationship
between the two features f; and fs, so fo = f;. The ideal SAE latent must be some combination
of these two features. As there are no other interfering features to break the symmetry between
encoder and decoder, the SAE can be expressed by a single unit norm latent. We set the SAE latent
[ to an interpolation of these two features, [ = afs + (1 — «) f1 (adjusted to have unit norm). We
calculate expected SAE loss consisting of MSE + L1 loss for 0 < o < 1.

First, we set P(a = f1) = 0.3 and P(a = f; + f2) = 0.1. We characterize the probabilities this
way since there are only two firing possibilities we need to consider: either f; is firing on its own or
f1 and f5 are firing together. We use L1 coefficient of O and 0.1 to explore the effect of the sparsity
penalty on loss. We also consider the case where both features fire together more than they fire on
their own, with P(a = f;) = 0.1 and P(a = f1 + f2) = 0.3. Loss curves are shown in Figure[5]

Loss curves for single-latent SAE
skew child (p(f1 + f2) > p(f1))

Loss curves for single-latent SAE
skew parent (p(f1 + f2) < p(f1))
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(a) Loss curves when the parent feature f; fires more
on its own than with child feature f>. Loss is mini-
mized between f1 and f> rather than at f; (o = 0).

(b) Loss curves when the parent feature f fires less
on its own than it does with the child feature f2. Loss
is incorrectly minimized between f; and f». Sparsity

Sparsity penalty does not change the minimum. penalty does not change the minimum.

Figure 5: Loss curves for an SAE with a single latent [ and 2 hierarchical features, where fo = fi.
The minimum loss is indicated with a dot on each plot. & = 0 means that ! = f;, and a = 1 means
I = f>. In all cases, loss is minimized when the latent [ is a combination of f; and f5.

In these plots, a = 0 corresponds to the SAE latent being exactly f;, and o = 1 corresponds to the
latent being fo, and o = 0.5 corresponds to f; + fo. We clearly see that the SAE loss has a single
minimum between f; and f1 + fo, showing that the MSE minimum is attained with feature hedging.

4 Quantifying hedging in LLM SAEs

While we have demonstrated hedging in a synthetic setting, it remains a question how much hedging
occurs in LLM SAEs. We next study the effect of adding new latents to an existing SAE. Based
on our understanding of hedging in toy models, we expect that when a new latent is added to an
SAE, this should pull the component of the new feature out of existing SAE latents. Thus if hedging
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occurs, the change in existing latents after a new latent is added should project onto that new latent.
If hedging did not exist, then adding a new latent should not have any effect on existing latents.

Hedging affects the encoder and decoder of the SAE symmetrically, so we should be able to detect
hedging in either the encoder or decoder. We look at the decoder to distinguish hedging from
absorption, as absorption affects the encoder. Under feature absorption, if a newly added latent is a
child feature of an existing latent, then the encoder for the parent latent adds a negative component of
the new child latent to avoid firing when the child is active, but the parent decoder remains unchanged.
This corresponds to adding a new latent to Figure[TaJand arriving at Figure[Ib] Thus, any change to
existing decoder latents cannot be attributed to absorption and must be due to hedging.

We expect that even if there were no hedging at all, simply due to noise, existing SAE decoder latents
may undergo a change that has some small projection onto new added latents. We want to make sure
that anything we quantify as hedging must be larger than what we would expect from random noise.

Hedging degree Taking this into account, we define a metric called hedging degree, h. We take
an existing SAE sg with L latents and add N new latents to the SAE. After adding these latents, we
continue training the SAE and arrive at a new SAE, s;, with L 4+ N latents. We also continue training
Sp on the same tokens that we train s on to ensure that any difference between sy and s; is due only
to the newly added latents. W, refers to the new decoder of sg, and W, refers to the decoder of .

dec
We define the difference in the original L latents between sg and s; as:

01 = Wieel0 s L] — Wg[0: L] ©)
where W, [L : L + N] refers to the newly added decoder latents. Winq[0 : N] refers to a decoder

consisting of IV randomly initialized latents. All decoders are normalized to have latents of unit norm.
We define the projection of a vector v onto a subspace spanned by W as:

Proj(v, W) = |[W(WTW) 1wy (6)

The hedging degree h is then defined as:

1 L
h=-+ > IProj(3L[i), Waee[L : L+ N])|| — [[Proj(8[i], Wiana[0 : N])| )

K2

Projection of 7, onto N new latents Projection of d 7, onto N random latents

Any value of h > 0 corresponds to hedging above what we would expect from random noise, as h
subtracts the projection along N randomly initialized latents as part of the computation.

The choice of the number of new latents NV is a hyperparameter of hedging degree. We use N = 64
for our hedging degree calculation. We explore the effect of different choices on NV in Appendix

4.1 Results

We experiment with SAEs trained on Gemma-2-2b [21]], as this model is commonly used for SAE
research due to the thoroughness of the Gemma Scope suite of SAEs [15], as well as Llama-3.2-
1b [7] to validate results on another LLM. All SAEs are trained first on 250M tokens of the Pile
uncopyrighted [10]. After adding N = 64 latents, we continue training for another 250M tokens.
The version of the SAE without latents added is also trained for another 250M tokens, so each SAE
is trained for S00M tokens total. The pair of extended and non-extended SAEs is used to calculate
hedging degree. SAE training details are in Appendix

We first calculate hedging degree vs SAE width in Figure [6a] with widths ranging from 128 to 65536.
Hedging degree is dramatically higher at narrower widths, especially at 4096 width and below. While
the hedging rate drops a lot with increasing SAE width, even at our max width of 65536 no SAE
achieves 0 hedging degree, indicating there is still hedging occurring.

We next calculate hedging degree vs LO (the average number of active latents) in Figure [6c| with LO
ranging from about 5 to 200. Very low LO seems to lead to more hedging for BatchTopK SAEs, but
the effect is minor compared with the effect of SAE width on hedging degree.
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Figure 6: Hedging degree for SAEs trained on Gemma-2-2b layer 12. Unless otherwise specified,
SAEs have width 8192, BatchTopK SAEs have K=25. Shaded area in plots is 1 std.

190 Finally, we calculate hedging degree vs layer in Figure[6b] The hedging degree for L1 and TopK
191 SAEs appears to merge around the end of the SAE, but overall the layer does not appear to have a
192 massive effect on hedging degree.

193 It also appears that BatchTopK SAEs have more hedging than L1 SAEs. This may be due to L1 loss
194 reducing hedging from positively correlated features, as we saw in Section [3.3]

15 5 Case study: adding a new latent to an existing SAE

196 We next explore how hedging affects a real SAE. We trained a L1 SAE on Gemma-2-2b layer 12
197 with width 8192 for 250M tokens on the Pile [[10], then add a new latent to the SAE, and continue
198 training both the original SAE and the extended SAE for another 250M tokens.

0.3/[css / bootstrap.min . >____<1link _rel =" stylesheet" _type ="
/ bootstrap.min . ¢ss _integrity="sha3" 8"/>< 1link _rel = stylesheet_href="..//doc
/ bootstrap.min .[css ">____ link png">< link  _rel =" manifest"_href="

(a) Newly added case-study latent, latent 8192. The (b) Latent 3094, which had the largest negative J-

latent appears to track CSS scripts in HTML. projection after adding latent 8192. This latent tracks
“rel” in HTML, used for CSS scripts in HTML.

Figure 7: Sample top activating examples for case study latents.

199 We examine inputs that cause the newly added latent to fire to get a sense of what it represents. We
200 reproduce a portion of the top activating examples for the new latent in Figure(7al This latent appears
201 to fire on CSS scripts included in HTML. A larger set of inputs is shown in Appendix [A.4]

202 Next, we look at the magnitude of change in existing latents projected on the new latent. Based on
203 our understanding of hedging, if a latent loses a large component of the newly added latent, this
204 corresponds to a likely hierarchical relationship with the new latent. The latent which lost the largest
205 component of the new latent is latent 3094, which seems to track the “re]” HTML attribute used
206 mainly for linking CSS scripts. We show top activating examples for latent 3094 in Figure [7b]

207 Since CSS scripts are just one type of asset that can be linked using “rel”, this appears to be exactly
208 the sort of hierarchical relationship we expect to be heavily impacted by hedging.

200 6 Balancing hedging and absorption in matryoshka SAEs

210 Matryoshka SAEs [4] combat absorption with nested SAE loss prefixes. Each level acts like a small
211 SAE, and is forced to reconstruct the input on its own. This forces the SAE to learn more general
212 concepts in earlier levels, and makes it difficult for the SAE to make holes in the recall of parent
213 latents for absorption, as this would hurt the reconstruction of earlier matryoshka levels.

214 However, since early matryoshka levels are effectively narrow SAEs, they suffer from feature hedging.
215 As we saw in Section [£.1] the more narrow an SAE is, the more the severe the feature hedging.
216 Matryoshka SAEs thus solve feature absorption at the expense of exacerbating feature hedging.
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Inspecting the effect of hedging and absorption on the SAE encoder in Figure [Tb]shows that hedging
and absorption have opposite effects. For hierarchical features, hedging adds a positive component of
child features into the parent encoder latent, but absorption does the opposite and adds a negative
component of child features into the parent latent. If we balance the negative component of child
latents from absorption with the positive component from hedging, these effects can cancel out.

Balance matryoshka SAE  We extend the definition of a matryoshka SAE from Equation 4] to allow
applying a scaling coefficient /3, to the loss for each matryoshka level:

L= Z Bm (”CL - ELm”% + )\Sm) + a‘caux
meM

®)

We refer to this extension as a balance matryoshka SAE, where each (3,,, > 0 controls the relative
balance of each level. If each 3,, = 1 this is a standard matryoshka SAE. If 3,, = 0 for all
matryoshka levels except the outer-most level, this reduces to a standard (non-matryoshka) SAE.

We demonstrate this balancing in a toy model of hierarchical features. The toy model has 4 features,
with feature 1 being the parent feature and features 2-4 being children (features 2-4 can only fire
if feature 1 is also firing). Feature 1 fires with probability 0.25, and each child feature fires with
probability 0.15 if feature 1 is firing. We train a matryoshka SAE with a single inner level consisting
of only latent 1 with balance coefficient 3. For more details on this toy setup, see Appendix

Detached Matryoshka SAE (3 = 00)
SAE encoder SAE decoder

Standard SAE (3 = 0)
SAE encoder SAE decoder

Balanced Matryoshka SAE (3 = 0.25)
SAE encoder SAE decoder
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(a) Matryoshka SAE with detached
loss (equivalent a matryoshka SAE
with 8 = 0o0). Hedging adds pos-
itive components of the child fea-
tures 2-4 to the encoder of latent 1.

(b) Standard SAE (equivalent a ma-
tryoshka SAE with 5 = 0). Ab-
sorption adds negative components
of the child features 2-4 to the en-
coder of latent 1.

(c) Roughly balanced matryoshka
SAE with 8 = 0.25. The positive
and negative contributions hedging
and absorption roughly cancel out,

leaving a nearly perfect SAE.

Figure 8: Balancing hedging and absorption in a toy model of hierarchical features. Child features
2-4 only fire if parent feature 1 fires. The matryoshka SAE has a single inner level with 1 latent.

We show results in Figure 8| When £ is too high or too low this results in hedging or absorption,
respectively. When /5 = 0.25, these balance out and the SAE learns a near perfect representation.

Next, we train LLM balance matryoshka SAEs with different balance ratios on Gemma-2-2b layer 12.
The SAEs are BatchTopK with k=40, trained on S00M tokens. The SAEs have 5 matryoshka levels
of sizes 128, 512, 2048, 8192, and 32768 (so the full SAE has width 32768). We set the outermost
B5 = 1, and set a constant multiplier between each subsequent /3,,,, so multiplier = 3,,, /5 +1. If the
multiplier is 0.5, then 3, = 0.55=),

We train 10 seeds for each multiplier and show results in Figure 0] for absorption rate, targeted probe
pertubation (TPP), Spurious Concept Removal (SCR), K-sparse probing, and feature-splitting metrics
from SAEBench [14], and k=1 sparse probing results [[12] for a Parts of Speech (POS) dataset we
created using Treebank POS tagged sentences [16]. We add a POS dataset for probing since POS are
very general concepts, and should be learned in the earliest levels of a matryoshka SAE.

For TPP, feature splitting, and sparse probing, using a compound multiplier of around 0.75 achieves
better results than either a standard matryoshka SAE or a standard (non-matryoshka) SAE, providing
evidence that balancing matryoshka losses can improve the performance. Using a multiplier of 0.75
still scores well on the absorption metric as well. Strangely, the SCR metric appears to perform better
at higher multipliers. SCR and TPP should measure the same thing, so we do not fully understand
the discrepancy between these metrics. We provide further results and more details in Appendix [A.7]

While balancing each 3,,, can improve performance on most metrics, we do not expect this to perfectly
solve absorption and hedging. We show in Appendix [A.6|that balancing all hedging and absorption
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Figure 9: Performance of balance matryoshka SAEs vs multiplier. The shaded area is 1 std. Multi-
plier=0 is equivalent to a standard SAE, and multiplier=1 is a standard matryoshka SAE.

with a single (,,, is not always possible. We thus expect that it may be possible to further improve
SAE performance by learning different balancing coefficients per latent, but this is left to future work.

7 Related work

Other work has highlighted theoretical problems with SAEs. Till [23] investigated a problem where
SAEs may increase sparsity by inventing features. For instance, an SAE may fabricate a “red triangle”
feature in addition to “red” and “triangle” features. Templeton et al. [22] dicuss the problem of
feature splitting, where an SAE may not learn features at a desired level of specificity. Engels et al.
[8]] investigates SAE errors and finds that SAE error may be pathological and non-linear. Engels et al.
[9]] further shows that there are features that cannot be expressed as a simple linear direction, and
thus SAEs may struggle to represent these features. Wu et al. [24] and Kantamneni et al. [[13]] both
investigate the empirical performance of SAEs and find that SAEs underperform baselines.

8 Discussion

SAEs remain a promising technique for decomposing the residual stream of LLMs in an unsupervised
manner. However, given recent work showing that SAEs underperform relative to baselines [24}13]],
it is imperative that we understand the reasons for this underperformance so they can be addressed.

In this work, we introduced the problem of feature hedging in SAEs, showing it both theoretically
in toy models, and empirically in SAEs trained on real LLMs. We suspect that hedging, along with
absorption, may be one of the core theoretical problems leading to poor SAE performance.

Using our understanding of hedging, we introduced the balance matryoshka SAE architecture,
allowing balancing of hedging and absorption against each other, improving interpretability. We
view balance matryoshka SAEs as a starting point, and expect this architecture can be improved by
optimizing the balance coefficients. There may not be a single coefficient that perfectly balances
hedging and absorption for all features, so we expect there may be further gains from learning a
different balancing coefficients per latent in the SAE. We leave these improvements to future work.

9 Limitations

We only test hedging in SAEs up to 65k latents on LLMs with 2b parameters due to compute
constraints. Our method for detecting hedging requires fine-tuning SAEs, which is expensive.
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A.1 Full-width SAE toy model results
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(a) Full-width SAE with correlated features. The
SAE is still able to perfectly learn the underlying
features despite the correlation.
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(b) Full-width SAE with anti-correlated features. The
SAE is still able to perfectly learn the underlying
features despite the correlation.

Figure 10: Full-width SAE results on correlated and anti-correlated toy models.

We extend the discussion of single-latent SAEs to explore what happens if the SAE has two latents,
the same number of latents as the number of true features. We use the same toy model as in Section[3.3]
for the positive correlation case, and the same toy model as in Section@for the anti-correlated case.
We use L1 penalty of le-3 for the positive correlation case, the same as the L1 penalty that caused
hedging in single-latent SAEs.

We plot the results in Figure [I0] In both cases, the full-width SAEs are able to perfectly recover
the true features despite the correlation, and despite the low L1 penalty. This shows that hedging is
caused by the SAE being too narrow, as increasing the width of the SAE solves the problem.

A.2 Training details for LLM SAEs

All SAEs are trained on the Pile uncopyrighted [10], using a batch size of 4096 activations and
context length of 1024 tokens. For L1 SAEs, we use a linear L1 warm-up of 10k steps. SAEs are
trained on a single 80gb Nvidia H100 GPU. Model weights are loaded in fp32 precisions, but autocast
to bfloat16 during training. We initialize the SAE so that the encoder and decoder are identical, where
each latent has norm 0.1, following the procedure described in [[18]. All L1 SAEs are trained with
learning rate 7e-5, and BatchTopK SAEs are trained with learning rate 3e-4. SAEs are trained using
SAELens [[1]].

Unless otherwise specified, BatchTopK SAEs use k=25. For SAEs trained on Gemma-2-2b, we
conduct most experiments at layer 12 (roughly in the middle), and L1 SAEs trained on Gemma-2-2b
use L1 coefficient of 10. This coefficient does not reuslt in dead extension latents, and yields a LO
around 50. For SAEs trained on Llama-3.2-1b, we conduct most experiments at layer 7 (roughly in
the middle of the model), and for L1 SAEs trained on Llama-3.2-1b, we use L1 coefficient of 0.5.
This coefficient does not result in dead extension latents, and yields a LO around 50.

A.3 Choice of hedging hyperparameter N

Hedging degree vs N (width=8k, L0=25)

0.04 — btk
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o
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e
]
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Figure 11: Hedging degree vs N
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Our hedging degree metric requires adding N new latents onto an existing SAE to extend it, naturally
leading to the question of what is a reasonable choice of N. We plot hedging degree vs N for Gemma-
2-2b layer 12, given an initial BatchTopK SAE of width 8192 in Figure[TT] We find that hedging
degree increases until about N=250. We choose N=64 for our experiments, as 64 is still a small
number of latents relative to the size of the residual stream (2304 for Gemma-2-2b), while still being
large enough to hopefully reduce noise from any specific latent that gets added. Furthermore, as we
see in the plot, the hedging degree from N=64 is about in the middle of the curve, further validating
that this is a reasonable choice.

A.3.1 Extending LLM SAEs

We train two versions of extension SAEs - one for L1 loss SAEs and one for BatchTopK SAEs. In
both cases, we begin with a pretrained SAE and add N latents randomly initialized with norm 0.1, and
with the same encoder and decoder directions, following Olah et al. [18]]. For the BatchTopK SAEs,
we simply train the SAE from this point as normal, as the TopK auxiliary loss [11] will naturally
ensure that the newly added latents do not simply die off.

For L1 SAEs with high L1 penalty, dead latents become a more serious problem. We find that most
of the newly added extension latents will rapidly be killed off if we simply train as normal. To
combat this, we re-warm-up the L1 penalty. However, we cap the minimum L1 penalty at Ay, SO
for the portion of the warm-up where the L1 penalty would normally be below Ap,i,, the L1 penalty
is left at A5, instead. This capping helps ensure the existing SAE latents are not very disturbed by
this change in the L1 penalty. If the final L1 penalty is Ay, or below, then we do not perform this
warm-up at all, as the L1 penalty is not strong enough to immediately kill off the newly added latents.

For Gemma-2-2b SAEs, we set A\, = 10.0. For Llama-3.2-1b SAEs, we set A, = 0.5.

This warm-up procedure is only used for the high-L1 variants in Figure [6c|- for all other plots the L1
coefficient used is less than \p,i,, S0 no warmup is needed.

A.4 Additional case study dashboards
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Figure 12: Dashboard for the newly added case study latent representing CSS scripts in HTML.

A.5 Toy balance matryoshka SAEs

To explore the effect of balancing matryoshka losses in a simple toy setting, we create a toy model
with 4 true features, all mutually orthogonal and with unit norm in a 50 dimensional space. We set
up a hierarchical relationship between these features, so feature 1 fires with probability 0.25, and
features 2, 3, and 4 all fire with probability 0.15 only if feature 1 fires. Thus, feature 1 is the parent
feature in the hierarchy and features 2, 3, and 4 are all child features.

We train a matryoshka SAE with 4 latents on 100,000,000 samples from this toy model. The
matryoshka SAE has a single inner level consisting of 1 latent, to match the number of parent latents
in our hierarchy. Since our goal with this toy is just to build intuition, we initialize the SAE to the
correct solution and allow the training to thus pull it away from this correct solution. This also ensures
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Figure 13: Dashboard for latent 3094, representing the “rel” HTML attribute used for CSS scripts.
This latent has the highest negative §-projection on the newly added case study latent.

that each variation of our SAE with different balancing co-efficients learns the same latents in the
same order, so visual comparison is easy.

A.6 Toy unbalanceable matryoshka SAEs

The situation above where each child feature has the same probability of firing is unrealistic - we
would expect that child features all fire with different probabilities from each other. Can we still
balance the SAE perfectly in this situation? We adjust the toy model from above so that the 3 child
features fire with probabilities 0.02, 0.2, and 0.5 for features f5, f3, and fy, respectively. We then try
to manually balance this SAE, finding that § = 0.17 gives roughly the best balance. We plots the
resulting encoder/decoder cosine similarities in Figure [T4]

Unbalanceable Matryoshka SAE (8 = 0.17)

SAE encoder SAE decoder
= - = < - 1
8 5 I &
< N - < - o—
— = -0 7
[Sal Sl o
< < | ©
B — - s - L

1 1 1 1 1 1
1 2 3 4 1 2 3 4

True feature True feature

Figure 14: SAE encoder and decoder vs true feature cosine similarities for a balance matryoshka
SAE where the child features fire with different probabilities. It’s no longer possible to perfectly
balance all 3 child features with the same (3, but we can still do reasonably well.

We now see it is no longer possible to choose a single /3 that perfectly balances all 3 children. We
see slight hedging of feature 4 in latent 1, and slight absorption of feature 2 in latent 1. Still, this
looks decent compared to the full hedging or full absorption scenario, so we still expect that while
balancing is not a perfect solution, it should be an improvement. We believe it should be possible to
finding ways of better balancing the contribution of each outer latent on each inner latent, but this is
left to future work.

A.7 SAE evaluation

A.7.1 SAEBench evals

We evaluate our SAEs mainly using SAEBench [[14]. All evals are performed using default settings.
We run all evaluations on an Nvidia HI00 GPU with 80gb GPU memory. We evaluate on the
following SAEBench tasks:
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K-sparse probing k-sparse probing builds on the work of Gurnee et al. [[12], where the goal is to
create a linear probe from model activations using only k£ neurons as input to the probe. This was
adapted for use as an SAE evaluation technique by Gao et al. [[11]. We focus mainly on k = 1 sparse
probing, which means finding the single best SAE latent that serves as a classifier for a given concept,
and evaluating the accuracy of that latent. SAEBench includes supervised classification datasets on
which k-sparse probing is evaluated.

Feature absorption The feature absorption metric in SAEBench is a variation on the metric defined
in the original feature absorption work [5]. This metric uses a first-letter spelling task and first
identifies the “main” latents for that task using k-sparse probing [[12]]. Then, the metric identifies
cases where a linear probe is able to correctly perform the first-letter classification task, but the “main”
SAE latents fail to perform the task. The metric also looks for other latents that project onto the linear
probe direction and fire in place of the “main’ latents. Lower absorption is better.

The SAEBench absorption metric also includes “absorptions fraction”, “feature splitting”, and “first-
letter k=1 sparse probing” results as well, which we include in our extended results. Absorption
fraction detects partial absorption, where a parent latent can still fire but weaker when an absorbing
child latent fires as well. Feature splitting detects the amount of interpretable feature splitting
occurring in the SAE. Interpretable feature splitting is still considered negative, as we would prefer
that features do not split at all and the SAE can still represent general, high-level concepts. The
k-sparse probing results for the first-letter spelling task is calculated as part of the absorption metric,
but is an interesting sparse-probing result in and of itself.

Spurious concept removal (SCR) SCR builds on the SHIFT method from Marks et al. [17]] to
detect how well an SAE isolates concepts. The metric uses datasets where two properties are perfectly
entangled, for instance “profession” and “gender”, and trains a biased probe on these concepts. The
SCR metric then detects how well £ SAE latents can be ablated to de-bias the probe. If the SAE
latents learn disentangled concepts, then it should only take a few SAE latents to perfectly de-bias
the probe. A high SCR score means the SAE latents represent disentangled concepts.

Targeted probe perturbation (TPP) The TPP metric extends SCR to multi-class labels. Binary
probes are trained for each class, and TPP measures how well ablating & SAE latents can degrade the
performance of just one of the probes without degrading performance on the other probes. A high
TPP score means that concepts are represented by distinct sets of SAE latents, rather than latents
being entangled with many concepts.

A.7.2 Parts of speech (POS) probing dataset

We are interested as well in general, high-frequency concepts that we expect should be learned in
the inner-most levels of a matryoshka SAE. These concepts should be the most affected by both
absorption and hedging, as these concepts can be considered parent concepts to most other concepts.
Parts of speech (POS) is a great test-case for these general concepts, and are not covered by the
SAEBench sparse probing task. As such, we create our own custom POS dataset using the Penn
Treebank tagged sentences [[16].

We simplify the Treebank parts of speech to the following core set:
IITDII s IIINII , IIDTII , IICCII s IINNSII , IIPRP" s IIPDSII

We pass these tagged sentences through an LLM, and then collect activations for the final token of
position of each word at a given layer in the LLM. We create a binary classification dataset for each
of these parts of speech, and perform k-sparse probing [12] on SAE latents to find the top k latents
that act as a classifier for each of these parts of speech.

A.7.3 Balance matryoshka SAE full results
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Figure 15: Performance of balance matryoshka SAEs vs multiplier for extended metrics. The shaded
area in the plots refers to 1 std. Multiplier=0 is equivalent to a standard non-matryoska SAE, and
multiplier=1 is equivalent to a standard matryoshka SAE.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide evidence of the claims in the abstract and introduction in the toy
models in Section[3] in LLM SAEs in Section[d] and balance matryoshka SAEs in Section [6]

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims

made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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the paper has limitations, but those are not discussed in the paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not include theoretical results, only empirical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include all relevant hyperparameters and training software / datasets used
for all cases where we train an SAE, and include all code necessary to reproduce our results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include all code necessary to reproduce our results, and all datasets used
for training are also open source.

Guidelines:

The answer NA means that paper does not include experiments requiring code.
Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include all training and test details of all evaluations we run.

Guidelines:
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run multiple seeds for all experiments and provide errors bars on all results.
We mention that the error bars are 1 standard deviation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention that all experiments are performed on an Nvidia H100 with 80gb
memory.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
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10.

11.

Justification: Our research conforms to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our work does not have a societal impact.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and models used in the work are properly credited and their license
is respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are introduced in the paper.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We did not perform any crowdsourcing experiments or any experiments
involving human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not perform any experiments on human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We do not use LLLMs as an important component of the core methods of this
research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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