Feature Hedging: Correlated Features Break Narrow
Sparse Autoencoders

David Chanin'»? Tomas Dulka* Adria Garriga-Alonso?®3

!University College London 2FAR Al 3MATS “Independent

Abstract

It is assumed that sparse autoencoders (SAEs) decompose polysemantic activations
into interpretable linear directions, as long as the activations are composed of sparse
linear combinations of underlying features. However, we find that if an SAE is more
narrow than the number of underlying “true features” on which it is trained, and
there is correlation between features, the SAE will merge components of correlated
features together, thus destroying monosemanticity. In LLM SAEs, these two
conditions are almost certainly true. This phenomenon, which we call feature
hedging, is caused by SAE reconstruction loss, and is more severe the narrower
the SAE. In this work, we introduce the problem of feature hedging and study it
both theoretically in toy models and empirically in SAEs trained on LLMs. We
suspect that feature hedging may be one of the core reasons that SAEs consistently
underperform supervised baselines. Finally, we use our understanding of feature
hedging to propose an improved variant of matryoshka SAEs. Importantly, our
work shows that SAE width is not a neutral hyperparameter: narrower SAEs suffer
more from hedging than wider SAEs.

1 Introduction

As large language models (LLMs) are deployed in real-world applications, it is increasingly important
to understand their internal workings. Sparse autoencoders (SAEs) decompose the dense, polyseman-
tic activations of LLMs into interpretable latent features [6, [2] using sparse dictionary learning [19].
SAEs have the advantage of operating completely unsupervised, and can easily be scaled to millions
of neurons in its hidden layer (hereafter called “latents” |)[22} [11]].

While SAEs showed promising results, recent work has cast doubt on the performance of SAEs
relative to baseline techniques. Wu et al. [24]] show that SAEs underperform on both concept steering
and detection relative to baselines, and Kantamneni et al. [13]] show that SAEs underperform simple
linear probes on both in-domain and out-of-domain detection, even when the probes have very few
training samples. The question, then, is why do SAEs underperform relative to other techniques?
And if we can identify the problems holding back SAEs, can we then fix those problems?

One fundamental issue with SAEs is the problem of feature absorption [5]], where a more specific
latent suppresses the firing a more general latent. For instance, an SAE may have a latent that
appears to track “Cities in USA” but that arbitrarily fails to fire on the specific cities “New York” and
“Detroit”, where a city-specific latent fires instead. Feature absorption requires underlying features to
exist in a hierarchy, with a parent feature f, and a child feature f., where f. can only fire if f, is
firing (f. == f,). Feature absorption is caused by SAE sparsity penalty, and becomes more severe
the wider the SAE. An SAE encoder/decoder under feature absorption is shown in Figure[Tb]

'We use the term “latents” for the hidden neurons of the SAE to avoid overloading the term “feature”. We
use “feature” only to describe interpretable concepts represented by the model.

Mechanistic Interpretability Workshop at NeurIPS 2025.

Table 1: Comparing feature hedging and feature absorption

Feature absorption Feature hedging

Learns polysemantic mixtures of features
Caused by MSE reconstruction loss

One feature is in the SAE, the other is not
Affects encoder and decoder symmetrically
Gets worse the narrower the SAE

Requires only correlation between features

Learns gerrymandered latents

Caused by sparsity loss

Features are all tracked in the SAE

Affects the encoder and decoder asymmetrically
Gets worse the wider the SAE

Requires hierarchical features

In this paper, we identify another fundamental issue with SAEs which we call feature hedging. In
hedging, an SAE is too narrow to represent both features f, and f; with their own latents [, and ;.
Ideally, an SAE should assign a latent [to either f,, or f3, and ignore the feature not being tracked.
However, if f, and fj are either hierarchical as in absorption, or (anti-)correlated, then the SAE latent
[can reduce reconstruction error by incorrectly mixing in components of both f,; and f;. A sample
SAE encoder and decoder experiencing hedging is shown in Figure[Tal In an LLM SAE, hedging
will look like each SAE latent has noise mixed into it, reducing the performance of the latent for both
detection and steering. Unlike with absorption, hedging becomes worse the narrower the SAE: thus
trying to reduce absorption by making the SAE narrower will simply result in more hedging instead.
The differences between hedging and absorption are shown in Table[T]

In LLM SAEs, the SAE is almost certainly narrower than the number of underlying features, as
even extremely wide LLM SAEs appear to miss features [22]. Furthermore, we expect that nearly
every feature in an LLM has positive and negative correlations to many features. We thus expect that
hedging is the norm in LLM SAEs and will significantly distort their performance.

Cosine similarity with true features (Feature absorption)
SAE decoder

SAE encoder

Cosine similarity with true features (Feature hedging)

SAE encoder SAE decoder -
rt
g
- - -0 g - 3
g
| S
L
1 2 1 2 1 2 1 2
True feature True feature True feature True feature

SAE Latent
SAE Latent

cos sim

SAE Latent
SAE Latent

(a) When the SAE is only wide enough to represent (b) Adding a new latent to the SAE so it is wide

one of the two features, we see feature hedging. La-
tent [; mainly tracks fi, but a small component of
f2 is incorrectly mixed into the latent [; as well. f>
is mixed symmetrically into both the encoder and
decoder.

enough to track both features, we see feature absorp-
tion. The decoder for [; perfectly tracks f1, but its
encoder turns off if f2 is also active. [2 tracks f2, but
its decoder mixes fi and f>. Asymmetry between
encoder and decoder is characteristic of absorption.

Figure 1: SAE encoder and decoder patterns for hierarchical features f; and fy, where f; = f5.
These features lead to either hedging or absorption depending on the width of the SAE.

A solution to feature absorption has been proposed in the form of matryoshka SAEs [4]. Matryoshka
SAEs use nested SAE loss terms to enforce a hierarchy on the SAE latents, solving absorption by
forcing the narrow inner levels of the SAE to reconstruct inputs on their own. However, as we show in
this paper, matryoshka SAEs suffer more from hedging due to the inner matryoshka levels essentially
being very narrow SAEs. Matryoshka SAEs thus trade off absorption for hedging.

In this work, we define and study feature hedging both theoretically in toy models and empirically in
LLM SAEs. We show that hedging is worse the more narrow the SAE, and introduce a technique to
characterize the amount of hedging present in a given SAE. We also study hedging and absorption
in matryoshka SAEs, and show that it is possible to improve the monosemanticity of matryoshka
SAEs by tuning the relative loss coefficients in each level of the matryoshka SAE to better balance
the competing forces of absorption and hedging—though both problems remain present. We show as
well that SAE width is not a neutral hyperparameter: narrow SAEs suffer more from hedging than
wider SAEs.

Code is available at https://github. com/chanind/feature-hedging-paper.

https://github.com/chanind/feature-hedging-paper

2 Background

Sparse autoencoders (SAEs). An SAE decomposes an input activation & € R” into a hidden state
f consisting of L hidden neurons, called “latents”. An SAE is composed of an encoder W, € REXP,
a decoder Wye. € RP*L | a decoder bias bgec € RP, and encoder bias be,e € R, and a nonlinearity
o, typically ReLU or a variant like JumpReLU [20]], TopK [[L1] or BatchTopK [3]].

f :U<Wenc(a - bdec) + benc) (1)
a :Wdecf + bdec (2)

The SAE is trained with a reconstruction loss, typically Mean Squared Error (MSE), and a sparsity-
inducing loss consisting of a function S that penalizes non-sparse representation with corresponding
sparsity coefficient A. For standard L1 SAEs, § is the L1 norm of f. For TopK and BatchTopK SAEs,
there is no sparsity-inducing loss (S = 0) as the TopK function directly induces sparsity. There is
sometimes also an additional auxiliary loss L., with coefficient « to ensure all latents fire. Standard
L1 SAE:s typically do not have an auxiliary loss [18]. The general SAE loss is

L=lla—al?+ S+ alax. 3)
Tied SAEs. A tied SAE has W, = WdTeC. The biases have different dimensions and are untied.

Matryoshka SAEs. A matryoshka SAE [4] extends the SAE definition by summing losses created
by prefixes of SAE latents. This forces each sub-SAE to reconstruct input activations on its own, and
incentivizes the SAE to place more common, general concepts into latents with smaller index number.
A matryoshka SAE uses nested prefixes with sizes M = mq, ma, ...m,, where m; < mo < ... <
m,, = L, where L is the number of latents in the full dictionary. Matryoshka SAE loss is:

L= (la=amll3+ASm) + L)
meM

Where a,,, is the reconstruction for the SAE using the first m latents, and S,, is the sparsity penalty
applied to the first m latents. For TopK and BatchTopK Matryoshka SAEs, there is no sparsity penalty
(S, = 0) as the TopK function directly imposes sparsity.

3 Studying hedging in single-latent SAEs

We begin by investigating hedging in the simplest possible toy SAE setting: an SAE with a single
latent. We use a model with two true features f; and f5. Each true feature f is a random direction
with unit-norm in R®°, and f; | f>. Each feature fires with magnitude 1.0. Since we only have two
features, an activation a can consist of a € {0, f1, fa2, f1 + f2}. There is no bias term added to the
activations. Unless otherwise specified, f; fires with probability 0.25, and f> fires with probability
0.2. We use SAELens [1] to train a single-latent SAE on these activations.

3.1 Fully independent features

We first study the case when f; and f5 fire independently. We find that the SAE correctly represents f;
without any interference from f>. However, the decoder bias has incorrectly learned to represent the
direction of f5, but with magnitude 0.2, equal to the probability of f5 firing. The cosine similarities
of the single SAE latent and SAE bias term with the true features is shown in Figure [Zh.

We consistently find this pattern of the decoder bias merging in positive components of features not
tracked by their own latent. In this sense, the decoder bias can be thought of as tracking an always-on
feature, and thus is in a hierarchical relationship with every other feature of the model.

(a) Independent features (b) Hierarchical features (c) Correlated features (d) Anti-correlated features

1 1 » 1

!
1 /
! /
! /
/ /

| /

/ /

! /

/ /

r"““-—-o

[

I l’ !
0 . 0 y - 0 s 0

fr fr fr fr
f2 f2 f2 f2
-== SAE Latent -=-= SAE Latent -=-= SAE Latent -=-= SAE Latent
-1 SAE by -1 SAE by, -1 SAE by, -1 SAE by

-1 0 1 -1 0 1 -1 0 1 -1 0 1

Figure 2: True features, and SAE decoder latent and bge. for single-latent SAE and a toy model with
two true features. When the features fire independently, there is no hedging seen in the SAE latent.
When any correlation is present, the SAE latent shows clear hedging.

3.2 Hierarchical features

Next, we investigate what happens if f; and fs are in a hierarchy, so f> can only fire if f; fires, but f;
can still fire on its own (fo = f1). We adjust the firing probability of f5 so that P(f2|f1) = 0.2,
and P(f2|-f1) = O (thus, P(f2) = 0.05). In a two-latent SAE this setup would cause feature
absorption. We plot the cosine similarities of our single latent with f; and f> in Figure[2p.

Here we clearly see feature hedging. The single SAE latent has now merged in a component of f
into its single latent, so it’s now a mixture of f; and fs. fs is merged roughly symmetrically into both
the encoder and decoder of the SAE latent (cos(f2,{1) is about V4 of cos(f1,11) in both encoder and
decoder). This is unlike in feature absorption where there is an asymmetry in the encoder and decoder.
This merging of features reduces the MSE loss of the SAE despite being a degenerate solution.

Increasing the L1 penalty of the SAE does not solve this problem. f; only fires if f; fires, so adding
a positive component of f5 into the encoder does not cause the latent to fire any more often.

3.3 Positively correlated features

Next, we change our setup so that P(fa|—f1) = 0.1 instead of 0. We still keep P(f2|f1) = 0.2, so
that f5 is more likely to fire if f; fires, but it can still fire on its own as well. The features are now
merely correlated rather than following a strict hierarchy.

We now see hedging depending on the strength of the L1 penalty. When the L1 penalty is low,
hedging is apparent. However, if the L1 penalty is high enough and the level of correlation is low
enough, then the SAE will learn the correct features, as positive hedging increases the LO of the SAE
slightly relative to learning just f;. Plots of the cosine similarity of the SAE encoder and decoder
compared to true features are shown in Figure 2t with low sparsity penalty, and in Figure 3b] with high
sparsity penalty. If we use a full-width SAE, the SAE learns the true features despite the correlation

(see Appendix [A.T).

3.4 Anti-correlated features

Next, we reverse the conditional probabilities of f3 so that P(f2|f1) = 0.1 and P(f2|—f1) = 0.2.
Now f5 is more likely to fire on its own than it is to fire along with f;. A plot of the cosine similarity
of the SAE with the true features is shown in Figure 2.

Now the SAE latent has actually merged a negative component of f5 into its single latent instead of a
positive component. Furthermore, increasing L1 penalty does nothing to solve this, as the negative
component of hedging in the encoder does not increase L0 of the SAE. If we use a full-width SAE,
we again see the SAE learns the true features despite the correlation (see Appendix [A.T)).

3.4.1 Hedging is a function of feature correlation

Next, we explore the effect of feature correlation on the amount of hedging in our single-latent, two
feature setting. We set P(f1) = 0.45 and P(f2) = 0.25, but change the correlation between these
features, p, to range from —0.5 to 0.5. We then calculate the cosine similarity of the SAE decoder
latent, [, with f,. We furthermore initialize the single SAE latent to match f7, so that any deviation

from this must be caused by gradient pressure rather than simply being an unfortunate local minimum.
If there is no hedging occurring, then cos(l, f2) = 0, as we saw in Figure . Results are shown in

Figure [3a]

Hedging (cos(l, f2)) vs Feature Correlation Correlated features, high L1 penalty
! '
5 050 i
g o025 /
£ /
& 0.00 . Lo
2
=2 —0.25
o
© 050 fi
fo
=== SAE Latent
—0.4 —0.2 0.0 0.2 0.4 -1 SAE baeo
Feature Correlation —1 0 1

(a) Hedging amount (cos(l, f2)) vs correlation between f1 and f2. The (b) High L1 penalty can reduce
degree to which [mixes in f3 is a clear function of the amount of correla- hedging caused by positive corre-
tion between features. lations.

Figure 3: Hedging as a function of feature correlation, and effect of L1 penalty on positive hedging.

As expected, the amount of hedging directly tracks the amount of correlation. The hedging also
matches the sign of the correlation as well, with negative correlation resulting in a negative component
of f, being mixed into [, and positive correlation resulting in a positive component of f» being mixed
into [.

3.5 Hedging is caused by reconstruction loss: curves for single-latent SAEs

What causes hedging? We hypothesize that it is a combination of not enough latents to represent
every feature, and the fact that MSE loss incentivizes reconstructing multiple features imperfectly as
opposed to only one feature perfectly.

To test this, we analyze the loss curves for a single-latent tied SAE with a parent-child relationship
between the two features f1 and f», so fo = f;. The ideal SAE latent must be some combination
of these two features. As there are no other interfering features to break the symmetry between
encoder and decoder, the SAE can be expressed by a single unit norm latent. We set the SAE latent
[to an interpolation of these two features, [= a.fs + (1 — «) f1 (adjusted to have unit norm). We
calculate expected SAE loss consisting of MSE + L1 loss for 0 < o < 1.

First, we set P(a = f1) = 0.3 and P(a = f; + f2) = 0.1. We characterize the probabilities this
way since there are only two firing possibilities we need to consider: either f; is firing on its own or
f1 and f5 are firing together. We use L1 coefficient of 0 and 0.1 to explore the effect of the sparsity
penalty on loss. We also consider the case where both features fire together more than they fire on
their own, with P(a = f1) = 0.1 and P(a = f; + f2) = 0.3. Loss curves are shown in Figure 4]

In these plots, v = 0 corresponds to the SAE latent being exactly f1, and o = 1 corresponds to the
latent being fo, and o = 0.5 corresponds to f; + fo. We clearly see that the SAE loss has a single
minimum between f; and f; + fo, showing that the MSE minimum is attained with feature hedging.

Theoretical proof We provide a proof that MSE loss causes hedging when there are correlated
features and the SAE is narrower than the number of true features in Appendix[A.2]

4 Quantifying hedging in LLM SAEs

While we have demonstrated hedging in a synthetic setting, it remains a question how much hedging
occurs in LLM SAEs. We next study the effect of adding new latents to an existing SAE. Based
on our understanding of hedging in toy models, we expect that when a new latent is added to an
SAE, this should pull the component of the new feature out of existing SAE latents. Thus if hedging

Loss curves for single-latent SAE Loss curves for single-latent SAE

skew parent (p(f1 + f2) < p(f1)) skew child (p(f1 + f2) > p(f1))

0.4 L1 Coeff. 0.4
2 0.0 2
]]
= 03 — 01 — 0.3
el =]
2 2
Q Q
g 02 g 02 L1 Coeff.
s 8 o 0.0

0.1 : L o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
« [0

(a) Loss curves when the parent feature f; fires more (b) Loss curves when the parent feature f fires less
on its own than with child feature f>. Loss is mini- on its own than it does with the child feature f». Loss
mized between f; and f> rather than at f1 (a = 0). is incorrectly minimized between f; and f». Sparsity
Sparsity penalty does not change the minimum. penalty does not change the minimum.

Figure 4: Loss curves for an SAE with a single latent [and 2 hierarchical features, where fo = f;.
The minimum loss is indicated with a dot on each plot. &« = 0 means that [= f;, and @ = 1 means
I = f>. In all cases, loss is minimized when the latent [is a combination of f; and fs.

occurs, the change in existing latents after a new latent is added should project onto that new latent.
If hedging did not exist, then adding a new latent should not have any effect on existing latents.

Hedging affects the encoder and decoder of the SAE symmetrically, so we should be able to detect
hedging in either the encoder or decoder. We look at the decoder to distinguish hedging from
absorption, as absorption affects the encoder. Under feature absorption, if a newly added latent is a
child feature of an existing latent, then the encoder for the parent latent adds a negative component of
the new child latent to avoid firing when the child is active, but the parent decoder remains unchanged.
This corresponds to adding a new latent to Figure[Taand arriving at Figure[Ib] Thus, any change to
existing decoder latents cannot be attributed to absorption and must be due to hedging.

We expect that even if there were no hedging at all, simply due to noise, existing SAE decoder latents
may undergo a change that has some small projection onto new added latents. We want to make sure
that anything we quantify as hedging must be larger than what we would expect from random noise.

Hedging degree Taking this into account, we define a metric called hedging degree, h. We take
an existing SAE sg with L latents and add N new latents to the SAE. After adding these latents, we
continue training the SAE and arrive at a new SAE, s, with L + N latents. We also continue training
so on the same tokens that we train s; on to ensure that any difference between sg and s; is due only
to the newly added latents. W, refers to the new decoder of sg, and W, refers to the decoder of ;.

dec
We define the difference in the original L latents between sy and s; as:

5L = Wdlec[o : L] - W(Sec[o : L] (5)
where W, [L : L + N] refers to the newly added decoder latents. Wyna[0 : N] refers to a decoder

consisting of IV randomly initialized latents. All decoders are normalized to have latents of unit norm.
We define the projection of a vector v onto a subspace spanned by W as:

Proj(v, W) = [W(WTW) " Wy (©)

The hedging degree h is then defined as:

1 L
h=< > IProj(SLi], W [L : L + N))|| — ||Proj(81[i], Wiana[0 : N])| Q)

Projection of §7, onto N new latents Projection of 67, onto N random latents

Any value of & > 0 corresponds to hedging above what we would expect from random noise, as i
subtracts the projection along N randomly initialized latents as part of the computation.

The choice of the number of new latents NV is a hyperparameter of hedging degree. We use N = 64
for our hedging degree calculation. We explore the effect of different choices on IV in Appendix [A.5]

4.1 Results

We experiment with SAEs trained on Gemma-2-2b [21]], as this model is commonly used for SAE
research due to the thoroughness of the Gemma Scope suite of SAEs [15]], as well as Llama-3.2-
1b [[7] to validate results on another LLM. All SAEs are trained first on 250M tokens of the Pile
uncopyrighted [10]]. After adding N = 64 latents, we continue training for another 250M tokens.
The version of the SAE without latents added is also trained for another 250M tokens, so each SAE
is trained for S00M tokens total. The pair of extended and non-extended SAE:s is used to calculate
hedging degree. SAE training details are in Appendix [A.4]

Hedging degree vs width Hedging degree vs layer Hedging degree vs LO

0.07
—— gemma/ btk 0.06

—— gemma/ btk —— gemma/ btk

gemma /11 0.06
107 —— Hama/bik

— llama/1l

gemma /11 gemma /11

— llama / btk 0.05 — llama/ btk

degree

— llama /11

0.04

ging

1072

Hedging degree (log)

0.01

0.00
0 10000 20000 30000 40000 50000 60000

Width

. ——

0.0 0.2 0.4 0.6 0.8 1.0
Layer (portion of model)

2

2’ 0.04 — llama/ll

=

prd

£ 0.03 -
£ /\ £ 0.03
3 0.02 \/—\ ;
T 0.02

Hed:

0.01
0.00
0 50 100 150 200

LO

(a) Hedging degree vs width. No
SAE tested reached 0 hedging.

(b) Hedging degree vs layer, nor-
malized by number of LLM layers.

(c) Hedging degree vs LO.

Figure 5: Hedging degree for SAEs trained on Gemma-2-2b layer 12. Unless otherwise specified,
SAEs have width 8192, BatchTopK SAEs have K=25. Shaded area in plots is 1 std.

We first calculate hedging degree vs SAE width in Figure [5a] with widths ranging from 128 to 65536.
Hedging degree is dramatically higher at narrower widths, especially at 4096 width and below. While
the hedging rate drops a lot with increasing SAE width, even at our max width of 65536 no SAE
achieves 0 hedging degree, indicating there is still hedging occurring.

We next calculate hedging degree vs LO (the average number of active latents) in Figure[Sc| with LO
ranging from about 5 to 200. Very low LO seems to lead to more hedging for BatchTopK SAEs, but
the effect is minor compared with the effect of SAE width on hedging degree.

Finally, we calculate hedging degree vs layer in Figure[5b] The hedging degree for L1 and TopK
SAEs appears to merge around the end of the SAE, but overall the layer does not appear to have a
massive effect on hedging degree.

It also appears that BatchTopK SAEs have more hedging than L1 SAEs. This may be due to L1 loss
reducing hedging from positively correlated features, as we saw in Section[3.3]

5 Case study: adding a new latent to an existing SAE

We next explore how hedging affects a real SAE. We trained a L1 SAE on Gemma-2-2b layer 12
with width 8192 for 250M tokens on the Pile [10]], then add a new latent to the SAE, and continue
training both the original SAE and the extended SAE for another 250M tokens.

0.3//css / bootstrap.min . >

< link _rel =" stylesheet" _type ="

/ bootstrap.min ./ css _integrity="sha3"

/ bootstrap.min . css ">____ link png">< link | _rel =" manifest"_href="

8"/>< 1link _rel = stylesheet_href="..//doc

(b) Latent 3094, which had the largest negative 4-
projection after adding latent 8192. This latent tracks
“rel” in HTML, used for CSS scripts in HTML.

(a) Newly added case-study latent, latent 8192. The
latent appears to track CSS scripts in HTML.

Figure 6: Sample top activating examples for case study latents.

We examine inputs that cause the newly added latent to fire to get a sense of what it represents. We
reproduce a portion of the top activating examples for the new latent in Figure[6a] This latent appears
to fire on CSS scripts included in HTML. A larger set of inputs is shown in Appendix [A.6]

Next, we look at the magnitude of change in existing latents projected on the new latent. Based on
our understanding of hedging, if a latent loses a large component of the newly added latent, this
corresponds to a likely hierarchical relationship with the new latent. The latent which lost the largest
component of the new latent is latent 3094, which seems to track the “rel” HTML attribute used
mainly for linking CSS scripts. We show top activating examples for latent 3094 in Figure [6b]

Since CSS scripts are just one type of asset that can be linked using “rel”, this appears to be exactly
the sort of hierarchical relationship we expect to be heavily impacted by hedging.

6 Balancing hedging and absorption in matryoshka SAEs

Matryoshka SAEs [4] combat absorption with nested SAE loss prefixes. Each level acts like a small
SAE, and is forced to reconstruct the input on its own. This forces the SAE to learn more general
concepts in earlier levels, and makes it difficult for the SAE to make holes in the recall of parent
latents for absorption, as this would hurt the reconstruction of earlier levels.

However, since early matryoshka levels are effectively narrow SAEs, they suffer from feature hedging.
As we saw in Section 4.1} the more narrow an SAE is, the worse the hedging. Matryoshka SAEs thus
solve feature absorption at the expense of exacerbating feature hedging.

Inspecting the effect of hedging and absorption on the SAE encoder in Figure[Ib|shows that hedging
and absorption have opposite effects. For hierarchical features, hedging adds a positive component of
child features into the parent encoder latent, but absorption does the opposite and adds a negative
component of child features into the parent latent. If we balance the negative component of child
latents from absorption with the positive component from hedging, these effects can cancel out.

Balance matryoshka SAE ~ We extend the definition of a matryoshka SAE from Equation] to allow
applying a scaling coefficient 3, to the loss for each matryoshka level:

L= Z ﬂm (”(1 - dm”g + >\Sm) + O‘Acaux (8)
meM

We refer to this extension as a balance matryoshka SAE, where each (3,,, > 0 controls the relative
balance of each level. If each 3,, = 1 this is a standard matryoshka SAE. If 3,, = 0 for all
matryoshka levels except the outer-most level, this reduces to a standard (non-matryoshka) SAE.

We demonstrate this balancing in a toy model of hierarchical features. The toy model has 4 features,
with feature 1 being the parent feature and features 2-4 being children (features 2-4 can only fire
if feature 1 is also firing). Feature 1 fires with probability 0.25, and each child feature fires with
probability 0.15 if feature 1 is firing. We train a matryoshka SAE with a single inner level consisting
of only latent 1 with balance coefficient 5 (Since there is only one inner level, we always set the outer
level coefficient to 1). For more details on this toy setup, see Appendix[A.7]

We show results in Figure[7] When £ is too high or too low this results in hedging or absorption,
respectively. When 3 = 0.25, these balance out and the SAE learns a near perfect representation.

Next, we train LLM balance matryoshka SAEs with different balance ratios on Gemma-2-2b layer 12.
The SAEs are BatchTopK with k=40, trained on 5S00M tokens. The SAEs have 5 matryoshka levels
of sizes 128, 512, 2048, 8192, and 32768 (so the full SAE has width 32768). We set the outermost
Bs = 1, and set a constant multiplier between each subsequent £3,,,, so multiplier = 3,,, /Brn41. If the
multiplier is 0.5, then £3,,, = 0.5~™).

We train 10 seeds for each multiplier and show results in Figure 8| for absorption rate, targeted probe
pertubation (TPP), Spurious Concept Removal (SCR), K-sparse probing, and feature-splitting metrics
from SAEBench [14], and k=1 sparse probing results [[12]] for a Parts of Speech (POS) dataset we
created using Treebank POS tagged sentences [16]. We add a POS dataset for probing since POS are
very general concepts, and should be learned in the earliest levels of a matryoshka SAE.

Detached Matryoshka SAE (8 = 00)
SAE encoder SAE decoder

z- M :-- I
el] £
[P i PR i
o e - o e - 8
< < | S
v - v - - -1
— T T
1 2 3 4 1 2 3 4

True feature True feature

(a) Matryoshka SAE with detached
loss (equivalent to a matryoshka
SAE with 8 = o0). Hedging adds
positive components of the child
features 2-4 to the encoder of latent

Standard SAE (5 = 0)
SAE encoder SAE decoder
I

-0

SAE Latent

12 3 4
[

SAE Latent

12 3 4
-

cos sim

- -1

T T T
12 3 4 12 3 4

True feature
(b) Standard SAE (equivalent a ma-
tryoshka SAE with 5 = 0). Ab-
sorption adds negative components
of the child features 2-4 to the en-
coder of latent 1.

True feature

Balanced Matryoshka SAE (8 = 0.25)
SAE encoder SAE decoder

e m

12 3 4 12 3 4

SAE Latent
12 3 4
o
SAE Latent
12 3 4
o
cos sim

True feature True feature

(c) Roughly balanced matryoshka
SAE with 5 = 0.25. The positive
and negative contributions hedging
and absorption roughly cancel out,
leaving a nearly perfect SAE.

1.

Figure 7: Balancing hedging and absorption in a toy model of hierarchical features. Child features
2-4 only fire if parent feature 1 fires. The matryoshka SAE has a single inner level with 1 latent,
represented by a black box around latent 1.

Mean Absorption Rate TPP Top-2 Part of speech probes mean F1 (k=1)
0.4
0.85
° 0.06
203
© o 0.80
S 8 s
2 0z 2004 Z o
Z E £
< 0.1 0.02 0.70
0.0 0.65
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4
Multiplier Multiplier Multiplier
(a) SAEBench Absorption rate. (b) SAEBench TPP metric. Higher (c) k=1 sparse probing F1 score on

Lower is better. is better. Parts of Speech (POS).

SCR Top-2 Sparse Probing Top-1 Mean Num Split Feats by SAE
0.75 3.0
0.18
0.74 2
£ 25
£ 016 > 0.73 E
£ 5 072 = 2.0
o 0.14 5 e
g < 071 £
< S 1.5
0.12 0.70 z
0.69 1.0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4
Multiplier Multiplier Multiplier

(d) SAEBench SCR top-2 metric.
Higher is better.

(f) Feature splitting (SAEBench ab-
sorption). Lower is better.

(e) SAEBench K=1 sparse probing
accuracy.

Figure 8: Performance of balance matryoshka SAEs vs multiplier. The shaded area is 1 std. Multi-
plier=0 is equivalent to a standard SAE, and multiplier=1 is a standard matryoshka SAE.

For TPP, feature splitting, and sparse probing, using a compound multiplier of around 0.75 achieves
better results than either a standard matryoshka SAE or a standard (non-matryoshka) SAE, providing
evidence that balancing matryoshka losses can improve the performance. Using a multiplier of 0.75
still scores well on the absorption metric as well. Strangely, SCR appears to perform better at higher
multipliers. However, SCR is also the noisiest metric, and the noise is higher at high multipliers, so it
could be that hedging increases the noise of the SCR metric but does not fully break it. We provide
further results and more details in Appendix [A.9]

While balancing each f3,,, can improve performance on most metrics, we do not expect this to perfectly
solve absorption and hedging. We show in Appendix [A8]that balancing all hedging and absorption
with a single (3, is not always possible. We expect it may be possible to further improve performance
by learning different balancing coefficients per latent, but this is left to future work.

7 Related work

Other work has highlighted theoretical problems with SAEs. Till [23]] investigated a problem where
SAEs may increase sparsity by inventing features. For instance, an SAE may fabricate a “red triangle”
feature in addition to “red” and “triangle” features. Templeton et al. [22] dicuss the problem of
feature splitting, where an SAE may not learn features at a desired level of specificity. Engels et al.

[8]] investigates SAE errors and finds that SAE error may be pathological and non-linear. Engels et al.
[9]] further shows that there are features that cannot be expressed as a simple linear direction, and
thus SAEs may struggle to represent these features. Wu et al. [24] and Kantamneni et al. [13]] both
investigate the empirical performance of SAEs and find that SAEs underperform baselines.

8 Discussion

SAEs remain a promising technique for decomposing the residual stream of LLMs in an unsupervised
manner. However, given recent work showing that SAEs underperform relative to baselines [24} [13],
it is imperative that we understand the reasons for this underperformance so they can be addressed.

In this work, we introduced the problem of feature hedging in SAEs, showing it both theoretically
in toy models, and empirically in SAEs trained on real LLMs. We suspect that hedging, along with
absorption, may be one of the core theoretical problems leading to poor SAE performance.

Using our understanding of hedging, we introduced the balance matryoshka SAE architecture,
allowing balancing of hedging and absorption against each other, improving interpretability. We
view balance matryoshka SAEs as a starting point, and expect this architecture can be improved by
optimizing the balance coefficients. There may not be a single coefficient that perfectly balances
hedging and absorption for all features, so we expect there may be further gains from learning a
different balancing coefficients per latent in the SAE. We leave these improvements to future work.

9 Limitations

We only test hedging in SAEs up to 65k latents on LLMs with 2b parameters due to compute
constraints. Our method for detecting hedging requires fine-tuning SAEs, which is expensive.

Acknowledgments and Disclosure of Funding

This work was carried out as part of the ML Alignment & Theory Scholars (MATS) program. DC
was supported thanks to EPSRC EP/S021566/1. We are grateful to Andrew Mack, Juan Gil, Satvik
Golechha, Josh Engels and Henning Bartsch for discussions and input during the project.

References

[1] Joseph Bloom, Curt Tigges, Anthony Duong, and David Chanin. Saelens. https://github,
com/jbloomAus/SAELens), 2024.

[2] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,
Nick Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity:
Decomposing language models with dictionary learning. Transformer Circuits Thread, 2, 2023.

[3] Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. arXiv preprint
arXiv:2412.06410, 2024.

[4] Bart Bussmann, Noa Nabeshima, Adam Karvonen, and Neel Nanda. Learning multi-level
features with matryoshka sparse autoencoders. arXiv preprint arXiv:2503.17547, 2025.

[5] David Chanin, James Wilken-Smith, Toma$ Dulka, Hardik Bhatnagar, and Joseph Bloom. A is
for absorption: Studying feature splitting and absorption in sparse autoencoders. arXiv preprint
arXiv:2409.14507, 2024.

[6] Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, Robert Huben, and Lee Sharkey. Sparse
autoencoders find highly interpretable features in language models. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=F76bwRSLeK.

[7] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,

10

https://github.com/jbloomAus/SAELens
https://github.com/jbloomAus/SAELens
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK

Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne
Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano,
Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily
Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee,
Georgia Lewis Anderson, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey
Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel
Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes,
Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong,
Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna
Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin
Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham,
Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri
Chatterji, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar
Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura,
Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer,
Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain
Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang,
Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey
Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti
Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,
Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez,
Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong,
Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng
Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan,
Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey,
Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay
Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet,
Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu,
Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon
Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris
Cai, Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
Li, Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling,
Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman,
Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel,
Francesco Caggioni, Francisco Guzman, Frank Kanayet, Frank Seide, Gabriela Medina Florez,
Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman,
Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou,
Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren,
Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai
Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff
Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica
Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,
Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik

11

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqgian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen,
Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria
Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim
Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko,
Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey,
Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng,
Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul
Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina,
Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi
Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak
Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao
Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqgiang Zhang, Shugiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe,
Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar,
Vishal Mangla, Vitor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir
Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng
Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun
Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam,
Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick,
Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783|

Joshua Engels, Logan Riggs, and Max Tegmark. Decomposing the dark matter of sparse
autoencoders. arXiv preprint arXiv:2410.14670, 2024.

Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language
model features are one-dimensionally linear. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=d63a4AM4hb.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027,
2020.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv
preprint arXiv:2406.04093, 2024.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris
Bertsimas. Finding neurons in a haystack: Case studies with sparse probing. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=JYs1ROIMJr.

Subhash Kantamneni, Joshua Engels, Senthooran Rajamanoharan, Max Tegmark, and Neel

Nanda. Are sparse autoencoders useful? a case study in sparse probing. arXiv preprint
arXiv:2502.16681, 2025.

Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Yeu-Tong
Lau, Eoin Farrell, Callum McDougall, Kola Ayonrinde, Matthew Wearden, Arthur Conmy,
Samuel Marks, and Neel Nanda. Saebench: A comprehensive benchmark for sparse au-
toencoders in language model interpretability, 2025. URL https://arxiv.org/abs/2503!
09532.

12

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=d63a4AM4hb
https://openreview.net/forum?id=JYs1R9IMJr
https://openreview.net/forum?id=JYs1R9IMJr
https://arxiv.org/abs/2503.09532
https://arxiv.org/abs/2503.09532

[15] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,
Vikrant Varma, Jdnos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma Scope:
Open Sparse Autoencoders Everywhere All At Once on Gemma 2, August 2024.

[16] Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313-330, 1993.

[17] Samuel Marks, Can Rager, Eric J] Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=I4e82CIDxv.

[18] Chris Olah, Adly Templeton, Trenton Bricken, and Adam Jermyn. April update. https:
//transformer-circuits.pub/2024/april-update/index.html, 2024. URL https:
//transformer-circuits.pub/2024/april-update/index.html,

[19] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311-3325, 1997.

[20] Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma,
Janos Kramadr, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu
sparse autoencoders. arXiv preprint arXiv:2407.14435, 2024.

[21] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan
Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,
Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-
son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,
Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu
Kumar, Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David
Weinberger, Dimple Vijaykumar, Dominika Rogozifiska, Dustin Herbison, Elisa Bandy, Emma
Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel
Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Pluciriska,
Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff
Stanway, Jetha Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe
Fernandez, Joost van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji,
Kareem Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin
Nguyen, Kiranbir Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena
Heuermann, Leticia Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas
Dixon, Luciano Martins, Machel Reid, Manvinder Singh, Mark Iverson, Martin G6rner, Mat
Velloso, Mateo Wirth, Matt Davidow, Matt Miller, Matthew Rahtz, Matthew Watson, Meg
Risdal, Mehran Kazemi, Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park,
Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan, Neta
Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul
Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu,
Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh
Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien M. R. Arnold, Sebastian Krause,
Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting
Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh
Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han,
Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe
Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral,
Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol
Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya,
Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi, and
Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL
https://arxiv.org/abs/2408.00118|

[22] Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L

13

https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=I4e82CIDxv
https://transformer-circuits.pub/2024/april-update/index.html
https://transformer-circuits.pub/2024/april-update/index.html
https://transformer-circuits.pub/2024/april-update/index.html
https://transformer-circuits.pub/2024/april-update/index.html
https://arxiv.org/abs/2408.00118

[23]

[24]

Turner, Callum McDougall, Monte MacDiarmid, Alex Tamkin, Esin Durmus, Tristan Hume,
Francesco Mosconi, C. Daniel Freeman, Theodore R. Sumers, Edward Rees, Joshua Batson,
Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling monosemanticity: Extract-
ing interpretable features from claude 3 sonnet. https://transformer-circuits.pub/
2024/scaling-monosemanticity/, May 2024. Accessed on May 21, 2024.

Demian Till. Do sparse autoencoders find true features? LessWrong,
2024. URL https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/
do-sparse-autoencoders-find-true-features!

Zhengxuan Wu, Aryaman Arora, Atticus Geiger, Zheng Wang, Jing Huang, Dan Jurafsky,
Christopher D Manning, and Christopher Potts. Axbench: Steering 1lms? even simple baselines
outperform sparse autoencoders. arXiv preprint arXiv:2501.17148, 2025.

14

https://transformer-circuits.pub/2024/scaling-monosemanticity/
https://transformer-circuits.pub/2024/scaling-monosemanticity/
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features

A Technical Appendices and Supplementary Material

A.1 Full-width SAE toy model results

Cosine similarity with true features (Correlated features, full-width SAE) Cosine similarity with true features (Full-width SAE - anti-correlated features)
SAE encoder SAE decoder SAE encoder SAE decoder

o [° 0
-0
- 1.00 0.00 - 1.00 0.00
- Lo -
2

1 2 1 2 1 2 1
True feature True feature True feature True feature

0.00 0.55 0.00

2
|-

cos sim
cos sim

0.41 0.00 - 0.36 0.00

1

SAE Latent
SAE Latent
SAE Latent
SAE Latent

=
|

(a) Full-width SAE with correlated features. The (b) Full-width SAE with anti-correlated features. The
SAE is still able to perfectly learn the underlying SAE is still able to perfectly learn the underlying
features despite the correlation. features despite the correlation.

Figure 9: Full-width SAE results on correlated and anti-correlated toy models.

We extend the discussion of single-latent SAEs to explore what happens if the SAE has two latents,
the same number of latents as the number of true features. We use the same toy model as in Section[3.3]
for the positive correlation case, and the same toy model as in Section@ for the anti-correlated case.
We use L1 penalty of le-3 for the positive correlation case, the same as the L1 penalty that caused
hedging in single-latent SAEs.

We plot the results in Figure[9] In both cases, the full-width SAEs are able to perfectly recover the
true features despite the correlation, and despite the low L1 penalty. This shows that hedging is
caused by the SAE being too narrow, as increasing the width of the SAE solves the problem.

A.2 Theoretical Derivation: Feature Hedging in MSE-Optimal Sparse Autoencoders

Theorem. Consider a generative model with N orthogonal features where feature j fires with
probability p; and magnitude m; > 0. Let a Sparse Autoencoder (SAE) with capacity M < N be
trained to minimize Mean Squared Error (MSE). To isolate the behavior of the decoder, we assume
the SAE possesses a perfect oracle encoder for the first M features (recovering both activation and
magnitude). The optimal reconstruction weight Vi, for an untracked “orphan” feature fi, (k > M)
in latent z; is determined by the partial correlation between f; and fi, scaled by their relative
magnitudes. Specifically:

1. Hedging: If f, is correlated with f; (e.g., hierarchical), V;; # 0.

2. Monosemanticity: If f is independent of f;, V;; = 0.

3. Bias: The decoder bias captures the mean of f; not explained by the hedged latents.

A.2.1 Problem Setup

Let the input data 2 € R? be generated by a set of N mutually orthogonal unit vectors {f1,..., fx }.
We define the data generation process as:

N
xr = ZAjm]‘fj (9)
j=1

Where:

» A; ~ Bernoulli(p,) is the binary activation of feature j.
* m; > 0 is the scalar magnitude of feature j.
* The features are orthogonal: f;" fi = 6ij.
A standard SAE consists of an encoder 2z = 0(Wepne(— bgec) + bene) and a linear decoder. For this

derivation, we abstract away the specific implementation of the encoder (e.g., ReLU vs. TopK) to
prove that hedging is optimal even in the best-case scenario.

15

We define the reconstruction # using an augmented latent vector z = [29, 21, ..., zp] | € RM+L,

where zo = 1 represents the learned decoder bias. We seek a decoding matrix V € RM+D*N guch
that:

M
=3 u [SV (10)

Here, V;; represents the weight of feature f; in the direction of latent /;.

A.2.2 Assumptions

To analytically solve for the optimal weights, we make the following simplifying assumptions.

1. Perfect Oracle Encoder: We assume the encoder is an oracle that perfectly recovers the
scalar activation (magnitude included) of the features it is assigned to track. Instead of
deriving z from z, we fix:

This ensures that any hedging observed in the decoder is driven by the loss landscape, not
by encoder errors.

2. Decoder Bias as Latent: We treat the decoder bias as an “always-on” latent zy = 1.

A.2.3 The Minimization Problem
We seek to minimize the expected Mean Squared Error (MSE):
£ =E[|lz - |7 (1n

Since the features f; are orthogonal, the MSE loss decomposes into a sum of independent squared
errors for the reconstruction of each feature. We can therefore solve for the optimal weights for any
specific feature fj independently.

For a specific feature fj, the loss is:
M 2
Ly=E (Akmk -3 zvk) (12)
i=0

Given Assumption 1 (z; = A;m;), this minimization is equivalent to a Linear Regression (Ordinary
Least Squares) of the target variable Y = Aymy, onto the regressors z = [1, Aymy, ..., Ayymas]

A.2.4 Derivation of Optimal Weights

Reconstructing Tracked Features (k¢ < M) For any feature fj that has a dedicated latent
zr = Axmy, the regression is trivial. The latent zj, is a perfect predictor of the target A;my, with a
coefficient of 1.

Vie =1, Vi =0fori#£k (13)

Result: Tracked features remain monosemantic with unit weight (the magnitude is carried by the
latent z,).

Reconstructing Untracked “Orphan” Features (kK > M) For an “orphan” feature fj that the
SAE does not track explicitly, it must use the existing latents and bias to approximate it. The optimal
weights are determined by the multivariate regression coefficients.

Let zy.pr = [21,- .-, 2] be the vector of tracked latents. Let X, = Cov(zy.5s) be the covariance
matrix of the latents. Let ¢, = Cov(z1.ar, Ay) be the vector of covariances between the tracked
latents and the orphan target.

The optimal weight vector vi, = [Vig, ..., Var k]T for the latents and the bias V{y; are given by the
standard OLS solutions:

16

—“leg (14)

Vk:Ez

Vor = E[Apmy] — v E[z1.2/] (15)

A.2.5 Proof of Hedging Conditions

To build intuition, we consider the case where the tracked latents are mutually independent (making
>, diagonal). In the general case where tracked latents are correlated, the optimal weights would
be determined by the partial correlations (via the inverse covariance matrix ¥, !). Under the
independence assumption, the matrix solution decouples into scalar solutions for each weight Vjy:

Vi — Cov(zi,Akmk)
T Var(z)

Since z; = A;m;, we can factor out the magnitudes:

Vi — mimiCov(A;, Ag) my Cov(A;, A)
T m2var(A;) my Var(4y)

This formula shows clearly that hedging is driven by correlation scaled by the magnitude ratio of
the features.

Case A: Independent Features (No Hedging) Assume the orphan fj, is statistically independent
of latent f;. Then Cov(4;, Ax) = 0.

Vie=0 (16)

Result: The latent /; remains monosemantic (V;; = 0). The reconstruction of the orphan feature is
handled entirely by the decoder bias (Vo = prmy).

Case B: Hierarchical Features (Hedging) Assume a strict hierarchy where the orphan is a

child of the tracked feature: f,, — f;. Thus, Ay, = 1 — A; = 1, so the covariance is
Cov(A4;, A) = pr.(1 — p;). Substituting this into the equation:

v, Mk pe(1—pi) mypr

ik = — = —

mi pi(1—=pi) m; p;

Recognizing that for hierarchical features P(fx|f;) = px/pi, we obtain:

m

m’: - P(filfi) (17)

Vik =

Result: The latent /; becomes polysemantic. It learns a component of f;, proportional to the
conditional probability of the orphan given the parent, scaled by the ratio of their magnitudes.

Case C: Anti-Correlated Features (Negative Hedging) Assume fj; and f; are mutually exclusive
(fi O fi = 0). Then Cov(A;, Ag) = —pipk.

Vie = Mg —PiPk_ _ Mk Pk (18)
m; pi(1—p;) m; 1 —p;
We can further derive the exact value of the decoder bias V{y; in this setting:
mg Pk
Vor = E[Axmy] — VirElz] = prmi, — <—) (pim;)
m; 1 —p;
Simplifying the terms:
Di Pk
Vok = pemiy (1 +1) = my = mpP(fx|—fi) (19)
—Di I—pi

17

Result: The latent learns a negative component of the orphan feature. The decoder bias compensates
by learning a large positive “default” value: precisely the probability of the orphan firing given the
anti-correlated feature is off.

Case D: Full Capacity (M = N) In the case where the SAE capacity equals the number of
generative features (M = N), the set of orphan features {k | K > M} is empty. Consequently, every
feature fj, falls under the case derived in the first paragraph of Section

Vie =1, Vi =0fori#k (20)

Result: When capacity is sufficient to track every feature (M = N), hedging vanishes entirely. The
SAE learns a perfectly monosemantic representation.

A.2.6 Conclusion
‘We have derived that under optimal MSE minimization with perfect scalar encoding:

1. Feature Hedging is the mathematically optimal strategy for reconstructing correlated
features that exceed the model’s capacity (M < N).

2. Magnitude Ratios play a crucial role: tracked latents hedge more aggressively towards
high-magnitude orphan features.

3. Independent features do not cause hedging in the latents; their average presence is captured
entirely by the polysemantic decoder bias.

4. Correlated features (hierarchical or anti-correlated) force the latents to rotate away from
monosemanticity, mixing in components of untracked features based on their conditional
probabilities.

A.2.7 Corollary: Symmetric Encoder Hedging

In the derivations above, we solved for the optimal decoder assuming a fixed encoder. However, in a
real SAE trained end-to-end, both encoder and decoder are optimized simultaneously. We now show
that if the decoder hedges, the encoder is mathematically compelled to hedge symmetrically.

Theorem. Given a fixed decoder direction d; that is “hedged” (a mixture of features), and assuming
the encoder maintains perfect support selection (latent z; activates if and only if feature A; is active),
the MSE-optimal linear encoder direction w; must be collinear with d;. Thus, the encoder inherits
the same polysemantic mixture as the decoder.

Proof Consider the reconstruction contribution of a single latent z; with a fixed decoder vector d;.
Consistent with Assumption 1, we maintain the perfect support recovery assumption: the latent
is active (z; # 0) if and only if the target feature is active (A; = 1). We seek the optimal encoder
weight vector w; that determines the activation value z; = wiTx when active.

The loss function, conditioned on the feature being active (4; = 1), is:
L=E[|z— (w/z)d;|* | 4; =1] 21)
This is a standard projection problem. We define the optimal scalar activation z* as the value

that minimizes the distance between x and the line spanned by d;. The solution is the orthogonal
projection of z onto d;:

r'd; - (d;
g ’ 22
C = <||di||2> (22

Since our encoder is defined as z; = w, x, equating terms yields the optimal encoder weights:

W= e * & -

Conclusion: The optimal encoder acts as a matched filter for the decoder.

18

1. From our previous derivation, we know the optimal decoder d; is a mixture of the tracked
feature f; and the orphan feature fy.

2. Therefore, w; must also be a mixture of f; and fy.

This explains the empirical observation that hedging is symmetric (as seen in Figure[Ta). The loss
landscape forces the decoder to mix features to capture unrepresented variance, and simultaneously
forces the encoder to mix features to detect that variance.

A.3 Validating hedging degree in toy models

To validate that our hedging degree metric works as expected, we set up a larger toy model with
correlated features and train SAEs of varying widths on this toy model, calculating the hedging
degree for each SAE. Our toy model consists of N = 50 mutually-orthogonal true features each
with dimension D = 100. We randomly generate a correlation matrix to control feature firing
correlations. Each feature f; fires with magnitude m; ~ N (1.0,0.15). We linearly decay the base
firing probabilities p; from pg = 0.345 to psg = 0.05 so that on average 11 features fire per input.
The correlation matrix and feature firing probabilities are shown in Figure[T0]

Feature correlation matrix Feature firing probabilities P;
S -m 1.0 0.4
.S
o ST
'-.__-. - 0.5 0.3

g 8- -, .
E . L 00 & 0.2
= .
£ o - -"-

o

1 1 1 | | —1.0 0 5 10 15 20 25 30 35 40 45
0 10 20 30 40 Feature

Feature

Figure 10: Feature correlation matrix (left) and firing probabilities (right) for our large toy model of
correlated features.

We train a series of BatchTopK SAEs on activations generated by this toy setup. We follow the
procedure in Section[4] first training a base SAE on 3M training samples. Then, we continue training
a control variant of the SAE on another 3M samples, and an extended variants where we add 2 latents
to the base SAE and train for 3M more samples. We then calculate the hedging degree for each of
these SAEs. We set K=11 for the BatchTopK SAEs, matching the LO of the underlying toy model.
We plot results in Figure[TT]

Hedging degree vs SAE width

Hedging degree
o

20 30 40 50
SAE width

Figure 11: Hedging degree vs SAE width from our toy model. The narrower the SAE, the higher the
hedging degree. When the SAE width equals the width of the toy model (50), hedging degree is zero.

We see that the narrower the SAE, the higher the hedging degree. Furthermore, once the SAE width
matches the toy model width, hedging degree reaches zero.

19

A.4 Training details for LLM SAEs

All SAEs are trained on the Pile uncopyrighted [10], using a batch size of 4096 activations and
context length of 1024 tokens. For L1 SAEs, we use a linear L1 warm-up of 10k steps. SAEs are
trained on a single 80gb Nvidia H100 GPU. Model weights are loaded in fp32 precisions, but autocast
to bfloat16 during training. We initialize the SAE so that the encoder and decoder are identical, where
each latent has norm 0.1, following the procedure described in [18]. All L1 SAEs are trained with
learning rate 7e-5, and BatchTopK SAEs are trained with learning rate 3e-4. SAEs are trained using
SAELens [[1]].

Unless otherwise specified, BatchTopK SAEs use k=25. For SAEs trained on Gemma-2-2b, we
conduct most experiments at layer 12 (roughly in the middle), and L1 SAEs trained on Gemma-2-2b
use L1 coefficient of 10. This coefficient does not reuslt in dead extension latents, and yields a LO
around 50. For SAEs trained on Llama-3.2-1b, we conduct most experiments at layer 7 (roughly in
the middle of the model), and for L1 SAEs trained on Llama-3.2-1b, we use L1 coefficient of 0.5.
This coefficient does not result in dead extension latents, and yields a LO around 50.

A.5 Choice of hedging hyperparameter N

Hedging degree vs N (width=8k, L0=25)
0.04 —— btk

0.03

0.02

Hedging degree

0.00
0 50 100 150 200 250

Num latents added (N)

Figure 12: Hedging degree vs N

Our hedging degree metric requires adding N new latents onto an existing SAE to extend it, naturally
leading to the question of what is a reasonable choice of N. We plot hedging degree vs N for Gemma-
2-2b layer 12, given an initial BatchTopK SAE of width 8192 in Figure[I2] We find that hedging
degree increases until about N=250. We choose N=64 for our experiments, as 64 is still a small
number of latents relative to the size of the residual stream (2304 for Gemma-2-2b), while still being
large enough to hopefully reduce noise from any specific latent that gets added. Furthermore, as we
see in the plot, the hedging degree from N=64 is about in the middle of the curve, further validating
that this is a reasonable choice.

A.5.1 Extending LLM SAEs

We train two versions of extension SAEs - one for L1 loss SAEs and one for BatchTopK SAEs. In
both cases, we begin with a pretrained SAE and add N latents randomly initialized with norm 0.1, and
with the same encoder and decoder directions, following Olah et al. [18]]. For the BatchTopK SAEs,
we simply train the SAE from this point as normal, as the TopK auxiliary loss [11] will naturally
ensure that the newly added latents do not simply die off.

For L1 SAEs with high L1 penalty, dead latents become a more serious problem. We find that most
of the newly added extension latents will rapidly be killed off if we simply train as normal. To
combat this, we re-warm-up the L1 penalty. However, we cap the minimum L1 penalty at Ay, SO
for the portion of the warm-up where the L1 penalty would normally be below A,i,, the L1 penalty
is left at A\p,;;, instead. This capping helps ensure the existing SAE latents are not very disturbed by
this change in the L1 penalty. If the final L1 penalty is Ay, or below, then we do not perform this
warm-up at all, as the L1 penalty is not strong enough to immediately kill off the newly added latents.

For Gemma-2-2b SAEs, we set A\,in = 10.0. For Llama-3.2-1b SAEs, we set Apjn = 0.5.

20

This warm-up procedure is only used for the high-L1 variants in Figure[5d]- for all other plots the L1
coefficient used is less than \p,i,, S0 no warmup is needed.

A.6 Additional case study dashboards

ACTIVATIONS

DENSITY = 0.341%

15k

o 29 458 687
NEGATIVE LOGITS POSITIVE LOGITS

EndContext 070 EEyuEsHEsY 109
ValueGeneration -0.79 Css 085
_AssenblyProduct 076 |CSS 085
_Italijani 073 s 084
s 073 [078
R -073 css (]
DeleteBehavior -071 _Css on
HessageInfo 070 _makeStyles 055
‘AndEndTag -069 bootstrapcdn 052
_HasFactory -069 priate 047

Figure 13:

NEGATIVE LOGITS

B3 084
RegressionTest -0.83
UnusedPrivate -0.68
[066
=N 065
queryInterface -062
_OMITBAD -059
_Monfieur -059
_Mranujanu -059
xase -058

-06 =03 0 03 06 09

POSITIVE LOGITS
Boxbecoration
DoCTYPE

_rel
bootstrapcdn
i
_BoxFit
Apxisosano
_itemprop
_opurinany
pragna

088
077
071
070
070
068
063
060
055
054

TOP ACTIVATIONS
MAX = 68.785

.0.3/E88/bootstrap. min.

/bootstrap. min. 88" _integrity="sha3
Zbootstrap. min. €88"> ___<Uink
0.16/€88/share . min.
+3.7/€88/bootstrap. min.
.3.7/k88/bootstrap-theme.

[bootstrap. min . €88" _rel="stylesheet">
<Ilink_rel=" Stylesheet" _type="text/
ib/ codemirror . €88"> <script_src
___<Ilink_re="stylesheet" _type="text/
.1.0.[88" _rel="jstylesheet"
<[Uink_rel=§tylesheet href="../../doc/docs
<link_rel="Styleshest" _href="{{_"/css
Bootstrap—>

<ULk _type="text /(58
="static/external /€88~ toggle-switch/
="€88/bootstrap. €88" _rel="stylesheet"
="stylesheet" _href="[css/style.css"
="styles/bootstrap/Ess/bootstrap. min .

Jext-all.gss"_/>__ <i-—
__<link_re1="gtyleshest" href="../Ess/

TOP ACTIVATIONS
MAX = 86.278

>___ <Uink[JF8U="stylesheet" _type="
8"/><1ink[If@ll=stylesheet _href="../../doc

png"> < Link[if@l="manifest"_href="

div><link[Il="stylesheet"_href="
> <link[{IF8U=" stylesheet" _href="
3"/><link[F@l=" stylesheet " _type="

£ <link(IFel=" logo" _href="

"> _ <link[F@l="stylesheet"_href="../

"> _<link[f@l="icon" href="/

title> <link{IF8l=" stylesheet"_href="../../
head> < Link[[f@l="stylesheet " _nedia="

head> < Link[JF€l=" sty lesheet " _type="
url_}}"> <Uink[fel="stylesheet " _href="{{
/> <Uink[If@l="stylesheet " _type="
toc_—> < link[JF8L=" stylesheet " _href="../

title><link[F@l=" stylesheet " _type="
_CONTENT #/ < Uink[IF@l="stylesheet " _href="
"> ___ <link[IFel="stylesheet" _type="

_/> _<link[IFel="stylesheet"_href="

1"/> <link[IFel=" stylesheet " _type="

INTERVAL 61.907 - 68.785
CONTAINS 0.000%

[bootstrap. min. E88"> ___ <ink
/bootstrap.min.E8§" _integrity="sha3
. 0. 3/[@88/bootstrap. min.

INTERVAL 55.028 - 61.907
CONTAINS 0.000%

+3.7/[€88/bootstrap-thene .

bro' import_'./Ess/global. css "
.1.0.€88"_rel="stylesheet"
<llink_rel="tylesheet" href="{{_"/kss

Jext-all.gss"_/>___<i—

INTERVAL 48.150 - 55.028

CONTAINS 0.001%

=" Stylesheet" href="../€ss/ 2 TreeStyle/

title> <link_re="5tylesheet" _href

link_href="index.€ss" _rel="stylesheet"

" _type="text/€88" _href="search.
<\ink_rel="stylesheet" _href="//code.

INTERVAL 77.650 - 86.278
CONTAINS 0.000%

_CONTENT#/ < Link[JF@U=" sty lesheet" _href="
/> <link[IF8U=" stylesheet"_type="

css"><link[IF8U=" stylesheet"_href="../../
url_}}"> < link[F@l="stylesheet" _href="{{
3"/> < link[JF8L=" stylesheet " _type="

INTERVAL 69.023 - 77.650
CONTAINS 0.000%

icons——> <link[[Fel="stylesheet" _href="
_like_this <link[[l="stylesheet" _href="
" _/><link[Fel="alternate"_href lang

" _/><link[Fel="alternate" _href lang

. png"/><ink[[Fel="icon" _type="

INTERVAL 60.395 - 69.023
CONTAINS 0.000%

<ieta_http-equiv="Content-Type"
_title="Space tine " [[Fél="Chapter" _href="
__<ieta_http-equiv="content - type"
/styles. css"[rel="stylesheet"_/>

" _/><link[Fel="alternate" _href lang

INTERVAL 41.271 - 48150
CONTAINS 0.001%

"_type="text /88" _/> <

.€85" _rel="stylesheet" _type="text/
stylesheet”_href="€ss/style. css"_/>

</div><Uink_rel="stylesheet" href
Jadnin-references. 688", ___FILE__));

INTERVAL 34.393 - 41.271
CONTAINS 0.001%

\base\ theme.css"_/>___<
}1); <script_sre="https://cdnjs .

chunkhash:8]. css ' chunkFilenane

> <script[sre="../../external/ requirejs

="text /88" href="../../ resources/€ss/

INTERVAL 27.514 - 34.393
CONTAINS 0.002%

_“src/style.(css”_file_so_we_can
_required_classes_with_jQuery._CSS_pseudo_class_
>___<!-—_jQuery_CON_https ://code . jquery

_with_the_component ' s_CSS. To_render_in

>___<script_sre="http://wni.

Dashboard for the newly added case study latent representing CSS scripts in HTML.

INTERVAL 51.767 - 60.395
CONTAINS 0.000%

<head> <meta_http-equiv="Content
<head> <meta_http-Equiv="Content
head> <meta_charset="utf-8
<meta_http-equiv="x-ua-
___<meta_http-equiv="Content-Type"

INTERVAL 43.139 - 51.767
CONTAINS 0.000%

9"/> <meta_name="generator" _content="

_bootstrap. css"_rel="stylesheet ">
head>___<meta_charset="UTF-8
link_title="Stack"_rel="Chapter"_href="
"> ____<input_type="text" _id="

INTERVAL 34.511 - 43.139
CONTAINS 0.002%

."_/>_<meta_name="twitter: description
</p>_<input_type="text"_name="
“stylesheet"_type="text
link_title="Str"_rel="Chapter"_href="

</style><meta_http-quiv="Content

Figure 14: Dashboard for latent 3094, representing the “rel” HTML attribute used for CSS scripts.
This latent has the highest negative §-projection on the newly added case study latent.

A.7 Toy balance matryoshka SAEs

To explore the effect of balancing matryoshka losses in a simple toy setting, we create a toy model
with 4 true features, all mutually orthogonal and with unit norm in a 50 dimensional space. We set
up a hierarchical relationship between these features, so feature 1 fires with probability 0.25, and
features 2, 3, and 4 all fire with probability 0.15 only if feature 1 fires. Thus, feature 1 is the parent
feature in the hierarchy and features 2, 3, and 4 are all child features.

We train a matryoshka SAE with 4 latents on 100,000,000 samples from this toy model. The
matryoshka SAE has a single inner level consisting of 1 latent, to match the number of parent latents
in our hierarchy. Since our goal with this toy is just to build intuition, we initialize the SAE to the
correct solution and allow the training to thus pull it away from this correct solution. This also ensures
that each variation of our SAE with different balancing co-efficients learns the same latents in the
same order, so visual comparison is easy.

A.8 Toy unbalanceable matryoshka SAEs

The situation above where each child feature has the same probability of firing is unrealistic - we
would expect that child features all fire with different probabilities from each other. Can we still

21

balance the SAE perfectly in this situation? We adjust the toy model from above so that the 3 child
features fire with probabilities 0.02, 0.2, and 0.5 for features fs, f3, and fy, respectively. We then try
to manually balance this SAE, finding that 5 = 0.17 gives roughly the best balance. We plots the
resulting encoder/decoder cosine similarities in Figure [I3]

Unbalanceable Matryoshka SAE (8 = 0.17)
SAE encoder SAE decoder

r 1

-0

Lo

cos sim

SAE Latent
4

1 1

SAE Latent
1 2 3 4
1 1 1

1 2 3 4 1 2 3 4
True feature True feature

Figure 15: SAE encoder and decoder vs true feature cosine similarities for a balance matryoshka
SAE where the child features fire with different probabilities. It’s no longer possible to perfectly
balance all 3 child features with the same 3, but we can still do reasonably well.

We now see it is no longer possible to choose a single /3 that perfectly balances all 3 children. We
see slight hedging of feature 4 in latent 1, and slight absorption of feature 2 in latent 1. Still, this
looks decent compared to the full hedging or full absorption scenario, so we still expect that while
balancing is not a perfect solution, it should be an improvement. We believe it should be possible to
finding ways of better balancing the contribution of each outer latent on each inner latent, but this is
left to future work.

A.9 SAE evaluation

A.9.1 SAEBench evals

We evaluate our SAEs mainly using SAEBench [[14]. All evals are performed using default settings.
We run all evaluations on an Nvidia HI00 GPU with 80gb GPU memory. We evaluate on the
following SAEBench tasks:

K-sparse probing k-sparse probing builds on the work of Gurnee et al. [12], where the goal is to
create a linear probe from model activations using only £ neurons as input to the probe. This was
adapted for use as an SAE evaluation technique by Gao et al. [11]. We focus mainly on k£ = 1 sparse
probing, which means finding the single best SAE latent that serves as a classifier for a given concept,
and evaluating the accuracy of that latent. SAEBench includes supervised classification datasets on
which k-sparse probing is evaluated.

Feature absorption The feature absorption metric in SAEBench is a variation on the metric defined
in the original feature absorption work [5]. This metric uses a first-letter spelling task and first
identifies the “main” latents for that task using k-sparse probing [[12]]. Then, the metric identifies
cases where a linear probe is able to correctly perform the first-letter classification task, but the “main”
SAE latents fail to perform the task. The metric also looks for other latents that project onto the linear
probe direction and fire in place of the “main’ latents. Lower absorption is better.

The SAEBench absorption metric also includes “absorptions fraction”, “feature splitting”, and “first-
letter k=1 sparse probing” results as well, which we include in our extended results. Absorption
fraction detects partial absorption, where a parent latent can still fire but weaker when an absorbing
child latent fires as well. Feature splitting detects the amount of interpretable feature splitting
occurring in the SAE. Interpretable feature splitting is still considered negative, as we would prefer
that features do not split at all and the SAE can still represent general, high-level concepts. The
k-sparse probing results for the first-letter spelling task is calculated as part of the absorption metric,
but is an interesting sparse-probing result in and of itself.

Spurious concept removal (SCR) SCR builds on the SHIFT method from Marks et al. [17]] to

detect how well an SAE isolates concepts. The metric uses datasets where two properties are perfectly
entangled, for instance “profession” and “gender”, and trains a biased probe on these concepts. The

22

SCR metric then detects how well k£ SAE latents can be ablated to de-bias the probe. If the SAE
latents learn disentangled concepts, then it should only take a few SAE latents to perfectly de-bias
the probe. A high SCR score means the SAE latents represent disentangled concepts.

Targeted probe perturbation (TPP) The TPP metric extends SCR to multi-class labels. Binary
probes are trained for each class, and TPP measures how well ablating &£ SAE latents can degrade the
performance of just one of the probes without degrading performance on the other probes. A high
TPP score means that concepts are represented by distinct sets of SAE latents, rather than latents
being entangled with many concepts.

A.9.2 Parts of speech (POS) probing dataset

We are interested as well in general, high-frequency concepts that we expect should be learned in
the inner-most levels of a matryoshka SAE. These concepts should be the most affected by both
absorption and hedging, as these concepts can be considered parent concepts to most other concepts.
Parts of speech (POS) is a great test-case for these general concepts, and are not covered by the
SAEBench sparse probing task. As such, we create our own custom POS dataset using the Penn
Treebank tagged sentences [[16].

We simplify the Treebank parts of speech to the following core set:

IITOII s IIINII , IIDTII , IICCII s IINNSII , IIPRPII , IIPDSII

We pass these tagged sentences through an LLM, and then collect activations for the final token of
position of each word at a given layer in the LLM. We create a binary classification dataset for each

of these parts of speech, and perform k-sparse probing [12]] on SAE latents to find the top k latents
that act as a classifier for each of these parts of speech.

A.9.3 Balance matryoshka SAE full results

Mean Absorption Fraction by SAE TPP Top-10 Explained variance

0.16

Absorption fraction

0 1 2 3 4
Multiplier

(a) SAEBench Absorption fraction.

Lower is better.

SCR Top-10
0.350

0.325

0.275

SCR metric

0.250
0.225

0 1 2 3 4
Multiplier

(d) SAEBench SCR top-10 metric.

Higher is better.

0.14

0.12

TPP score

0.10

0.08

0 1 2 3 4
Multiplier

(b) SAEBench TPP top-10 metric.

Higher is better.

Sparse Probing Top-5

0.87

0.84

Accuracy

%

0 1 2 3 4
Multiplier

(e) SAEBench K=5 sparse probing
accuracy.

0 1 2 3 4
Multiplier

(c) Explained variance.

Mean First-Letter k=1 Sparse Probing F1 by SAE

0.65

0.60

0.5:

0.50

1 sparse probing

k=

Mul(ip]ie::' '
(f) K=1 first-letter sparse probing
F1 score (SAEBench absorption).

Figure 16: Performance of balance matryoshka SAEs vs multiplier for extended metrics. The shaded
area in the plots refers to 1 std. Multiplier=0 is equivalent to a standard non-matryoska SAE, and
multiplier=1 is equivalent to a standard matryoshka SAE.

23

	Introduction
	Background
	Studying hedging in single-latent SAEs
	Fully independent features
	Hierarchical features
	Positively correlated features
	Anti-correlated features
	Hedging is a function of feature correlation

	Hedging is caused by reconstruction loss: curves for single-latent SAEs

	Quantifying hedging in LLM SAEs
	Results

	Case study: adding a new latent to an existing SAE
	Balancing hedging and absorption in matryoshka SAEs
	Related work
	Discussion
	Limitations
	Technical Appendices and Supplementary Material
	Full-width SAE toy model results
	Theoretical Derivation: Feature Hedging in MSE-Optimal Sparse Autoencoders
	Problem Setup
	Assumptions
	The Minimization Problem
	Derivation of Optimal Weights
	Proof of Hedging Conditions
	Conclusion
	Corollary: Symmetric Encoder Hedging

	Validating hedging degree in toy models
	Training details for LLM SAEs
	Choice of hedging hyperparameter N
	Extending LLM SAEs

	Additional case study dashboards
	Toy balance matryoshka SAEs
	Toy unbalanceable matryoshka SAEs
	SAE evaluation
	SAEBench evals
	Parts of speech (POS) probing dataset
	Balance matryoshka SAE full results

